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Abstract—Cache-enabled device-to-device (D2D) communica-
tions can boost network throughput. By pre-downloading con-
tents to local caches of users, the content requested by a user can
be transmitted via D2D links by other users in proximity. Prior
works optimize the caching policy at users with the knowledge
of content popularity, defined as the probability distribution of
request for every file in a library from by all users. However,
content popularity can not reflect the interest of each individual
user and thus popularity-based caching policy may not fully
capture the performance gain introduced by caching. In this
paper, we optimize caching policy for cache-enabled D2D by
learning user preference, defined as the conditional probability
distribution of a user’s request for a file given that the user sends
a request. We first formulate an optimization problem with given
user preference to maximize the offloading probability, which
is proved as NP-hard, and then provide a greedy algorithm
to find the solution. In order to predict the preference of
each individual user, we model the user request behavior by
probabilistic latent semantic analysis (pLSA), and then apply
expectation maximization (EM) algorithm to estimate the model
parameters. Simulation results show that the user preference
can be learnt quickly. Compared to the popularity-based caching
policy, the offloading gain achieved by the proposed policy can
be remarkably improved even with predicted user preference.

Index Terms—Caching policy, D2D, User preference, Content
popularity, Learning.

I. INTRODUCTION

Device-to-device (D2D) communications can boost the
throughput of cellular networks and is a promising way to
support the exponential growth of traffic load of 5th generation
(5G) wireless networks [1].

Motivated by the fact that a few popular contents account for
most of the traffic load, caching contents at the wireless edge
has become a trend for content delivery [2, 3]. By proactively
downloading contents to base stations (BSs) or users, both the
network throughput and energy efficiency as well as the user
experience can be improved dramatically [4–6].

Considering the limited storage size at wireless edge com-
pared to the huge number of available contents, proactive
caching policy is critical to achieve the performance gain
of local caching [2]. Inspired by such observation, all prior
works optimize caching policies with the knowledge of content
popularity, which can be defined as the probability of request
for each content in a catalogue from all users in a certain
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region during a period of time. It can reflect the collective
behavior of users in a community [7].

By assuming identical content popularity among different
cells, a caching policy was optimized for each BS to minimize
the average download delay with known BS-user topology in
[8], and a probabilistic caching policy for BS was proposed in
[9] considering the uncertainty of BS-user topology. Under the
same assumption, a trade-off between outage and throughput
of cache-enabled D2D communications was investigated and
a probabilistic caching policy was optimized in [10]. Consid-
ering that different social groups may prefer different types
of contents, selfish and cooperative caching policies for user
groups with different content popularities were optimized in
[11] to minimize the average delay.

Content popularity is assumed perfectly known in these
works [8–11], which however is unknown in practice and
needs to be predicted [12], either directly [7] or indirectly via
various machine learning algorithms. Prediction for content
popularity in communities with large number of users, e.g.,
who visit Youtube website, has become an active research field
recently. Many prediction methods have been proposed, such
as using cumulative views statistics based on the popularity
correlation over time [7] and learning with a multi-armed
bandit algorithm in [13]. Inspired by collaborative filtering
[14] and assumed that 80% of the ratings for each file
have been provided by each user, the 20% unknown ratings
was predicted by singular value decomposition in [2]. The
predicted ratings for each file are then aggregated to reflect file
popularity, and the files with higher total ratings were cached.

In fact, as a demand statistic of large amount of users,
content popularity is not able to reflect the preference of each
individual user, which can be defined as the probability that
a particular content is requested by a specific user. Existing
works in the literature of local caching do not differentiate user
preference and content popularity, which implicitly assume
that user preferences are identical among users in a region or
in a social group, and equals to the content popularity. Such
an assumption is invalid, noting that the user preferences are
heterogeneous in reality, especially for a small region such as
a cellular cell with small user population.

D2D communications is only applicable for users in prox-
imity, and thus the number of users that each user can share
files with is rather limited. On the other hand, collaborative
filtering is a power tool to directly predict user preference [14],



which has been extensively investigated in the applications
for recommendation problem. This motivates us to investigate
the caching policy for D2D by leveraging the user preference
learned by collaborative filtering algorithms.

