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Abstract—Big data analysis makes predicting the application,
network and user levels of context information possible. Yet
it is unclear how to exploit these information to utilize the
wireless resources more efficiently. In this paper, we attempt to
illustrate the potential of using these information to improve
the spectrum usage efficiency. To this end, we assume that a
central unit in the multicell network can predict the mobile
users’ request, base stations’ congestion status, and user mobility
pattern within a prediction window. To fully use the excess
resource within the window and leave more resources for the
unpredictable traffic arrived after the window, we formulate
a proactive resource allocation planning problem to minimize
the maximal transmission completion time. A heuristic low
complexity algorithm is introduced to find the transmission plan
from the problem, which determines where, when and what
to transmit to the users. We use two representative scenarios
to demonstrate the performance gain of the proactive resource
allocation using context information over the reactive scheme that
the transmission starts after the users’ requests truly arrive.

I. INTRODUCTION

To support the explosively growing traffic demands, various

new techniques are under investigation for the fifth generation

(5G) cellular networks. Except the update of network archi-

tecture, another main trend is to provide higher throughput,

say by network densification [1]. While further improving

spectral efficiency is always beneficial, in real-world networks

the bandwidth resource is often not fully used because of the

time-varying traffic pattern. According to the measurement on

available spectrum and traffic load, many base stations (BS)

have a large amount of excess resource during the off-peak

time, while the BSs in the hotpot are very busy and even

become congested during the peak time.

A recent report in Science magazine indicates that human

behavior is highly predictable [2]. With big data analysis,

network resource usage status can be estimated by predicting

a traffic map [3, 4]. Besides, the mobility pattern can be

predicted by analyzing the historic user behavior [5, 6], at

least within a prediction window, from which the average

channel gains can be obtained with the help of a radio map

[7]. Moreover, the content popularity, and even the preferred

content of an individual user, is possible to be known before

the user(s) truly initiates the request by using the collaborative
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filtering, which has long been studied in various recommenda-

tion systems [8]. Undoubtedly, predicting human behavior with

wireless big data is rather challenging. This naturally raises the

following question: can such valuable information gained from

the prediction be exploited to improve the usage efficiency of

wireless network resources, say energy and bandwidth?

With predicted content popularity, local caching at the wire-

less edge can reduce the backhaul cost, offload the traffic in

core and access networks, improve user experience and energy

efficiency [9–11]. Yet how other information that are able to

be predicted could impact the wireless resource management

is largely unexplored. If big data analysis can be made in

a central unit (CU) connected to BSs with strong computing

capability for predicting the network resource usage state, mo-

bile user trajectory, the content to be requested and the request

arrival time, then how these information can be exploited for

improving the performance of wireless networks? In fact, with

the ability of prediction endowed by big data, many factors

affecting the network performance such as request arrival,

network status and user locations that have long been regarded

as random will become deterministic to a large extent. With

these information, called application level, network level, and

user level context information [12], and noticing the fact

that today’s smart phones have large storage size for caching

requested files, a resource allocation plan can be made for

each user before transmission, including which BSs along the

trajectory of a mobile user should pre-download a file to the

user, in which duration and with how many resources. In this

way, the excess resources in the network can be exploited.

Such a concept has been proposed to save energy consumed

at the BSs, with the notion of predictive or proactive resource

allocation in the literature [7, 13–15].

In this paper, we attempt to show the possible gain of

improving spectrum utilization efficiency by leveraging the

prediction ability of big data analysis. To this end, we assume

that the three levels of context information is perfectly known,

although the prediction is never perfect. We formulate a

resource allocation planning optimization problem for pre-

downloading the files to be requested to users, which optimizes

the transmission duration at each BS along the trajectory of

multiple mobile users to minimize the maximal transmission

completion time. To find the solution with affordable compu-

tational complexity, a heuristic algorithm is then proposed. By



providing simulation results for two representative scenarios,

we illustrate that the proactive resource allocation can provide

a promising new way to support the explosive traffic demands,

alternative to increasing the network capacity by deploying

more bandwidth and antenna resources.

II. SYSTEM MODEL

Consider a multi-cell network with Nb BSs, where each BS

is equipped with Nt antennas and transmits in a time-slotted

fashion. The BSs serve two classes of users, one requesting

real-time (RT) service such as phone call, the other requesting

content delivery such as file downloading. The requests of

both classes of users arrive randomly. The RT service is served

with high priority and hence with reserved resources, and the

content delivery can only use the residual resources at each

BS, which are random and time-varying.

