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Abstract—Coordinated multi-point transmission (CoMP) is a
promising strategy to provide high spectral efficiency for cellular
systems. To facilitate multicell precoding, downlink channel is
estimated via uplink training in time division duplexing systems
by exploiting channel reciprocity. Virtual subcarriers in practical
orthogonal frequency division multiplexing (OFDM) systems de-
grade the channel estimation performance severely when discrete
Fourier transform (DFT) based channel estimator is applied.
Minimum mean square error (MMSE) channel estimator is able
to provide superior performance, but at the cost of high com-
plexity and more a priori information. In this paper, we propose
a low complexity channel estimator for CoMP multi-antenna
OFDM systems. We employ series expansion to approximate the
matrix inversion in MMSE estimator as matrix multiplications.
By exploiting the feature of frequency domain training sequences
in prevalent systems, we show that the proposed estimator
can be implemented by DFT. To reduce the required channel
statistical information, we use the average channel gains instead
of channel correlation matrix, which leads to minor performance
loss in CoMP systems. Simulation results show that the proposed
channel estimator performs closely to the MMSE estimator.

I. INTRODUCTION

Coordinated multipoint transmission with joint processing
(CoMP-JP) can provide high spectral efficiency for cellular
systems when both data and channel state information (CSI)
are available at the base station (BS) [1, 2].

To facilitate downlink precoding in CoMP systems, the
channels from the cooperative BSs to the mobile stations
(MSs) need to be estimated through uplink training by ex-
ploiting channel reciprocity in time-division duplexing (TDD)
systems [3]. To achieve the optimal performance of channel
estimation, the training sequences of multiple MSs in the
whole cooperative cluster should be orthogonal [4].

The orthogonality of the training sequences can be pro-
vided by code-division multiplexing (CDM), time-division
multiplexing, or frequency-division multiplexing. In prevalent
cellular systems, such as those complying with the Long Term
Evolution (LTE) standard [5], the CDM orthogonal training
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sequences are provided via using cyclic shifts of the Zadoff-
Chu (ZC) sequences [6]. It was shown in [7] that the phase-
shifted training sequences are orthogonal when they are trans-
mitted at equal-power pilot tones that are equally spaced over
all subcarriers. However, in practical orthogonal frequency
division multiplexing (OFDM) systems, a certain number of
subcarriers at the band edge are un-modulated in order to
prevent the interference to other systems and to ease the filter
requirements [8]. As a result, the pilot tones can not be equally
spaced over the overall band and the phase-shifted training
sequences are no longer orthogonal, which leads to low quality
of channel estimation [9,10]. The performance degradation is
especially severe for CoMP-JP systems, where more users are
expected to be served to provide high multiplexing gain but
fewer orthogonal training sequences are available due to the
longer propagation delay caused by the coverage extension.

Linear minimum mean square error (MMSE) estimator
can provide superior performance when the channel impulse
responses (CIRs) of multiple MSs in multiple cells are joint-
ly estimated [11]. However, the matrix inverse operation is
required, whose complexity is too high to afford in practice.

In this paper, we propose a low complexity channel esti-
mator for CoMP-JP to facilitate multi-cell precoding. Specif-
ically, we use a popular way of series expansion to reduce
the complexity of computing matrix inverse in the MMSE
estimator [12]. To improve the performance of the channel
estimator, a scaling factor will be introduced to the series
expansion and then optimized, where a closed-form solution
will be derived. We will show that after accounting for the
unique feature of the frequency domain training sequence used
in prevalent cellular systems, the proposed channel estimator
can be implemented by discrete Fourier transform (DFT)
operations, which is desirable for practical purpose. To reduce
the required statistical information, we use the average channel
gain instead of the channel correlation matrix in channel
estimation. Simulation results show that the proposed low
complexity channel estimator performs close to the MMSE
estimator in CoMP-JP systems.

