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Pilot Decontamination in Wideband Massive

MIMO Systems by Exploiting Channel Sparsity
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Abstract

This paper deals with pilot contamination problem for wideband massive multiple-input multiple-

output (MIMO) systems. Considering that typical massive MIMO channel is correlated in both space

and frequency domains, we employ Karhunen-Loéve Transform (KLT) and Discrete Fourier Transform

(DFT) to capture the hidden sparsity of the channel. KLT basis is optimal in extracting the uncorrelated

information from the channel, which however requires channel statistical information. As a suboptimal

alternative, DFT basis can be determined without channel statistics, which is more viable for practical

use. By representing the channel with DFT basis, we find that the subspaces of the desired channel and

the interference channels are approximately orthogonal in sparse channel. This allows the desired channel

to be distinguished from the interference simply by using linear minimum mean square error channel

estimation. To reduce the required channel statistical information, we propose a pilot decontamination

method using DFT basis to represent the channel. The method employs desired channel subspace

aware least square channel estimation and desired channel subspace estimation to remove the pilot

contamination, and employs pilot assignment to identify the subspace of the desired channel. Simulation

results demonstrate substantial sum rate gain of the proposed method over existing methods.

Index Terms

Massive MIMO, pilot contamination, channel sparsity, Karhunen-Loéve Transform, Discrete Fourier

Transform, channel estimation,

I. INTRODUCTION

By installing a large number of antennas at base stations (BSs), massive multiple-input

multiple-output (MIMO) can increase the network throughput with order of magnitude [1]. This
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has made massive MIMO a promising candidate for the fifth-generation (5G) cellular networks

[2].

The potential of massive MIMO can be achieved if instantaneous channel information is

available at each BS. Considering the overhead to acquire channel information, time-division

duplex (TDD) is widely recognized as a proper mode for massive MIMO systems, where the

downlink channel is obtained through uplink training by exploiting the channel reciprocity. To

reduce the training overhead of the network that may counteract the throughput gain, a group of

orthogonal pilot sequences for multiple users are preferred to be reused among adjacent cells.

As a result, the channel estimation is severely degraded by the interference from the users in

neighbor cells with the same group of pilot sequences [1,3]. Such phenomenon is referred as the

pilot contamination. As the number of antennas at BS M goes to infinity, the pilot contamination

becomes a bottleneck in achieving the promised performance gain of massive MIMO systems

[3, 4].

To cope with the pilot contamination problem, significant research efforts have been made,

and different approaches have been proposed. The problem was tackled by designing multi-cell

linear precoders for downlink or robust detectors for uplink massive MIMO networks in [3,5]. An

asynchronous uplink-downlink transmission scheme was proposed in [6] that avoids transmitting

the same pilots among adjacent cells at the same time, which however cause interference between

data and pilots. When the channels are assumed independent identically distributed (i.i.d.),

the asymptotic orthogonality between the channels of the desired and interference users was

exploited to mitigate the pilot contamination [7,8]. The authors in [7] proposed a subspace-based

channel estimation method, where the desired channel was identified from the eigenvectors of

the covariance matrix of the received samples with the help of the prior known average channel

gains. The authors in [8] further introduced a power control protocol to identify the subspace

of the signal of interest from the eigenvalue decomposition (EVD) of the sample covariance

matrix. Yet under spatial correlated channels with a finite number of angles of arrival (AoA), the

subspace-based channel estimation methods in [7,8] need to pay a penalty in an increased power

ratio between the desired signal and the interference to ensure the same performance as in i.i.d.

channels, as analyzed in [9]. Considering spatial correlated channels, the authors in [10] found

that the pilot contamination vanishes when the minimum mean square error (MMSE) estimation

is used if the subspaces of the correlation matrices of the desired and interference channels
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satisfy a non-overlapping condition and if M →∞. A coordinated pilot assignment method was

then proposed to meet such a condition. Without knowing the second-order channel statistics

of every user as in [10], a pilot assignment policy was proposed in [11], which assigns the

pilot sequence with weakest interference to the user with worst channel quality, but the average

channel gains are assumed available at the BS and the BSs need to know the pilot assignment

results of other cells. In [12, 13], the same pilot sequences are assigned only for cell-center

users while orthogonal pilots are for cell-edge users. In [14], a pilot sequence hopping policy

was proposed to randomize the pilot contamination in Kalman filter based channel estimation

in time-varying channels.

In this paper, we propose an alternative solution to remove the pilot contamination by exploit-

ing channel sparsity. In real-world cellular systems, the multipath channel is usually characterized

by a few dominant paths [15], hence the channels are often correlated in spatial domain and

frequency domain. On the other hand, 5G systems will inevitably be wideband in order to support

the high demands in throughput. As a result, the channels in wideband massive MIMO systems

are inherent sparse in spatial (i.e., angle) domain and time domain. Such a fact has largely been

overlooked in the context of pilot decontamination. Channel sparsity has widely been used to

reduce the training and feedback overhead in acquiring channels at the BS or improving channel

estimation quality for massive MIMO systems, e.g., [16] and reference therein. Nonetheless,

channel sparsity has never been exploited in pilot decontamination to the best of our knowledge.

We take orthogonal frequency division multiplexing (OFDM) massive MIMO system as

an example of wideband massive MIMO. We employ Karhunen-Loéve Transform (KLT) and

Discrete Fourier Transform (DFT) to reflect the channel sparsity and represent the channel

under KLT basis and DFT basis. KLT is optimal in channel representation without redundant

information. However, KLT requires channel statistical information, which needs extra overhead

to obtain in practice. Therefore, we focus on the suboptimal DFT, which can be predefined

without the knowledge of channel statistics. The main contribution is summarized as follows.

◦ By representing the spatial-frequency channel by the DFT basis, we find that the subspaces

of the desire channel and the interference channels are approximately orthogonal in sparse

channels. Such an observation suggests that the pilot contamination in wideband massive

MIMO under spatial and frequency correlated channels can be simply removed by linear

MMSE channel estimation.
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◦ To reduce the required channel statistical information at each BS, we propose a pilot

decontamination method based on the DFT basis, which employ least square (LS) channel

estimation to remove the pilot contamination with the help of the subspace of the desired

channel. To estimate the desired channel subspace, we randomize the interference in

training by changing the pilot assignment in adjacent cells over successive uplink training

frames. Simulations results demonstrate that the proposed method can effectively mitigate

the pilot contamination and is superior to existing methods.

