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Abstract—In this paper, we study uplink joint channel estima-
tion for downlink base station cooperative transmission orthog-
onal frequency division multiplexing systems. We present three
linear estimators which jointly estimates the channel coefficients
from users in different cells with minimum mean square error
(MSE), robust design and least square criterion, then we analyze
their performance. We find that due to the asymmetric feature
of the multi-cell channels in cooperative transmission systems,
the MSE for different links with three joint estimators differ.
When the channel energy information is exploited for channel
estimation, the cross channels that experience large attenuation
have smaller estimation MSEs than the local channels, and
using non-orthogonal training sequences among users in different
cells leads to minor performance loss. This is in contrast to
the traditional understanding. To reduce the complexity of the
estimators when non-orthogonal training sequences are used, we
also present an interference cancelation based estimator. Both the
channel estimation errors and the throughput of the cooperative
transmission system are simulated to verify our analysis.

I. INTRODUCTION

Spectral efficiency of universal frequency reuse cellular sys-
tems is severely limited by the inter-cell interference (ICI). To
avoid the interference, coherent cooperative transmission is a
promising strategy, where multiple base stations (BSs) behave
like a super-BS [1]. For downlink cooperative transmission,
multi-user precoding can provide the highest throughput, while
all the channel state information (CSI) among the coordinated
BSs and the mobile stations (MSs) need to be acquired at the
super-BS [2].

In traditional non-cooperative cellular systems, each BS
only needs to estimate CSI of the local channels, i.e., the
channels between BS and MS who are in the same cell. In
coherence cooperative transmission systems, the CSI of cross
channels, i.e., the channels between BS and MS who are in
different cells, need to be acquired as well. Assuming that
the multipath delays of channels from the serving BS and the
interference BS do not overlap, [3] develops a joint channel
estimation method for the desired and interference channels.
[4] suggests to spread the orthogonal sequences in time domain
from slot to slot to support the estimation of channels from
multiple BSs. Considering the propagation delay differences in
multicell channels, [5] designs orthogonal training sequences
that are robust to the propagation delay. [6] designs the training
pilots for users in different cells to mitigate the ICI.

Asymmetry and asynchrony are inherent features of multi-
cell channels in cooperative transmission systems. Although

channel estimators and the training sequences designed for
single user multi-input multi-output (MIMO) systems [7] or
multiple user non-cooperative cellular systems [6] can be
applied, they do not perform well in the cooperative trans-
mission scenarios. First, the channels from different BSs to
one user have different energies since those between the user
and its non-serving BSs experience large attenuation. For the
first glance, this will lead to poor estimation performance
for the channels with large attenuation [8]. Second, since
it is impossible to synchronize all MSs to all cooperative
BSs [9], we need to consider the various propagation delays
when constructing the orthogonal training sequences. This will
introduce extra overhead if the training sequences among the
users in different cells are designed orthogonal.

In this paper, we consider joint channel estimation for time
division duplexing (TDD) downlink cooperative transmission
Orthogonal Frequency Division Multiplexing (OFDM) sys-
tems using multi-user precoding. We analyze the Mean Square
Error (MSE) for three joint estimators that need different
channel statistical information, which are the minimum MSE
(MMSE) estimator, a robust estimator and the least square
(LS) estimator. The robust estimator is derived from MMSE
estimator by assuming that the large scale channel energy is
perfectly known and the power delay profile (PDP) of the
small scale fading is uniform. Our analysis and simulation
results show that both the MMSE estimator and the robust
estimator exhibit small MSE for estimating cross channels and
provides fairly good performance for downlink cooperative
transmission, even when the training sequences for the users
in different cells are non-orthogonal.

II. SYSTEM MODEL

Consider a coordinated cellular system, where 𝐵 BSs each
equipped with 𝑁𝑇 antennas cooperatively transmit to 𝑀 single
antenna MSs in 𝐵 cells using multi-user precoding such as
Zero Forcing Beamforming (ZFBF).