Notations:(·)T , (·)∗ and (·)H denote the transpose, con-
jugate and Hermitian transpose, respectively. [Z]m,n and Im



represent the (m,n) entry of Z and the m×m identity matrix.
| · | is the cardinality of a set and ‖ ·‖ is the two norm. E{·} is
the expectation operator, tr{·} is the trace operator, diag{·}
denotes diagonalization and (·)! is the factorial operator.

II. SYSTEM MODEL

Consider a CoMP-JP OFDM system, where NB BSs each
equipped with Nt antennas cooperatively serve K single-
antenna MSs. There are overall N subcarriers in the system,
where Nv virtual subcarriers are not employed for transmis-
sion. In the employed subcarriers, Nd carriers are used for data
and Np carriers are used as pilots for channel estimation. Let
Fp and Fd represent the index sets of pilot and data positions,
respectively. |Fp| = Np and |Fd| = Nd. For simplicity, we
refer CoMP-JP as CoMP in the following.

We consider TDD systems, where the CSI for downlink
transmission is estimated via uplink training by exploiting
channel reciprocity. We consider quasi-static frequency selec-
tive fading channels, i.e., the channel remains constant during
each round of uplink training and downlink transmission. In
the uplink training phase, all MSs send training sequences
and each BS estimates the CSI from all MSs to itself. Then
a central unit (CU) collects the estimated CSI and computes
the precoders. Finally, the CU sends the downlink data and
precoders to each BS and all BSs serve the MSs cooperatively.

Consider that the training sequences of the K MSs trans-
mitted on the pilots are multiplexed by phase shifting of
one base sequence, as defined in LTE [13]. The maximum
number of the training sequences is denoted as M , which
is limited and is determined by the length of the CIR and
the bandwidth of the system. Denote the uplink transmit
power of each MS as P0, and the base sequence as s0 =
[s(0), . . . , s(Np − 1)]T , whose elements are of constant am-
plitude [13], i.e., (s(i))∗s(i) = P0, i = 0, . . . , Np − 1. The
phase shifted training sequence for MSk is sk = Φks0, where
Φk = diag{1 e−jθ(k−1) · · · e−jθ(k−1)(Np−1)}, θ = 2π

M .
Denote the CIR from MSk to the ath antenna of BSb as

htb,a,k ∈ CL×1, where L is the number of resolvable paths.
E{‖htb,a,k‖2} = α2

b,k, where αb,k is the large scale fading gain
including path loss, shadowing and sector antenna gain.

In the uplink training phase, after the removal of cyclic-
prefix and FFT operation, the received signal vector of the Np
pilot subcarriers at the ath antenna of BSb can be expressed
as

yb,a =

K∑
k=1

S0ΦkFph
t
b,a,k + nb,a , S0Gph

t
b,a + nb,a, (1)

where S0 = diag{s(0), . . . , s(Np−1)}, Fp ∈ CNp×L is a par-
tial DFT matrix with entries [Fp]n,l = e−j2π(l−1)[p(n)−1]/N ,
n = 1, . . . , Np, l = 1, . . . , L, p(n) ∈ Fp,
Gp , [Φ1Fp, . . . ,ΦKFp] ∈ CNp×KL, htb,a =

[(htb,a,1)T , . . . , (htb,a,K)T ]T ∈ CKL×1 represents the aggre-
gated CIRs of all MSs, and nb,a is the additive white Gaussian
noise vector with zero mean and variance σ2

n elements.
To support CoMP transmission, BSb needs to estimate the

aggregated CIRs htb,a, a = 1, . . . , Nt. Since the base sequence

is of constant amplitude, i.e., SH0 S0 = P0INp
, the optimal

linear estimator under MMSE criterion can be obtained as

ĥt,MMSE
b,a =

1

P0
[GH

p Gp + σ̄2
nR−1

b,a]−1GH
p SH0 yb,a, (2)

where Rb,a = E{htb,a(htb,a)H} is the correlation matrix of
the channels from all MSs to the ath antenna of BSb, and
σ̄2
n = σ2

n/P0.
The required statistical information of the correlation matrix

and the high complexity to compute the inverse of a KL ×
KL matrix hinder the application of the MMSE estimator in
practical systems. In the next section, we will propose a low-
complexity estimator with less a priori information.

