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Abstract— Per-cell codebook based limited feedback is desir-
able for coordinated multi-point (CoMP) transmission system due
to its flexibility and scalability. In this paper, we study if and
when the quantization performance of CoMP channel direction
information will benefit from the phase ambiguity (PA) feedback.
To this end, we analyze the average quantization performance of
the feedback strategies with or without PA feedback, respectively.
By deriving the approximated bounds, we show that when the
number of coordinated base stations is large and the number
of antennas at each base station is small, the PA feedback will
introduce evident performance gain especially for cell-edge users.
Simulation results validate our analysis.

I. INTRODUCTION

Coordinated multi-point (CoMP) transmission has drawn
abroad attention recently [1–3]. When all the coordinated base
stations (BSs) share both data and channel state information
(CSI) and the CSI acquired at the coordinated BSs is of
high quality, coherent cooperative transmission1 can provide
high spectral efficiency for cellular systems. This however
leads to considerable feedback overhead for frequency division
duplexing (FDD) systems.

Limited feedback technique is widely applied for reporting
CSI to the BS in multi-input-multi-output (MIMO) systems
and has been extensively studied [4]. Applying vector quanti-
zation theory to design a global codebook for CoMP channel
simply by treating it as a large MIMO channel is optimal.
However, such a global codebook suffers from the lack of
flexibility and compatibility [5]. In fact, CoMP channel is
an aggregation of multiple single cell channels between each
BS and each mobile station (MS). Moreover, the cooperative
cluster may be dynamic [3]. Therefore, it is more desirable to
design per-cell codebook based feedback scheme, where each
single cell channel is quantized with a single codebook.

When we employ per-cell codebooks to quantize CoMP
channels, there are various issues to optimize the quanti-
zation performance [6–8], although we can simply reuse
the codebooks designed for single-cell systems. Depending
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1For simplicity, we refer coherent cooperative transmission as CoMP in the
rest of the paper, though CoMP has various forms.

on the information fed back to the BS, CoMP channel re-
construction method can be optimized as in single cell MIMO
systems [9]. Considering the fact that the contribution of each
per-cell channel direction information (CDI) to the global
CDI differs due to the channel asymmetry, bit allocation for
the per-cell codebooks can provides significant performance
gain [7]. Codeword selection is another critical issue. Per-
cell codewords can be selected independently to minimize
the quantization error of each per-cell CDI, or jointly to
minimize the quantization error of the global CDI. Independent
codeword selection is of low complexity, but is inferior to the
joint codeword selection owing to a phase ambiguity (PA) led
by the per-cell quantization [6]. Intuitively, its performance
can be enhanced by co-phasing the multi-cell channels with
the feedback information of PA. Given the same overall bits
for feedback, it has been shown that the independent codeword
selection with PA feedback outperforms the joint selection
without PA feedback when the bit is allocated to maximize
the instantaneous quantization accuracy of the global CDI [6].
However, this kind of bit allocation is not feasible in practice
since it will introduce more signaling overhead. When PA is
fed back, joint codeword selection performs the best.

In this paper, we try to find out if and when the PA feedback
will have benefit, when bit allocation is optimized for average
quantization performance. To focus on the necessity of the PA
quantization, we simply use the large scale fading factors to
re-construct the CoMP channel and employ the joint codeword
selection. We will analyze the quantization performance of the
per-cell codebook based feedback strategies with or without
PA quantization.

II. SYSTEM MODEL

We consider a coherent CoMP system, where N BSs each
equipped with nt antennas cooperatively serve multiple single
antenna MSs in a frequency, time or spatial division manner.

The downlink CoMP channel of each MS is comprised of
all the per-cell channels from each coordinated BS to the MS,
which can be represented by

hC = [α1h1, · · · , αNhN ] = hR
1
2 , (1)

where αk is the large scale fading factor including the path
loss and shadowing, hk ∈ C1×nt is the small scale fading



channel vector from the kth coordinated BS to the MS. To
simplify the analysis and highlight the feature of CoMP chan-
nels, we assume that the per-cell channels are uncorrelated,
and each entries in hk subjects to CN (0, 1). Then, R =
diag

{
α2

1Int
, · · · , α2

NInt

}
, which is a diagonal matrix.