In this paper, we are concerned with the resource allocation

for the mobile users (MSs) that demand for content delivery,

each requests one file with size of B bits.

A. Context Information

All BSs are connected to a CU. Assume that the CU can pre-

dict some statistical information within a prediction window

with length of Tf frames as follows. (1) The request arrival

time and the requested file of every MS, i.e., the application
level context information. (2) The trajectory of each MS. With

radio map [7], the CU can obtain the large scale channel gains

for each MS, i.e., the user level context information. (3) The

average residual resources (say bandwidth) remained at each

BS after serving the RT traffic, i.e., the network level context
information.

After predicting the context information, the CU can make

a resource allocation plan for conveying the files that the MSs

will request, called a transmission plan, which determines

where, when, what, and with how much resources to transmit.

Then, the CU informs the BSs along the trajectory of each MS.

The BSs can pre-download the required files to the MSs before

they initiate requests, and continue to transmit the remaining

files (if some files have not been conveyed completely) after

the MSs’s requests arrive, according to the plan. In this way,

the experience of the MSs can be dramatically improved,

and the excess resource of the network can be fully used to

alleviate the congestion in peak time. This is sharply different

from the traditional transmission mechanism, where the MSs

are served with best effort after their requests arrive.

B. Channel Model and Achievable Rate

To reflect the variation of the path-loss and shadowing

due to user mobility, we assume that the large scale fading

gains remain constant within each frame and may vary among

frames. Each frame includes Ts time slots. The small scale

fading is assumed as block fading, which remains constant in

each time slot and varies among time slots independently, as

shown in Fig. 1.

For mathematical tractability, assume that only the closest

BS to a MS pre-downloads (or transmits) the file to be
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Fig. 1. Illustration of traffic and channel model.

requested (or having been requested) to the MS. The residual

bandwidth and transmit power available for the kth MS

(denoted as MSk) in the tth time slot of jth frame at the

closest BS are denoted as W t
j,k and ptmax,j,k, respectively.

Denote mt
j,k ∈ {1, 0} as an indicator of transmission plan

made for the kth MS. When mt
j,k = 1 or 0, the file to be

requested by MSk is or is not pre-downloaded by its closest

BS in the tth time slot of the jth frame. According to the

plan, a BS may need to pre-download files to multiple MSs.

To avoid multi-user interference, the BS transmits to the MSs

in different time slots. Then, the received signal of MSk in the

tth time slot of the jth frame is

ytj,k = mt
j,k

√
αj
k(h

t
j,k)

Hwt
j,k

√
ptmax,j,kx

t
j,k + nt

j,k, (1)

where xt
j,k is the transmit symbol with E{|xt

j,k|2} = 1,

ht
j,k ∈ C

Nt×1 is the independent and identically distributed

(i.i.d.) Rayleigh fading channel vector, αj
k is the corresponding

large scale fading gain between the MS and the closest BS,

wt
j,k ∈ C

Nt×1 is the beamforming vector, nt
j,k is the noise

with variance σ2, and E{·} represents expectation. Since MSk

is scheduled only by one BS in each time slot, maximum

ratio transmission (MRT) is optimal, i.e., wt
j,k = ht

j,k/‖ht
j,k‖,

where ‖ · ‖ denotes Euclidean norm.

In the tth time slot of the jth frame, the achievable rate of

MSk is
Rt

j,k = W t
j,k log2(1 + gtj,kp

t
max,j,k), (2)

where gtj,k � αj
k‖ht

j,k‖2/σ2 is the equivalent channel gain.

III. MAKING THE TRANSMISSION PLAN

Denote the start time instant of the prediction window as the

1st time slot of the 1st frame. At this start time, the CU can

predict the requests of multiple MSs that will randomly arrive

at different cells in the network by the end of the window,

i.e., the Tsth time slot of the Tf th frame. Then, the CU

can make the resource allocation plan for pre-downloading

files to these MSs and inform the corresponding BSs. Note

that the CU does not know the traffic load and network

resource usage status after the prediction window. To leave

more resources to the upcoming MSs whose requests may

arrive after the window, the plan is made to minimize the

maximal transmission completion time, as detailed later. In this

way, the network throughputs can be improved by proactively

avoiding the possible congestion in the future time.

