
Abstract—In this paper, we investigate the performance of four 
closed-loop multiple-input multiple-output (MIMO) schemes with 
channel state information (CSI) feedback delay and channel 
estimation error. These schemes are conventional maximal ratio 
transmission scheme (C-MRT), improved MRT (I-MRT), conven- 
tional transmit antenna selection with space-time block code 
scheme (C-TAS/STBC) and improved TAS/STBC (I-TAS/STBC). 
Exact bit error rate (BER) expressions of C-MRT and C-TAS/STBC 
and approximate BER expressions of I-MRT and I-TAS/STBC 
for two specific scenarios are derived for binary phase shift keying 
(BPSK) modulation. The performance of the schemes with CSI 
feedback delay and channel estimation error are validated and 
compared with each other by numerical and simulation results. 

I. INTRODUCTION 
patial transmit diversity is an effective technology to 
combat fading in wireless channels.  

Compared with space-time codes, the closed-loop MIMO 
schemes employing MRT [1] or TAS/STBC [2] can achieve not 
only full diversity but also more array gain, when perfect 
knowledge of CSI in both transmitter and receiver (CSIT and 
CSIR) is available. In practical FDD and TDD system, however, 
accurate CSI is hard to get especially in time-varying channels. 
In this study, we model the factors resulting in imperfect CSIT 
and CSIR as CSI feedback delay and channel estimation error. 
CSI feedback delay leads to an outdated CSIT, and channel 
estimation error introduces equivalent additive noise to perfect 
CSIT and CSIR. A receiver can exploit either real-time or 
outdated CSIR with channel estimation error depending on 
whether channel tracking or prediction [3, 4] is used or not. In 
this paper, the schemes using outdated CSIR are referred to 
conventional schemes, including C-MRT and C-TAS/STBC. 
The schemes using real-time CSIR are named as improved 
schemes, including I-MRT and I-TAS/STBC. 

From both theoretical and practical viewpoint, it is necessary 
to quantify the impact of CSI feedback delay and channel 
estimation error on the performance of the four schemes. The 
BER of MISO C-MRT in the presence of CSI feedback delay 
and channel estimation error is investigated in [5, 6].  Since the 
decision variable of MIMO MRT is different from that of MISO 
MRT, the performance analysis of MISO MRT can not be 
directly extended to MIMO MRT. The performance of MIMO 
MRT only with channel estimation error is investigated in [7].  

By contrast to MRT, transmit antenna selection (TAS) [8] 
can reduce the overhead of CSI feedback. On the premise of 

achieving full diversity order, combining TAS and STBC 
(TAS/STBC) can further reduce the feedback overhead [2, 9]. 
There have been, however, few studies on the performance 
analysis of TAS/STBC. The performance analysis in [2] does 
not provide an explicit expression. In [10], the performance of 
TAS/STBC under the assumption of perfect CSIT and CSIR is 
evaluated. In [11], merely channel estimation error is 
considered for the performance of TAS/STBC, and explicit 
BER expression is derived only for MISO system.  

In this study, a decision variable different from [7] is 
employed to analyze the performance of MRT and TAS/STBC 
in MIMO system with both CSI feedback delay and channel 
estimation error. The contribution lies in both theoretical 
analysis and performance comparison, where exact BER 
expressions of C-MRT and C-TAS/STBC and approximate 
BER expressions of I-MRT and I-TAS/STBC for two specific 
scenarios are derived for BPSK modulation.  

This paper is organized as follows. Section Ⅱ introduces the 
system model, and the channel model with CSI feedback delay 
and channel estimation error. Section Ⅲ presents the performance 
analysis of C-MRT, I-MRT, C-TAS/STBC and I-TAS/STBC, 
followed by the numerical analysis, simulation and discussion 
in Section Ⅳ. Finally, the conclusion remarks are made in 
Section Ⅴ.  

The following notations are used in this paper. TX  and HX  
express the transpose and conjugate transpose of matrix X , 
respectively. 2x  stands for the 2-norm of vector x , and FX  
represents the Frobenius norm of matrix X . 0 ( )J i denotes the 
zeroth-order Bessel function of the first kind. ,i jX  expresses 
the (i,j)-th entry of matrix X. ( , )CNX m R∼  and ( , )NX m R∼  
stand for complex and real-valued Gaussian random 
matrix X with mean m and covariance matrix R . [ ]Ex i denotes 
the expectation of random variable x . 

