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Abstract— In this paper, we develop linear interference align-
ment (IA) approach for multi-input-multi-output interference
broadcast channel (MIMO-IBC). Since multiple data streams
from each base station (BS) to multiple mobile stations (MSs)
experience identical channel, it is hard to ensure the rank
constraint to the intended MSs in the desired cell meanwhile
ensure the interference aligned at the unintended MSs in other
cells. Considering the difficulty in aligning interference at the
receiver in MIMO-IBC, we design a transceiver to align and
eliminate the interference at the transmitter. Specifically, we
first design receive vectors of all MSs to align the inter-cell
interference at the BS side, and then design the precoder of
each BS to eliminate all the intra- and inter-cell interference.
The proposed approach can be applied for general MIMO-IBC
and has closed-from solutions for some antenna configurations.
Simulation results validate our analysis and show that the
proposed IA transceiver can achieve the maximal degrees of
freedom of MIMO-IBC and attain a good trade-off between the
maximal number of data streams and signal-to-noise ration gain.

I. INTRODUCTION

Inter-cell interference (ICI) is a major bottleneck to achieve

high spectral efficiency of universal frequency reuse cellular

networks, especially for multi-input-multi-output (MIMO) sys-

tems. When multiple base stations (BSs) share both the data

and the channel state information (CSI) among each other,

coherent BS cooperation transmission, i.e., network MIMO,

can improve system throughput remarkably [1]. If only CSI

is shared, such a system setting becomes an interference

broadcast channel (IBC) when each BS transmits to multiple

MSs with same time-frequency resource and an interference

channel (IC) when each BS transmits to a single MS, in the

information theoretic terminology.

Interference alignment (IA) provides a novel solution to

manage the ICI in the interference channels. It has been shown

that in a MIMO-IC each cell can achieve 1/2 degrees of

freedom (DoF) using the principle of IA [2]. Encouraged by its

great potential, significant research efforts have been devoted

to both the DoF analysis [3–5] and the IA transceiver design

[6–10] recently.

Priori studies mainly focus on the IA for IC [6–8]. Inspired

by the exciting results for the DoF of the two-cell MIMO-

IBC [3], we are interested in IA for MIMO-IBC systems. The

IA algorithm for IBC is more complicated than that for IC,

since the alignment of ICI at the receiver of a mobile station

(MS) does not ensure the alignment at other MSs [9]. Until

now, only a few studies have designed the IA transceivers

for MIMO-IBC [9–11]. In [9, 10], two closed-from linear IA

algorithms were designed for two-cell MIMO-IBC with a

special number of transmit and receive antennas. In [11], a

weighted minimum mean squared error (MMSE) method was

developed for a general MIMO-IBC, which requires iteration

between the transceivers at the BSs and MSs.

In this paper, we provide a unified linear IA approach

for general MIMO-IBC with either symmetric or asymmet-

ric antenna configuration in each cell. Different from priori

closed-form algorithms that develop IA transceiver for a given

dimension of interference subspace, we develop IA transceiver

to achieve maximal DoF, or equivalently to employ minimal

antenna resources. Instead of directly extend the IA transceiver

in MIMO-IC to MIMO-IBC, we exploit the inherent feature of

MIMO-IBC. Considering the difficulty in aligning interference

at the MS sides, we propose to design the IA transceiver

where the MSs first align the ICI at the BS side, then the

BS eliminates both intra- and inter-cell interference. Existing

closed-from IA algorithms [9, 10] are special forms of the

proposed method. Simulation results show that the proposed

IA transceiver can achieve the maximal DoF for MIMO-IBC

and achieve a trade-off between the maximal number of data

steams and signal-to-noise ratio (SNR) gain when either the

BSs or the MSs have redundant antennas resources.

II. SYSTEM MODEL

Consider a G-cell MIMO-IBC, where BSi equipped with

Mi antennas simultaneously transmits di1 , · · · , diKi
data

streams to its Ki MSs each with Ni1 , · · · , NiKi
antennas,

i = 1, · · · , G. Assume that there are no data sharing among

the BSs. The total number of data streams in cell i is di =∑Ki

k=1 dik
and the overall number of data streams in G cells

is dtot =
∑G

i=1 di =
∑G

i=1

∑Ki

k=1 dik
.