In this paper, we study optimal caching policy for cache-
enabled D2D communications with unknown and heteroge-
neous user preferences. D2D communications is only allowed
between users within a collaboration distance to ensure the
high data rate at receiver and low energy cost at transmitter.
We first formulate an optimization problem with given user
preferences to maximize the probability that a user can find
the requested file in its own cache or caches of other users in
proximity, which is proved as NP-hard. To solve the problem
efficiently, we develop a greedy algorithm. In order to learn
and exploit user preferences, we model user request behavior
resorting to probabilistic latent semantic analysis (pLSA),
which was originally developed for automatic indexing and
information retrieval [15] and then became a probabilistic
model in collaborative filtering [14]. The model parameters are
estimated by maximizing likelihood function using expectation
maximization (EM) algorithm [16]. Simulation results show
that user preferences can be quickly learnt. Compared to
simply regarding content popularity as user preference (either
with perfect or predicted content popularity) as in priori
works, the offloading gain can be remarkably increased by the
proposed caching policy with the predicted user preference.

II. SYSTEM MODEL

We consider a cell with K uniformly distributed users,
which constitutes a user set U = {u1,u2, ...,uK}. The BS
is connected to the core network via backhaul. Each single-
antenna user has a local cache to store M files, and can act
as a helper to share files via D2D link.

To provide high rate transmission with low energy cost, we
consider a user-centric communication protocol. A helper can
serve as a D2D transmitter and send its cached files to a user
only if their distance is smaller than a given value rc, called
collaboration distance. The BS is aware of the cached files at
each user and coordinates the D2D communications.

A. Content Popularity and User Preference

Consider a static content library F = {f1, f2, ..., fF } con-
sisting of F files that all users in the cell may request. Each
file is with the same file size. The request statistics for all
users and for each individual user are defined as follows.

Content popularity is the probability distribution of requests
for the files in the library from all users in the cell, denoted
as p = [p1, p2, ..., pF ], where pf = P (ff ) is the probability
that the f th file is requested,

∑F
f=1 pf = 1, pf ∈ [0, 1], and

1 ≤ f ≤ F . Content popularity reflects the common interests
of all users in the cell.

User preference is the conditional probability distribution
of a user’s request for every file given that the user sends a
request, denoted as qk = [qk,1, qk,2, ..., qk,F ] for the kth user,
where qk,f = P (ff |uk) is the conditional probability that the
kth user will request the f th file if the user sends a file request,

∑F
f=1 qk,f = 1, qk,f ∈ [0, 1], 1 ≤ f ≤ F and 1 ≤ k ≤ K.

We use matrix Q := (qk,f )K×F to denote the preferences of
all users, where (qk,f )K×F represents a matrix with K rows
and F columns and qk,f as the element in the kth row and
f th column. User preference reflects the personal interest of
each individual user.

Assume that both content popularity and user preference are
stationary, then their relation is given by

pf =
∑K
k=1 wkqk,f , (1)

where wk = P (uk), which is the probability that a request
is sent by uk ∈ U , wk ∈ [0, 1], and

∑K
k=1 wk = 1. Denote

w = [w1, w2, ..., wK ], which is the request distribution and
reflects the active level of each user.

Content popularity is often modeled by a Zipf distribution.
The probability that the f th file in the library is requested is

pf = f−β/
∑F
j=1 j

−β , (2)

where the files in the library are indexed in descending order
of popularity, and the content popularity distribution is more
skewed with larger β [8].

User preferences model, unfortunately, is not available in
the literature so far. To investigate the impact of optimizing
caching policy by learning user preference, we synthesize the
user preference from the content popularity, inspired by a
method in [17] to synthesize content popularity in a cell from
that of a core network, with the steps as follows:
• uk is associated with a feature value Xk, which is a

uniform random variable randomly selected from [0, 1].
• ff is associated with a feature value Yf , which is again

chosen uniformly and independently from [0, 1].
• Define a kernel function to reflect the correlation between

the kth user and the f th file as g(Xk, Yf ) = (1 −
|Xk − Yf |)( 1

α3−1), where 0 < α ≤ 1. Here g(Xk, Yf )
takes values in [0, 1], where g(Xk, Yf ) = 0 means that
the f th file will not be requested by the kth user, and
g(Xk, Yf ) = 1 can be interpreted as that the f th file
belongs to the preferred file type of the kth user.

