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Abstract—The throughput of small cell networks (SCNs) is
limited by intercell interference. Except numerous techniques of
interference coordination, simply caching several popular files at
each user provides an alternative approach to reduce interference
by pre-offloading. This becomes possible nowadays due to the
facts that the cost of memory devices is reducing quickly and
content delivery is gradually dominating the traffic load. In
this paper, we quantify the performance gain introduced by
precaching at users. We derive the average throughput for non-
coordinated downlink SCN with precaching, and compare with
the SCN without caching and with existing prefetching policy.
We use simulation to validate the analytical results and further
evaluate the average download time of different policies. Our
results show that the caching gain is remarkable when the traffic
load is high and the popularity distribution is far from uniform.

Index Terms—Caching, interference, small cell networks

I. INTRODUCTION

Small cell networks (SCNs) is promising to support high
throughput for 5G cellular networks, where one of the limiting
factors is intercell interference (ICI) [1]. While various inter-
ference coordination techniques are available in the literature
(e.g., [2]), in order to meet the explosive growth of traffic
demands in a cost effective way, alternative approaches need
to be developed by rethinking the usage model of the networks.

Recently, it has been observed that a large portion of the
traffic is generated by many duplicate downloads of a few
popular contents. This naturally calls for caching inside the
networks. In cellular networks, caching popular files at the
base stations (BSs) or even at users can reduce the backhaul
cost and access latency or boost the throughput [3–5]. Noticing
that backhual is becoming a bottleneck for SCNs meanwhile
storage capacity grows rapidly with relative low cost, the
authors in [3] suggested to cache at small BSs or at mobile
users with device to device (D2D) transmissions to improve
the performance of networks.

In fact, caching content at users has long been applied as an
important technique for improving the quality of user experi-
ence (QoE) [6]. Prefetching contents to users before the users
request the files can reduce the user perceived delay, especially
in poor and intermittently connected wireless networks [6, 7].
Caching has also been considered a technique to offload the
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traffic in cellular networks to Wi-Fi by prefetching popular
contents in memories at users when Wi-Fi is available [8].

The success of prefetching largely depends on the accuracy
of prediction on the interest of each specific user. Moreover,
the contents need to be opportunistically pushed to the cache
of a user, because the user may not be in the coverage of
Wi-Fi or in good channel condition, or the cellular network
may be busy with other on-demand traffic [6, 9]. Existing
research in this context focus on answering the questions of
which content should be prefetched to which user, and when
to push the contents to the users. On the other hand, in cache-
enabled D2D [3], different contents are pushed to different
users within a cluster. By jointly optimizing clustering and
content placement, the network throughput can be increased.

Inspired by the idea of improving network performance
and user experience by caching at users, we consider a more
aggressive way of caching. Specifically, with the statistic
information of the user demands and traffic load in the
network, the operators can simply broadcast several popular
files to all users in off-peak times rather than only find excess
resources for pushing the contents. This is essentially pre-
offloading, which has been recognized as an efficient way to
improve throughput in content centric networks [10]. We call
such a cache placement policy as precaching. It is no doubt
that caching popular contents at users can definitely bring
performance gain, as reported in many recent research efforts,
e.g., [3–5]. However, the cache size at a user is small compared
to the file catalog size. Moreover, a user may not request
the files stored in its cache, and still needs to download the
files from the BS. Further considering the complex interaction
among content popularity, randomly arrived requests, and
interference level, how large throughput gain can be provided
by such a simple policy and whether user experience can be
improved in general with acceptable cache size remain unclear.

In this paper, we strive to quantify the performance gain
from precaching in non-coordinated downlink SCNs. While
pre-offloading is not an interference coordination technique, it
can naturally mitigate the ICI. To this end, we first derive the
average throughput of the SCNs respectively with or without
precaching, and compare with the throughput of prefetching.
Then, we derive caching gain in throughput for precaching and
prefetching over the non-coordinated SCN without caching.
We use simulation to validate the analytical results. To reflect
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the user experience, we also simulate the average download
time. The results demonstrate that the throughput gain and
the download time reduction from precaching are significant,
especially when the average arrival rate is high and the cached
files are more popular.

II. SYSTEM MODEL

Consider a non-coordinated downlink SCN with B small
BSs, each equipped with M antennas. There are multiple
single antenna users uniformly located in the cells. For math-
ematical simplicity, we consider circle cells each with radius
D. Suppose that a macro BS is co-located with these small
BSs in the same area but operates in a different frequency
band. Hence, the macro BS and small BSs can transmit
simultaneously to different group of users without interference.