We assume channel reciprocity for downlink and uplink.
We further assume block fading channel, which means the
channel remains constant during uplink channel estimation
and downlink transmission. Each BS can estimate the CSIs
from all MSs in the coordinated cells to itself through uplink
training. Then the central processing unit can obtain all the
CSIs from the coordinated BSs via high speed backhaul links.
An example of cooperative transmission system is shown in



Fig. 1. An example of downlink BS cooperation transmission with 2 single
antenna BSs and 2 single antenna MSs.

Fig. 1, where either BS1 or BS2 can serve as the central
processing unit. Due to the asymmetric and asynchronous
feature of the channels, both the large scale channel fading
gains and the propagation delays of different BS-MS links are
different.

We consider OFDM system since it is not only a popular
candidate for cellular systems but also a promising scheme to
deal with the asynchronous interference appeared in coopera-
tive transmission systems.

Consider the composite channels from all users to all
antennas at multiple BSs, which consist of both large scale
fading and small scale fading. The channel frequency response
(CFR) from MS 𝑚 to antenna 𝑎 of BS 𝑏 at the subcarrier 𝑘
can be expressed as

𝐻𝑏,𝑎,𝑚(𝑘) =

𝐿−1∑
𝑙=0

ℎ𝑏,𝑎,𝑚(𝑙) exp(−𝑗 2𝜋
𝐾

𝑙𝑘)

where ℎ𝑏,𝑎,𝑚(𝑙) = 𝛼𝑏,𝑚𝑔𝑏,𝑎,𝑚(𝑙) is the composite channel
impulse response (CIR), 𝛼𝑏,𝑚 is the large scale fading gain,
𝑔𝑏,𝑎,𝑚(𝑙) is the small scale fading coefficient of the 𝑙th
resolvable path, which is a complex Gaussian random variable
with zero mean and variance 𝜎2

𝑔𝑙,
∑𝐿−1

𝑙=0 𝜎2
𝑔𝑙 = 1, 𝐿 is the

number of resolvable paths, 𝐾 is the number of subcarriers of
the OFDM system.

Incorporating the propagation delay from MS 𝑚 to BS 𝑏,
𝜏𝑏,𝑚, we can express an equivalent composite CFR as

�̄�𝑏,𝑎,𝑚(𝑘) = 𝐻𝑏,𝑎,𝑚(𝑘) exp(−𝑗 2𝜋
𝐾

𝜏𝑏,𝑚
𝑇𝑠

𝑘)

where 𝑇𝑠 is the sampling interval of the system.
Consider that all 𝑀 MSs transmit training sequences in an

uplink symbol. The frequency domain received signal vector
at the antenna 𝑎 of BS 𝑏 can be expressed as

y𝑏,𝑎 =
∑𝑀

𝑚=1
P𝑚H̄𝑏,𝑎,𝑚 +N

=
∑𝑀

𝑚=1
P𝑚F𝑚h𝑏,𝑎,𝑚 +N

= Xh𝑏,𝑎 +N (1)

where H̄𝑏,𝑎,𝑚 = [�̄�𝑏,𝑎,𝑚(0), ⋅ ⋅ ⋅ , �̄�𝑏,𝑎,𝑚(𝐾 − 1)]𝑇 is the
equivalent composite CFR between MS 𝑚 and antenna 𝑎 of
BS 𝑏, h𝑏,𝑎 = [(h𝑏,𝑎,1)

𝑇 , ⋅ ⋅ ⋅ , (h𝑏,𝑎,𝑀 )𝑇 ]𝑇 is the composite
CIR vector from all users to antenna 𝑎 of BS 𝑏 and h𝑏,𝑎,𝑚 =

[ℎ𝑏,𝑎,𝑚(0), ⋅ ⋅ ⋅ , ℎ𝑏,𝑎,𝑚(𝐿−1)]𝑇 , (⋅)𝑇 is the transpose operator.
P𝑚 = 𝑑𝑖𝑎𝑔(𝑝𝑚1, ⋅ ⋅ ⋅ , 𝑝𝑚𝐾), whose diagonal elements are
the frequency domain training sequence transmitted by MS
𝑚. The (𝑘, 𝑙)𝑡ℎ element of F𝑚 is [F𝑚]𝑘,𝑙 = exp(−𝑗 2𝜋