The global CDI vector of CoMP channel is denoted as

g , h
‖ h ‖ = [g1h̄1, · · · , gN h̄N ], (2)

where h̄k , hk

‖hk‖ is the kth per-cell CDI vector and gk =
αk‖hk‖√∑N
i=1 α2

i ‖hi‖2
is the weighting factor, which reflects the

contribution of the per-cell CDI to the global CDI.
We quantize the global CDI vector based on per-cell code-

books. As in [6], the BS re-constructs the global CDI vector
as ĝ , [ĝ1ĥ1, · · · , ĝN ĥN ], where ĝk , αk√∑N

i=1 α2
i

, i.e., only

large scale fading factors are employed. ĥk = cH
ik

is the
kth quantized per-cell CDI vector, which is selected from
the corresponding codebook with unitary codewords cik

∈ Ck

according to some criteria.
The quantization error of global CDI is defined as

d(g, ĝ) ,
√

1− |g · ĝH |2 =
√

1− cos2 θ, (3)

where cos2 θ , |g · ĝH |2. For simplicity, we will use cos2 θ
as the performance metric in the following.

When the PA is not fed back, the quantization accuracy is

cos2 θ|NPA =
∣∣∣

N∑

k=1

gkĝk · h̄kĥH
k

∣∣∣
2

=
∣∣∣

N∑

k=1

gkĝk · |h̄kĥH
k |ejξk

∣∣∣
2

,

(4)
where ejξk , h̄kĥH

k

|h̄kĥH
k |

is the kth per-cell PA induced by per-cell
codebook based quantization.

When the PA is quantized and fed back to the BS, it can
be compensated during the global CDI re-constriction. The
correction will not be perfect since PA has quantization error,
which is denoted as ej∆ξk , ej(ξk−ξ̂k). The quantization
accuracy of the global CDI becomes

cos2 θ|PA =
∣∣∣

N∑

k=1

gkĝk · |h̄kĥH
k | · ej(∆ξk)

∣∣∣
2

=




(
N∑

k=1

gkĝk · |h̄kĥH
k |

)2

− ΦPA


 ,

(5)

where ejξ̂k = cξ
jk

is the quantized PA, which is selected from
a scalar codebook Cξ

k. ΦPA , 2
∑N

k=1

∑N
m>k gkĝk|h̄kĥH

k | ·
gmĝm|h̄mĥH

m| · (1 − cos(∆ξk − ∆ξm)) is the impact of the
PA quantization error on the quantization accuracy.

III. AVERAGE QUANTIZATION PERFORMANCE WITH OR
WITHOUT PA FEEDBACK

In the following, we will analyze the average quantization
accuracy E[cos2 θ] of the feedback strategies with and without
PA quantization, respectively.

A. Quantization Performance without PA Feedback

Denote the codebook for the kth per-cell CDI quantization
as Ck, which is of size Bk and

∑N
k=1 Bk = Bsum. The per-cell

codewords are selected jointly to minimize the quantization
error of the global CDI, which is

[i1, · · · , iN ] = arg max
cik

∈Ck

∣∣∣
N∑

k=1

gkĝk · |h̄kcik
|ejξk

∣∣∣
2

. (6)

The closed-form expression of E[cos θ|NPA] is very difficult
to derive. To gain useful insight into the problem, we consider
a special case, where α1 = · · · = αN , which is the worst case
in terms of the negative impact of PA [6, 8]. Then the CoMP
channel can be viewed as a channel of single-cell MIMO
system with a “super BS” having Nnt transmit antennas.
When we quantize this equivalent “MIMO channel” with a
globally generated codebook with size of Bsum, the averaged
quantization accuracy is upper bounded by 1−2−

Bsum
Nnt−1 , which

is tight when the global codebook is well designed [10].
For the considered special case, the per-cell codebook

can achieve the performance of the global codebook with
sufficiently large Nnt, as proved in [5, lemma 1]. Therefore,
we can approximate the averaged quantization accuracy of
global CDI quantized with per-cell codebook as follows,

ANPA , E[cos θ|NPA] ≈ 1− 2−
Bsum

Nnt−1 . (7)

B. Quantization Performance with PA Feedback

Denote the number of bits for PA quantization as BPA, then
the total bits for CDI quantization are BCDI = Bsum − BPA

and
∑N

k=1 Bk = BCDI. The codewords for each per-cell CDI
and PA are selected jointly to minimize the quantization error
of the global CDI, which is

[i1, · · · , iN ; j1, · · · , jN ]

= arg max
cik

∈Ck,cξ
jk
∈Cξ

k




(
N∑

k=1

gkĝk · |h̄kcik
|
)2

− ΦPA


 .

(8)

The average quantization performance E[cos2 θ|PA] is also
very hard to develop due to the joint codeword selection.
Instead, we derive its upper bound and lower bound in the
following, where E[cos2 θ|PA] will be denoted as APA for
concise.