II.  SYSTEM MODEL AND CHANNEL MODEL 

Consider a closed-loop MIMO system with M  transmit and 
N  receive antennas, which transmits a single data stream. 
Then the estimated signal can be expressed as 
 ( )H Hˆ nx x x= + = +z Hw n z Hw � ,  (1) 
where x is the transmitted signal with energy sE , w and z are 
the transmit and receive weighting vector, respectively, n� is the 
additive white Gaussian noise (AWGN) with zero-mean and 
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variance 2
nσ �  and 22 2

22n nσ σ= ⋅z� , ( )2, 2 nCN σn 0 I∼  is the 
AWGN vector, ( )2, hCN σH 0 I∼  is the channel matrix of size 
N M× . 
 Consider a time-varying independently and identically distri- 
buted (i.i.d.) Rayleigh fading channel, which can be modeled as 
vector AR model. The relationship of the channel at time t  and 
t τ−  is given by [5] 
 t d t τρ −= ⋅ +H H F ,  (2) 
where ( )0 2d DJ fρ π τ=  is the time correlation coefficient, Df  
is the Doppler frequency shift, τ  is the time delay owing to 
CSI feedback, ( )2, fCN σF 0 I∼  is a driving noise matrix, and 

( )2 2 21f d hσ ρ σ= − . 
In order to detect the received signal coherently, receiver 

needs to estimate the channel tH . The channel estimation ˆ
tH  

can be expressed as  
 ˆ

t t= +H H E ,  (3) 

where ( )2, eCN σE 0 I∼ is the channel estimation error matrix, 
which is independent of tH , and ( )2

ˆ
ˆ ,t h

CN σH 0 I∼  with 
2 2 2
ˆ h eh

σ σ σ= + . Channel response tH can be represented by [7] 
 ˆ

t e tρ= ⋅ +H H D ,  (4) 

where 2 2
ˆe h h

ρ σ σ= , ( )2, dCN σD 0 I∼  is a random matrix , 

which is independent of ˆ
tH , and 2 2 2 2

ˆd h e h
σ σ σ σ= . 

The CSI at time t τ−  is required to demodulate the received 
signal at time t  in the C-MRT and C-TAS/STBC receivers. 
Thus it is necessary to find the relationship between the channel 
estimation at time t τ− ˆ

t τ−H  and the actual channel at time t  

tH . It follows from (2) and (4) that tH can be rewritten as 
 ( )ˆ ˆ

t d e t tτ τρ ρ ρ− −= ⋅ + + +H H D F H B� ,  (5) 

where ( )2, bCN σB 0 I∼ is the random matrix, which is 
independent of ˆ

t τ−H , and ( )2 2 2 2 2 2 2
ˆ 1b d h e d hh

σ ρ σ σ σ ρ σ= + − . 

III. BER ANALYSIS OF MRT AND TAS/STBC SCHEMES 

Based on the system model and channel model described in 
Section Ⅱ, this section analyzes the performance of the four 
schemes with CSI feedback delay and channel estimation error 
for BPSK modulation. The decision variable ζ  in (1) is the 
real part of x̂ , i.e., ( ) ( )HRe Rexζ = +z Hw n� . Hence, the 
instantaneous BER is  

 
( )H

2
2

Re s
b

n

EP Q
σ

 
=  

 

z Hw
z

.  (6) 

A. Average BER of C-MRT 

In C-MRT transceiver, ˆ
t τ−H is employed to perform both 

transmit beamforming and maximal ratio combining. The 
singular value decomposition (SVD) of ˆ

t τ−H  can be written as 

 H
N N N M M M

ˆ
t τ− × × ×=H U Λ V ,  (7) 

where [ ]N N 1 2× Ν=U u u u" , { }N M 1 2, , , , 0,rdiag δ δ δ× =Λ " " , 

[ ]M M 1 2 M× =V v v v" , and r  is the rank of ˆ
t τ−H . If the 

maximal singular value max 1δ δ= , the transmit weighting vector 
1=w v , and the receive weighting vector 1=z u . Based on (6) 

the instantaneous BER of C-MRT is 
 ( )( )H

, 1 1 0ReC MRT b tP Q γ− = ⋅u H v .  (8) 

Substituting (5) into (8), ,C MRT bP −  can be rewritten as 
 ( )( ) ( ), max 0 1C MRT bP Q Qρδ α γ γ− = + ⋅ � ,  (9) 

where 2
0 s nEγ σ= , ( )H

1 1Reα = u Bv , and ( )20, 2bNα σ∼ . 
The average BER of C-MRT can be obtained by 

 
( ) ( )

( ) ( ) ( )

( )[ ]

1

max 1 max

max 1 max

, ,

0 0

0 0

E

,

E E .