III. LOW-COMPLEXITY CHANNEL ESTIMATION METHOD
BASED ON SERIES EXPANSION

To develop a channel estimator with low complexity, we
apply the series expansion to approximate the matrix inverse
in the MMSE estimator. By adjusting a scaling factor, the
series expansion is optimized for a fixed order. Furthermore,
we show that after the series expansion, the channel estimator
can be implemented with DFT operations.

A. Low Complexity Channel Estimator

The complexity of the MMSE estimator lies in computing
the inverse of the matrix X , GH

p Gp+ σ̄2
nR−1

b,a in (2), whose
dimension increases linearly with the number of MSs. Using
the series expansion, the inverse of the matrix can be expressed
as

X−1 = ρ
∑∞

n=0
(I− ρX)n, (3)

where ρ is a scaling factor, it should satisfy 0 < ρ <
2/λmax(X) to ensure the convergence of the series expansion
[12], and λmax(X) is the largest eigenvalue of matrix X.
To reduce the complexity, we use P th order expansion to
approximate the matrix inverse, i.e.,

X−1 ≈ ρ
∑P

n=0
(I− ρX)n =

∑P

n=0
anρ

n+1Xn, (4)

where the last step is obtained by the ex-
pansion of the power function, and an =
(−1)n(P + 1− n)(P + 2− n) · · · (P + 1)/(n+ 1)!.

By substituting (4) into (2), the aggregated CIR can be
estimated as

ĥtb,a =
1

P0

P∑
n=0

anρ
n+1[GH

p Gp + σ̄2
nR−1

b,a]nGH
p SH0 yb,a

=
1

P0
a0ρvb,a(0) +

1

P0

∑P

n=1
anρ

n+1vb,a(n), (5)

where vb,a(0) , GH
p SH0 yb,a, and vb,a(n) , [GH

p Gp +

σ̄2
nR−1

b,a]vb,a(n− 1), n = 1, . . . , P .
Now the matrix inverse in the MMSE estimator is approx-

imated by the matrix multiplication operations, which can be
implemented with DFT by exploiting the special structure of
the frequency domain training sequences, as shown in the
sequel. As a result, the channel estimator can be realized with
fast FFT/IFFT algorithms.



The channel estimator in (5) can be obtained by
computing two components. The first component
is vb,a(0), which can be further expressed as
vb,a(0) = [(FHp ΦH

1 SH0 yb,a)T , . . . , (FHp ΦH
KSH0 yb,a)T ]T

by substituting Gp defined after (1). Recall that both Φk and
S0 are diagonal matrices, and Fp is a partial DFT matrix
extracted from N -points DFT matrix. To compute each term
vb,a,k(0) , FHp ΦH

k SH0 yb,a, we can first obtain the vector
ΦH
k SH0 yb,a by Np complex multiplications to the received

signal vector with negligible complexity, then take a N -points
DFT to the obtained vector. Overall K DFTs are required to
compute vb,a(0).

The second component is vb,a(n), which can be further
expressed as vb,a(n) = GH

p Gpvb,a(n− 1) + σ̄2
nR−1

b,avb,a(n−
1). Since vb,a(n) depends on vb,a(n − 1), we can calculate
the value of vb,a(n) with different n in a serial manner with
the increasing order of n. When we obtain vb,a(n − 1), the
value of vb,a(n) can also be calculated by DFT. Specifically,
to obtain the first term in the expression of vb,a(n), we can
obtain Gpvb,a(n− 1) similarly as in calculating vb,a(0), then
take K DFTs to the obtained vector to compute the first term
of vb,a(n). In the second term, the correlation matrix Rb,a is
diagonal when the CIRs of different MSs and the resolvable
paths in the CIR of each MS are uncorrelated. Then, only
Np complex multiplications to the received signal vector are
required to obtain the second term.

