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Abstract— In ultra-wideband (UWB) systems, the ultra-wide
bandwidth and abundant multipath components can provide
great spreading gain and diversity gain, but will also induce
complicated interference suppression algorithm because of the
requirements of very high sampling rate and large number
of filter taps. A reduced-order multi-user detector (R-MUD)
is proposed in this paper which can significantly reduce the
sampling rate thus the computational burden by down-sampling
the received multipath signal at appropriate locations, where the
energy of the desired user can be effectively captured and the
interferences from other users can be dramatically suppressed.
The superior performance of the R-MUD is justified by computer
simulations.

I. INTRODUCTION

The immense system capacity, super multipath resolution
and other attractive features make UWB techniques draw
considerable attention in communications. Nevertheless, the
highly dispersive UWB channel which may comprise hundreds
of multipath components leads to the difficulty of receiver
design. The overlayed narrow-band systems, which usually
have several tens dB higher power spectrum density than UWB
systems, will bring severe jam and interference. The coexistent
users will also interfere with each other because of the near-
far effect, especially in the asynchronous, multi-rate networks
which are eagerly demanded for various extended applications.

The selective-Rake and partial-Rake receivers can be
employed in UWB multipath environment to combine the
dispersive paths [1]. Since Rake receiver is an optimal matched
filter only under additive white noise circumstance, it will
suffer considerable performance degradation when the signal
is disturbed by narrow-band and multi-user interferences [2].
Conventional multi-user detection (MUD) algorithms can cope
with these interferences but require very high sampling rate
and complexity [3]–[5]. In some killer applications such as
sensor networks, these requirements can not be afforded and
simple interference resistant schemes are called for [6]–[8].

An effective way to simplify the implementations of
UWB systems is to reduce the sampling rate. [9] developed
a frame-rate MUD algorithm, which correlates the received
signal with an analog reference signal, say a noise template,
and samples the output at frame intervals. The MUD is
then performed using this frame-rate signal. This algorithm
requires long and high resolution delay lines, which will
raise the hardware cost. Moreover, since this algorithm re-
lies on the spreading sequences to combat the multi-user

interference, it is not favorable to accommodate the multi-
rate systems. [10] studied a low sampling rate narrow-band
interference suppression algorithm, which selects a group of
down-sampling locations according to the maximal first arrival
paths of the desired user, then detects the down-sampled signal
with the minimum mean square error (MMSE) filter. This
partial sampling MMSE filter can approach the performance
of the full sampling MMSE filter with much less filter taps.
Unfortunately, a partial sampling MUD (P-MUD) algorithm
with the same idea is ineffective to combat the multi-user
interference, since the locations where involve the maximal
paths of the desired user may also involve the paths of the
interfered users with higher magnitudes, or having strong
dependence with that of the desired user.

This paper proposes a novel down-sampling algorithm
for multi-user detector aimed at significantly reducing the
receiver complexity with least expense of the performance
degradation comparing to the full sampling MUD (F-MUD). It
uses iterative one dimensional searching to select the locations
that make the mean square error of an order-recursive filter
minimal. To accommodate the multi-rate multi-user systems,
the down-sampled signals are detected at each frame duration,
so that, unlike in CDMA systems, the capability of suppressing
the multi-user interferences comes from the distinction of
the channel response of different users. [11] had presented
a reduced-rank transmitter adaptation scheme for the reverse
link of a DS-CDMA system in which the transmitted signature
is constrained to line in a lower dimensional subspace and is
optimized to avoid the multiple access interference. While the
reduced-rank processing is related, we confront new signaling
format and channel environment in UWB communications and
concentrate on the problem of sampling rate reducing.

The rest of this paper is organized as follows. Section II
introduces the modulation and multi-access scheme, multipath
channel response and received signal model. Section III studies
the criterion of optimal down-sampling and the suboptimal it-
erative implementation. Performance of the R-MUD algorithm
and comparison with the F-MUD and P-MUD are shown in
section IV, and conclusions are provided in the last section.