𝐾 (𝑙 +
𝜏𝑏,𝑚
𝑇𝑠

)𝑘), 𝑘 = 0, ⋅ ⋅ ⋅ ,𝐾 − 1 and 𝑙 = 0, ⋅ ⋅ ⋅ , 𝐿− 1. When 𝜏𝑏,𝑚
and 𝐿 are known, X = [P1F1, ⋅ ⋅ ⋅ ,P𝑀F𝑀 ] is an equivalent
training matrix. N is the additive white Gaussian noise vector
with zero mean and covariance matrix 𝜎2

𝑛I𝐾×𝐾 .
Since 𝐿 ≪ 𝐾 in practical systems, we can improve the

channel estimation performance significantly by exploiting the
frequency correlation of channels [7]. If all the propagation
delays and the number of resolvable paths are known, this
can simply be implemented by first estimating the CIR, and
then obtaining the CFR by Fourier transformation. In the
following sections, we will present channel estimators for CIR
and analyze their performance.

III. JOINT CHANNEL ESTIMATION

When all MSs transmit training sequences at the same time,
it is nature to estimate the CIRs from all MSs jointly at each
BS. The performance of channel estimation depends both on
the channel features and on the a priori information. In this
paper, we assume that the propagation delays, 𝜏𝑏,𝑚, and the
number of resolvable paths, 𝐿, can be estimated perfectly [3].

When the channel covariance matrix, R𝑏,𝑎 = 𝐸{h𝑏,𝑎h𝐻𝑏,𝑎},
is known, the MMSE estimator for the CIR vector from all
users to the antenna 𝑎 of BS 𝑏 is optimal [10], which is,

ĥ𝑀𝑀𝑆𝐸
𝑏,𝑎 = (X𝐻X+ 𝜎2

𝑛R
−1
𝑏,𝑎)

−1X𝐻y𝑏,𝑎 (2)

In the multi-cell scenarios, it is reasonable to assume that the
channels among different BS-MS links are un-correlated. Then
R𝑏,𝑎 = 𝑑𝑖𝑎𝑔(𝛼2

𝑏,1R𝑏,𝑎,1, . . . , 𝛼
2
𝑏,𝑀R𝑏,𝑎,𝑀 ), where R𝑏,𝑎,𝑚 is

the covariance matrix of the small scale fading channel from
MS 𝑚 to antenna 𝑎 of BS 𝑏. Although both R𝑏,𝑎,𝑚 and 𝛼2

𝑏,𝑚

vary slowly and can be estimated in practice, 𝛼2
𝑏,𝑚 is a scalar

parameter that can be estimated more accurately. If we assume
that 𝛼2

𝑏,𝑚 can be estimated perfectly but R𝑏,𝑎,𝑚 is unknown,
then by further assuming uniform PDP for small scale fading
channels similar to the traditional robust channel estimation
algorithms [10], R𝑏,𝑎,𝑚 reduces to 1

𝐿I𝐿×𝐿 for 𝑚 = 1, ⋅ ⋅ ⋅ ,𝑀 ,
and we obtain a robust estimation of the CIR vector as

ĥ𝑅𝑜𝑏𝑢𝑠𝑡𝑏,𝑎 = (X𝐻X+ 𝜎2
𝑛D

−1
𝑏,𝑎)

−1X𝐻y𝑏,𝑎 (3)

where D𝑏,𝑎 = 𝑑𝑖𝑎𝑔(𝛼2
𝑏,1

1
𝐿I𝐿×𝐿, . . . , 𝛼

2
𝑏,𝑀

1
𝐿I𝐿×𝐿).