Then, the joint probability that the f th file is requested by the
kth user is given as

P (uk, ff ) = wkqk,f = pf
g(Xk,Yf )∑K

k′=1
g(Xk′ ,Yf )

. (3)

The main differences with [17] lie in that: (1) we use
(3) to construct the joint probability instead of the number
of requests for the f th file at a specific BS, and (2) we
introduce a parameter α into the kernel function to capture the
similarity of preferences among all users rather than simply
using g(Xk, Yf ) = (1− 2|Xk − Yf |)4 in [17].

To understand the role of parameter α in the kernel function,
we employ the notion of cosine similarity from collaborative
filtering [14], which is frequently used to reflect the similarity
level of preferences between two users and is defined as

sim(qk,qm) =
∑F
f=1 qm,fqk,f∑F

f=1 q
2
m,f

∑F
f=1 q

2
k,f

. (4)



To show the similarity among the preferences of all users, we
can define average cosine similarity as

Ek,m[sim(qk,qm)] = 2
K(K−1)

∑
k,m

∑F
f=1 qk,fqm,f∑F

f=1 q
2
k,f

∑F
f=1 q

2
m,f

.

(5)
Remark 1: When α = 1, g(Xk, Yf ) = 1 for ∀k, f . Then, all

user preferences are identical and equal to the file popularity,
and Ek,m{sim(qk,qm)} = 1. When α → 0, g(Xk, Yf ) → 0
for Xk 6= Yf , and g(Xk, Yf ) = 1 only for Xk = Yf . This
indicates that g(Xk, Yf )g(Xk′ , Yf ) → 0, k 6= k′. Then, no
user has the same preference, and Ek,m[sim(qk,qm)] → 0.
We can see that α in the kernel function can reflect the average
cosine similarity among users.

B. Content Delivery and Caching Placement
In practice, user preferences are unknown and need to be

learned based on accumulated user requests. Considering that
the traffic load at a BS varies periodically [18], we can divide
time into periods as in [13]. Each period includes a peak time
and an off-peak time. During each period, there are a content
delivery phase and a caching placement phase.

In content delivery phase, each user requests files according
to its own preference. If a user can find its requested file in
local cache, it directly retrieves the file with zero delay. If
not, but the user can find the file in caches of other users
with distance smaller than rc, the user establishes a D2D link
with the closet user cached the file to fetch it. Otherwise, the
user accesses to the BS to fetch the file via backhaul. Both
fetching locally and via D2D links are called fetching via D2D
links in this paper, because fetching locally can be regraded
as fetching via D2D with extremely high data rate. Let
A := (ai,j)

K×K ∈ {0, 1}K×K represent the topology relation
between users, where ai,j = 1 if the distance between the ith
and jth users is smaller than rc and ai,j = 0 otherwise. Denote
file requests matrix after a period as N := (n(uk, ff ))K×F ,
where n(uk, ff ) ≥ 1 is the cumulative number of requests
from the user uk ∈ U for the ff ∈ F after the period.

In caching placement phase, the BS first predicts the user
preferences Q and the request distribution w based on the
requests history N, and then optimizes the caching policy.
We consider a deterministic caching policy, where the files
placed at the kth user is denoted by a binary vector ck =
[ck,1, ck,2, ..., ck,F ], ck,f = 1 if the f th file is cached at the
kth user, ck,f = 0 otherwise, and

∑F
f=1 ck,f ≤M . We assume

that the topology between users remains fixed during the
caching placement and delivery phases. When this assumption
does not hold, probabilistic caching can be applied, while the
optimized policy is not provided due to the space limitation.
Denote caching policy as C := (ck,f )K×F , and the file set
cached at the kth user as Ck = {ff |ck,f = 1}. After optimizing
C, the BS refreshes the caches of users during the off-peak
time of each period, where the energy cost for placing the files
can be minimized by using the method in [19].