II. SYSTEM DESCRIPTION

Consider a DS-UWB communication system with K
users, which have identical pulse repetition time (PRT) but
different data rates due to different spreading factors. The
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spreading factor of the kth user is Nk = Tb/Tf , where Tb is
the bit duration and Tf is the frame duration. The transmitted
signal of the kth user is

sk(t) =
∞∑

j=−∞

√
Ekak(�j/Nk�)ck(j)ptr(t − jTf ), (1)

where Ek represents the energy of the kth user’s transmitted
pulse, ak(i) is the pulse amplitude modulated (PAM) polarity
of the ith bit, �x� is the largest integer less than x, ck(j) is the
kth user’s spreading code which repeats every Nk times, ptr

is the transmitted pulse waveform with pulse width Tp � Tf

and energy normalized to
∫ ∞
−∞ p2

tr(t) = 1.
Define the impulse response of the kth user’s multipath

channel as

hk(t) =
L−1∑
l=0

αk,lδ(t − τk,l), (2)

where αk,l and τk,l represent the amplitude and delay of the lth
path, respectively. Assume the maximal delay τk,L−1 < Tf ,
then the inter-pulse interference can be avoided.

Due to the differential effect of the UWB antenna, the
received pulse waveform becomes prec(t). Then after matched
filter in the receiver front-end, the equivalent composite chan-
nel of the kth user is h̃k(t) = prec(t)∗hk(t)∗prec(t). Consider
the asynchronous networks, where the kth user has a delay τk,
then the received signal after matched filter is

r(t) =
K∑

k=1

∞∑
j=−∞

√
Ekak(�j/Nk�)ck(j)h̃k(t−jTf−τk)+n(t),

(3)
where n(t) is zero mean Gaussian noise with variance σ2

n.
Define Dk = �τk/Tp� is the smallest integer not less than

τk/Tp, N = Tf/Tp, and

h̄k = [h̄k(0), h̄k(1), · · · , h̄k(N − 1)]T , (4)

h̄
+
k = [0, · · · , 0, h̄k(0), · · · , h̄k(N − Dk − 1)]T , (5)

h̄
−
k = [h̄k(N − Dk), · · · , h̄k(N − 1), 0, · · · , 0]T , (6)

where h̄k(m) = h̃k[(m + 1)Tp] is the mth discrete sample
from channel response h̃k(t) and ‖h̄k‖ is assumed to 1. Then
the samples of the jth received frame can be expressed as the
following matrix form,

r(j) = SAb + n, (7)

where

S = [h̄+
1 , · · · , h̄

+
K , h̄

−
1 , · · · , h̄

−
K ], (8)

A = diag([
√

E1, · · · ,
√

EK

√
E1, · · · ,

√
EK ]T ), (9)

b = [a1(�j/N1�)c1(j), · · · , aK(�j/NK�)cK(j),
a1(�(j − 1)/N1�)c1(j − 1), · · · ,

aK(�(j − 1)/NK�)cK(j − 1)]T , (10)

where diag(·) is a diagonal matrix, and n is the sample vector
of n(t) with covariance matrix Rn = σ2IN .

Assume that the first user is the desired user and its signal
has been synchronized, that means τ1 = 0 and h−

1 = 0.
Detect the received signals with a linear transversal filter w
and despread afterwards. The estimation of the transmitted
signal is then obtained as

â1(i) = sign




(i+1)N1−1∑
j=iN1

c1(j)wT r(j)


 , (11)

where w can be a filter directly derived from the MMSE
criterion, or can be a filter developed from various reduced-
rank algorithms, or the reduced-order filter we will present
next section.