Noting that the orthogonality among the desired channel subspace and interference channel

subspace were also exploited for pilot decontamination in [7,8,10]. Yet our method differs from

the previous works in the following aspects.

◦ A pilot assignment strategy was proposed in [10] to artificially make the subspaces of the

desired channel and the interference channel to be orthogonal. By contrast, we find that the

subspace of the desired channel and the interference channel are in nature approximately

orthogonal in sparse channels.

◦ Second-order channel statistical information was assumed known in [10] in order to assign

identical pilot sequences to the users in adjacent cells with maximum orthogonality of

signal subspaces. By contrast, the proposed pilot decontamination method does not need

channel statistical information, and the pilots are assigned without sharing information

among BSs.

◦ Asymptotic orthogonality of the i.i.d. channels as well as priori known channel power

or power control were exploited in [7] or [8] to identify the subspace of the desired

channel. As a result, very large number of antennas is essential to decontaminate the pilots.

By contrast, considering more realistic spatial-frequency correlated channels for massive

MIMO-OFDM systems, we propose a pilot assignment policy to identify the desired

channel subspace by exploiting the approximate orthogonality of the sparse channels.

Consequently, the proposed method performs fairly well even when the number of antennas

is not so large.

Moreover, the proposed pilot assignment policy differs from other relevant policies proposed in

[11–14]. The purpose of our policy is to acquire the subspace of the desired channel to facilitate

the subspace aware LS channel estimation, where existing policies strive to avoid interference
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by coordinating the pilots [11–13] or randomize the pilot contamination [14]. As a result, the

proposed method does not need average channel gains for assigning pilots as in [11–13], and

does not need the priori information in Kalman filer and is not only applicable for time-varying

channels as in [14].

The rest of the paper is organized as follows. Section II introduces the system and physical

channel model, and Section III elaborates the sparse channel presentation under KLT and DFT

basis. In Section IV, the channel decontamination method is proposed, which incudes channel

estimation, subspace acquisition and pilot assignment policy. Simulation results are shown in

Section V. Sections VI concludes the paper.

Notations: Uppercase and lowercase boldface denote matrices and vectors, respectively. (·)T ,

(·)∗ and (·)H , (·)† denote transpose, conjugate, conjugate transpose and pseudo-inversion, re-

spectively. IN denotes the N × N identity matrix. A[n,m] and a[n] denote the (n,m)th entry

of A and the nth entry of a, respectively. Span(A) denotes the linear space spanned by the

columns of A, Rank(A) denotes the rank of A, and vec(A) denotes the vectorizing operation

by stacking the columns of A. | · | denotes the magnitude of a complex variable, and ‖·‖ denotes

the Frobenius norm, ⊗ denotes Kronecker product, and E{·} denotes the expectation.

II. SYSTEM AND CHANNEL MODEL

A. System Model

Consider a downlink massive MIMO-OFDM cellular network with full frequency reused cells.

In each cell, a BS equipped with M antennas serves Kc single-antenna users on N subcarriers.

We consider B adjacent cells that may cause interference with each other.

We consider TDD systems, where in each frame the downlink channel for precoding is obtained

through uplink training by exploiting the channel reciprocity, and each frame includes two phases

of uplink training and downlink transmission.

Assume that the channel is block fading, i.e., the channel is constant during each frame but

may vary from one to another.

To facilitate channel estimation for each user in the uplink training phase, pilots are inserted

into subcarriers, and the pilots of multiple users within the same cell are orthogonal to avoid

multiuser interference. For ease of exposition and without loss of generality, we consider time-
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division orthogonality, where each user occupies one OFDM symbol for training and different

users employ different symbols. Then, totally Kc OFDM symbols are required for each cell.

To reduce the overall training overhead of the network, assume that the Kc OFDM training

symbols are reused by the adjacent B cells, which may cause the pilot contamination.

B. Channel Model

To simplify the notations, in the sequel we first take an arbitrary user and an arbitrary BS in

the network as an example to introduce the channel model and different representations.

Since in typical massive MIMO systems the antennas co-located at the BS are closely-spaced,

the channels between all transmit antennas and each user share the common scatters. Hence,

the channel impulse responses between different antennas in a BS and a user have similar path

delays, and the channel vector between the BS and the user can be modeled as [17]

hT (τ) =
L−1∑
l=0

βla(θl)δ(τ − τl) ∈ CM×1 (1)

where L is the number of paths, βl is the complex amplitude of the lth path with βl independent

from βj for l 6= j, τl is the corresponding path delay, a(θl) ∈ CM×1 is the array response vector,

θl is the AOA of the lth path, and δ(·) is the Dirac function.

Based on (1), the channel frequency response is given by

hF (f) =

∫ +∞

−∞
hT (τ)e−j2πfτdτ =

L−1∑
l=0

βla(θl)e
−j2πfτl (2)

The spatial-frequency channel coefficients of all the N subcarriers in the considered system

can be expressed as

H = [ h̃T (f0) h̃T (f1) · · · h̃T (fN−1) ]

=
L−1∑
l=0

βla(θl)b
T (τl) ∈ CM×N (3)

where b(τl) = [ e−j2πf0τl e−j2πf1τl · · · e−j2πfN−1τl ]T , and fn is the frequency of the nth

subcarrier.

Due to the limited scattering in the propagation environment of typical cellular massive MIMO

systems with tower-mounted BSs, the channels are highly correlated in both space and frequency

domains. To perceive the resulting channel sparsity, we re-express the spatial-frequency channel

with sparse representation in the next section.
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III. SPARSE REPRESENTATION OF THE CHANNEL

Denote the spatial-frequency channel matrix H defined in (3) in the vector form as h ,

vec(H) ∈ CMN×1.

In the sequel, we use KLT basis and DFT basis to represent the channel, and discuss their

relation.