When we know nothing more than 𝜏𝑏,𝑚 and 𝐿, we can
obtain the LS estimation of the CIR vector as

ĥ𝐿𝑆𝑏,𝑎 = (X𝐻X)−1X𝐻y𝑏,𝑎 (4)

According to [7], the training sequences in (2), (3) and (4)
should be orthogonal to minimize the MSE. For BS coop-
erative transmission, this indicates that the training sequences
should be orthogonal among different cells, different users and
different antennas. Training sequences for users in different
cells can be designed orthogonal in the same way as in
traditional single cell systems. However, this leads to huge



overhead. Allocating different time or frequency resources to
users in different cells can ensure the orthogonality among
their training signals, but it is neither flexible nor spectrum
efficient. Allocating orthogonal code sequences is not spec-
trum efficient as well. This is because it is impossible to
synchronize all MSs to all cooperative BSs [9], we need to
consider various propagation delays when constructing the
orthogonal code sequences.

Nonetheless, we will show in next section that considering
the asymmetric channel feature of cooperative transmission
systems, the performance of MMSE and robust estimators
degrade little when the training sequences among MSs in
different cells are not orthogonal. This will lead to high
spectrum efficiency when the system is not fully loaded.

It is worth to note that when non-orthogonal training
sequences are used, all three estimators need to compute
the inverse of a matrix of size 𝑀𝐿 × 𝑀𝐿. To reduce the
resulting huge complexity, we can use the principle of serial
interference cancelation (SIC), which is originally proposed in
CDMA systems [11]. Taking the robust joint estimator as an
example, we present a SIC based channel estimator, which can
be directly extended to the joint MMSE channel estimator.

The difference between the presented SIC based channel
estimator and that in [11] lies in that in each step our channel
estimator jointly estimate all resolvable paths in CIR from a
MS by using the robust single user estimator [10], rather than
estimate each path by applying sliding correlation.

The estimation procedure consists of multiple iterations and
each iteration proceeds 𝑀 steps. Firstly, BS 𝑏 ranks the MSs
in descending order according to the large scale fading gains.
Denote the sorted MS number set as {𝒮𝑚}. The BS applies
the robust single user channel estimator [10] at the first step
of the first iteration to estimate the CIR from the 𝒮1th MS,
i.e., the strongest MS. Next, the signal contributed by this MS
is subtracted from the received signal. In the following steps,
the CIR from each MS is estimated sequentially in the same
way until the CIR of the MS with minimal large scale fading
gain is obtained. Then another iteration starts to refine the
estimation using the CIR estimated in the previous iteration.
In the 𝑚th step of the 𝑖th iteration, the residual received signal
after subtracting all the interference from MSs in 𝒮𝑗 becomes

ŷ𝑆𝐼𝐶𝑏,𝑎 = y𝑏,𝑎 −
𝑚−1∑
𝑗=1

P𝒮𝑗F𝒮𝑗 ĥ
𝑖𝑡𝑒𝑟(𝑖)
𝑏,𝑎,𝒮𝑗

−
𝑀∑

𝑗=𝑚+1

P𝒮𝑗F𝒮𝑗 ĥ
𝑖𝑡𝑒𝑟(𝑖−1)
𝑏,𝑎,𝒮𝑗

where ĥ
𝑖𝑡𝑒𝑟(𝑖)
𝑏,𝑎,𝒮𝑗

is the estimated CIR from MS 𝒮𝑗 at the 𝑖th
iteration.

Denote the number of iteration as 𝑁𝑖𝑡𝑒𝑟. When the training
sequences are ideally autocorrelated, the complexity of the
SIC estimator is on the order of 𝑀𝑁𝑖𝑡𝑒𝑟. Otherwise, it is on
the order of 𝑀𝑁𝑖𝑡𝑒𝑟𝐿

3 since the inverse of a matrix with
size 𝐿 × 𝐿 is required for each step. We will show in the
simulation that the performance of the SIC estimator converges
to the joint estimator rapidly, thus the SIC estimator is of lower
complexity.