III. REDUCED-ORDER MUD

A. Reduced-rank MUD

In CDMA systems, the reduced-rank linear multi-user
detector projects the N dimensional received signal onto a
lower M dimensional subspace by a projection matrix P ∈
C

N×M ,
r̃ = P Hr, (12)

then uses some optimal detector such as MMSE-MUD to
process the lower dimensional signals. Define the covariance
matrix of the original received signal vector r as R = E[rrH ],
the cross correlation matrix of the desired response d and the
received signal vector r as ρ = E[rd∗]. Then the covariance
matrix of the reduced-rank signal is R̃ = P HRP , the cross
correlation of the desired response and the reduced-rank signal
is ρ̃ = P Hρ. According to the MMSE criterion, the weighting
vector of the detector for processing the reduced-rank signal
is

w̃mmse = R̃
−1

ρ̃. (13)

The critical part of the reduced-rank algorithm is to
design the projection matrix. For example, in the multiple
stage Wiener filter, auxiliary vector filter and Cayley-Hamilton
method, their equivalent projection matrix is [12]

P =
[
h̄1,Rh̄1, · · · ,RM−1h̄1

]
, (14)

where h̄1 = ρ/‖ρ‖.

B. Optimal Down-sampling Criterion

In the reduced-rank algorithms, the rank of the projected
signal subspace depends on the number of users. When few
users exist, the number of taps of w̃mmse can be very small,
but from the detection process we can see that the estimation
of the desired response is

d̂ = w̃H
mmseP

Hr = wHr, (15)

i.e., the tap number of the transversal filter w is still N .
In the UWB systems we hope that the tap number can be

dramatically reduced, thus we will investigate a reduced-order
multi-user detector by down-sampling in the following.
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Consider a class of constraint projection matrix

P = [e0,e1, · · · ,eM−1] , (16)

where em is a column vector with its pmth element equals
to 1 and all others 0. Without loss of generality, we assume
p0 < p1 < · · · < pM−1.

According to the signal model in last section, we first
project the received signal vector r onto the subspace spanned
by P , then compute the weighting vector of the detector based
on the MMSE criterion.

Note that this projection operation is actually a down-
sampling process. Instead of finding a general form of the
projection matrix as in the usual reduced-rank detectors, the
projection matrix with such a special constraint which repre-
senting the down-sampling locations pm will be determined.
The rank of the signal reduced through this way depends on
M , in stead of the number of users.

Because user 1 is the desired user and ‖h̄1‖ = 1, the
normalized cross correlation between the desired response
and the received signal vector is ρ/‖ρ‖ = h̄1. Then after
projecting operation the weighting vector of the MMSE filter
is

w̃mmse =
(
P HRP

)−1

P H h̄1. (17)

The mean square error of the filter’s output is

JM = 1 − h̄
H
1 P

(
P HRP

)−1

P H h̄1. (18)

Therefore, select the optimal down-sampling locations is
to select a matrix P which can make the mean square error
J minimal, that is

P = arg min
P

J = arg min
p0,··· ,pM−1

JM . (19)

Apparently, this is a multi-dimensional joint searching prob-
lem, the computation of which will become unaffordable with
the increasing of down-sampling locations.

C. Iterative Implementation of the Reduced-order MUD

To facilitate the implementation of the reduced-order
algorithm, we design a suboptimal iterative searching method.
The main idea is gradually determining the M down-sampling
locations, the (m + 1)th down-sampling location pm is se-
lected based on the determined locations p0, p1, · · · , pm−1 and
MMSE criterion, that is

pm = arg min
pm

Jm+1(pm|p0, p1, · · · , pm−1). (20)

Then the M -dimensional joint searching problem is simplified
to a linear searching problem.

Define the signal vector sampled at locations
p0, p1, · · · , pm−1 as rm, the channel coefficient vector
of the desired user sampled at these locations as hm,
then the covariance matrix of the down-sampled signal is
Rm = E[rmrH

m], the weighting vector of the detector is
obtained as wm = R−1

m hm, and the minimal mean square
error of the detector is Jm = 1 − hH

mR−1
m hm.