It is a natural way to use KLT to reflect the sparsity of the channel, since KLT is optimal to

capture the essential information in random channels. However, the KLT of a channel depends

on the second-order statistics of the channel. In practical systems, large amount of received

samples are required to compute and update the KLT basis. As a suboptimal alternative, DFT

basis is more viable for practical use.

A. Karhunen-Loéve Transform Representation

Considering that the multipath components βl, l = 1, · · · , L are independent, the correlation

matrix of the spatial-frequency channel can be derived from (3) as follows

Rh , E{hhH} = E{vec(H)vec(H)H} (4)

=
L−1∑
l=0

E{|βl|2}(b(τl)⊗ a(θl))(b
H(τl)⊗ aH(θl)) (5)

=
L−1∑
l=0

E{|βl|2}(b(τl)b
H(τl))⊗ (a(θl)a

H(θl)) (6)

,
L−1∑
l=0

E{|βl|2}Rb ⊗Ra, (7)

where (5) is obtained by using vec(ABC) = (CT ⊗A)vec(B), (6) is obtained by using (AB)⊗

(CD) = (A⊗C)(B⊗D), Rb , b(τ l)bH(τ l) and Ra , a(θl)aH(θl).

The channel correlation matrix Rh is of size MN×MN . Since both b(τ l) and a(θl) are vec-

tors, we have Rank(Rb) = 1 and Rank(Ra) = 1. By using Rank(A⊗B) = Rank(A)Rank(B)

and Rank(A + B) ≤ Rank(A) + Rank(B), we have

rh , Rank(Rh) ≤ L

Because L�MN in massive MIMO-OFDM system, Rh is a low rank matrix.
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Since Rh is a Hermitian matrix, by taking eigenvalue decomposition, the matrix can be

expressed as [18]

Rh = UKΛhU
H
K (8)

where Λh is a rh× rh diagonal matrix whose diagonal elements are the non-zero eigenvalues of

Rh, and UK is a MN × rh tall unitary matrix constituted by the eigenvectors of Rh.

Then, the KLT representation of the channel is [18]

h = UKgK (9)

where gK ∈ Crh×1 is the uncorrelated projection coefficients of h on the KLT basis, E{gKg
H
K} =

Λh, and the subscript “K” stands for KLT.

The subspace of the spatial-frequency channel can be obtained as Span(UK).

B. Discrete Fourier Transform Representation

To obtain the KLT basis, the statistical information Rh should be available, which needs to

estimate in practice. To avoid estimating Rh, we can use DFT basis as a suboptimal substitute.

The reasons why we consider DFT basis are as follows. 1) DFT basis can be pre-determined

without the knowledge of channel statistics. 2) DFT basis is equivalent to KLT basis in special

channels as shown later. 3) The channel represented in time-domain and frequency-domain are

naturally connected via Fourier transform. Furthermore, when the antenna array is uniform

linear array (ULA) or uniform planar array,1 the channel represented in space-domain and

angular-domain are also connected via Fourier transform [20]. Then, the space-frequency channel

representation in (3) can be transformed into angular-time domain simply by using DFT, where

the channel sparsity can be easily observed.

To illustrate the basic principle of the proposed pilot decontamination method with DFT basis,

in the sequel we consider ULA at the BS. Then, the array response vector a(θl) in (1) can be

expressed as

a(θl) = [ 1 e−j2π
d
λ

sin(θl) · · · e−j2π
d
λ

sin(θl)(M−1) ]T

where λ is the wavelength, and d is the antenna space.

1For other antenna arrays, such as circular and spherical arrays, the transformation between spatial domain and angular domain

is more complex, which can be found in [19].
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Denote the subcarrier separation as ∆ and set f0 = 0. Then, the vector b(τl) in (3) can be

expressed as

b(τl) = [ 1 e−j2π∆τl · · · e−j2π(N−1)∆τl ]T (10)

Denote FM ∈ CM×M as a M -point Fourier transformation matrix with the (n,m)th entry as

FM [n,m] = 1√
M
e−j2π

nm
M , 0 ≤ n,m ≤M − 1, and similarly FN ∈ CN×N as the N -point Fourier

transformation matrix. Then, the angular-time channel can be expressed in matrix form as

G , FH
MHF∗N =

L−1∑
l=0

βlF
H
Ma(θl)b

T (τl)F
∗
N ,

L−1∑
l=0

βlpq
T (11)

where p , FH
Ma(θl), and qT , bT (τl)F

∗
N .

The mth entry of p can be derived as p[m] = 1√
M

sin(πψM)
sin(πψ)

e−jπψ(M−1), where ψ , d
λ

sin(θl)−
m
M

. From the expression of sin(πψM)
sin(πψ)

, one can find that with large number of antennas M , the

value of p[m] is large only when |ψ| < 1
M

. In other words, only the multipath components with

AOA θl satisfying |ψ| < 1
M

contribute to p[m] significantly.

Similarly, the nth entry of q can be derived as q[n] = 1√
N

sin(πφN)
sin(πφ)

e−jπφ(N−1), where φ ,

∆τl − n
N

. Considering that in OFDM system, the symbol duration is 1/∆, which is designed

to far exceed the maximum of delay τl, then we have 0 < ∆τl < 1. Because 0 ≤ n
N
< 1, we

have |φ| < 1. Again, one can find that with large number of subcarriers N , q[n] is significant

when |φ| < 1
N

. In other words, only the multipath components with delay τl satisfying |φ| < 1
N

contribute to q[n] significantly.

This suggests that for massive MIMO-OFDM systems the (n,m)th entry of G is large if there

exist multipath components with AOA θl and delay τl respectively satisfying | d
λ

sin(θl)− n
M
| < 1

M

and |∆τl− n
N
| < 1

N
. Due to the limited scattering, the number of multipath components is finite.

As a result, only a few elements in G are significant and other elements can be regarded as

zero. In other words, G can be approximated as a sparse matrix when M or N is large.

Denote the angular-time channel matrix G in vector form as g , vec(G).