Assume that every BS and MS have the CSIs of all links as

in the priori literature [10, 11]. In downlink transmission, BSi

employs an Mi×di precoding matrix VVV i = [VVV i1 , · · · ,VVV iKi
] to

convey the symbol vector xxxi = [xxxT
i1

, · · · ,xxxT
iKi

]T , where VVV ik
∈

C
Mi×dik and xxxik

∈ C
dik

×1 respectively denote the precoder

and symbol vector for MSik
satisfying Tr{VVV H

ik
VVV ik

} = dik
and

E{xxxH
ik

xxxik
} = Pdik

, and P is the transmit power of each data

stream.

The desired symbols of MSik
can be estimated as

x̂xxik
= UUUH

ik
HHHik,iVVV ixxxi +

G∑
j=1,j �=i

UUUH
ik

HHHik,jVVV jxxxj + UUUH
ik

nnnik
(1)
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where UUU ik
∈ C

Nik
×dik is the receive matrix of MSik

, HHHik,j ∈
C

Nik
×Mj is the channel matrix from BSj to MSik

whose

elements are independent and identically distributed (i.i.d.)

complex Gaussian variables with zero-mean and unit variance,

nnnik
∈ C

Nik
×1 is a zero-mean additive white Gaussian noise

(AWGN) vector with variance σ2
n, the first term consists of

both desired signal and multiuser interference (MUI) that

comes from MSs in the same cell (i.e., intra-cell interference),

and the second term is ICI.

III. IA TRANSCEIVER DESIGN FOR MIMO-IBC

To develop an IA transceiver to achieve the maximal DoF

of MIMO-IBC, we first investigate the IA feasibility.

A. IA Feasibility for MIMO-IBC

The linear IA conditions for MIMO-IC were first introduced

in [6] and later investigated by many recent works such as

[4, 5], which include an interference-free constraint and a

signal space rank constraint. Similarly, from (1) the linear IA

conditions for MIMO-IBC are

UUUH
ik

HHHik,jVVV j = 0, ∀i �= j (2a)

rank

⎛
⎝

⎡
⎣ UUUH

i1
HHHi1,i

· · ·
UUUH

iKi
HHHiKi

,i

⎤
⎦VVV i

⎞
⎠ = di, ∀i (2b)

The first equation guarantees ICI-free at each MS. The second

equation suggests that we need to reserve enough spatial

resources for transmitting the desired signals in cell i, which

is automatically satisfied with probability one in i.i.d. MIMO

channels [4, 6] when rank(VVV i) = di and rank(UUU ik
) = dik

.

From the IA conditions, we can study the IA feasibility.

The necessary conditions of feasible IA for MIMO-IBC can

be directly extended from that for MIMO-IC by applying the

knowledge of algebraic geometry and field theory as in [5].

However, the sufficient conditions can not be extended from

that for MIMO-IC due to the unique channel characteristic

of MIMO-IBC where multiple data streams to different MSs

from one BS experience the same channel response. After non-

trivial derivation in [12], we obtain the necessary and sufficient

conditions for some special G-cell MIMO-IBC systems in the

following.

Suppose that all MSs have the same number of data streams

dik
= d, Mi and Nik

are divisible by d and the channel

matrices HHHik,j are generic (e.g., drawn from a continuous

probability distribution), we can achieve the required number

of data streams {K1d, · · · ,KGd} for G cells if and only if

the following conditions are satisfying

Mi ≥ Kid, ∀i (3a)

Nik
≥ d, ∀i, k (3b)∑

i:(i,j)∈I
Ki(Mi/d − Ki) +

∑
j:(i,j)∈I

∑
k∈Kj

(Njk
/d − 1)

≥
∑

(i,j)∈I
Ki|Kj |, ∀I ⊆ J (3c)

where J = {(i, j)|1 ≤ i �= j ≤ G}, Ki ⊆ {1, . . . , Ki}, and

|Kj | denotes the cardinality of Kj .