Define the received signal sampled at the location pm

to be determined as rm+1, the channel coefficient at the
corresponding location is hm+1, then the (m + 1)-dimension
received signal vector is rm+1 = [rH

m, r∗m+1]
H , channel

coefficient vector is hm+1 = [hH
m, h∗

m+1]
H . Define a vector

v = E[rmr∗m+1] as the cross correlation between the pre-
viously selected m samples and the (m + 1)th new sample,
then the relationship between the covariance matrix Rm+1 =
E[rm+1r

H
m+1] and Rm is

Rm+1 =
[
Rm v
vH α

]
, (21)

where α = E[‖rm+1‖2].
Employing the matrix inversion lemma of the partitioned

matrices [13], the inversion of Rm+1 can be derived from the
inversion of Rm as,

R−1
m+1 =

[
R−1

m + βR−1
m vvHR−1

m −βR−1
m v

−βvHR−1
m β

]
, (22)

where β = (α − vHR−1
m v)−1.

From (22), the reduction of the minimal mean square
error after adding one sample can be derived as

Jm − Jm+1 = β‖h∗
m+1 − wH

mv‖2. (23)

Thus the searching problem of the (m + 1)th down-
sampling location becomes

pm = arg max
pm

{‖h∗
m+1 − wH

mv‖2

α − vHR−1
m v

}
, (24)

where wm and R−1
m have been obtained in the mth iteration

and do not change their values in the linear searching process.
So far, we have completed the development of the itera-

tive linear searching algorithm. However, by observing from a
different point of view we will gain some other insight from
(24).

Consider the problem of predicting rm+1 from rm. If
the MMSE criterion is applied, the cross correlation between
the desired response and the received signal vector is just v,
the weighting vector of the predictor is f = R−1

m v, and the
denominator of (24) is the mean square error of the predictor
output. Substitute wm = R−1

m hm into the numerator, we can
get

‖h∗
m+1 − wH

mv‖2 = ‖hm+1 − fHhm‖2. (25)

This is the square error of the prediction of hm+1 from hm.
Consequently, (24) can be written as

pm = arg max
pm




‖hm+1 − fHhm‖2

E
[
‖rm+1 − fHrm‖2

]

 . (26)

This expression implies that when we make the choice of
pm, we need to select a most distinct hm+1 relative to rm+1

based on p0, p1, · · · , pm−1. Then the error of predicting hm+1

with filter f can be maximal. It is sure that the information of
hm+1 is also involved in rm+1, but only if the down-sampled
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channel responses of the other users are least dependent on
hm+1, can the system achieves the best performance.

An order-iterative adaptive filter based on least square
criterion is introduced in [14]. It adaptively generates the filter
weights both in time and in orders and is able to approach
the convergence rate of the RLS algorithm with a complexity
linear to the order. However, the focus of the order-iterative
adaptive filter is to calculate the filter weights, while our focus
is to select the down-sampling locations.

It can be seen that the knowledge of the number of
user is not required in this scheme, neither is the channel
state information of other users. When the M locations from
the N possibilities have been determined, the sampling rate
can decrease to M/N of the original rate since only M -
dimensional signal vector is applied to detect the desired user.
All the samples of the received signal are still necessary before
down-sampling, whereas these samples can be obtained by
serial sampling in the training sequence field when the system
possesses M frame-rate ADCs.

IV. SIMULATION RESULTS

In this section we will study the performance of the
reduced-order multi-user detector through computer sim-
ulations in various signal-to-noise ratio (SNR), signal-to-
interference ratio (SIR), filter taps after down-sampling, the
number of users and training sequence length conditions. We
will also compare the reduced-order algorithm with the F-
MUD and P-MUD algorithms. In our simulations the users
are independent on each other, which means that each user
has independent random delay and experiences independent
multipath channel, as in the asynchronous networks. Because
the algorithms will work in the multi-rate environments, which
means the transmitted signal may have variable spreading
factor, we simulate here the worst scenario that the desired user
does not spread. The multi-user interferences are suppressed
by the channel response differences.