C MRT b C MRT bP P

Q f d d

f d Q f d

Q

γ

δ γ δ

δ γ δ

γ δ α α δ

δ δ γ γ δ γ

γ

− −

+∞ +∞

+∞ +∞

=   

= ⋅

= ⋅

 =  

∫ ∫

∫ ∫
  (10) 

When the probability density function (p.d.f.) of maxδ and the 
conditional probability density function (c.p.d.f.) of 1γ  given 

maxδ  are available, the average BER can be obtained from (10).
 With the p.d.f. of the maximal eigenvalue of random matrix 

t τ−H  provided in [12], the p.d.f. of the maximal eigenvalue 
maxλ  of  ˆ

t τ−H  can be given by 

 ( )
2 22

ˆ

ˆ ,max

(S+L) 2 1L

, 2( 1)
1 S-L ˆ !

h
iui i m m

i m m
i m h

i u ef u d
m

σ

λ σ

−− +

+
= =

=
⋅∑ ∑

H
,  (11) 

where ( ) ( )( ) 1L1
, . 1! L ! N !m

i m i m id m c i i i
−

+
=

= − −∏ , .i mc is the coefficient 

of  m iuu e−  in the expansion of ( )( )detd udu S , ( )uS  is the 

L L×  Hankel matrix, ( )L min M, N= , ( )S max M, N= . 
 It is shown from (11) that the p.d.f. of maxλ  is the linear 
combination of a finite 2χ  distributed p.d.f.. The p.d.f. of  

max maxδ λ=  is 

 ( )
2 22

ˆ

max

(S+L) 2 1 2 1L

, 2( 1)
1 S-L ˆ

2
!

h
iui i m m

i m m
i m h

i u ef u d
m

σ

δ σ

−− + +

+
= =

⋅=
⋅∑ ∑ .  (12) 

Given maxδ , 1γ  is a real-valued Gaussian random variable, 
which c.p.d.f. is 

 ( )
( )2

max 0
2 2
0

1 max

2

0

1
2

u

f u e α

ρδ γ
γ σ

γ δ
απγ σ

−
−

= .  (13) 

Substituting (12) and (13) into (10), the average BER of 
C-MRT ,C MRT bP − can be derived. Due to the lack of space, 

,C MRT bP − is directly given by 

 ( )
2(S+L) 2L

, ,
1 S-L

1 ,
2

i i

C MRT b i m
i m

P d m b
−

−
= =

= ∑ ∑ G ,  (14) 

where
( )( )

2 2

1 22 20 0

1 1( , ) 1
2 2

k kjm

k
j k

a
j a bm b
k a b +

= =

 
     −= − − ⋅ ⋅       −

∑∑
L

G , ( )k xL  

is the k-th order Legendre polynomial, 
( )2 2

0
2 2 2

ˆ0

2
4

b

h

i
b

γ σ
γ ρ σ

+ ⋅
= , 

0.5a b= + . [5, (26)] is applied during the derivation of (14). 
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B. Average BER of I-MRT 
In I-MRT, the receive weighting vector 1

ˆ
t=z H v , where ˆ

tH  
is the channel estimation at time t . Applying (3), (4), (5) and (6), 
the instantaneous BER of I-MRT can be expressed as 

 
( )( )
( )( ) ( )

, 1 max 02

0 2

I MRT b e

e

P Q

Q Q

ρ ρ δ α γ
ρ α γ γ

− = ⋅ + + ⋅

⋅Ω + ⋅

u A

� �
.  (15) 

In (15), 2( , )CN σAA 0 I∼ , 2(0, 2)bNα σ∼ , where ( ) 1= +A B E v , 

( )2 2 2 2 2 2 2 2
ˆ 1d h e d h eh

σ ρ σ σ σ ρ σ σ= + − +A , ( )H H
1 1 1 2

ˆ ˆRe t tα = v H Dv H v . 