When each cell has the same number of transmit and

receive antennas, i.e., Mi = M and Nik
= N , based on the

above necessary and sufficient conditions and some tedious

derivations in [12], we obtain the maximal achievable DoF in

MIMO-IBC1 for given d, i.e.,

dtot =

⎧⎨
⎩

M, ∀N = d
2min {M, �(M + N − d)/2	} , ∀G = 2
min {GM, M + N − d} , ∀G > 2 , ∀N > d

(4)

In order to investigate how to achieve the maximal DoF, we

design the transceiver for the given number of data streams

with the minimum number of antennas satisfying (3a)∼(3c).

B. Transceiver Design

Here, we design the linear IA transceiver for the G-cell

MIMO-IBC system where all MSs have the same number of

data streams d, Mi and Nik
are divisible by d. For brevity,

we introduce the transceiver design through a case of d = 1,

which is not difficult to extend to general cases of d > 1.

When d = 1, the receiver of MSik
reduces to vector uuuik

.

1) Transceiver Design Order: Note that, there are two kinds

of interference alignment. When the interference is aligned

at the receivers by designing proper precoders, the receivers

can eliminate the aligned interference. This is referred to as

IA at the receivers (IAR) in this work. If the interference is

pre-aligned at the transmitters by designing receive vectors,

the transmitters can avoid the pre-aligned interference. This is

referred to as IA at the transmitters (IAT).
For example, in a two-cell MIMO-IBC where MSik

has

Nik
antennas, to reserve at least one-dimensional space to

receive the desired signal, it needs to reserve at most (Nik
−1)-

dimensional space to eliminate ICI. Hence, the IAR precoder

of BSj (j �= i) should satisfy⎧⎨
⎩

rank (HHHi1,jVVV j) ≤ Ni1 − 1
· · ·
rank

(
HHHiKi

,jVVV j

)≤ NiKi
− 1

∀j �= i (5a)

rank (VVV j) = Kj (5b)

Similarly, for BSj with Mj antennas to reserve at least

Kj-dimensional space to transmit the desired signals, it needs

to reserve at most (Mj − Kj)-dimensional space. Therefore,

the IAT receive vectors of MSi1 , · · · MSiKi
(∀i �= j) should

satisfy

rank
(
HHHH

i1,juuui1 , · · · ,HHHH
iKi

,juuuiKi

)
≤ Mi − Ki ∀i �= j (6a)

rank (uuuik
) = 1 (6b)

In MIMO-IC where each BS only supports one MS, the

designed transceivers of IAR and IAT are equivalent due to the

uplink-downlink duality [6]. However, in MIMO-IBC where

each BS supports multiple MSs, the transceivers designed

1We assume that there are enough MSs. In fact, the required total number
of MSs in all cells is no more than (M + N)/d [12].
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for IAR and IAT are quite different. From (5a), we see

that the IAR requires BSj to compress multiple data streams

experiencing identical channel response. This leads to coherent

transmit vectors for different MSs, which is contradictory to

the constraint in (5b). In contrast, from (6a), we know that

with IAU the MSs compress their data streams experiencing

different channels, which will not causes contradictory to (6b).

We will focus on the IAT in the sequel.
2) Transmitter Design with Given Receiver: Once

{uuu11 , · · · ,uuuGKG
} are obtained, we can design the precoders

to eliminate the ICI and MUI. We can use zero-forcing

(ZF) criterion to keep interference-free. To improve the

performance in low SNR region, we can also use the maximal

signal-to-leakage-and-noise-ratio (Max-SLNR) criterion as in

[6]. It is not hard to derive the precoder of dik
at BSi as

vvvik
=

⎛
⎝ G∑

j=1

Kj∑
l=1

HHHH
jl,i

uuujl
uuuH

jl
HHHjl,i + ρσ2

nIII

⎞
⎠

−1

HHHH
ik,iuuuik

(7)

which is the Max-SLNR precoder when ρ = 1 or the ZF

precoder when ρ → 0.
3) Receiver Design: In G-cell MIMO-IBC, for IAT, the

receive vectors need to satisfy

rank (QQQi) ≤ Mi − Ki, i = 1 . . . , G (8)

where QQQi = [PPP 1,i, · · · ,PPP i−1,i,PPP i+1,i, · · · ,PPPG,i] ∈
C

Mi×(Ktot−Ki), PPP j,i = [HHHH
j1,iuuuj1 , · · · ,HHHH

jKj
,iuuujKj

] ∈
C

Mi×Kj denotes the equivalent channel at the MSs in cell

j from BSi, and Ktot =
∑G

i=1 Ki is the total number of MSs

in all cells.