IV. PERFORMANCE ANALYSIS

In this section we analyze the impact of the asymmetric
channels on the MSE of the MMSE, robust and LS channel
estimators. For mathematic tractability, we consider a simple
but fundamental scenario, where 𝐵 multiple antenna BSs
cooperatively serving two single antenna MSs.

Denote the channel estimation error vector of CIR from all
MSs to the 𝑎th antenna of BS 𝑏 as Δh𝑏,𝑎 = h𝑏,𝑎 − ĥ𝑏,𝑎.
Then its covariance matrix is RΔh𝑏,𝑎

= 𝐸{Δh𝑏,𝑎Δh𝐻𝑏,𝑎}.
Substitute (2), (3) and (4) into RΔh𝑏,𝑎

, respectively. Then the
covariance matrix of channel estimation errors for the three
joint estimators can be derived as follows by applying the
Woodbury matrix identity [12],

R𝐿𝑆
Δh𝑏,𝑎

= 𝜎2
𝑛B

−1 (5a)

R𝑀𝑀𝑆𝐸
Δh𝑏,𝑎

= 𝜎2
𝑛(𝜎

2
𝑛R

−1
𝑏,𝑎 +B)−1 (5b)

R𝑅𝑜𝑏𝑢𝑠𝑡
Δh𝑏,𝑎

= Δ+R𝑀𝑀𝑆𝐸
Δh𝑏,𝑎

(5c)

where B = X𝐻X, Δ = 𝜎2
𝑛(B+𝜎2

𝑛D
−1
𝑏,𝑎)

−1B(I−R𝑏,𝑎D
−1
𝑏,𝑎)

(B+𝜎2
𝑛D

−1
𝑏,𝑎)

−1+R𝑏,𝑎B[(B+𝜎2
𝑛R

−1
𝑏,𝑎)

−1−(B+𝜎2
𝑛D

−1
𝑏,𝑎)

−1].
For simplicity, we assume that the training sequences are

constant-modulus, i.e., P𝑚
𝐻P𝑚 = I𝐾×𝐾 , 𝑚 = 1, 2. Then

from (1), we have

B = X𝐻X =

(
𝐾I𝐿×𝐿 Q𝐻

21

Q21 𝐾I𝐿×𝐿

)
(6)

where Q21 = F𝐻2 P𝐻
2 P1F1.

Substituting (6) into (5a), we can derive the MSE of the LS
estimator after some manipulations as

𝑀𝑆𝐸𝐿𝑆
𝑏,𝑎,𝑚 =

𝑚𝐿∑
𝑖=(𝑚−1)𝐿+1

R𝐿𝑆
Δh𝑏,𝑎

(𝑖, 𝑖) =
𝜎2
𝑛

𝐾

𝐿∑
𝑙=1

𝑓𝐿𝑆(𝜆𝑙)

(7)
where 𝑓𝐿𝑆(𝜆𝑙) = 1

1−𝜆2
𝑙

, 𝜆2
𝑙 is the 𝑙th eigenvalue of Q𝐻

21Q21

𝐾2 ,
0 ≤ 𝜆2

𝑙 < 1.
For mathematic tractability, we assume uniform

PDP for the small scale fading channel, i.e.,
R𝑏,𝑎 = 𝑑𝑖𝑎𝑔(𝛼2

𝑏,1
1
𝐿I𝐿×𝐿, 𝛼

2
𝑏,2

1
𝐿I𝐿×𝐿). In this case, the

MMSE estimator degenerates to the robust estimator.
Substituting R𝑏,𝑎 and (6) into (5b), after some manipulations
we can derive the MSE of the robust estimator as

𝑀𝑆𝐸𝑀𝑀𝑆𝐸
𝑏,𝑎,𝑚 = 𝑀𝑆𝐸𝑅𝑜𝑏𝑢𝑠𝑡

𝑏,𝑎,𝑚 = 𝜂𝑏,𝑚 ⋅ 𝜎
2
𝑛

𝐾

𝐿∑
𝑙=1

𝑓𝑅𝑜𝑏𝑢𝑠𝑡(𝜆𝑙)

(8)
where 𝜂𝑏,𝑚 =

𝛼2
𝑏,𝑚

𝛼2
𝑏,𝑚+

𝐿𝜎2
𝑛

𝐾

, 𝑓𝑅𝑜𝑏𝑢𝑠𝑡(𝜆𝑙) = 1
1−𝛽𝜆2

𝑙
, 𝛽 =

∏2
𝑗=1

𝛼2
𝑏,𝑗

𝛼2
𝑏,𝑗+

𝐿𝜎2
𝑛

𝐾

.