In the same way as deriving BER for C-MRT, the average 
BER of I-MRT can be obtained with knowledge of the p.d.f. of 
Ω and the c.p.d.f. of 2γ  given Ω . Unfortunately, it is very 
difficult to derive the p.d.f. of Ω . Here two specific scenarios 
are considered as follows.  

When 1dρ → and for high SNR, which means little CSI 
feedback delay and less channel estimation error, Ω  can be 
approximated as  
 maxρδΩ ≈ .  (16) 

Based on (10), (12) and (16), the average BER of I-MRT 

,I MRT bP −  can be still expressed by (14) with
2 2
0

2 2 2 2
ˆ0

( 2)
4

d

e h

i
b

γ σ
γ ρ ρ σ

+ ⋅
= . 

If 0dρ → , which means large CSI feedback delay, Ω  can 
be approximated as  
 2Ω ≈ A .  (17) 

Therefore, the average BER of I-MRT in this case is 

 
2 2
0

, 2 2 2
0

21 N 1,
2 4

d
I MRT b

e

P
γ σ
γ ρ σ−

+ = − 
 A

G .  (18) 

C. Average BER of C-TAS/STBC 

In order to analyze the performance of C-TAS/STBC and 
I-TAS/STBC, we’ll derive the decision variable of TAS/STBC 
with perfect CSIT and CSIR at first. 

If transmitter selects i-th and j-th transmit antennas, the 
channels between the two selected transmit antennas and N  
receive antennas can be expressed as 
 i j=   H h h

�
,  (19) 

where ih  and jh  are i-th and j-th column vectors of H , 
respectively. 
 After selecting two transmit antennas, the considered MIMO 
system becomes STBC system with two transmit and N  
receive antennas. The received signal is 
 = ⋅ +y G x n

�
,  (20) 

where T
1,1 1,2 N,1 N,2y y y y∗ ∗=   y " , [ ]T

1 2x x∗=x , ,m ky  and 

kx  denote the received signal on the m-th receive antenna and 
the transmitted signal in the k-th signal duration, respectively. 

T
1, N,1, N,

1, N,1, N,

i ij j

j ji i

h hh h
h hh h

∗ ∗

∗ ∗

 
=  − − 

G
� "

"
, ( )2, 2 nCN σn 0 I∼ is AWGN vector.  

 In receiver HG
�

 is used as the weighting matrix, and the 
estimation of transmitted signal is 

 
2

F 1 1H
2

2 2
F

0
ˆ

0

x
x

η
η∗

      = = ⋅ +         

H
x G y

H

�
�

� ,  (21) 

where 1η  and 2η  are independent complex Gaussian random 

variables with zero-mean and covariance
2 2
F

2 nσH
�

.  

According to (21), the instantaneous BER of TAS/STBC can 
be expressed as 
 ( )/ , , 0FTAS STBC Ideal bP Q γ= ⋅H

�
.  (22) 

Under the assumption that the fixed total power is equally 
allocated to the two transmit antennas, we have 2

0 2s nEγ σ= . 
It can be confirmed from (22) that in order to minimize the 

average BER, the system should select the two transmit 
antennas such that the Frobenius norm of H

�
 is maximal [2]. 

 In C-TAS/STBC, the receiver selects two transmit antennas 
based on the channel estimation ˆ

t τ−H at time t τ− , and 
feedbacks the result to transmitter. Utilizing the channel model 
defined in Section Ⅱ, the estimated signal of C-TAS/STBC is 

 

2

F 1H H
2

2

F

ˆ 0
ˆ ˆˆ

ˆ0

t

t t

t

x
x

τ

τ τ

τ

ρ
−

− −∗

−

  
    = ⋅ + ⋅ ⋅ + ⋅           

H
x G B G n

H

�
� �

� .  (23) 

Because 1x and 2x have the same BER, without loss of genera- 
lity, only 1x is considered here. From (23) the estimation of 1x is 

 
2

1 1 1 1 2 2 1
F

ˆˆ tx x x xτρ α α η∗
−= ⋅ + + +H

�
,  (24) 

where H
1

1,1

ˆ
t τη −

 = ⋅  
G n
�

, H
1

1,1

ˆ
t τα −

 = ⋅  
G B
�

， H
2

1,2

ˆ
t τα −

 = ⋅  
G B
�

，

and 
2

2
1

F

ˆ0, 2 t nCN τη σ−
 
 
 

H
�

∼ , 
2

2
1 2

F

ˆ, 0 t bCN τα α σ−
 
 
 

H
�

∼ ， . 