When the pilot settings in LTE systems are used, the
complexity can be further reduced. To be specific, when the
intervals between any two adjacent pilots are equal to ∆, and
the value of ∆ is a power of two [13], the N -points DFT in
the estimator can be realized by N

∆ -points DFT. When both
the pilot interval ∆ and the maximum number of orthogonal
training sequences generated by one base sequence M are
powers of two, the matrix Gp in (5) can be transformed into a
partial DFT matrix that extracted from a N

∆ -points DFT matrix
multiplied with a diagonal phase matrix. This indicates that the
complexity of the channel estimator does not depend on the
number of MSs.

B. Robust Channel Estimator

The channel estimator in (5) requires the correlation ma-
trix Rb,a as a priori information. Considering that the
channels among different BS-MS links are uncorrelated,
then Rb,a = diag{Rb,a,1, . . . ,Rb,a,K}, where Rb,a,k =
E{htb,a,k(htb,a,k)H} is the correlation matrix of the CIR
between MSk and the ath antenna of BSb and satisfies
tr{Rb,a,k} = α2

b,k. In practice, accurate correlation matrices
of the CIRs are hard to obtain but the the large scale fading
gains can be obtained easily by averaging the received signal
over a certain period. In the following, we present a robust
low-complexity estimator, which only requires the large scale
fading gains and is not sensitive to the accuracy of the
correlation matrices.

To avoid the use of correlation matrix, we approximate the
power delay profile (PDP) as uniform. Then, the estimator in

(5) reduces to

ĥt,Rb
b,a =

1

P0

P∑
n=0

anρ
n+1[GH

p Gp+σ̄2
nD−1

b ]nGH
p SH0 yb,a, (6)

where Db = diag{α
2
b,1

L IL, . . . ,
α2

b,K

L IL}.
The estimated CFR of all MSs at both data and pilots

subcarriers can be obtained as

ĥf,Rb
b,a = Gpdĥ

t,Rb
b,a , (7)

where ĥf,Rb
b,a = [(ĥf,Rb

b,a,1)T , . . . , (ĥf,Rb
b,a,K)T ]T , ĥf,Rb

b,a,k represents
the estimated CFR from MSk to the ath antenna of BSb,
Gpd = diag{Fpd, . . . ,Fpd} ∈ CK(Np+Nd)×KL, Fpd ∈
C(Np+Nd)×L is a partial DFT matrix with entries [Fpd]m,n =
e−j2π(n−1)[g(m)−1]/N , m = 1, . . . , Np + Nd, n = 1, . . . , L,
and g(m) ∈ (Fp

⋃
Fd).

Through the simulations in Section IV we will show that
the performance degradation of the robust channel estimator
is negligible.

C. Optimization of the Scaling Factor

Although any value of ρ satisfying 0 < ρ < 2
λmax(X) can

ensure the convergence of the series expansion in (3), the
convergence rate with different ρ differs. In the following, we
optimize the value of ρ such that the mean square error (MSE)
of the channel estimation is minimized for a fixed order P .

Since the CFRs at both data and pilot subcarriers of all
MSs in the uplink are applied for precoding in the downlink,
we optimize ρ by minimizing the sum MSE of the estimated
CFRs. Denote hfb,a,k = Fpdh

t
b,a,k as the CFR from MSk to

the ath antenna of BSb, then the aggregated CFRs of all MSs
can be expressed as

hfb,a = [(hfb,a,1)T , . . . , (hfb,a,K)T ]T = Gpdh
t
b,a. (8)

Then the optimization problem can be formulated as

min
ρ

E{‖ĥf,Rb
b,a − hfb,a‖

2} (9)

s.t. 0 < ρ < 2/λmax(X). (10)

By substituting (7) and (8) into (9), the objective function
can be derived as

f(ρ) , E{‖ĥf,Rb
b,a − hfb,a‖

2}
= E{[Gpd(ĥ

t,Rb
b,a − htb,a)]HGpd(ĥ

t,Rb
b,a − htb,a)} (11)