1) Upper Bound of APA: When the PA can be perfectly
quantized with BPA bits, i.e., ej∆ξk = 1, k = 1, · · · , N ,
APA will achieve its upper bound. With this assumption, the
quantization accuracy of the global CDI is the sum of the quan-
tization accuracy of the per-cell CDI, as shown in (5). Then
to maximize the quantization accuracy of the global CDI, the
codeword for each per-cell CDI can be selected independently
to maximize the quantization accuracy of the CDI of each cell.
The upper bound of the averaged quantization accuracy of the



global CDI can be derived as

AUB
PA = E[cos2 θ|UB

PA ]

= E
[ N∑

k=1

g2
kĝ2

k|h̄kcik
|2

+ 2
N∑

k=1

N∑

m>k

gkĝkgmĝm|h̄kcik
| · |h̄mcim |

]

= E
[ N∑

k=1

g2
kĝ2

k cos2 θk + 2
N∑

k=1

N∑

m>k

gkĝkgmĝm cos θk cos θm

]
,

(9)
where the codeword cik

for the kth per-cell CDI is selected
independently based on its own quantization performance, i.e.,
ik = arg maxcik

∈Ck
|h̄kcik

|, and cos θk , |h̄kcik
| is the

quantization accuracy of the kth per-cell CDI.
The norm of the per-cell channel is independent with its

CDI vector, since the per-cell channel is assumed as complex
Gaussian. Therefore, gk is independent from cos2 θk and
cos θk, where gk depends on the norms of per-cell channels
and cos2 θk and cos θk are associated with the per-cell CDI.
As a result, (9) can be derived as

AUB
PA =

N∑

k=1

ĝ2
kE[g2

k]E[cos2 θk]

+ 2
N∑

k=1

N∑

m>k

ĝkĝm · E[gk]E[gm] · E[cos θk]E[cos θm].

(10)

The closed-form expressions of E[gk] and E[g2
k] are still

hard to derive if not possible. Fortunately, we have

E[g2
k] ≈ ĝ2

k, (11)

which can be derived according to [8, Appendix B].
Considering that the variance σ2

gk
= E[g2

k]− (E[gk])2 > 0,
we have E[gk] ≤

√
E[g2

k]. When the MS locates at the cell
edge, i.e., αi ≈ αj , i 6= j, σ2

gk
is small with sufficiently large

nt. As a result, E[gk] ≈
√
E[g2

k]. Upon further substituting
(11), we have

E[gk] ≈ ĝk. (12)

Substituting (11) and (12) into (10), we can obtain

AUB
PA ≈

N∑

k=1

ĝ4
kE[cos2 θk]+2

N∑

k=1

N∑

m>k

ĝ2
kĝ2

m·E[cos θk]E[cos θm].

(13)
When the per-cell codebook is well designed, e.g., using

the Grassmannian codebook [11], E[cos2 θk] can be accurately
approximated as

E[cos2 θk] ≈ 1− 2−Bk/(nt−1). (14)

In this case, the variance of quantization accuracy σ2
cos θk

=
E[cos θ2

k]−(E[cos θk])2 will be small. Therefore, E[cos θk] can
be approximated by

√
E[cos θ2

k], i.e.,

E[cos θk] ≈
√

1− 2−Bk/(nt−1). (15)

Upon substituting (14) and (15), (13) becomes

AUB
PA ≈

(
N∑

k=1

ĝ2
k ·

√
1− 2−Bk/(nt−1)

)2

. (16)

For the special case where α1 = · · · = αN , the weighting
factor is ĝk = 1√

N
and the bits allocated for the each per-cell

codebook are Bk = BCDI
N , k = 1, · · · , N 2. Then the upper

bound of the average quantization accuracy of global CDI can
be approximated as

AUB
PA ≈ 1− 2−

BCDI
N(nt−1) . (17)

2) Lower Bound of APA: When the quantization error of
PA is taken into account, the performance of the independent
codeword selection for both per-cell CDI and PA can serve as
a lower bound for the quantization performance of global CDI.
Then the lower bound of the averaged quantization accuracy
can be written as

ALB
PA = E[cos2 θ|LB

PA] =
N∑

k=1

ĝ2
kE[g2

k] · E[cos2 θk]

+ 2
N∑

k=1

N∑

m>k

ĝkĝmE[gk]E[gm] · E[cos θk]E[cos θm]

· E[cos(∆ξk −∆ξm)].