Because FMFH
M = IM ,FNF

H
N = IN , from (11) the spatial-frequency channel is connected

with the angular-time channel as follows

h = vec(H) = vec(FMGFT
N)

= (FN ⊗ FM)vec(G) = (FN ⊗ FM)g (12)
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Select the most significant rg elements from g to construct a new vector gD , Sg ∈ Crg×1,

where S is a rg ×MN binary selection matrix with only one ”1” in each row and SSH = Irg .

The selection matrix S depends on the AOAs and delays of the multipath components. Because

in practice the delays and AOAs vary slowly [21], the selection matrix stays the same before

the channel statistics change.

In practice, the value of rg can be determined by a threshold [22] or be optimized [23]. By

discarding MN − rg insignificant components of g, the spatial-frequency channel vector can be

approximately represented as

h ≈ UDgD (13)

where UD , (FN ⊗ FM)SH is the corresponding columns selected from (FN ⊗ FM), and

subscript “D” stands for DFT.

By substituting (13) to (4), we can obtain the channel correlation matrix as

Rh ≈ UDΞgU
H
D (14)

where Ξg , E{gDg
H
D}.

The elements of g (and hence also gD) are approximately uncorrelated when the multipath

components are independent [21]. Therefore, Ξg can be approximated as a diagonal matrix.

This suggests that (14) is approximately an EVD of Rh, and the columns of UD are approx-

imately the eigenvectors. Therefore, the subspace of the spatial-frequency channel vector h can

be approximated as Span(UD).

C. Approximated Subspace Orthogonality Between Channels

To gain useful insight for designing the pilot decontamination method, in what follows we

show that the subspaces of different channel vectors are approximately orthogonal.

Because the columns of UD are selected from (FN ⊗ FM) based on the selection matrix S,

it is not hard to obtain the following proposition.

Proposition 1: For two channel vectors g and g′ respectively with the selection matrices S and

S′ satisfying SS′H = 0, the approximate eigenvectors of the two channel vectors are orthogonal,

i.e., UH
DU′D = 0.
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= +

G of desired user G of interference users
Received 

N

M

Fig. 1. An example of the angular-time channel matrix G, the elements without dot denote insignificent values.

Because the selection matrices S and S′ are binary matrices with only one “ in each row,

SS′H = 0 suggests that the positions of “1” in S and S′ are totally different. In other words, the

sparse representations gD = Sg and g′D = S′g′ are selected from different entries from g and

g′.

Recall that only the multipath components with AOA θl and delay τl satisfying | d
λ

sin(θl) −
n
M
| < 1

M
and |∆τl − n

N
| < 1

N
contribute to the significant entries of G. When the number of

antennas M and number of subcarriers N are large, i.e., the spatial resolution and frequency

resolution are large, the multipath components with different AOAs and delays will contribute

to different positions in G (and hence in g).

In practice, when the channel vectors of two users, e.g., g of the desired user and g′ of the

interference user, are independent, it is highly probable that the multipath components of the two

channels have different AOAs and delays, as illustrated in Fig. 1. Therefore, it is very likely that

SS′H = 0 for the two channel vectors, and then UH
DU′D = 0, i.e., the approximate subspaces of

the two channels Span(UD) and Span(U′D) are orthogonal. This implies that the true subspaces

of the two channels Span(UK) and Span(U′K) are approximately orthogonal.

In [7, 8], the asymptotic orthogonality of the i.i.d. channels when M → ∞ are exploited to

separate the desired channel and interference channel. Yet Proposition 1 and the above analysis

indicate that in spatial-frequency correlated channels the subspaces of the desire channel and

the interference channel, say g and g′, are approximately orthogonal, either when the number

of antenna M is large (but no necessarily infinity) or when the number of subcarriers N is

large. This suggests that we can differentiate the desired channel from the interference in the
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real-world non-i.i.d. channels in the “not-so-large“ antenna region.

D. Relationship of KLT and DFT Basis

In the sequel, we show that the two basis are equivalent in special channels. Before presenting

the result, we first introduce a definition. The matrix A is a circulant matrix if each row is a right

cyclic shift of the row above it. For example, the (i, j)th entry of A satisfies A[i, j] = a(j−i) modN ,

where [a0, a1, · · · , aN−1] denotes the first row of A.

Proposition 2: If the two matrices in (7), Ra , a(θl)aH(θl) and Rb , b(τ l)bH(τ l), are

circulant matrices, the KLT basis is equivalent to the DFT basis.

Proof: Since any circulant matrix can be diagonalized by DFT [24], we have Rb = FNΛbF
H
N

and Ra = FMΛaF
H
M , where Λb and Λa are diagonal matrices. The channel correlation matrix

Rh in (7) can then be expressed as

Rh =
L−1∑
l=0

E{|βl|2}Rb ⊗Ra

=
L−1∑
l=0

E{|βl|2}(FNΛbF
H
N)⊗ (FMΛaF

H
M) (15)

=(FN ⊗ FM)(
L−1∑
l=0

E{|βl|2}Λa ⊗ Λb)(F
H
N ⊗ FH

M) (16)

where Λa and Λb) are diagonal matrices.

Since (
∑L−1

l=0 E{|βl|2}Λa ⊗ Λb) is a diagonal matrix, the columns of (FN ⊗ FM) form the

eigenvectors of Rh. We see that the DFT basis is exactly the KLT basis.

Actually, by substituting the expression of b(τ l) in (10) into Rb, we can derive Rb[i, j] =

ej2π∆τl(j−i). It is easy to see that when ej2π∆τlN = 1, Rb is a circulant matrix. To meet this

condition, τl should satisfy τl = k
N∆

, where k is an arbitrary integer. Because N∆ is the sampling

rate of OFDM system, the condition τl = k
N∆

indicates that when the delay τl is divisible by

the sampling interval, Rb is a circulant matrix. Similarly, it is not hard to show that when the

AOA sin(θl) is divisible by 1
N d
λ

, Ra is a circulant matrix.

IV. PROPOSED PILOT DECONTAMINATION METHOD

We consider two cases in this section, where each BS either knows or does not know the

channel correlation matrices of its own and its interference users.
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When the channel correlation matrices are available at each user, we show that the pilot

contamination can be mitigated by estimating the spatial-frequency channel with linear MMSE

criterion under sparse channels.