In the simulation tests, the channel model we applied is
given by IEEE802.15.4a low-rate WPAN task group and is
based on the practical measurement data in the indoor office
environments [15], where 3-28m, 2-8GHz is measured and
line-of-sight exists. In this model, the multipath arrives in
clusters and the arrival time of the cluster subjects to Poisson
distribution, the arrival time of each path in the cluster is
modelled by a mixture of two Poisson process. The amplitude
of each path has a Nakagami-m distribution and the parameter
m subjects to another log-normal distribution, the mean and
standard derivation of m depend on the arrival time of that
path. The power delay profile of the channel is exponentially
declined and the rms delay spread is about 10ns.

Suppose that each user has the same PRT as 100ns
and pulse width as 1ns, each transmitted pulse carries one
bit modulated by bipolar PAM. Hence the average power
of the signal is Ps = Eb/Tf and the SNR = Ps/Pn =
Eb/N0 − 20dB. The maximal delay spread of the channel
impulse response is about 50ns. In the subsequent figures,
each result is obtained by an average over 1000 channel

realizations, and in each test 1000 bits are transmitted for each
user. There is a training sequence before the data stream, which
is utilized to estimate the channel response of the desired user
and the covariance matrix of the received signal. 50 taps are
used for the F-MUD algorithm.

Figure 1 shows the bit error rate (BER) of the three
detectors varying with the SNR. There are one desired user
and seven interference users in the system. The number of
taps used in R-MUD and P-MUD are both 8, and 100 bits
of training sequence are deployed. It can be seen that the R-
MUD algorithm can approach the performance of the F-MUD
and is superior to the P-MUD algorithm. Figure 2 illustrates
the BER versus SIR, the SNR is fixed to be -5dB and other
conditions are identical to that of figure 1. It is shown that
the F-MUD is near-far resistant, but both R-MUD and P-
MUD suffer performance degradation with the increasing of
the interference power. However, the R-MUD algorithm can
resist over 10dB more interference than the P-MUD. Figure 2
also exhibits the BER along with different number of users. It
can be observed that the performance of all the three detectors
will deteriorate with more users, but the performance of F-
MUD can be approached to or even be exceeded by the R-
MUD algorithm when the interference power and number of
users decrease.

Figure 3 and 4 address the impact of the number of filter
taps and length of training sequence. In the tests the number
of taps of the F-MUD algorithm remains to be 50, and the
SNR and SIR are -5dB and -20dB, respectively. In figure
3 the length of training sequence is 100 bits. It shows that
12 taps are enough for R-MUD to approximate the F-MUD
algorithm, with more taps R-MUD outperforms F-MUD. This
is due to the estimation error of the covariance matrix and
the cross correlation matrix without enough training sequence.
From figure 4 we can observe this phenomena clearly, where
8 users are simulated. When the length of training sequence
becomes longer, the F-MUD will be the best again. However,
since the training sequence consumes the system resources as
well in the communications, it is favorable to shorten its length
if possible, just as using the reduced-order multi-user detector.

V. CONCLUSION

In this paper we addressed the approach to reduce the
sampling rate thus the implementation complexity of the
interference suppressing algorithms in multi-rate multi-user
DS-UWB systems. A reduced-order multi-user detector is
proposed, and by down-sampling the received signal at the
appropriate locations it can approach the performance of a
full sampling multi-user detector, yet with much less filter
taps. The optimal down-sampling criterion is presented, and
an order-iterative one-dimensional searching algorithm is de-
veloped to select the down-sampling locations. The iterative
procedure only entails matrix multiplication operations. In the
future works, the spreading information of the users may also
be combined with the channel response information when
computing the down-sampling locations, and this will further
improve the interference suppressing capabilities.
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