For BPSK modulation, since 2x  can be identical to 1x  or 
1x−  with equal probability, the instantaneous BER of 

C-TAS/STBC / ,C T S bP −  can be expressed as 

 ( ) ( )/ , / , 2 1 / , 2 1
1
2C T S b C T S b C T S bP P x x P x x− − −= = + = −  .  (25) 

In the case of 2 1x x= , the instantaneous BER is 

 ( ) ( )( ) ( )/ , 2 1 0 3
F

ˆ
C T S b tP x x Q Qτρ α γ γ− −= = ⋅ +H

�
� .  (26) 

where ( )1 2
F

ˆRe t τα α α −= + H
�

, and ( )20, bNα σ∼ . 

 Similarly, in the case of 2 1x x= − , the instantaneous BER is 
the same as (26). Hence, / ,C T S bP − can still be expressed by (26).  

Like C-MRT, in order to obtain the average BER of 

C-TAS/STBC the p.d.f. of 
F

ˆ
t τ−H
�

and the c.p.d.f. of 3γ  given 

F

ˆ
t τ−H
�

 are required. Due to space limitations, the p.d.f. of 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 

1137



2

F

ˆ
t τ−H
�

 is directly given by (27), where ,i jc is the coefficient 

of ju  in the expansion of ( )( )N-1 2
ˆ0 !

i
k k

k hu kσ= ⋅∑ . Substituting (27) 

into (10), the average BER of C-TAS/STBC / ,C T S bP −  can be 

expressed by (28), where 
2 2
0

1 2 2 2
ˆ0

1
2

b

h

b
γ σ
γ ρ σ

+
= ，

( ) ( )2 2
0

2 2 2 2
ˆ0

1 2
4
b

h

i
b

γ σ
γ ρ σ
+ ⋅ +

= . 

 It’s worth to note that although the expression of (28) is 
complicated, it only consists of finite and simple arithmetic 
operations which can be used to evaluate BER efficiently. 

D. Average BER of I-TAS/STBC 
 In I-TAS/STBC, the receiver utilizes the channel estimation 

ˆ
tH
�

 to demodulate the transmitted signal. Based on the channel 
model in Section Ⅱ, the estimated signal can be expressed as 

 

2

F 1H H
2

2

F

ˆ 0
ˆ ˆˆ

ˆ0

t

e t t

t

x
x

ρ
∗

  
    = ⋅ + ⋅ ⋅ + ⋅           

H
x G D G n

H

�
� �

� .  (29) 

The instantaneous BER of I-TAS/STBC can be written as 

 
( )( )
( )( ) ( )

/ , 0F

0 4

I T S b e t

e

P Q

Q Q

τρ ρ α γ

ρ α γ γ
− −= ⋅ ⋅ + +

⋅Ω +

H A
��

�
� �

,  (30) 

where ( )2,CN σ AA 0 I�
�
∼ , ( )2 2 2 2 2 2 2 2

ˆ 1d h e d h eh
σ ρ σ σ σ ρ σ σ= + − +A
� ,

( )20, dNα σ∼ , ( )1 2
F

ˆRe tα α α= + H
�

, and 1α  and 2α  are 

independent complex Gaussian random variables with 

zero-mean and covariance 
2

2

F

ˆ
t dσH
�

. 

The same specific scenarios in Subsection B are considered 
here. When 1dρ →  and for high SNR, Ω

�
 can be approximated as  

 
Ft τρ −Ω ≈ ⋅ H

� �
.  (31) 

As a result, the average BER of I-TAS/STBC / ,I T S bP − can still  

be written as (28) with
2 2
0

1 2 2 2 2
ˆ0

1
2

d

e h

b
γ σ
γ ρ ρ σ

+
= , 

( ) ( )2 2
0

2 2 2 2 2
ˆ0

1 2
4

d

e h

i
b

γ σ
γ ρ ρ σ

+ ⋅ +
= . 