Now we analyze the impact of channel asymmetry on the
performance of the estimators by comparing (7) and (8).

A. Estimation MSE of Cross Channels

One difference between (7) and (8) comes from the weight-
ing coefficient 𝜂𝑏,𝑚, whose value is less than 1. We can
observe that the performance of the LS estimator for channels



from different MSs to different BSs are identical, whereas
the performance of the robust (MMSE) estimator for these
channels depends on the large scale channel energy. The
cross channels that experience large attenuation exhibit small
estimate errors. This is surprising since it is in contradict with
the traditional understanding [8]. Nonetheless, such a result
is reasonable due to the fact that we estimate the compos-
ite channels for downlink cooperative transmission, and the
signal-to-noise-ratio (SNR) for estimating the composite cross
channels is in fact not low.

B. Impact of Non-Orthogonal Training Signals

It is not hard to show that the training sequences of users
in different cells should be orthogonal to minimize the MSE.
If the training sequences are not orthogonal, i.e., 𝜆2

𝑙 ∕= 0 for
𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿, both 𝑓𝑅𝑜𝑏𝑢𝑠𝑡(𝜆𝑙) and 𝑓𝐿𝑆(𝜆𝑙) in (7) and (8)
will be larger than 1.

From (7) we can see that if 𝜆2
𝑙 is close to 1 for any 𝑙, the

value of 𝑓𝐿𝑆(𝜆𝑙) will be extremely large and the estimation
performance will be severely degraded. This means that the LS
estimator is quite sensitive to the orthogonality of the training
sequences. From (8) we can see that the MSE of the robust
(MMSE) estimator will not become very large due to the
weighting coefficient 𝛽, whose value is always less than 1.
When the large scale fading channel energy of the composite
channel from a MS is small enough, 𝛽 will be a small value.
In this case, even if 𝜆2

𝑙 is close to 1, 𝑓𝑅𝑜𝑏𝑢𝑠𝑡(𝜆𝑙) will not be
too large. This indicates that the performance loss of robust
(MMSE) estimator will be minor when using non-orthogonal
training sequences due to the severe energy attenuation of the
channels from users to their non-serving BSs.

When the PDP is not uniform, which is the case in practice,
the robust estimator will be inferior to the MMSE estimator.
Nevertheless, we will show through simulations that the same
conclusion can be drawn when the training sequences are not
orthogonal.

V. SIMULATION RESULTS

In this section, we simulate the channel estimation errors
and the throughput of a cooperative transmission system to
compare the channel estimators.

The urban macro-cellular system parameters are considered.
The cell radius is 250 m, the MS transmit power 𝑃𝑡 is 24 dBm,
the noise power at BS is -100 dBm, the path loss is calculated
by 𝐿𝑃𝐿 = 36.3 + 37.6× log10(𝑑), where 𝑑 ≥ 35 m.

We set the system bandwidth as 5 MHz, which is divided
into 256 subcarriers. The sampling rate 1/𝑇𝑠 = 5 MHz. The
Spatial Channel Model (SCM) [13] is used. The training se-
quences for MSs within each cell are orthogonal, i.e., there are
no intra-cell interference. The training sequences for MSs in
different cells can be orthogonal or non-orthogonal, which are
respectively constructed from the cyclic shift of one Constant
Amplitude Zero Autocorrelation Code (CAZAC) [14] or from
multiple CAZACs with different mother indexes.