We consider static catalog including Nf files that the users
may request, where the files are indexed according to popu-
larity, e.g., the 1st file is the most popular file. For notational
simplicity, each file is assumed with the same size of F bits.
The probability that the ith file is requested by a user follows
Zipf distribution, which is PNf

(i) = i−β/
∑Nf

k=1 k
−β , where

the parameter β reflects the popularity of the files [11]. The
BSs are connected to the core network with backhaul links,
and each user has local cache with capacity of Cu Bytes.

Assume that each user requests one file from the catalog,
where the request follows Poisson process with identical
average arrival rate λ (files/s).

We consider the following simple cache placement policy.
Every user caches the most popular Nu files, which occupy
rc , NuF/Cu portion of the local cache capacity, Nu < Nf .
In practice, these files can be proactively downloaded by the
operator from the macro BS to the caches at each user via
broadcasting during off-peak times according to the statistics
of the user demand. In such a way, the pre-offloading proce-
dure for these popular files will cause negligible or even no
performance degradation to the performance of the network.
When a request of a user truly arrives, if the file requested
is in the user’s own cache, then the user can directly obtain
the file from itself with perfect QoE, i.e., with zero download
time. Otherwise, the file will be fetched via backhaul and then
transmitted to the user by a small BS closest to it (called local
BS of the user). We refer to such a policy as Precaching.

If a small BS has no request to serve, then the BS will be
turned into idle mode immediately to avoid interference.

We consider block fading channels, which remain constant
in each block and are independent among blocks. The small-
scale fading channel from the ith BS to the jth user is denoted
as hji, and the distance between them is denoted as lji.

III. AVERAGE THROUGHPUT AND CACHING GAIN

With precaching, a part of traffic load during peak hours
can be pre-offloaded. To quantify the performance gain from
precaching, in this section we derive the average throughput of
the considered SCN with the simple policy, and compare with
a baseline network without caching and another cache-enabled
network with prefetching. Then, we analyze the corresponding
caching gains over the baseline.

A. Average Throughput

The average throughput of the SCN is defined as the overall
number of bits transmitted in the B cells in unit time averaged
over small scale channel fading and user location.

To simplify the analysis and capture the essence of the
problem, we assume that each BS only serves one user closest
to it (called local user) each time. The impact of multiple users
will be evaluated later in section IV.

In a SCN, when traffic load is very low, many BSs sleep
and the ICI is weak. As a result, the average service rate for
every user exceeds the data arrival rate at every active BS λF
(bits/s), and the active BSs can convey all the requested files to
the users [12]. However, when traffic load is high, since many
BSs need to transmit simultaneously, the average service rates
for the users who are far away from the BSs may be less than
the data arrival rate due to ICI.

To derive the average throughput, we classify each small
cell, say the ith cell, into two areas Ai and Bi, according to
the location of a user. If an active user is located in Ai, its
average service rate Eh{Ri} ≥ λF . If an active user is located
in Bi, Eh{Ri} < λF , then the ith small BS needs admission
control to avoid congestion. Specifically, if a small BS is busy
with serving a previous request meanwhile there is one request
waiting in its queue, then the newly arrived request will not be
accessed to keep the system stable. The sizes of the two areas
depend on the interference level, which will be addressed later.
Since the users are uniformly located, the average throughput
of the SCN can be derived as

C̄ =
1

πD2

B∑
i=1

(

∫∫
Ai

λFdAi +

∫∫
Bi

Eh{Ri}dBi). (1)

Since the role of the macro BS in this work is to broadcast
the popular files to the users, and we are only concerned with
the performance of the SCN, in the sequel we call a small cell
as a cell, and a small BS as a BS for simplicity.

To demonstrate the throughput gain from precaching, we
first analyze the average throughput of a baseline SCN, where
no files are cached at users and all requests are served by the
BSs, which is referred to as Policy 0.