Otherwise, we propose a pilot decontamination method to exploit the channel sparsity, which

includes desired channel subspace aware channel estimation, desired channel subspace acquisi-

tion, and a pilot assignment policy.

To differentiate the notations of the channels and corresponding sparse representations of

multiple users in different cells, we insert subscripts in the following. For example, for H in

(3) and UK in (9), we respectively use Hbjk and UK,bjk to denote the spatial-frequency channel

matrix and the KLT basis of the channel from the kth user in the jth cell to the bth BS.

In the uplink training phase, we consider that both the kth user in the bth cell and the κjth

user in the jth (j 6= b) cell transmit the pilot x0, · · · , xN−1 on all N subcarriers in the same

OFDM symbol.

After dropping the cyclic prefix and performing DFT, the received training signals on the M

antennas and N subcarriers at the bth BS can be expressed as

Yb = HbbkX +
B−1∑

j=0,j 6=b

Hbjκj
X + Wb (17)

where X ∈ CN×N is a diagonal matrix with diagonal entries as the pilots x0, · · · , xN−1, Hbbk ∈

CM×N is the channel of the desired user seen at the bth BS (referred to as the desired channel),

Hbjκj
∈ CM×N is the channel of the interference user from a neighboring cell (referred to as the

interference channel), and Wb ∈ CM×N is the additive Gaussian noise matrix whose entries are

with zero mean and variance σ2
n. The second term at the right hand side of (17) is the inter-cell

interference, which causes the pilot contamination.

A. With Known Channel Statistics

To simplify the expressions in the following derivation, we remove the pilots and use vector-

ization to the received training signal in (17). Then, we have,

yb , vec(YbX
−1) = hbbk +

B−1∑
j=0,j 6=b

hbjκj + wb (18)
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= UK,bbkgK,bbk +
B−1∑

j=0,j 6=b

UK,bjκj
gK,bjκj

+ wb (19)

where wb , vec(WbX
−1), and (19) is obtained by using the KLT representation in (9).

Under MMSE criterion, it is not hard to show that the sparse channel representation gK,bbk

can be estimated as

ĝK,bbk =Λh,bbkU
H
K,bbk

(σ2
nIMN + UH

K,bbk
Λh,bbkUK,bbk +

B−1∑
j=0,j 6=b

UH
K,bjκj

Λh,bjκj
UK,bjκj

)−1yb (20)

Then, the spatial-frequency channel vector of the desired user can be estimated as

ĥbbk =UK,bbkĝK,bbk

=Rbbk(σ
2
nIMN + Rbbk +

B−1∑
j=0,j 6=b

Rbjκj
)−1yb (21)

According to the analysis in [10], when the subspace of interference channel and the subspace

of desired channel are orthogonal, the interference can be thoroughly removed by linear MMSE

channel estimation when M →∞.

From previous discussion on the channel correlation matrix in section III.C, we know that the

subspaces between the desired channel and interference channel are approximately orthogonal in

massive MIMO-OFDM systems under spatial-frequency correlated channels. This implies that

the pilot contamination can be mitigated simply by using linear MMSE channel estimation in

sparse channels. In other words, the pilot contamination can be eliminated by using (20) and (21)

if the correlation matrices of the desired and interference channels Rbbk and Rbjκj
are known at

each BS.

At the first glance, this is nothing more than extending the results in [10] from merely spatial

correlated channel to spatial-frequency correlated channels. However, when noticing the fact that

spatial-frequency correlated channels are inherently sparse in massive MIMO-OFDM systems,

the pilot contamination can be removed by the MMSE channel estimation without the need of

pilot coordination.

B. Without Known Channel Statistics

It is necessary to acquire Rbbk and
∑B−1

j=0,j 6=bRbjκj
for the KLT-based channel estimation. In

real-world systems, it is not easy to obtain accurate channel correlation matrices in general,
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especially the correlation matrices of the interference channels. To circumvent this problem, we

can use DFT basis instead of KLT basis to represent the channel before channel estimation.

Substituting (13) into (18), we have

yb ≈ UD,bbkgD,bbk +
B−1∑

j=0,j 6=b

UD,bjκj
gD,bjκj

+ wb (22)

Under the MMSE criterion, it is not hard to show that the sparse channel representation gD,bbk

can be estimated as

ĝD,bbk ≈Ξg,bbkU
H
D,bbk

(σ2
nIMN + UH

D,bbk
Ξg,bbkUD,bbk +

B−1∑
j=0,j 6=b

UH
D,bjκj

Ξg,bjκj
UD,bjκj

)−1yb (23)

and the spatial-frequency channel can be estimated as

ĥbbk ≈ UD,bbk ĝD,bbk

= UD,bbkΞg,bbkU
H
D,bbk

(σ2
nIMN + UH

D,bbk
Ξg,bbkUD,bbk +

B−1∑
j=0,j 6=b

UH
D,bjκj

Ξg,bjκj
UD,bjκj

)−1yb

(24)

where UD,bbk and UD,bjκj
are respectively the approximated subspace of desired channel and

that of interference channel, Ξg,bbk and Ξg,bjκj
are approximately diagonal matrices respectively

with the approximated eigenvalues of desired and interference channels as their diagonal entries.

To estimate channel with (23) and (24), the matrices UD,bbk , UD,bjκj
, Ξg,bbk and Ξg,bjκj

should

be available.

The approximated subspace of desired channel UD,bbk can be obtained from a pilot contam-

ination randomization approach, as shown in the sequel. To get rid of the other three matrices

UD,bjκj
, Ξg,bbk and Ξg,bjκj

in channel estimation, we can employ LS criterion as an alterative.

Then, the sparse channel representation and spatial-frequency channel vector can be respectively

estimated as

ĝLS
D,bbk

≈U†D,bbkyb

=gD,bbk +
B−1∑

j=0,j 6=b

(UH
D,bbkUD,bbk)

−1UH
D,bbkUD,bjκj

gD,bjκj
+ (UH

D,bbkUD,bbk)
−1UH

D,bbkwb,

(25)

ĥLS
bbk
≈UD,bbk ĝ

LS
D,bbk

(26)
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where U†D,bbk = (UH
D,bbkUD,bbk)

−1UH
D,bbk.