=

P∑
i,j=0

aiajη(i, j)ρi+j+2 −
P∑
i=0

aiν(i)ρi+1 + c0, (12)

where (12) is derived by substituting the expression of ĥt,Rb
b,a in

(6) into (11) and by taking the expectation with respect to the
small scale fading channels and the noise, c0 = tr{Rb,aV},

η(i, j) = tr{(U + σ̄2
nD−1

b )iURb,aU(U + σ̄2
nD−1

b )jV},

ν(i) = tr{(U + σ̄2
nD−1

b )i(VRb,aU + URb,aV)},

with U = GH
p Gp and V = GH

pdGpd.



The optimal solution of problem (9) can be found by
exhaustive searching, but this will lead to high complexity for
the channel estimation. In the sequel, we derive a sub-optimal
solution with closed form by introducing approximations to
the objective function.

The values of η(i, j) and ν(i) depend on the noise to
signal power ratio σ̄2

n and the large scale fading gains of
all users. To obtain a practical solution that does not rely
on these parameters, we assume that the SNR is high, i.e.,
σ̄2
n ≈ 0, and we consider that all the K MSs are located

at the exact cell edge, i.e., αb,k = αedge, b = 1, . . . , NB ,
k = 1, . . . ,K, and the PDP of all channels are uniform. Then,
Db = Rb,a ≈

α2
edge

L IKL. Under these assumptions, the values
η(i, j), ν(i) and c0 in (12) can be approximated as

η(i, j) ≈
α2

edge

L
tr{Ui+j+2V}

(a)

≤
α2

edge

L
tr{Ui+j+2}tr{V}

(b)
< (Np +Nd)LK

2α2
edge(λmax(U))i+j+2, (13)

ν(i) ≈ 2
α2

edge

L
tr{Ui+1V}

(a)

≤ 2
α2

edge

L
tr{Ui+1}tr{V}

(b)
< 2(Np +Nd)LK

2α2
edge(λmax(U))i+1, (14)

c0 ≈
α2

edge

L
tr{V} = α2

edgeK(Np +Nd), (15)

where the step (a) in both (13) and (14) are derived from
the fact that tr{AB} ≤ tr{A}tr{B} for arbitrary Hermitian
matrices A and B, the step (b) in (13) and (14) come from
the fact that tr{V} = tr{GH

pdGpd} = (Np + Nd)KL and
tr{Ui+1} =

∑KL
l=1(λl(U))i+1 ≤ KL(λmax(U))i+1, and

λl(U) and λmax(U) are the lth and the largest eigenvalues
of U, respectively.

By substituting (13), (14) and (15) into (12), the objective
function can be approximated as

f(ρ) ≈(Np +Nd)LK
2α2

edge

[( P∑
i=0

ai(λmax(U)ρ)i+1 − 1
)2

+
1

KL
− 1
]
, f̃(ρ). (16)

Observing the expression of f̃(ρ), we can see that its value
is lower bounded as

f̃(ρ) ≥ (Np +Nd)LK
2α2

edge

( 1

KL
− 1
)
, (17)

where the equality holds when∑P

i=0
ai(λmax(U)ρ)i+1 = 1. (18)

This indicates that to find the value of ρ that minimizes f̃(ρ),
we only need to find ρ from this equation. To find the solution
of the equation in (18), we further derive the left-hand side of
the equation as

P∑
i=0

ai(λmax(U)ρ)i+1 (a)
=

P∑
i=0

λmax(U)ρ(1− λmax(U)ρ)i

= 1− (1− λmax(U)ρ)P+1, (19)

where (a) comes by substituting the value of ai defined after
(4) and with some regular manipulations.

Then, the equation becomes 1− (1− λmax(U)ρ)P+1 = 1,
and the solution can be found as

ρ = 1/λmax(U) = 1/λmax(GH
p Gp). (20)

It is worthy to notice that the value of ρ should satisfy the
convergence condition shown in (10). When the SNR is high,
we have X ≈ GH

p Gp, and the convergence condition becomes
0 < ρ < 2/λmax(GH

p Gp). It is clear that the closed-form
solution of ρ shown in (20) satisfies the condition.