1) Policy 0 (Non-Caching): Without coordination, a BS
simply ignores the ICI and transmits to its local user with
maximum ratio transmit (MRT) when a request arrives. The
precoding vector at the ith BS is wi =

√
Phii/‖hii‖, where

P is the transmit power at the BS, and ‖·‖ stands for Euclidean
norm. Then, the signal to interference plus noise ratio (SINR)
of the ith user served by the ith BS can be expressed as

γi =
P

lαii(Ii + σ2)
gii, (2)

where gij , ‖hHijwj‖2, Ii = ΣBj=1,j 6=il
−α
ij gij is the power of

ICI, α is the attenuation factor, σ2 is the variance of white
Gaussian noise, and (·)H denotes conjugate transpose.

Assuming Rayleigh fading with unit variance, then gij
follows Gamma distribution. By using Proposition 9 in [13],
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the average service rate of the ith user can be obtained as

Eh{Ri} ≈W log2(1 +
MP

lαii(Eh{Ii}+ σ2)
), (3)

where W is the bandwidth, Eh{Ii} = PΣBj=1,j 6=il
−α
ij , and

the approximation is accurate when the number of antennas at
each BS, M , is large.

According to (1), when the file arrival rate λ is low such that
Eh{Ri} ≥ λF for all active users, i.e., Bi = 0, the average
throughput is equal to the average data arrival rate in all cells,
C̄0 = λFB.

In general cases, Bi 6= 0. With high traffic load, many BSs
are active and the average throughput depends on the ICI
power. To simplify the analysis, we approximate Eh{Ii} in
(3) as follows. For a user located in the shadow area in Fig.
1, the average ICI power can be approximated by considering
the nearest six BSs around the user as

Eh{Ii} ≈ Ī0

=
6

A

∫ 3D

D

P

lα
2πl

6
dl =

3P

2(α− 2)(D−α − 9(3D)−α)
,

where A = 4πD2/3 is the area of the shadow area. In fact, we
can consider all interference in the network, which however
yields much complex expression that is less useful for further
analysis. Considering that the interference generated by the
BSs far away from the user has little contribution to the
average ICI power, the approximation is accurate as illustrated
later via simulations.

Then, from (3) the average service rate can be further
approximated as

Eh{Ri} ≈W log2(1 +
u0
lαii

), (4)

where u0 = MP/(Ī0 + σ2).

D

3D

SIGNAL

ICI

Fig. 1. Approximated average ICI
To derive the average throughput for the high traffic load

scenario, in what follows, we show how to divide the ith cell
into the two areas Ai and Bi. As shown in (4), Eh{Ri} is
a decreasing function of lii. Consequently, there must exist a
distance D0 (0 ≤ D0 ≤ D), such that Eh{Ri} ≥ λF for
∀lii ≤ D0. By setting Eh{Ri} = λF , D0 can be obtained as

D0 = min{( u0
(2λF/W − 1)

)1/α, D}, (5)

which is referred to as the distance threshold for policy 0. For
the user served by the ith BS, if lii ≤ D0, then the user is
located in Ai. Otherwise, the user is located in Bi.

Then, from (1), (4) and (5), the average throughput of the
baseline network can be derived as

C̄0 ≈
B

πD2
(λFπD2

0 +

∫ D

D0

W log2(1 +
u0
lα

)2πldl)

≈ (
D0

D
)2BλF +

αBW

2 ln 2
(1− (

D0

D
)2) +BW (log2(1 +

u0
Dα

)

− (
D0

D
)2 log2(1 +

u0
Dα

0

))

, f(D0, λ), (6)

where the second approximation is accurate when the average
cell edge SINR u0D

−α is high (note that MPD−α reflects
the average receive signal for a user located exactly at the
cell-edge, and Ī0 + σ2 is the average interference plus noise).

2) Policy 1 (Precaching): Since with this policy every user
caches the most popular Nu files, the probability that the
requested file of a user is cached at the user, i.e., the cache
hit ratio, is Pu1 =

∑Nu

j=1 j
−β/

∑Nf

i=1 i
−β [11].

If the requested file of a user is in its local cache, the user
is called a cache hit user, and the event is named a cache hit
event. Otherwise, the user is call a cache miss user, whose file
needs to be served by its local BS with MRT, and the event is
named a cache miss event. The cache hit users enjoy perfect
QoE and are naturally isolated from the ICI. On the other
hand, the cache hit users do not generate interference to the
on-going traffic of the cache miss users. Therefore, the average
throughput of the network contains two parts: C̄u1 contributed
by the caches at the users and C̄b1 contributed by the BSs with
reduced ICI.