In (25), UH
D,bbkUD,bjκj

≈ 0 holds in sparse channels according to Proposition 1. This means

that the pilot contamination can also be mitigated by using the LS channel estimation if the

approximated subspace of desired channel UD,bbk can be obtained. We call (25) and (26) as a

desired channel subspace aware LS channel estimation.

It is worth noting that such a LS channel estimation we proposed needs the subspace UD,bbk ,

which is essential to remove the pilot contamination. Without using the approximated subspace

of the desired channel UD,bbk , the traditional LS channel estimate is

ĥLST
bbk

= vec(YbX
−1) (27)

where the pilot contamination exists.

1) Subspace Acquisition: In what follows, we show that the desired channel subspace UD,bbk

can be acquired by computing the intersection of approximated receive signal subspaces over

multiple frames after randomizing the pilot contamination. Such an idea of subspace estimation

is motivated by the following fact: the angle spread and power delay profile embedded in channel

correlation matrix change slowly in practice and hence can be regarded as unchanged during

several frames. This suggests that the desired channel subspace can be distinguished from the

interference channel subspace if we artificially change the interference users in different frames.

Consider T successive frames each consisting of a uplink training phase and a downlink

transmission phase.

For an arbitrary user, say the kth user in the bth cell, its interference user κj from the jth cell

varies over the T frames with the pilot assignment policy to be designed later. To differentiate

the interference users in different frames, we denote κtj as the index of the interference user

from the jth cell in the tth frame in the sequel.

In the tth frame, the received training signal after removing the pilots at the bth BS in (22)

can be expressed as

ytb ≈ UD,bbkg
t
D,bbk +

B−1∑
j=0,j 6=b

UD,bj
κt
j

gtD,bj
κt
j

+ wt
b (28)

Considering the fact that by representing the channel with sparse form in (13), the power of

the channel will concentrate on gD, which is much stronger than the power of noise. Hence,
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it is reasonable to neglect the noise term in (28), and then it is easy to obtain the following

proposition.

Proposition 3: The received signal after removing the pilots can be approximated as

ytb ≈ Ut
D,yg

t
D,y (29)

where gtD,y is a ry × 1 vector, Ut
D,y is the matrix whose columns are selected from (FN ⊗FM),

and the subspace spanned by the columns of Ut
D,y equals to the sum of the subspaces spanned

by the columns of UD,bbk and UD,bj
κt
j

, j = 0, 1, · · · , B − 1, i.e.,

Span(Ut
D,y) = Span(UD,bbk) +

B−1∑
j=0,j 6=b

Span(UD,bj
κt
j

) (30)

where + represents the sum operation of subspaces.

Proof: Since the columns of UD,bbk and UD,bj
κt
j

, j = 0, 1, · · · , B − 1 are all selected from

(FN ⊗FM), we use all selected columns to construct Ut
D,y. Then the proposition is proved.

Based on (30), we can further obtain the following result.

Proposition 4: If ∩T−1
t=0 (

∑B−1
j=0,j 6=b Span(UD,bj

κt
j

)) = ∅, the subspace Span(UD,bbk) can be

acquired as

Span(UD,bbk) =
T−1
∩
t=0

Span(Ut
D,y) (31)

where ∩ represents the intersection operation of subspaces, and ∅ denotes an empty set.

Proof: Substitute (30) into the right side hand of (31), we obtain (31).

The condition ∩T−1
t=0 (

∑B−1
j=0,j 6=b Span(UD,bj

κt
j

)) = ∅ in Proposition 4 indicates that the subspaces

of the interference received in the T frames should not be overlapped. To meet such a condition,

we can simply randomize the pilot contamination over the T frames. For instance, we can

arrange the order of the pilots for users in each cell during each frame, such that each desired

user will be interfered by different users from neighboring cells in different frames. This can be

implemented by pilot assignment policy.

Moreover, (31) provides a method to acquire the approximated subspace of desired channel

UD,bbk . In practice, the subspace acquisition can be performed sequentially over the successive

frames. The algorithm including subspace acquisition and channel estimation is summarized as

follows.
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Algorithm 1 Subspace acquisition and channel estimation
1: Initialize t = 0 and U = FN ⊗ FM

2: In the t frame

(a). Transform the received signal after removing pilots ytb to angular-time domain by DFT,

i.e., left multiply ytb by FH
N ⊗ FH

M .

(b). Select the most significant ry elements of the angular-time domain representation of ytb.

(c). Construct Ut
D,y by the ry columns of FN ⊗ FM , which correspond to the selected ry

elements.

3: Select the common columns in both U and Ut
D,y to construct Ut

D,bbk.

4: Using Ut
D,bbk as an estimate of UD,bbk to perform the channel estimation in (25) and (26).

5: Update t = t+ 1 and U = Ut
bbk.

(a). If t = T − 1, go to Step 4.

(b). Otherwise, return to Step 2.

2) Pilot Assignment Policy: In the sequel, we design a pilot assignment policy over the T

frames to randomize the pilot contamination. To satisfy the condition ∩T−1
t=0 (

∑B−1
j=0,j 6=b Span(UD,bj

κt
j

)) =

∅ in Proposition 4, we can let
∑B−1

j=0,j 6=b Span(UD,bj
κt
j

), t = 0, 1, · · · , T − 1 be constituted by

different users over the T frames, i.e.,

κt1j 6= κt2j , 0 ≤ t1, t2 ≤ T − 1, t1 6= t2 (32)

A simple way to do this is using circularly shifted pilots. Under the assumption that the

pilot signals for the users in the same cell is time-division orthogonal, the pilot assignment is

equivalent to the training symbol assignment.

Denote Ab, b = 0, · · · , B − 1 as the T × Kc pilot assignment matrices for the adjacent B

cells. Denote its (t, k)th element Ab[t, k] as the index of the training symbol that is assigned to

the kth user in the bth cell during the tth frame, whose value ranges from 0 to Kc − 1.

We generate Ab by circularly shifting the preceding row vectors: the first row vector of Ab

is given as [0, 1, · · · , Kc− 1], and the rth row vector is rotated b elements to the left relative to

the (r − 1)th row vector. The expression of Ab is given in (35) on the top of next page.