(18)

Substituting (11), (12), (14) and (15) into (18), we have

ALB
PA ≈

N∑

k=1

ĝ4
k · (1− 2−Bk/(nt−1)) + ΨLB

PA, (19)

where ΨLB
PA , 2

∑N
k=1

∑N
m>k ĝ2

kĝ2
m ·

√
1− 2−

Bk
nt−1 ·√

1− 2−
Bm

nt−1 · E[cos(∆ξk −∆ξm)].
For mathematical tractability, again we consider the special

case where α1 = · · · = αN . Then the lower bound can be
derived as

ALB
PA ≈

N∑

k=1

1− 2
BCDI

N
nt−1

N2

+
2(1− 2

BCDI
N

nt−1 )
N2

N∑

k=1

N∑

m>k

E[cos(∆ξk −∆ξm)]

︸ ︷︷ ︸
η

.

(20)

In the following we derive the closed-form expression of η.
According to (4), if we normalize all the per-cell PA with a
certain per-cell PA, say 1st per-cell PA ejξ1 , it does not affect
the quantization accuracy of the global CDI. Then equivalently
the 1st per-cell PA can be viewed as perfectly quantized, i.e.,
∆ξ1 = 0. Hence we have

η =
N∑

k=2

N∑

m>k

E[cos(∆ξk −∆ξm)] +
N∑

k=2

E[cos∆ξk]. (21)

2Here we consider that BCDI
N

is an integer. Otherwise, we can round it to
the nearest integer, which does not affect our analysis.



For the considered special case, the quantization of different
per-cell PA are equally important [6], i.e., the number of bit
for each PA quantization is bk = BPA

N−1 , k = 2, · · · , N .
It is reasonable to assume that the per-cell PA is uniformly

distributed in [0, 2π], since the per-cell channel is isotropical.
This indicates that it is optimal to quantize PA with a uniform
scalar quantizer, and the quantization error of the kth per-cell
PA is uniformly distributed within [− π

2bk
, π

2bk
]. Then we have

E[cos(∆ξk)] =
∫ π/2bk

−π/2bk

cos x · 2bk

2π
dx

=
2

BPA
N−1

π
sin(

π

2
BPA
N−1

), k = 2, · · · , N.

(22)

In the same manner, we obtain E[sin(∆ξk)] = 0. As a result,
we have

E[cos(∆ξk −∆ξm)]
=E[cos∆ξk]E[cos∆ξm]− E[sin∆ξk]E[sin∆ξm]

=
2

2BPA
N−1

π2
sin2(

π

2
BPA
N−1

), k 6= m 6= 1.

(23)

Upon substituting (23), (21) becomes

η =
N∑

k=2

(
2BPA

π
sin(

π

2BPA
) +

N∑

m>k

22BPA

π2
sin2(

π

2BPA
)

)

=
(N − 1)2BPA sin( π

2BPA
)

π
·
(

1 +
(N − 2)2BPA sin( π

2BPA
)

2π

)
.

(24)
Substituted (24) into (20), we obtain the approximated lower

bound of the average quantization accuracy as

ALB
PA ≈

(1− 2−
BCDI

N(nt−1)

N

) · (1 +
2η

N

)
. (25)

3) Relationship between the Upper Bound and the Lower
Bound: When the number of bits allocated for PA
quantization BPA is sufficient large, we can derive that

limBPA→∞
2

BPA
N−1

π sin( π

2
BPA
N−1

) = 1. Consequently we have

lim
BPA→∞

η =
(N − 1)(N − 2)

2
+ (N − 1) =

N2 −N

2
. (26)

Substituting (26) into (25), we can obtain

lim
BPA→∞

ALB
PA = 1− 2−

BCDI
N(nt−1) = AUB

PA . (27)

Note that this does not mean we should allocate as many
bits as possible for PA quantization. Otherwise, the bits
allocated for quantizing per-cell CDI will reduce and finally
the quantization performance of the global CDI will degrade.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we will compare the quantization perfor-
mance of the two feedback strategies with or without PA
quantization via numerical and simulation results.

First, we evaluate the accuracy of the approximations and
the tightness of the bounds. Considering the prohibitive com-
plexity, we choose a simulation scenario with 2 coordinated
BSs, each equipped with 4 antennas. We consider an exact
cell edge MS, i.e., α1 = α2. The overall number of bits for
the MS, Bsum, is set to 8 bits. The simulation and numerical
results are presented in Fig. 1.
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Fig. 1. The accuracy of the approximated ANPA, the tightness of the upper
and lower bounds of APA. Note that the simulated result of ANPA overlaps
with that of the approximation of ANPA.