By contrast, if 0dρ → , Ω
�

can be approximated as  

 
F

Ω ≈ A
��

.  (32) 

Therefore, the average BER of I-TAS/STBC in this case is 

 
2 2
0

, 2 2 2
0

11 2 N 1,
2 2

d
I MRT b

e

P
γ σ
γ ρ σ−

+ 
= − 

 A

G .  (33) 

IV. NUMERICAL ANALYSIS 

Numerical results and Monte-Carlo simulations are provided 
to analyze the performance of C-MRT, I-MRT, C-TAS/STBC 
and I-TAS/STBC in Figs. 1-2. The considered MIMO system 
equips with 4 transmit and 2 receive antennas. Least-Square 
channel estimation based on training sequence is applied in 
simulations. The normalized Doppler frequency df τ is used to 
scale the CSI feedback delay, which is chosen as 0.03 and 1. 
Thus, the corresponding time correlation coefficients dρ  are 
0.9911 and 0.2203, respectively. 

Fig. 1 illustrates the numerical and simulation results of the 
average BER of the four schemes with little CSI feedback delay 
and channel estimation error, in which the time correlation 
coefficient 0.9911dρ = . It’s shown that for C-MRT and 
C-TAS/STBC the numerical results match exactly with the 
simulation results, and for I-MRT and I-TAS/STBC the 
numerical results can match the simulation results very well 
under the condition of little feedback and high SNR. It’s also 
shown that channel estimation error will not lead to error floor, 
and the performance degradation caused by CSI feedback delay 
is trivial since 1dρ → . 

Fig. 2 depicts the performance degradation due to the large 
CSI feedback delay and channel estimation error, where the 
time correlation coefficient 0.2203dρ = . There are obvious 
error floors for C-MRT and C-TAS/STBC, whereas I-MRT and 
I-TAS/STBC can eliminate error floors effectively by 
exploiting real-time CSIR. When 1dρ → , however, the 
improved schemes only have slight advantage over 
conventional schemes for TAS/STBC, and even have worse 
performance for MRT (see Fig. 1). It can be inferred that if the 
perfect CSIT and CSIR are known, conventional schemes and

( ) ( )
( )[ ]

( ) ( )
( )

( )

2

F

2
ˆ

2
ˆ
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Fig. 1 BER with CSI feedback delay and channel estimation error ( 0.9911dρ = ) 

improved schemes will achieve same performance. Otherwise, 
conventional schemes will outperform the improved schemes 
when only channel estimation error is in presence, yet for large 
CSI feedback delay the improved schemes performs better. 

It’s shown from Fig.1 that I-MRT outperforms I-TAS/STBC. 
Nevertheless, it’s shown in Fig. 2 that I-TAS/STBC has 
superior performance to I-MRT. It can be forecasted that for 
little CSI feedback delay I-MRT will have better performance, 
but when CSI feedback delay increases to some extent, 
I-TAS/STBC will outperform I-MRT. This is due to the fact 
that when CSI feedback delay approaches to zero, I-MRT can 
obtain more array gain than I-TAS/STBC, which leads to better 
performance. In another extreme case, when CSI feedback 
delay increases to infinity, I-MRT in (M, N) system (i.e. a 
MIMO system with M transmit and N receive antennas) is 
equivalent to MRC in (1, N) system, whereas I-TAS/STBC in 
(M, N) system is equivalent to STBC in (2, N) system. 
Obviously, the latter can achieve larger diversity order, thus has 
better performance. 

V.  CONCLUSIONS 

In this paper, we investigate the performance of four schemes 
in MIMO systems with CSI feedback delay and channel 
estimation error. For C-MRT and C-TAS/STBC exact BER 
expressions are derived, and for I-MRT and I-TAS/STBC 
approximate BER expressions are provided for two specific 
scenarios. The performance of the considered schemes are 
validated and compared with each other by numerical analysis 
and simulations in various scenarios. The results show that for 
little CSI feedback delay the performance of conventional 
schemes are superior to the improved schemes, yet for large CSI 
feedback delay the improved schemes perform better, and when 
CSI feedback delay increases to a certain extent, I-TAS/STBC 
outperforms I-MRT. 
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