Since cache hit and miss events occur independently and
each user has identical cache hit ratio Pu1 , the cache hit
events of all cache hit users follow Bernoulli distribution with
probability Pu1 . Then, the average number of the cache hit
users is Pu1 λB, where λB is the average number of users
arrived in all the B cells. Sequentially, the average throughput
contributed by the caches can be easily obtained as

C̄u1 = λFPu1 B. (7)

By precaching during off-peak times, Pu1 λB of the arrived
requests are “served” immediately by the local caches, mean-
while these requests do not generate interference to other on-
going traffic. For the remaining λ1 = (1− Pu1 )λ file requests
to be served by BSs, we can use similar way to derive the
average throughput as for policy 0. Specifically, we can derive
a distance threshold for precaching as

D1 = min((
u0

(2λ1F/W − 1)
)1/α, D). (8)

Again, when the cell edge SINR u0D
−α is high, the average

throughput contributed by the BSs after the pre-offloading can
be derived as C̄b1 ≈ f(D1, λ1), where the function f(·) is
defined in (6). Further considering (7), the average throughput
of the network is

C̄1 = C̄u1 + C̄b1. (9)
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3) Policy 2 (Prefetching): Existing prefetching policies pre-
downloads the files to the users who have installed correspond-
ing application software by predicting their interest [7–9]. To
avoid degrading the performance of a busy cellular network or
exhausting the energy of a mobile terminal, the contents are
pushed to the cache of a user only when a cellular network
has excess radio resource and the user is with good channel
condition [9], or a Wi-Fi is in the coverage [8]. As a result,
the files can only be pre-downloaded to few users.

To model different interests of the users and the uncertainty
of the prediction in each user’s interest, we assume that each
user may be interested in a file from a set with size Ns,
which is a subset of the static catalog, as in [9]. To be
specific, each subset is obtained from a realization of Zipf
distributed random variables over all the Nf files, where the
most popular Ns files are selected. Therefore, the subsets for
different users may differ. The probability that the ith file
in a subset is requested by a user follows Zipf distribution,
i.e., PNs(i) = i−βs/

∑Ns

k=1 k
−βs , where βs is the parameter

reflecting the uncertainty in prediction. Notice that βs is
different from β, which reflects the skewness of the interests
of all users in the SCN [9].

Suppose that only ru percentage of the users participate
the prefeching, each user is cached with the most popular
Ns
u files in the subset for the user, 0 ≤ ru ≤ 1. Then,

prefetching can be analyzed as a special case of precaching.
It is not hard to show that the cache hit ratio of prefetching is
Pu2 = ru

∑Ns
u

j=1 j
−βs/

∑Ns

i=1 i
−βs , and the average throughput

contributed by prefetching at users can be easily obtained as

C̄u2 = λFPu2 B. (10)

The remaining requests need to be served by the BSs is
λ2 = (1− Pu2 )λ. With a similar method for policy 0, we can
derive a distance threshold for prefetching as

D2 = min((
u0

(2λ2F/W − 1)
)1/α, D). (11)

Again, when the cell edge SINR u0D
−α is high, the average

throughput contributed by the BSs can be derived as C̄b2 ≈
f(D2, λ2). Further considering (10), the average throughput
of the network with prefeching is

C̄2 = C̄u2 + C̄b2. (12)

B. Caching Gain

To reflect the throughput gain brought by caching at the
users, we define caching gain as

Gci , C̄i − C̄0, (13)

where C̄i are the average throughput of the SCN with policy
i, i ∈ {1, 2}, respectively.

In practice, heavy traffic load scenarios are more interesting,
since for small values of λ even the baseline network can
transmit all requested files reliably. Therefore, we focus on
the caching gain when the file arrival rate λ is large.

1) Policy 1 (Precaching): By substituting (6) and (9) into
(13), the caching gain can be derived as

Gc1 = C̄1 − C̄0 = (Pu1 λFB

− D2
1

D2
B(Pu1 λF +W log2(1 +

u0
Dα

0

)−W log2(1 +
u0
Dα

1

))

+
∆D2

1

D2
(λFB −BW log2(1 +

MP

(Ī0 + σ2)Dα
0

)−BW α

ln 2
))

, g(Pu1 , D1), (14)

where ∆D2
1 = D2

1 −D2
0 .