III. CACHING POLICY OPTIMIZATION

In this section, we optimize the caching policy with given
user preferences. To this end, we first obtain the offloading

probability to reflect the offloading gain. Then, we formulate
the optimization problem to maximize the offloading gain and
show that it is NP-hard. Finally, we propose a greedy algorithm
to solve the problem.

A. Offloading Probability

Once the requested file can be fetched via D2D links, the
traffic at the BS can be offloaded and the user can enjoy
high data rate and low delay. We use offloading probability to
reflect the offloading gain introduced by cache-enabled D2D
communications, which is defined as the probability that a user
can fetch the requested file via D2D links.

Denote Uk ∈ U as the user set that the kth user can establish
D2D links with, where um ∈ Uk if ak,m = 1 and Uk =
{um|ak,m = 1}. Denoting Fk ∈ F as the file set that the
kth user can fetch via D2D links, then Fk is the union of the
cached contents at the users in Uk, i.e.,

Fk = ∪um∈UkCm = {ff |
∑

um∈Uk cm,f > 0}
= {ff |

∑K
m=1 ak,mcm,f > 0}.

(6)

Then, the offloading probability can be obtained as

poff(Q,w,A,C) =
∑K
k=1 wk

∑
ff∈Fk qk,f

=
∑K
k=1 wk

∑F
f=1 qk,f sgn

(∑K
m=1 ak,mcm,f

)
(a)
=
∑F
f=1

∑K
k=1 wkqk,fgk,f (A,C),

(7)
where sgn(x) = min{max{0, x}, 1} denotes that x is trun-
cated by 0 and 1, and (a) comes from gk,f (A,C) ,

sgn
(∑K

m=1 ak,mcm,f

)
≤ 1, which indicates whether the f th

file can be fetched via D2D links by the kth user.
Remark 2: Prior works assume known content popularity

p, and implicitly assume that all users send their requests
with equal probability, and then the offloading probability is
ppop

off (p,A,C) = 1
K

∑F
f=1 pf

∑K
k=1 gk,f (A,C).

Remark 3: When the collaboration distance rc → ∞,
ak,m = 1. Then, (7) can be rewritten as

poff(Q,w,A,C) =
∑F
f=1 sgn

(∑K
m=1 cm,f

)∑K
k=1 wkqk,f

=
∑F
f=1 sgn

(∑K
m=1 cm,f

)
pf .

(8)
In this extreme case, poff(Q,w,A,C) = ppop

off (p,A,C).

B. Optimization for Caching Policy

To maximize the offloading gain introduced by cache-
enabled D2D communications, we optimize the caching policy
by solving the following problem,

P1 : maxcm,f poff(Q,w,A,C)

s.t.
∑F
f=1 cm,f ≤M, cm,f ∈ {0, 1},

1 ≤ m ≤ K, 1 ≤ f ≤ F.
(9)

Proposition 1: Solving P1 is NP-hard.
Proof: The special case of problem P1 when qk,f = pf

for 1 ≤ k ≤ K can be obtained as



P2 : maxcm,f
∑K
k=1 wk

∑
ff∈Fk pf

s.t. |Cm| ≤M,Fk = ∪um∈UkCm,
1 ≤ m ≤ K, 1 ≤ f ≤ F,

(10)

where |Cm| is the cardinality of Cm. It is easy to show that
P2 has the same structure with the problem formulated in [8],
which has been proved as NP-hard [8]. Because P2 is a special
case of P1, problem P1 is NP-hard.

C. Algorithm to Find the Caching Policy

Since problem P1 is NP-hard, it is impossible to find the
optimal solution within polynomial time. We propose a greedy
algorithm to solve the problem. It starts with zero elements for
the caching matrix, i.e., C := (0)K×F . In each step, the value
of one element in C is changed from zero to one with the
highest incremental caching gain defined as

vC(m, f) = poff(Q,w,A,C|cm,f=1)− poff(Q,w,A,C)

(a)
=
∑K
k=1 wkqk,f

(
gk,f

(
A,C|cm,f=1

)
− gk,f (A,C)

)
,
(11)

where (a) follows by substituting (7), C is the caching matrix
at previous step, and C|cm,f=1 is the matrix by letting cm,f =
1 in C. The algorithm is summarized in Algorithm 1.