A. MSEs of the different estimators

In this subsection, we consider that 6 MSs are served
cooperatively by two BSs. The received SNRs of the MSs,
defined as 𝑆𝑁𝑅𝑏,𝑚 = 𝑃𝑡𝛼

2
𝑏,𝑚/𝜎

2
𝑛, range from −10 dB to 15

dB with 5 dB as the step size. According to the path loss model
we used, the SNR is generally greater than 0 dB when the
MS and the BS locate in the same cell, otherwise the SNR is
usually smaller than 0 dB. Note that the received SNR defined
in this section is for estimating small scale channels, which
differs from that for the composite channels.

We use normalized MSE (NMSE) as the performance met-
ric, which is defined as 𝑁𝑀𝑆𝐸𝑏,𝑎,𝑚 = 𝑀𝑆𝐸𝑏,𝑎,𝑚/𝛼

2
𝑏,𝑚. It

can reflect the estimation performance of the small scale fading
channels since we assume that the large scale fading energy
is perfectly known for both robust and MMSE estimators.

In Fig.2, the 𝑁𝑀𝑆𝐸𝑏,𝑎,𝑚 versus 𝑆𝑁𝑅𝑏,𝑎,𝑚 of different
estimators are shown. It is shown that when non-orthogonal
training sequences are used, the performance of LS estimator
degrades severely, while the performance of both the joint
MMSE and the joint robust estimator are almost the same
as that employing orthogonal training sequences. This agrees
well with our theoretical analysis.

Fig.3 compares the performance of joint robust and SIC-
based robust estimator when the training sequences of MSs
in different cells are not orthogonal. It is shown that the
performance of SIC-based channel estimator converge to that
of the joint estimator only with 4 ∼ 5 iterations.

It is worth to note again that Fig.2 and Fig.3 show the
NMSE performance. Even though the NMSE of the MMSE
and the robust estimation is high at low SNR, this does
not necessarily induce worse throughput for downlink BSs
cooperative transmission. A low SNR here means a low
channel energy. As we have stated earlier, it is the MSE
of the composite channel that directly affects the multi-cell
cooperative transmission performance. Since the MSE is the
value of NMSE weighted by the large scale channel energy,
the MSE shall be small at low SNR.

B. System throughputs of different estimators

In the following system level simulation, we consider fixed
clustering, where adjacent three BSs each with four antennas
cooperatively transmit to twelve single antenna MSs in the
three cells. Each BS estimates the CSIs from all users in
the cooperative cells using the training sequences. Then the
central processing unit uses all CSIs to compute the ZFBF
with equal power allocation for downlink transmission. We
use the cell average throughput and cell edge throughput as
the performance metrics. The results are shown in Fig.4.

When the LS estimator with non-orthogonal training se-
quences is applied, the cell average throughput degrades
severely compared with that under orthogonal training. By
contrast, the corresponding performance losses of joint MMSE
estimator, joint robust estimator and SIC-based estimator are
minor. The throughput achieved by using the robust estimator
with non-orthogonal training sequences even exceeds that by
using the LS estimator with orthogonal training sequences.
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Fig. 2. NMSEs of different estimators versus SNR when orthogonal
and non-orthogonal training sequences of users in different cells are
considered.

This can be intuitively explained as follows. Since the down-
link ZFBF is used for canceling the interference from other
cells, the estimation errors of the composite cross channels
play a critical role. We have shown through both analysis
and simulation that the composite channels that experience
large attenuation have small estimation errors when MMSE
and robust estimator are used. This leads to better interference
cancelation performance.

VI. CONCLUSION

In this paper, we have studied three joint channel estimators
for downlink BS cooperative transmission, the MMSE estima-
tor, a robust estimator and the LS estimator. Due to the inherent
asymmetric channel feature in the cooperative transmission
systems, we have found that when the energies of large
scale channels are exploited for channel estimation, the cross
channels experiencing severe path loss exhibit small estimation
errors, and non-orthogonal training sequences of users from
different cells lead to minor performance loss. We validated
our analysis by simulating both the channel estimation errors
and the throughput of a cooperative transmission system.
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