The following proposition indicates that such a pilot assignment policy satisfies (32) under

mild conditions.
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Ab =


0 1 · · · Kc − 1

bmodKc (b+ 1) modKc · · · (b− 1) modKc

· · ·

(T − 1)bmodKc ((T − 1)b+ 1) modKc · · · ((T − 1)b+Kc − 1) modKc


(35)

Proposition 5: If Kc ≥ T , Kc ≥ B, and Kc is a prime number, the indices of interference

users κ0
j , · · · , κT−1

j will be totally different.

Proof: Based on the assignment A0, · · · ,AB−1, after regular manipulations we can show

that the index of the interference user in the tth frame is,

κtj = (k − t(j − b))(modKc) (33)

where (·)(modKc) denotes the remainder of (·) divided by Kc. For any two frames t1 6= t2, 0 ≤

t1, t2 ≤ T − 1, we have

κt1j − κ
t2
j = ((t2 − t1)(j − b))(modKc) (34)

Note that 0 < |t2 − t1| < T and 0 < |j − b| < B. When T,B < Kc and Kc is a prime number,

|(t2− t1)(j− b)| is indivisible by Kc. Thus the right hand side of (34) is non-zero, i.e., κt1j 6= κt2j

holds.

The condition Kc ≥ T in the proposition implies that the proposed subspace acquisition

and channel estimation algorithm should converge rapidly. This is easy to satisfy as shown in

simulations later. Another condition Kc ≥ B is also easy to be satisfied for typical massive

MIMO systems, since only several adjacent cells are subject to mutual interference. If this

condition cannot be satisfied in some scenarios, the condition in Proposition 4 will not hold.

Although this causes errors in estimating the approximated subspace UD,bbk , the final channel

estimation can still be improved. For the third condition, when Kc is not a prime number, we can

chose a prime number K ′c slightly larger than Kc and generate the T ×K ′c assignment matrices.

Then, we choose the first Kc columns to form the final pilot assignment matrices.

Note that the proposed pilot assignment policy does not need to share information among

BSs, which can be implemented as follows. In cellular networks, each cell has a cell index.
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Frame 0

Cell 0

Cell 1

Cell 2

Symbol 0 Symbol 1 Symbol 2

User 0 User 1 User 2

User 0 User 1 User 2

User 0 User 1 User 2

...

... User 1 User 2 User 0

User 2 User 0 User 1

User 0 User 1 User 2 ...
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... User 2 User 0 User 1

User 1 User 2 User 0

User 0 User 1 User 2 ...

...

...

Frame 1 Frame 2

...

OFDM symbol transmitting 

pilots of User 0

OFDM symbols transmitting 

data
User 0 ...

Fig. 2. Illustration of the proposed pilot assignment.

When each user in the bth cell stores the pilot assignment matrix Ab given in (35), it can select

the pilots according to its cell index, b, as well as its own user index. An example is shown in

Fig. 2. For the reference cell with index 0, i.e., cell 0, its three users respectively with indices

0, 1 and 2 always employ the training symbols with indices 0, 1, and 2. For the cell with index

1, its three users respectively with indices 0, 1 and 2 employ the training symbols with indices

0, 1, and 2 in frame 0, the training symbols with indices 1, 2, 0 in frame 1, and the training

symbols with indices 2, 0, 1 in frame 2, respectively.

The proposed pilot assignment policy can be regarded as a kind of pilot sequence hopping,

which concept has been introduced in the Long Term Evolution (LTE) system to randomize the

interference [25]. One difference between our method and that in LTE is the design of the pattern.

Our method ensures that for an arbitrary user the pilot contamination in different frames are not

generated from the same group of users, but the method in LTE cannot. The other difference is

the purpose. Our pilot assignment is designed for acquiring the subspace of the desired receive

signal to facilitate the desired channel subspace-based LS channel estimation, but the method

in LTE is used to randomize the interference directly. The proposed method also differs from

other pilot assignment policies in the context of pilot decontamination [11–14], as stated in the

introduction.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed method of pilot decontamination.

We consider a network of seven adjacent hexagonal cells, i.e., B = 7. The radius of each
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cell is 250 m, and the path-loss is modeled as PLdB = 35.3 + 37.6log10(d), where d (in meter)

is the distance between the BS and the user. To remove the boundary effect, wrap around is

considered.

Each BS serves 10 uniformly located single-antenna users. The transmit powers of each user

and each BS are 23 dBm and 46 dBm, respectively. The number of subcarriers is N = 1024

and the subcarrier interval is ∆ = 15kHz [25]. We consider the spatial channel model in [26],

where the channel of each user contains six multipath components with exponential distributed

delays and angle spread of 8◦, and each multipath component is constituted by 20 sub-paths.

The simulation results are averaged over 50 random drops of users, where in different drops the

small scale fading channels are independently generated.

Unless otherwise specified, this simulation setup is used for all results in the sequel.

A. Validation of Approximation with DFT Representation and Subspace Orthogonality

In Fig. 3, we evaluate the approximation accuracy of the DFT representation in (13). We use

‖h−UDgD‖2/‖h‖2 to reflect the approximation error. rg/(MN) in x-coordinate is the ratio of

the size of gD to the size of the spatial-frequency channel vector h. A smaller value of rg/(MN)

can be selected for a more sparse channel. From the figure we can see that DFT representation

in (13) is accurate. In the considered channel, if we select 0.2% elements of h to construct gD,

the approximation error is less than 1% (say, 0.4% for M = 64). As the number of antennas

increases, to achieve the same level of accuracy, the required ratio rg/(MN) slightly decreases

due to the improved resolution of the antenna array.

In Fig. 4, we validate the approximate orthogonality between the subspaces of the desired

channel and the interference channels (i.e., the subspaces spanned by the eigenvectors of Rbbk and∑B−1
j=0,j 6=bRbjκj

). We employ the principle angles of two subspaces to measure the orthogonality.