For easy understanding, in what follows, we first formulate

a minimax problem to optimize the resource allocation plan,

under the assumption that the small scale channels gains and



instantaneous residual resources within the prediction window

are known, in addition to the context information. Then, we

provide an algorithm to solve a more viable minimax problem,

assuming that only the context information is known.

A. Problem Formulation

With the informed transmission plan, each BS pre-

downloads the files to the MSs entered into its coverage at

the start time of the prediction window, before they initiate

their requests. We call the duration from the start time of the

window to the time instant that a file has been completely

conveyed as the transmission completion time for a MS. To

exploit the excess resources in the network, we minimize the

maximal transmission completion time of all the MSs, whose

requests arrive within the predicted window.

Denote K as the number of MSs who will initiate a request

during the predicted window, and the tkth time slot of the

Jkth frame as the time instant that the transmission procedure

for MSk is finished. Then, the transmission completion time

for MSk is (Jk − 1)Ts + tk. The minimax resource allocation

planning problem can be formulated as follows,

min
M1,...,MK

max (Jk − 1)Ts + tk (3a)

s.t.

Jk−1∑
j=1

Ts∑
t=1

mt
j,kR

t
j,kΔt +

tk∑
t=1

mt
Jk,k

Rt
Jk,k

Δt ≥ B,

(3b)

Jk ≤ Tf , tk ≤ Ts, k = 1 . . . ,K, (3c)∑
k∈Kt

i

mt
j,k ≤ 1, i = 1, . . . , Nb, (3d)

where Mk = [m1,k, . . . ,mTf ,k], mj,k = [m1
j,k, . . . ,m

Ts

j,k]
H

is the indicator vector of the transmission plan for MSk in the

jth frame, (3b) ensures that the amount of data able to be trans-

mitted within the planned transmission time exceed the size

of the file, (3c) reflects the requirement that the transmission

should be completed within the predicted window, and (3d) is

the interference-free constraint that each BS only transmits to

a single MS in each time slot, Kt
i is the set of MSs that enter

the coverage of the ith BS in the tth time slot, i = 1, . . . , Nb,

and Δt is the duration of each time slot.

Problem (3) is an integer programming with prohibitive

search space of O(KTsTf ). Moreover, the normalized channel

gain and residual bandwidth in future time slots are required

to solve the problem, which can not be predicted accurately if

not impossible. To make the problem viable that requires only

average channel and network status information, we introduce

an extra constraint mt
j,k = mj,k, t = 1, . . . , Ts, which means

that the BS schedules MSs over frames instead of time slots.

Then the indicator matrix Mk is simplified to a vector as

mk = [m1,k, . . . ,mTf ,k]
H . In addition, by assuming Ts → ∞

and the small scale channel gains, residual bandwidth and

transmit power in time slots as ergodic, we can approximate

the left hand side of (3b) as

Jk∑
j=1

mj,k

Ts∑
t=1

Rt
j,kΔt ≈

Jk∑
j=1

mj,kE{Rt
j,k}TsΔt (4)

where the average is taken over small scale channel gains,

residual bandwidth and transmit power. For notational sim-

plicity, denote R̄j,k � E{Rt
j,k}.

Then, the minimax transmission planning can be found from

the following problem,

min
m1,...,mK

max JkTs (5a)

s.t.

Jk∑
j=1

mj,kR̄j,kTsΔt ≥ B, (5b)

Jk ≤ Tf , k = 1 . . . ,K, (5c)∑
k∈Ki,j

mj,k ≤ 1, i = 1, . . . , Nb, (5d)

where Ki,j is the set of MSs that enter the coverage of the

ith BS in the jth frame. Problem (5) only needs the user

and network levels of context information in the prediction

window.

The search space of this problem is O(KTf ), which how-

ever is still too large to find the optimal solution.

B. Transmission Planning Algorithm

Introduce a variable J � max Jk. Then, finding the solution

of problem (5) is equivalent to finding the minimal value of

J that makes the following problem feasible,

min
J,m1,...,mK

J (6a)

s.t.
J∑

j=1

mj,kR̄j,kTsΔt ≥ B, (6b)

J ≤ Tf , (6c)∑
k∈Ki,j

mj,k ≤ 1, i = 1, . . . , Nb. (6d)

Since the values of J is finite within {1, . . . , Tf}, the key of

solving problem (5) is to find whether problem (6) is feasible

for a given J . If a group of planning indicators for all users,

m1, . . . ,mK , can be obtained for a given value of J , problem

(6) is feasible for the given J , and then the feasible solution

with minimal value of J is the final solution.