It is non-trival to theoretically analyze the performance of
the robust estimator with sub-optimal solution in (20). We
will verify by simulation in Section IV that the sub-optimal
solution in (20) performs closely to the optimal solution of
problem (9) even when the SNR is not very high.

D. Complexity Comparison

In the sequel we compare the complexity of the proposed
channel estimator with the MMSE channel estimator in (2),
the DFT channel estimator [9] and the leakage suppression
estimator proposed in [10].

The complexity of the MMSE channel estimator is dom-
inated by the inverse of the matrix X ∈ CKL×KL, whose
complexity is on the order of O((KL)3).

For the proposed channel estimator, we only consider the
complexity of the DFT operations, because other operations
are negligible compared with DFT. According to previous
analysis, the proposed estimator with P th order series expan-
sion can be implemented by 2PK DFT operations of size N
under general parameter settings, whose complexity is on the
order of O(PKN log(N)). When the pilots are equally placed
and the pilot interval ∆ is a power of two, the size of DFT
can be reduced to N

∆ , and then the complexity of the estimator
is reduced to O(PK N

∆ log(N∆ )). Furthermore, when both the
pilot interval ∆ and the maximum number of orthogonal train-
ing sequences generated by one base sequence M are powers
of two, the proposed estimator can be implemented by P DFT
operations each of size N

∆ . Therefore, the complexity of the
proposed channel estimator is on the order of O(P N

∆ log(N∆ ))
when the pilots in LTE systems are considered.

The complexities of the DFT estimator under the
above three parameter settings are O(K N

2 log(N)),
O(K N

2∆ log(N∆ )) and O( N2∆ log(N∆ )), respectively. The
complexities of the estimator in [10] are all O(KL3) under
the above three parameter settings.

For ease of understanding, we give an example, where the
system parameters are set in accordance with the LTE systems
[13]: the total number of subcarriers N = 1024, the pilot
interval ∆ = 2, the maximum number of orthogonal training
sequences M = 8, the number of resolvable paths L = 36.
For the proposed channel estimator, the series expansion order
is set as P = 5. Then, the number of complex multiplications
required by the MMSE method and the method in [10] is over
2.4×107 and 3.7×105, respectively. By contrast, the number
of complex multiplications required by the proposed channel
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Fig. 1. An example of CoMP system. The inter-site distance is 500 m. The
user-groups in different cells are at the same distance from their local BSs.
The solid and dash lines represent the local channels and cross channels of
the users, respectively.

estimator and the DFT channel estimator are about 2.3× 104

and 2.3× 103, respectively.

IV. SIMULATION RESULTS

In this section, the performance of different channel estima-
tors will be compared via simulations.

Unless otherwise specified, we consider a CoMP system
with two cooperative BSs each with four antennas coopera-
tively serve eight single-antenna MSs. The system parameters
are in accordance with the LTE standard [13]: we consider 10
MHz bandwidth with 1024 FFT size, in which 600 subcarriers
are employed. The training sequence generated by phase shift
of a root Zadoff-Chu sequence is transmitted on 300 equally
placed pilots for each MS.

The path-loss model is PLdB = 35.3 + 37.6 log10(dk,b)
[13], where dk,b (in meter) is the distance between MSk and
BSb. The downlink receive SNR of the cell-edge MS is 15
dB and the uplink receive SNR is set as 5 dB lower than the
downlink SNR to incorporate the difference of the transmit
power and the interference between uplink and downlink. The
CIR in the simulations follows a tapped-delay line model with
independent Rayleigh fading coefficients. Although we assume
uniform PDP when deriving the robust estimator, we consider
an exponential PDP with attenuation factor 1.4. Considering
the longer propagation delays in CoMP systems, the length
of PDP is set as L = 36. All simulation results are obtained
by averaging over 1000 realizations of the small scale fading
channels. To clearly show the channel estimation performance
of different MSs, we consider a scenario with the MS locations
shown in Fig. 1. Specifically, the four MSs in the same cell
are located in the same place and the MS-groups in different
cells are at the same distance from their local BSs. In this
way, we only need to show the performance of one MS.