For the strategy without PA feedback, nt needs to be large
enough to ensure an accurate approximation of ANPA. As
shown in the figure, however, nt = 4 is enough. For the
strategy with PA feedback, the simulated result of APA is
close to ALB

PA when BPA is small, while ALB
PA and AUB

PA tend to
overlap for large BPA, e.g., 2 or 3 bits. This can be explained
as follows. When we allocate more bits for PA quantization,
the bits for per-cell CDI quantization will reduce. For example,
when BPA = 4 bits, BCDI = Bsum − BPA = 4 bits. This
means that only 2 bits is employed for quantizing each per-
cell CDI. It makes the approximation in (14) and (15) to be not
accurate, which leads to the looser upper and lower bounds.
Nonetheless, this does not affect the performance comparison
of the two strategies, since APA, ALB

PA and AUB
PA are all much

less than ANPA in this case.
Then we compare the quantization performance of two

strategies for the cell-edge MS by numerical results3, as shown
in Fig. 2. For a fair comparison, we fix the total antenna
number of each CoMP cluster, i.e., N × nt = 8.

It shows that given the same Bsum, the system with more
coordinated BSs and fewer antennas at each BS benefits from
the quantization of PA. To achieve the performance gain by
PA quantization for the system with 4 coordinated BSs and 2
antennas at each BS, 5 bits are used for each cell on average.

We can find from the figure that there is an optimal bit
allocation to maximize ALB

PA, e.g., Bop
PA = 5 bits and Bop

CDI =
15 bits for the system with 4 BSs each equipped with 2
antennas. In the following, we will show the normalized
performance gain brought by PA quantization for various
Bsum, where ALB

PA−ANPA
ANPA

is used as the metric. This is a
pessimistic estimation for the benefit of quantizing the PA,
because we consider the lower bound of the performance. For

3Though nt = 2 is not sufficient large to ensure the approximation
accuracy, it does not affect the comparison results.
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Fig. 2. The performance of the exact cell-edge MS with various number of
BSs and number of antennas at each BS, where Bsum=20 bits.

each Bsum, the performance gain is obtained based on the
optimal bit allocation between BPA and BCDI, which is found
by exhaustive searching. The numerical results are presented
in Fig. 3. It shows that when there are fewer antennas at
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Fig. 3. The performance gain introduced by the PA quantization.

each BS the PA quantization will bring a performance gain. In
contrast, for the system with more antennas at each BS, the PA
quantization will have gain only when Bsum is considerably
large, e.g., for a system with N = 3 and nt =4, Bsum

should be more than 30 bits, i.e., 10 bits for each cell on
average. This is because more bits have to be used to improve
the CDI quantization accuracy as the number of antennas
increases. Though when Bsum is large enough, the global CDI
quantization still benefits from PA quantization, however, the
performance gain is minor in all cases. This is because the
quantized global CDI is already very close to the perfect CDI
with large Bsum.

To show if our previous analysis for cell-edge uses is also
valid for other users, we compare the performance of the two
strategies for the MSs with different locations by simulations,
as shown in Fig. 4. In the simulation, the codebook for per-
cell CDI is random vector codebook. The optimal number of
bits for each codebook are found by exhaustive searching to
maximize the averaged quantization accuracy of the global
CDI. The total bits for each MS Bsum = 8 bit. We consider
a simple CoMP system, with 2 coordinated BSs and each BS
equipped with 1 or 2 antennas.4 The MS is located in the 1st
cell, where α1

α2
reflects its location. A large α1

α2
indicates that

4Our analysis can be applied for more general cases, but the simulation will
be too slow for more bits, more BSs and more antennas due to the exhaustive
searching for the joint codeword selection and bit allocation.

the MS is close to the cell center, and α1
α2

= 1 means that the
MS is at the exact cell edge. All the results are obtained over
1000 small scale fading channel realizations. It shows that in
the case of 2 coordinated BSs each with single antenna, most
of the MSs benefits from the PA quantization, especially when
the MS located close to the cell edge.
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Fig. 4. The comparison of the two strategies when the location of MS differs.

V. CONCLUSIONS

In this paper, we analyzed the average quantization per-
formance of two per-cell codebook based limited feedback
strategies with or without phase ambiguity quantization for
CoMP systems. By deriving the approximated bounds of the
averaged quantization accuracy of global CDI, we show that
when the number of BSs is large and the number of antennas
at each BS is small, the PA feedback can bring significant
performance gain especially for cell-edge MSs. Simulation
results validate our analysis.
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