In (8), QQQi has Ktot−Ki column vectors, then rank (QQQi) ≤
Ktot − Ki. When Mi ≥ Ktot, it is undoubted rank (QQQi) ≤
Mi−Ki, i.e., (8) always holds. In this case, each BS is capable

of eliminating all ICI while the MSs do not need to align the

interference. In fact, the precoding now degenerates to the

coordinated beamforming (CB) [1].

When Mi < Ktot, we need to design the receive vectors

to satisfy (8). There should be at most Di = Mi − Ki linear

independent column vectors in QQQi, and other Mi−Ki column

vectors fall in the space spanned by these Di vectors. Without

loss of generality, we assume that the first Di column vectors

are independent. Then we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[AAAi]1,1[QQQi]1 + · · · + [AAAi]1,Di [QQQi]Di − [QQQi]Di+1 = 0
[AAAi]2,1[QQQi]1 + · · · + [AAAi]2,Di [QQQi]Di − [QQQi]Di+2 = 0

· · ·
[AAAi]Ktot−Mi,1[QQQi]1 + · · · + [AAAi]Ktot−Mi,Di

[QQQi]Di

− [QQQi]Ktot−Ki
= 0

(9)

for i = 1, . . . , G, where [QQQi]l is defined as the lth colum vector

of QQQi, AAAi is a (Ktot −Mi)× (Mi −Ki) nonzero matrix and

[AAAi]j,l is the (j, l)-th element of AAAi.

Substituting QQQ1 = [HHHH
21,1uuu21 , · · · ,HHHH

GKG
,1uuuGKG

], · · · ,

QQQG = [HHHH
11,Guuu11 , · · · ,HHHH

G−1KG−1 ,GuuuG−1KG−1
] into (9), we

can obtain a linear equation in term of the receive vectors,

HHHuuu = 0 (10)

where uuu = [uuuT
11

, · · · ,uuuT
1K1

, · · · ,uuuT
G1

, · · · ,uuuT
GKG

]T ∈
C

Ntot×1, N tot =
∑G

i=1

∑Ki

k=1 Nik
is the total number of

receive antennas of all MSs, and HHH is of size
∑G

i=1(K
tot −

Mi)Mi × N tot, whose entries are functions of {HHHik,j} and

{AAAi}.

We can design the receive vectors by letting uuu ∈ null{HHH},

‖uuuik
‖2 �= 0, where null{HHH} means the null space of the matrix

HHH . Considering that uuuik
and αuuuik

(α is a non-zero scale factor)

align the interference into the same space, for simplicity, we

restrict the receive vectors to follow ‖uuuik
‖2 = 1.

To illustrate the idea of receive vector design, we consider

a case where Mi = Ki. From (3a)∼(3c), we know that the

required minimal value of Nik
is Nik

= Ktot −Ki +1. Then

HHH in (10) is of size
∑G

i=1(K
tot − Mi)Ki ×

∑G
i=1(K

tot −
Mi +1)Ki. The number of rows of HHH is less than its number

of columns, hence there exists at least one non-zero solution

of (10), from which we can obtain the receive vectors of the

MSs.

For example, in a two-cell MIMO-IBC where K1 = 3,

K2 = 2, when M1 = 3 and M2 = 2, from (3a)∼(3c), the

required minimal value of Nik
satisfies N11 = N12 = N13 = 3

and N21 = N22 = 4. Then the corresponding HHH is

HHH =

⎛
⎜⎜⎜⎜⎝

000 000 000 −HHHH
21,1 000

000 000 000 000 −HHHH
22,1

−HHHH
11,2 000 000 000 000

000 −HHHH
12,2 000 000 000

000 000 −HHHH
13,2 000 000

⎞
⎟⎟⎟⎟⎠

which is of size 13 × 17. Let uuu ∈ null{HHH}, we can obtain

the receive vectors. After some elementary transformations,

HHH can be converted into a block diagonal matrix. Then the

receive vector of each MS can be further obtained as

uuu11 = null{HHHH
11,2}, uuu12 = null{HHHH

12,2}, uuu13 = null{HHHH
13,2},

uuu21 = null{HHHH
21,1}, uuu22 = null{HHHH

22,1}
In this example, the MSs are able to eliminate all the ICI,

i.e., they align the ICI into Di = 0-dimensional subspace.