In Fig. 2, the normalized MSEs (NMSEs) of the local chan-
nels versus the series expansion order P are compared between
the proposed channel estimators with the optimal scaling factor
and the sub-optimal scaling factor. The NMSE is defined
as E{‖ĥf,Rb

b,a,k − hfb,a,k‖2}/α2
b,k. As a performance baseline

for comparison, the performance of the MMSE estimator is
provided. We can observe that the convergence rate is fast
when the user is located at the cell edge, and the performance
gap between the proposed channel estimators with the optimal
scaling factor and the sub-optimal scaling factor is minor.
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Distance from MS to local BS is 150m

Fig. 2. NMSE of local channels versus the series expansion order P .
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Fig. 3. NMSE of local and cross channels of different channel estimators
versus the distance between MS and its local BS.

In Fig. 3, the NMSE of the local channels and the cross
channels estimated by different channel estimators versus the
distance between the MSs and their local BS are compared.
The five considered estimators are: the MMSE estimator, the
DFT estimator [9], the leakage suppression estimator in [10],
the proposed estimator with perfect channel correlation matrix
and the proposed robust estimator with only large scale fading
gains. For the proposed methods, the series expansion order is
set as five, and the scaling factor ρ is set as 1/512, which is the
sub-optimal value obtained from (20). We can observe that the
performance of the robust channel estimator with only large
scale fading gains overlaps with that of the proposed channel
estimator with perfect channel correlation matrix, and both
perform close to the MMSE estimator.

In Fig. 4, the NMSE of the CFR of different estimators are
compared. The performance of the exact cell-edge users are
provided. The scaling factor and the order of series expansion
are set the same as in Fig. 3. We can observe that the
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Fig. 4. NMSE of CFR with different channel estimators versus the indices
of subcarriers.

performance of the proposed estimator is close to the MMSE
estimator on the whole used band. By contrast, the estimated
channels at the subcarriers adjacent to the band-edge have
large NMSE.

To show the impact of different channel estimators on the
performance of CoMP transmission, we compare the downlink
average per-user data rate when the channels for precoding are
estimated by different channel estimators. In the simulation,
we consider three BSs cooperatively serve eight users. The
users are randomly distributed in a “cell-edge region”, where

min
l 6=bk

α2
bk,k

α2
l,k

for any MSk is less than 15 dB, and α2
bk,k

is the

large scale fading gain of the local channel of MSk. Zero-
forcing beamforming with equal power allocation among MSs
are applied. The scaling factor and the order of the series ex-
pansion applied in the proposed channel estimators are set the
same as in Fig. 3. The results are obtained by averaging over
50 random locations of the users. In Fig. 5, the average per-
user data rate achieved by different channel estimators versus
the cell-edge SNRs are shown. The performance achieved by
perfect CSI is also provided for comparison. We can observe
that the data rate achieved by the proposed channel estimator
is very close to that by the MMSE estimator and is higher
than that by the DFT estimator, especially for high cell-edge
SNR where CoMP is more beneficial.

V. CONCLUSIONS

In this paper, a low complexity channel estimator was
proposed for TDD CoMP-JP multi-antenna multi-carrier sys-
tems, which can be implemented by FFT. The optimal scaling
factor in the channel estimator was optimized and a closed-
form suboptimal solution was provided. By using the average
channel gains, less statistical information is required compared
with the MMSE channel estimator. Analysis and simulation
results showed that the proposed channel estimator yields
minor per-user rate loss of the downlink CoMP-JP system from
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Fig. 5. Average per-user data rate achieved by different channel estimators
under different cell-edge SNRs.

that using the linear MMSE channel estimator, but with much
lower complexity and much less a priori information.
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