Algorithm 1 Finding the solution of problem P1.
Input: A; w; Q;

Initialize: Caching matrix C := (0)K×F ; Files not cached
at the mth user C̄m ← {f1, f2, ..., fF }; Users with residual
storage space U0 ← {u1,u2, ...,uK};

1: for i = 1, 2, ...,K ×M do
2: [m∗, f∗] = arg maxum∈U0,ff∈C̄m vC(m, f);
3: C := C|cm∗,f∗=1;
4: C̄m∗ ← C̄m∗ \ ff∗ ;
5: if |C̄m∗ | = F −M then
6: U0 ← U0 \ um∗ ;
7: end if
8: end for
9: C∗ = C;
Output: Caching matrix C∗.

The loops in step 1 of Algorithm 1 take KM iterations,
because there are totally KM files that can be cached at all
users. The step 2 for finding the file with the highest incremen-
tal caching gain takes at most KF iterations. For each time
of finding the file, the time complexity is O(K) according
to (11). Hence the total time complexity for Algorithm 1 is
O(K3MF ).

Remark 4: It is noteworthy that the solution of prob-
lem P2 is a caching policy optimized with known content
popularity. Algorithm 1 is also applicable for P2 by letting
qk,f = pf ,∀k, f in Q. Solutions based on Algorithm 1 for P1
and P2 are respectively called S1 and S2 in the sequel.

IV. PREDICTING USER PREFERENCES

In this section, we strive to predict user preferences with
a model-based collaborative filtering method by using the
historical file requests of all users. We first use pLSA to model
file request behavior of users. Then, we estimate parameters
of pLSA with EM algorithm by maximizing the likelihood.

A. Modeling File Requests Behavior of Users

PLSA was first developed as an approach for automatic in-
dexing and information retrieve, which provides a probabilistic
approach to characterize latent semantic associations among
co-occurring words and documents [15]. By introducing a
distribution to reflect the ratings given by each user for each
file, pLSA was then applied to predict user preference in
collaborating filtering [14]. To characterize the file requests
behavior, pLSA associates a topic among co-occurring files
and users, where a topic can be art, children, education, games,
or technology, etc. In the following, we introduce pLSA to
model the requests of each user.

The joint probability that uk requests ff is

P (uk, ff ) = P (uk)P (ff |uk). (12)

By introducing latent topic set Z = {z1, z2, ..., zZ} with
|Z| = Z, pLSA associates each possible user request, i.e.,
uk ∈ U requests ff ∈ F , with each topic zj ∈ Z (1 ≤ j ≤ Z).
Specifically, the request of each user can be modeled as the
following steps with three model parameters:
• uk sends a request with probability P (uk),
• uk chooses a topic zj with probability P (zj |uk),
• uk prefers ff in topic zj with probability P (ff |zj).
The above model is based on the conditional independence

assumption that conditioned on the chosen topic zj by uk, ff
is chosen independently of uk with probability P (ff |zj) rather
than P (ff |zj ,uk), i.e., P (ff |uk) =

∑
zj∈Z P (ff |zj)P (zj |uk).

Then, the joint probability in (12) can be rewritten as

P (uk, ff ) = P (uk)P (ff |uk)

= P (uk)
∑

zj∈Z P (ff |zj)P (zj |uk).
(13)

According to maximal likelihood principle, we can de-
termine P (uk), P (ff |zj) and P (zj |uk) with requests history
n(uk, ff ) by maximizing the log-likelihood function

L =
∑

uk∈U
∑

ff∈F n(uk, ff ) logP (uk, ff ). (14)

B. Algorithm to Predict User Preferences

EM algorithm is frequently-used and efficient for maximal
likelihood parameter estimation [16]. To exploit EM algorithm,
the log-likelihood function in (14) is rewritten as [15]

L =
∑

uk∈U
∑

ff∈F n(uk, ff ) log
∑

zj∈Z P (zj)P (uk|zj)P (ff |zj),
(15)

which follows by substituting conditional probability
P (zj |uk) = P (uk|zj)P (zj)/P (uk) into (13).