Then the BSs only need to eliminate the MUI. Similar idea

has been proposed in [9] for downlink IA in a two-cell

MIMO-IBC. However, [9] requires Mi = Ki + 1 transmit

antennas whereas our method only requires Mi = Ki an-

tennas. Actually, the extra one antenna is unnecessary since

Mi = Ki is enough for BSi to transmit its desired signals.

Since our IAT method can also implement IA for other antenna

configurations, the downlink IA in [9] is a special case of our

method.

In the example addressed above, Di = 0 (i.e., Mi = Ki),

where HHH does not depend on the matrix of combination

coefficients {AAAi}. When Di > 0 (i.e., Mi > Ki), HHH will be

associate with {AAAi}. In the following, we discuss the design

of {AAAi}.

In (10), HHH is of size
∑G

i=1(K
tot − Mi)Mi × N tot. Since

different relationship between the number of rows of HHH and

the number of columns leads to different design of {AAAi}, we

investigate {AAAi} in the following two cases.
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Case I:
∑G

i=1(K
tot − Mi)Mi < N tot

In this case, rank(HHH) < N tot always holds. For arbitrary

non-zero matrix {AAAi}, the matrix HHH
H

HHH always has at least

one zero eigenvalue. Therefore, we can choose uuu directly as

the corresponding eigenvector.

Take a two-cell MIMO-IBC as an example, where BS1 and

BS2 support K1 = K2 = K MSs. When Mi = K + 1, from

(3a)∼(3c) the required minimal value of Nik
is Nik

= K.

Then HHH in (10) now becomes

HHH =
(

000 HHH1

HHH2 000

)

where

HHHi =

⎛
⎜⎜⎜⎝

[AAAi]1,1HHH
H
j1,i −HHHH

j2,i 000 · · · 000
[AAAi]2,1HHH

H
j1,i 000 −HHHH

j3,i
...

...
. . .

...

[AAAi]K−1,1HHH
H
j1,i 000 000 · · · −HHHH

jK ,i

⎞
⎟⎟⎟⎠

is of size (K2 − 1) × K2.

Since the number of rows in HHH is less than the number of

columns, we can design uuu as the eigenvector corresponds to

the zero eigenvalue of HHH
H

HHH .

In this example, the constraint shown in (10) can be

expressed as another form,

HHHH
j1,iuuuj1 = [AAAi]−1

1,1HHH
H
j2,iuuuj2 = · · · = [AAAi]−1

K−1,1HHH
H
jK ,iuuujK

(11)

It indicates that all the ICIs are aligned into a one-dimensional

subspace. In fact, both the downlink IA in [10] and the uplink

IA in [3] considered the IA constraint in (11), i.e., these IA

transceivers are designed given one-dimensional interference

subspace.

We can see from (11) that the value of [AAAi]j,l never affects

the directions of the aligned space only if [AAAi]j,l �= 0.

Therefore, under the constraint of ‖uuuik
‖2 = 1, the obtained

receive vectors {uuuik
} do not depend on {AAAi}. Consequently,

we obtain a surprising but reasonable conclusion that [AAAi]j,l
can be set arbitrary except zero.

Take another two-cell MIMO-IBC as an example, where

K1 = K2 = K. When Mi = 2K − 1, from (3a)∼(3c) the

required minimal value of Nik
is Nik

= 2. Then, HHH in (10)

is

HHHi =
(
[AAAi]1,1HHH

H
j1,i · · · [AAAi]1,K−1HHH

H
jK−1,i −HHHH

jK ,i

)
which is a (2K − 1) × 2K matrix. Similarly, [AAAi]j,l can

be set arbitrarily. Then we can design uuu as the eigenvector

corresponds to the zero eigenvalue of HHH
H

HHH .