When the number of cached files at each user Nu is small
and the traffic load is heavy, most BSs are busy. Specifically,
when Nu � Nf , and λ is large such that D2

1 � D2, D2
0 �

D2 and Ī0 � σ2, the caching gain can be approximated as

Gc1 ≈ Pu1 λBF, (15)

which increases with λ and Pu1 . Because the cache hit ratio Pu1
first grows with Nu rapidly but the increasing speed gradually
becomes slower [11], Gc1 first grows with Nu quickly and then
saturates. This suggests that there is a tradeoff between the
throughput gain from caching and the cache size at each user,
which is consistent with the observation in [10], although file
popularity is not considered and the transmission is assumed
error-free in [10]. If all files in the catalog can be cached at
each user, then the cache gain achieves an upper bound.

If Nu → Nf , e.g., the catalog size Nf in the SCN is not
very large, most requests will be “served” by the users. Then,
the real average arrival rate at BSs λ1 → 0, which results in
D1 = D. When λ is large such that D2

0 � D2, we can obtain
an approximate upper bound for the caching gain, which is

GUc1 ≈ λBF −BW
α

ln 2
, (16)

which only depends on and linearly increases with λ.
2) Policy 2 (Prefetching): Since prefetching can be ana-

lyzed as a special case of precaching, the caching gain of
prefetching can be obtained as

Gc2 = g(Pu2 , D2), (17)

where the function g(·) is defined in (14).
Analogically to precaching, when Ns

u � Nu, and λ is large
such that D2

2 � D2, D2
0 � D2 and Ī0 � σ2, the caching

gain can be approximated as

Gc2 ≈ Pu2 λBF, (18)

which increases with λ and Pu2 . Again, since the cache hit
ratio Pu2 = ru

∑Ns
u

j=1 j
−βs/

∑Ns

i=1 i
−βs , Gc2 increases with ru

linearly, and first grows with Ns
u quickly and then saturates.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we verify the accuracy of the approximations
in the derivation and evaluate the performance of different
policies by numerical and simulation results.

In the simulation, we consider multiple small cells each
with radius D = 30 m placed in an area with radius 250 m.
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Then, B = 61. The path-loss model is 30.6 + 36.7 log10(l)
[14]. Each BS is with M = 4 antennas and transmit power
P = 23 dBm. W = 20 MHz, σ2 = −95 dBm. The file catalog
Nf = 104 files, each of size F = 30 MBytes [3], Ns = 100
for prefetching and the parameters of Zipf distribution βs =
β = 1. Considering that in practice the storage capacity at
today’s smart phones can be 10-64 GBytes [3], we set the
memory size for each user Cu = 10 GBytes and Nu = 10.
Then, only rc = 0.3% user’s memory is used for precaching.
The percentage of the users that can participate prefetching
is set as ru = 50%, and Ns

u = 1. The simulation results
are obtained by averaging over 105 Rayleigh fading channel
realizations, and the simulation time is 1000 s.

Although we assume that only one user can be served by
each BS in previous analysis, multiuser scenario is considered
in the simulation to validate the analysis, where each BS can
serve at most M users at the same time with equal power
allocation and zero forcing beamforming. To ensure the system
stable, we again employ admission control. When a BS is
serving M users and has users waiting in the queue, the newly
arrived request will not be accessed, otherwise the request will
be served or wait in the queue of the BS.

This setup is used in the sequel unless otherwise specified.

A. Validation of Analysis and Performance Comparison

In Fig. 2(a), we compare the numerical results of the
average throughput with the simulation results. The numerical
results are directly computed from (6), (9) and (12), and the
simulation results are provided for both single user and multi-
user scenarios. We can see that the numerical and simulation
results in single user scenario overlap, which indicates that the
approximations used in deriving the average throughputs are
accurate. The results in multi-user scenario are close to those
in single user scenario, which means that previous analyses are
also valid for multi-user scenario. When λ is small, all policies
achieve the same throughput, which linearly increases with λ.
With the increase of traffic load, the throughput of baseline
network first increases and then saturates due to severe ICI. By
contrast, the throughput of precaching continues to grow with
λ thanks for the pre-offloading, and is about 200 % over the
baseline network when λ = 1.5 files/s. The average throughput
of prefetching is higher than the baseline but is much lower
than precaching, due to the limited number of participated
users and the number of cached files.