Starting from randomly generated initial values for the
model parameters P (zj), P (uk|zj) and P (ff |zj), the EM
algorithm alternates two steps: expectation (E) step and max-
imization (M) step. In the E-step, posterior probabilities are



computed for latent variable zj with current estimation of the
parameters as

P (zj |uk, ff ) =
P (zj)P (uk|zj)P (ff |zj)∑

z
j′∈Z

P (zj′ )P (uk|zj′ )P (ff |zj′ )
, (16)

which is the probability that ff requested by uk belongs
to topic zj . In the M-step, given P (zj |uk, ff ) computed by
previous E-step, the parameters are updated as [15]

P (zj) =

∑
ff∈F

∑
uk∈U

n(uk,ff )P (zj |uk,ff )∑
ff∈F

∑
uk∈U

n(uk,ff ) , (17a)

P (uk|zj) =

∑
ff∈F

n(uk,ff )P (zj |uk,ff )∑
ff∈F

∑
u
k′∈U

n(uk′ ,ff )P (zj |uk′ ,ff ) , (17b)

P (ff |zj) =
∑

uk∈U
n(uk,ff )P (zj |uk,ff )∑

uk∈U
∑

f
f′∈F

n(uk,ff′ )P (zj |uk,ff′ )
. (17c)

Using the EM algorithm, the joint distribution P (uk, ff ) =∑
zj∈Z P (zj)P (uk|zj)P (ff |zj) can be estimated. Then, we

can predict the request probability of uk and the preference
of uk for ff as ŵk = P (uk) =

∑
ff∈F P (uk, ff ) and q̂k,f =

P (ff |uk) = P (uk, ff )/P (uk), respectively. The detailed steps
for predicting w and Q are provided in Algorithm 2.

Algorithm 2 Learning user preferences based on pLSA.
Input: N; Z; Stop condition 0 < ε < 1;

Initialize: P (0)(zj) , P (0)(uk|zj) and P (0)(ff |zj); Step
i← 1; Difference ∆←∞; Log likelihood L(0)← 0;

1: while ∆ > ε do
2: Using P (i−1)(zj), P (i−1)(uk|zj) and P (i−1)(ff |zj) in

(16) to compute P (i)(zj |uk, ff );
3: Using P (i)(zj |uk, ff ) in (17a) (17b) and (17c) to com-

pute P (i)(zj), P (i)(uk|zj) and P (i)(ff |zj);
4: Compute log likelihood L(i) with P (i)(zj), P (i)(uk|zj)

and P (i)(ff |zj) by (15);
5: ∆ = |L(i)− L(i− 1)|;
6: i← i+ 1;
7: end while
8: P (uk, ff )←

∑
zj∈Z P

(i)(zj)P
(i)(uk|zj)P (i)(ff |zj);

9: ŵk ←
∑

ff∈F P (uk, ff ) to compute ŵ;
10: q̂k,f ← P (uk, ff )/P (uk) to compute Q̂;
Output: ŵ and Q̂.

V. SIMULATION RESULTS

In this section, we demonstrate the offloading gain intro-
duced by the caching policy exploiting perfect and predicted
user preferences over that with perfect and predicted content
popularity. Specifically, we compare the following schemes:

1) “S1-perfect”: The proposed caching policy with perfect
user preference, which is the solution of problem P1.

2) “S2-perfect”: The existing caching policy optimized with
perfect content popularity, which is the solution of prob-
lem P2.

3) “S1-pLSA”: The proposed caching policy with predicted
user preference, where Algorithm 2 is used to predict ŵ
and Q̂, and then Algorithm 1 is used to find the caching
policy.

4) “S2-pLSA”: The existing caching policy with predicted
content popularity, which is obtained with Algorithm 2
as p̂f =

∑
uk∈U P (uk, ff ) via (1).

5) “S1-baseline”: The proposed caching policy with pre-
dicted user preference, which is obtained by extending
the frequency-count popularity prediction method in [7]
as q̂k,f =

n(uk,ff )∑F
f=1 n(uk,ff )

, ŵk =
∑F
f=1 n(uk,ff )∑K

k′=1

∑F
f=1 n(uk′ ,ff )

.
6) “S2-baseline”: The existing caching policy with predicted

content popularity, which is obtained by the learning
algorithm in [13].