Case II:
∑G

i=1(K
tot − Mi)Mi ≥ N tot

In this case, rank(HHH) < N tot does not always hold for

arbitrary {AAAi}. In order to obtain the IA transceiver, we need

to design the coefficient matrix {AAAi}.

So far, only the authors of [8] have investigated the design

of {AAAi} for a special case of
∑G

i=1(K
tot − Mi)Mi = N tot,

where HHH is a square matrix. To ensure rank(HHH) < N tot,

AAA1, · · · ,AAAG need to satisfy

det{HHH} = 0 (12)

Take the typical case of a three-cell MIMO-IC with M =
N = 2 as an example, which has been addressed widely in

MIMO-IC [2, 8], the corresponding matrix is

HHH =

⎛
⎝ 000 [AAA1]1,1HHH

H
21,1 −HHHH

31,1

[AAA2]1,1HHH
H
11,2 000 −HHHH

31,2

[AAA3]1,1HHH
H
11,3 −HHHH

21,3 000

⎞
⎠

which is a 6 × 6 matrix. After some regular derivations, the

determinant of HHH can be obtained as a function of [AAA1]1,1,

[AAA2]1,1 and [AAA3]1,1, i.e.,

det
(
HHH

)
= adet

(
[AAA1]1,1[AAA3]1,1[AAA2]−1

1,1III −ΩΩΩ
)

(13)

where ΩΩΩ = − (
HHHH

21,1HHH
H
31,2HHH

H
11,3

)−1
HHHH

31,1HHH
H
11,2HHH

H
21,3 and

a = [AAA2]1,1det
(
HHHH

21,1HHH
H
31,2HHH

H
11,3

)
.

When [AAA1]1,1[AAA3]1,1[AAA2]−1
1,1 is equal to an eigenvalue of ΩΩΩ,

we have det{HHH} = 0, i.e., rank(HHH) < N tot.

This method proposed in [8] can be easily extended to

MIMO-IBC when HHH is a square matrix, however it can not

be applied to more general cases.

To design the linear IA for the case where
∑G

i=1(K
tot −

Mi)Mi > N tot, in the following we find {AAAi} when HHH is not

a square matrix. Since rank(HHH) < N tot is equivalent to the

case where there exists a N tot-dimensional vector xxx satisfying

‖HHHxxx‖2 = 0, we can convert this rank constraint problem into

the following optimization problem,

min
xxx,AAA1,··· ,AAAG

‖HHHxxx‖2 (14)

where HHH is a function of AAA1, · · · ,AAAG.

For the given values of AAA1, · · · ,AAAG, the optimal solution xxx
of the problem (14) is

xxx = arg min
xxx

{‖HHHxxx‖2} (15)

It is easy to show that the optimal xxx is the minimum dominant

eigenvector of HHH
H

HHH .

Moreover, note that (9) can be expressed as a linear equation

of {AAAi}, i.e.,

BBBiAAA
T
i −CCCi = 0 (16)

where BBBi = [[QQQi]1, [QQQi]2, · · · , [QQQi]Di ] ∈ C
Mi×Di and CCCi =

[[QQQi](Di+1), [QQQi](Di+2), · · · , [QQQi]Ktot−Ki
] ∈ C

Mi×(Ktot−Mi).

Then for a given xxx, the objective function of (14) becomes

‖HHHxxx‖2 =
∑G

i=1 ‖BBBiAAA
T
i −CCCi‖2. Therefore, it is not hard to

show that the optimal {AAAi} for (14) becomes

AAAi = arg min
AAAi

{‖BBBiAAA
T
i −CCCi‖2} = CCCT

i BBB∗
i

(
BBBT

i BBB∗
i

)−1
(17)

Using alternating minimization algorithm as in [7], we can

employ an iterative algorithm to design {AAAi}, which includes

the following steps:

1) Initialize {AAAi} as arbitrary matrices for i = 1, . . . , G.
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2) Let xxx be the minumum dominant eigenvector of HHH
H

HHH .

3) Let AAAi = CCCT
i BBB∗

i

(
BBBT

i BBB∗
i

)−1
.