For arbitrary two subspaces F and G with dimensionality p and q (q < p), respectively, the princi-

ple angles γk are obtained recursively for k = 1, 2, · · · , q as cos(γk) = maxu∈F maxv∈G u
Hv =

uHk vk subject to the constraints uHu = 1, vHv = 1, uHj u = 0, and vHj v = 0 [27], where

j = 1, 2, · · · , k − 1. If all values of cos(γk) equal to zero, the subspaces F and G are exactly

orthogonal. On the other hand, if all values of cos(γk) equal to one, the subspaces F and G are

completely overlapped, i.e., they are the same subspace. We show the cumulative distribution

function (CDF) of the principle angles of the desired channel and the interference channel(s).
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Fig. 3. Approximation accuracy of the DFT representation in (13).
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We can see that the subspaces are near-orthogonal when there is only one interference channel.

When the number of interference channels increases, the orthogonality deteriorates, yet the two

subspaces are still approximately orthogonal.

B. Performance of Pilot Decontamination Method

In Fig. 5, we provide the sum rate per cell achieved by the proposed method versus the

number of successive frames. The zero-forcing (ZF) beamforming with equal power allocation

is employed for downlink transmission. To illustrate the impact of the subspace of desired channel

on the pilot decontamination, the following cases are considered.

◦ Perfect channel.

◦ The proposed pilot decontamination method with perfectly known UD for the desired

channel subspace aware LS channel estimation (with legend “Decon. with prior known

UD, (rg/(MN) = 0.002”), where rg is the number of selected significant components in

(13).

◦ The proposed pilot decontamination method with estimated UD for the desired channel

subspace aware LS channel estimation (with legend “Decon. with est. UD (ry/(MN) =

0.005)” and “Decon. with est. UD (ry/(MN) = 0.05)”), where ry is the number of selected

significant components in (29). Considering the estimation error on UD, we select more

conservative values for ry, which exceed rg.

◦ Traditional LS channel estimate ĥLST
bbk

in (27) (with legend “Contaminated channel”).

It is shown from the figure that the desired channel subspace aware LS channel estimation

can efficiently eliminated the contamination. Moreover, the performance of the proposed method

with estimated UD converges rapidly. The speed of the convergence depends on the value of

ry/(MN). With smaller ry/(MN), the performance converges faster, because more insignificant

components of the received signal are discarded, most of the which come from the interference.

However, with smaller ry/(MN), the performance degrades slightly as the number of frames

increases, because some components of the desired channel are discarded. We can also see that

even with perfect UD, the proposed method still has a performance loss from the perfect channel

case. Such a loss comes from the following two facts. The first is the approximation in the sparse

representation under DFT basis. The other is that the subspaces of the desired channel and the

interference channel are not perfectly orthogonal, which causes residual pilot contamination.
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The traditional LS channel estimate performs worse due to the contaminated pilots, whose

only difference from the proposed LS channel estimation in (25) and (26) is not using the

desired channel subspace UD. Note that even in the first frame where the desired channel

subspace estimate is severely corrupted by interference, the proposed method still outperforms

the traditional LS channel estimation attribute to the reduction of noise.

In Fig. 6, we compare the proposed method with the blind pilot decontamination method in

[8] (with legend “Blind decon.”), which exploits the asymptotic orthogonality between desired

channel and interference channel in i.i.d. channels. The same as [8], our method also does not

need the coordination among cells, and also does not require pilots to obtain the desired channel

subspace. As baseline, the performance with perfect channel and the traditional LS channel

estimate are also shown. To satisfy the condition in separating desired channel from interference

channels for blind decontamination [8], in the simulation we use a simple power control to

ensure the power of the interference not higher than the power of the desired signal for the

cell-edge user. 1000 samples are used to compute the sample covariance required in [8]. It is

shown from the figure that the proposed method is much superior. The blind decontamination

method does not perform well because the desired and interference channels are far from

orthogonal in the considered channel even when M is large. Considering that the proposed

pilot assignment policy can be regarded as a kind of pilot sequence hopping, whose concept

resembles the pilot randomization in LTE systems, we also provide the result using the pilot

hopping in LTE (with legend “Contaminated channel in LTE”). Specifically, the pilot sequences

are constructed from the Zadoff-Chu sequences (ZCS) as xn = xvnmodNZC
, n = 0, · · · , N − 1,

where xvm = exp(−jπvm(m+1)/NZC),m = 0, · · · , NZC−1, v is the index of the root ZCS, and

NZC is the largest prime number such that NZC < N [25]. The pilot sequences for the users in

the same cell are the cyclic shift version of one ZCS. The pilot sequence sets used for the users

in different cells are different groups of ZCS generated by different v. We can see that although

the users in different cells employ different groups of pilots as in LTE, pilot contamination is

still severe.

In Fig. 7, we show the impact of correlation of spatial channel on the performance of the

proposed method. It is shown that the performance degradation of the proposed method is

minor. This is because although the AOAs of the desired and interference channels are more

likely overlapped with large angle spread and may not be resolvable in angle domain with a
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Fig. 7. Achievable sum rate per-cell vs. the angle spread, M = 128.

“not-so-large” antenna array, the desired channel can still be well-separated from the interference

channels thanks to the sparsity in time domain. This validates that when considering the realistic

spatial-time sparse channels in massive MIMO-OFDM systems, the coordination among cells to

satisfy the non-overlapping AOA constraint in [10] is unnecessary.

VI. CONCLUSIONS

In this paper, we resolved pilot contamination problem for wideband massive MIMO systems

by exploiting the inherent channel sparsity in both time domain and frequency domain in spatial-

frequency correlated channels. By representing the channel in sparse form via KLT and DFT, we

find that the subspaces of the desired channel and the interference channels are approximately

orthogonal. This allows to mitigate pilot contamination with linear MMSE channel estimation

if channel correlation matrices of desired and interference users can be available at each BS or

with LS channel estimation if the subspace of the desired channel can be available. To reduce

the required a priori information at each BS, we proposed a pilot decontamination method,

which includes desired channel subspace aware LS channel estimation, desired channel subspace

acquisition, and pilot assignment among successive uplink frames. Simulation results shown that
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the proposed method can effectively reduce the pilot contamination in massive MIMO-OFDM

systems under spatial-frequency correlated channels and demonstrated substantial rate gain over

existing methods.
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