In Fig. 2(b), we compare the average file download time
of different policies using simulation. The download time
refers to the duration from a request arrived at a BS to the
file completely downloaded to a user, which includes the
queuing delay and file transmission time. If the requested file
is already cached in a user, then the download time for this
file is zero. When λ is small, although all policies achieve
the same throughput as in Fig. 2(a), the average download
time can be reduced by precaching owing to the zero delay
of the pre-downloaded files. With the increase of the traffic
load, the reduced download time for precaching becomes more
pronounced, where the download time is more than halved
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Fig. 2. Accuracy of the approximations and performance comparison.
Legends: M-simulation for multi users scenario, S-simulation for single user
scenario, N-numerical result of analysis

compared to the baseline when λ = 1.5 files/s. This indicates
that even if some users may not request these cached files,
in average the download time experienced by the users can
be significantly reduced, which might justify the motivation
that the users are willing to contribute a little fraction of
their own memories to cache several popular files. Compared
to precaching, the average download time of prefetching are
much high, though also superior to the baseline.

B. Caching Gain and Download Time Reduction
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Fig. 3. Caching gain and reduced download time vs rc, λ = 1 file/s,
ru = 50% and 25%, Ns

u = 1, 5 and 10.

In Fig. 3, we provide simulation results for the caching gain
and download time reduction of precaching and prefetching
versus the percentage of memory at each user occupied by
precaching rc = NuF/Cu. The reduced download time
is computed by subtracting the average download time of
precaching (or precaching) from that of the baseline network.
In the considered setting with λ = 1 file/s, most of BSs
are busy to serve more than three users. It means that each
BS can employ at most one antenna for pushing the files
to user caches in prefetching. This implies that if excess
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resources of the same network is used for content placement,
ru ≤ 25%. When ru = 25%, we can see that the caching
gain of prefetching is halved compared to ru = 50% with
given Ns

u, which agrees with the result in (18). Moreover, it
is shown that the caching gain of precaching increases with rc,
but the growth speed becomes slower, which agrees with the
analytical results in (15). This indicates that there is no need
to employ much of local cache capacity of users to precaching
popular files. By occupying a little cache capacity, precaching
can offer remarkable benefit, both to the network and to the
user. The simulation results show that if 25% of local memory
of each user can be used by precaching, there will be about
750% caching gain over the baseline, 350% caching gain and
300% download time reduction with respect to prefeching with
ru = 25% and Ns

u = 10 (i.e., occupy the same cache capacity
with precaching). Again, this provides a strong incentive for
the users to participate precaching.

C. Impact of File Popularity and Catalog Size
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Fig. 4. Impact of file popularity and catalog size, λ = 1 files/s, in (b)
Ns = Nf/100, β = 1.

In Fig. 4(a), we provide numerical results of the aver-
age throughput versus the Zipf distribution parameter, where
β = βs. It is shown that when the popularity distribution
is uniform and the prediction in prefetching is not accurate,
i.e., β = βs = 0, the throughput gain from exploiting local
cache at users is little, and all policies almost achieve the same
performance. With the increase of β, both the caching gains of
precaching and prefetching increase quickly, and the caching
gain of precaching grows much faster.

In Fig. 4(b), we provide numerical results of the average
throughput versus the catalog size Nf , where different predic-
tion accuracy is considered for prefetching. As expected, the
throughput decreases when Nf increases. Nonetheless, even
when the catalog size is 106, where only 0.001/% of all
files in the catalog are cached at each user for the considered
Nu = 10, the throughput can still be improved about 150%
over the baseline. In fact, the catalog size is not the number
of files available on the Internet. Instead, it is a function of

the number of users in the network [3]. This means that the
value of Nf will not be too large in practice.

V. CONCLUSIONS

In this paper, we quantified the performance gain of a
simple policy of precaching, which proactively pre-downloads
several popular files at the cache of each user based on
the statistics of the user demands. We derived the average
throughput for non-coordinated small cell networks with the
precaching policy, and analyzed the caching gain over the
network without caching. Analytical and simulation results
showed that the throughput gain from caching is remarkable in
high traffic load scenario attribute to alleviating interference by
pre-offloading, and the gain largely depends on the popularity
distribution. With an acceptable cache capacity, caching at
each user can dramatically improve the average throughput
of the network and reduce the average download time of the
users by exploiting the content popularity. The precaching
policy is superior to existing prefetching policy, especially
when the popularity distribution is more “peaky”. Such a gain
is obtained without any coordination among small BSs and
without the need to deploy any additional infrastructure.
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