4) Repeat steps 2), 3) until {‖HHHxxx‖2} ≤ ε, where ε is a

given non-negative number.

Note that the objective function in (14) is non-negative,

and the objective function will reduce by optimizing xxx with

given values of {AAAi}, and vice versa. Therefore, this iterative

algorithm is convergent. When (3a)∼(3c) are satisfied, the

IA feasibility conditions guarantee that there exists at least

one IA solution. Although our iterative algorithm may not

converge to an IA solution, setting different initial values in

parallel can increase the probability of convergence. In fact,

from our forthcoming simulation, we find that it is enough

to set one initial value to achieve ε = 10−5. Compared

with the existing iterative IA algorithms [6, 11], our method

only iteratively calculates the coefficient matrix {AAAi} rather

than iteratively finds the precoders and receive vectors, which

avoids the trouble of IAU in the precoder design and reduces

the complexity.

The proposed IAT algorithm is summarized as follows,

1) Construct HHH in find {AAAi} to meet ‖HHHxxx‖2 ≤ ε.

2) Design uuu = [uuuT
11

, · · · ,uuuT
GKG

]T as the minimum domi-

nant eigenvector of HHH
H

HHH .

3) Design precoder vvvik
from (7).

C. Trade-off between number of data streams and SNR gain

The study in [14] indicates that IA is in demand if a system

is operated at or close to the maximum achievable rate, while

for low-rate applications the desirable strategy is to exploit all

antennas to achieve high diversity gain rather than to align

the interference. If an IA transceiver developed for high-rate

applications is directly applied for low-rate applications, the

resulting signal power loss may reduce the performance of the

system.

Fortunately, since our IAT algorithm is designed to employ

the minimal antenna resource rather than designed for a

given dimensional of interference subspace, it can adaptively

adjust the dimension of interference subspace according to

the number of MSs. When the number of MSs decreases,

the constraint for the receive vectors will be relaxed. Then

the MSs can employ redundant spatial resources to receive

the signals under the interference-free condition, resulting in

a good performance in low-rate cases.

To see this, consider a two-cell MIMO-IBC where M = 5
and N = 4. From the feasibility conditions of IA in MIMO-

IBC, we know that each BS can support at most K = 4
MSs in each cell, and the MSs need to align the ICI into

D = M − K = 1-dimensional subspace. When K = 3, if

we employ existing IA algorithms that align the interference

into a pre-determined subspace, i.e., still align the ICI into a

one-dimensional subspace, HHH in (10) is

HHHi =
(

[AAAi]1,1HHH
H
j1,i −HHHH

j2,i 000
[AAAi]2,1HHH

H
j1,i 000 −HHHH

j3,i

)
∈ C

10×12

and there exist two non-zero solutions for uuu.

When K = 3, however, with our algorithm the receive

vectors at the MSs align the ICI into D = M − K = 2-

dimensional subspace. Then HHH in (10) becomes

HHHi =
(
[AAAi]1,1HHH

H
j1,i [AAAi]1,2HHH

H
j2,i −HHHH

j3,i

) ∈ C
5×12

and there exist seven non-zero solutions for uuu. This provides

the MSs a subspace of higher dimension to receive the desired

signals without any interference. Thereby the MSs have the

opportunity to exploit these redundant spatial resources to

enhance the signal power, which finally yields a trade-off

between the number of data streams and SNR gain.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we verify our analysis and evaluate the

performance of the proposed IAT method via simulation and

numerical results.

G=3, K=2, d=1

20

30

40

50

60

70

Su
m

R
at

e
(b

it/
s)

20 25 30 35 40

SNR (dB)

M N: 6 1
M N: 5 2
M N: 4 3
M N: 3 4
M N: 2 5

Predicted Slope (DoF=6)

Fig. 1. Sum rate versus SNR in a three-cell MIMO-IBC, G = 3, K = 2.