We employ cross validation to demonstrate the learning
performance of pLSA, i.e., we do not use pLSA model
presented in Section IV but use the synthetic model introduced
in Section II to generate user preferences in simulation.

We consider a square cell with side length 500 m, where
K = 100 users are uniformly located. The file catalog size
F = 500, and each user is willing to cache M = 5 files
holding 1% of all files. The parameter of Zipf distribution
is β = 0.6, which is slightly smaller for small region such
as campus than that observed at the Web proxy as reported
in [20]. We divide time into two-hour periods.1 The request
arrival rate of the users in the cell is 0.4 requests per second,
which reflects the high traffic load scenario in [21]. The cached
files at each user are updated in off-peak time.

In Fig. 1(a), we first show the impact of α in the ker-
nel function. We can see that the synthetic user preference
model can capture different levels of similarity among user
preferences by adjusting α, while the Zip parameter β has
negligible impact on the average cosine similarity. This seems
counter-intuitive, since a more skewed popularity distribution
is believed to imply highly similar user preferences. However,
such an intuition comes from the implicit assumption that the
users sent their requests with equal probability, which is not
true in reality, as reported from recent big data analysis. From
the figure we can observe that β = 1 even when α = 0.1,
because a few users in the cell send file requests with high
probability, i.e., only a few users are very active.

In Fig. 1(b), we show the impact of α and rc on offloading
probability achieved by “S1-perfect” and “S2-perfect”. We can
see that offloading gain can be remarkably improved by using
the proposed caching policy when α is small. This suggests
that optimizing caching policy according to user preferences
is critical when the user preferences are less correlated. As
expected, when α → 1, the performance of the two policies
almost coincide. We can also see that the offloading gain can
be improved by extending collaboration distance, but the gain
by using the proposed policy reduces as indicated in Remark
3. This is because, with the growth of rc, the number of users
to which a helper user can share cached files increases, and
thus caching policy needs to consider more user preferences.

1Using other values as the duration of each period does not affect the
predicting performance of user preferences, since the performance only
depends on the number of requests in the past. Yet the period can not be
too short, since a frequent caching placement brings extra traffic load.
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Fig. 1. User request probability, average cosine similarity and offloading
probability with perfectly known user preferences and content popularity.
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Fig. 2. Time evolution of offloading probability with different algorithms,
α = 0.4, rc = 50 m, Z = 10 for pLSA, in (a) M = 5 and in (b) M = 50.

In Fig. 2, we show the offloading probability achieved by
the six schemes during the learning procedure. The curves
for S2 almost overlap. Compared to the proposed caching
policy with predicted user preference, we can see that S2 with
predicted content popularity can approach the performance of
S2 with perfect prediction more quickly. This is because, with
given requests history, the number of requests for each file
from each user is much less than that from all users. As a
result of the data sparsity, predicting user preference is more
difficult than predicting content popularity. Nonetheless, the
proposed caching policy with predicted user preference can
quickly achieve high offloading gain over S2 with predicted
(and even perfect) content popularity. We can also see that
the proposed caching policy with pLSA is superior to that
with the baseline, especially in the initial stage of the learning
procedure and/or when the storage size at each user M is
large. This is because some unpopular files can be cached with
large M . For the unpopular files, the number of accumulated
requests is less and the preference prediction is more difficult.

VI. CONCLUSIONS

In this paper, we optimized the caching policy by learning
user preference for cache-enabled D2D communications. We

first formulated an optimization problem with given user
preferences to maximize the offloading probability, which
was shown as NP-hard. A greedy algorithm was proposed
to solve the problem. Then, we modeled the user request
behavior by pLSA, based on which the EM algorithm was
used to predict the user preference and file request probability.
Simulation results showed that using pLSA and EM algo-
rithm can quickly learn individual user behavior. Compared
to existing popularity-driven caching policy, the performance
can be remarkably improved by the proposed caching policy,
especially when the user preferences are less correlated.
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