Figure 1 shows the simulated sum rate versus SNR for

a symmetric three-cell MIMO-IBC where each BS supports

K = 2 MSs. From (3a)∼(3c), we know that there is more

than one antenna configuration to achieve the required number

of data streams. To achieve dtot = 6, the required minimum

number of antennas needs to satisfy the following configu-

rations of (M × N): (6 × 1), (5 × 2), (4 × 3), (3 × 4) and

(2×5). Based on these antenna configurations, our IAT method

respectively aligns the interference into D = 4, 3, 2, 1, 0-

dimensional subspace. We can see that the slope of all the

simulated curves is equal to the required number of data

streams, which is with legend “Predicted slope”. It suggests

that our IAT method can achieve the required number of data

streams with the minimum antenna configurations. Note that

although the number of data streams of all cases are identical,

their sum rates are different. The sum rate is higher for a

system with larger number of receive antennas, which comes

from the array gain (i.e., the SNR gain) in a MIMO receiver.

In Fig. 2, we show the data rate per user in a two-cell

MIMO-IBC where M = 5 and N = 4. In this antenna

configuration, each cell can support at most K = 4 MSs.

When K = 4, the receive vectors of the IAT align the ICI
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Fig. 2. Data rate per user versus SNR, G = 2, M = 5 and N = 4.

into D = 1-dimensional subspace. When K = 3, the receive

vectors of the IAT can align the ICI into D = 1 or D = 2-

dimensional subspace. From these results, we can see that

when K = 3, if the system still aligns the ICI into D = 1-

dimensional space, the data rate per user of K = 3(D = 1) is

the same as that of K = 4(D = 1). However, it is clear that if

we adjust the dimension of the aligned interference subspace

according to K, e.g., let D = M − K = 2, the data rate per

user of K = 3(D = 2) is higher than that of K = 3(D = 1).
It is because compared with IA for D = 1, the IA for D = 2
relaxes the constraint for receive vectors, as we have explained

in last section. This shows that the proposed method achieves

a flexible trade-off between the number of data streams and

SNR gain and makes a good use of antennas.

M=3, N=3

2

3

4

5

6

M
ax

im
al

A
ch

ie
va

bl
e

D
oF

1 2 3 4 5 6

Number of cells G

Maximal Achievable DoF for MIMO-IBC
Achievable DoF for IBC by Simulations

Maximal Achievable DoF for MIMO-IC
Achievable DoF for MIMO-IC by Simulations

d1={3} {d1,d2}={2,1}

{d1,d2,d3}={2,1,1}
{d1,...,d4}={1,1,1,1}

{d1,...,d5}={1,...,1}

d1={3}

{d1,d2}={2,2}

{d1,d2,d3}={2,2,1}
{d1,...,d4}={2,1,1,1}

{d1,...,d5}={1,...,1}

Fig. 3. DoF versus the number of cells G, M = 3, N = 3.

In Fig. 3, we show the maximal achievable DoF when the

number of antennas is given as M = N = 3, which are

obtained by simulation using our IAT method and by the

maximal achievable DoF in (4). Note that our IAT algorithm

can be applied in both MIMO-IC and MIMO-IBC. In MIMO-

IC, each cell supports only one MS who transmits multiple

data streams, while in MIMO-IBC, each cell serves multiple

MSs and each MS transmits only one data stream. To show

how the maximal DoF is achieved, we also provide the number

of data streams in all cells {d1, · · · , dG} in the figure. For

example, in the case of G = 3, {d1, d2, d3} = {2, 2, 1}
denotes that BS1 and BS2 respectively transmit two data

streams and BS3 transmits one data stream. From these results,

we can see that no matter in MIMO-IC or MIMO-IBC, our

IAT algorithm always achieves the maximal achievable DoF.

V. CONCLUSION

In this paper, we developed a linear interference alignment

transceiver for general MIMO interference broadcast channels.

By designing the transceiver that achieves the maximal degrees

of freedom, the proposed method is able to adaptively adjust

the dimension of the aligned interference subspace according

to the number of active MSs. Therefore it can achieve a

good trade-off between the data stream number and the SNR

gain that improves the performance of interference alignment

in low-rate applications. To accommodate the difficulty in

aligning interference at MS sides for MIMO interference

broadcast channels, with our transceiver the MSs first align

the inter-cell interference at the base station and then the base

stations pre-eliminate the aligned inter-cell interference as well

as the intra-cell interference before downlink transmission.
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