The transmission plans of multiple MSs are coupled, since

allocating a frame to one MS may affect the plans of other

MSs. To find the feasibility of problem (6) efficiently, in

what follows we propose a heuristic algorithm, where the

transmission plan of each MS is sequentially designed and

the order to make the plans is founded by a sort of branch

and bound method.

For a given value of J , after obtaining the feasibility

solutions of the former k − 1 MSs, the CU finds the feasi-



ble solution of the following problem, which minimizes the

number of frames occupied by the kth MS, i.e.,

min
mk

J∑
j=1

mj,k (7a)

s.t.
J∑

j=1

mj,kR̄j,kTsΔt ≥ B, (7b)

∑
[k]∈Ki,j

⋂{[1],...,k}
mj,k ≤ 1, i = 1, . . . , Nb. (7c)

where constraint (7b) ensures that B bits can be conveyed

within J frames, and constraint (7c) ensures that the kth MS

does not use the resources already occupied by the former

k − 1 MSs. After finding the feasible solutions from a series

of K problems like this for every J among {1, . . . , Tf}, the

CU can obtain the plan for the kth user from the feasible

solutions with minimal value of J .

When problem (7) is feasible, its solution is easy to find

with closed-form expression, which however has complicated

form and hence is not shown. In fact, the solution is simply

transmitting at the remaining frames not selected by the former

k−1 MSs with largest achievable rates, as illustrated as Fig. 2.

The problem may become infeasible when too few resources

left by the former MSs. In this case, the transmission of the

B bits for the kth MS cannot be completed.

A
ch

ie
v
ab

le
ra

te
o
f

th
e
k

th
u
se

r

TimeResources occupied by the former k − 1 users

Solution for the kth user

Fig. 2. Transmission plan for MSk after some resources are occupied by the
former k − 1 MSs.

For any given value of J , the order of MSs for sequentially

finding feasible solutions of problem (7) may lead to different

feasible states. By exhaustive searching among all possible or-

ders for the MSs, whether J is feasible for the K problems of

(7) can be found. However, in the worst case, K! orders need

to be tried, which leads to high computational complexity.

To obtain a viable algorithm to judge the feasibility with

given value of J , we introduce a branch-and-bound like

method. The intuition behind the algorithm is that the selection

of former MSs is more important than the later MSs in order

to improve the completion rate. For example, if the 1st MS is

properly selected, then more resources can be left for the 2nd

MS and so on, and hence the transmission completion rate

within the prediction window will be high. The completion

rate is equal to the number of bits delivered by the feasible

solutions of the K sequentially solved problem (7) divided by

the overall KB bits.

We define the sequences of MSs starting with the same MS

as a branch, and the corresponding sequences as subbranches

(i.e., an order of MSs to sequentially solve problem (7)).

Since some orders of MSs may make the problem infeasible

while others may not, we introduce the completion rate as

the bound to remove branches (and hence the corresponding

subbranches). Instead of computing the completion rates of

all its sub-branches, the bound of the completion rates of

the subbranches of one branch is approximated by that of a

randomly picked subbranch of the branch (because it is more

important to select former MSs). After finding the branch with

the largest completion rate, the starting MS is selected as the

1st MS in the order of MSs. Then, we treat the subbranches

of this branch with the same 2nd MS as a “new” branch, and

repeat previous steps to select the 2nd MS in the order. When

the order for all the K MSs has been found, if the completion

rate is less than one, the CU will regard problem (7) with this

order of MSs as infeasible with given J .

To make the algorithm easy understanding, we provide an

example in Fig. 3, where the requests of four MSs, user A, user

B, user C and user D, arrive the network within the prediction

window. There are four branches in total, each starting with

different MSs, and each with six subbranches. Hence, there are

overall 24 possible orders (sequences) of MSs. The algorithm

is then implemented by the following steps.

First Round Second Round Last Round

user B
user C

user D

user D

user C

user C
user B

user D

user D

user B

user D
user B

user C

user C

user B

(1)

(2)

(3)

(4)

(5)

(6)

user A

Third Round

user A
user C

user D

user D

user C

user C
user A

user D

user D

user A

user D
user A

user C

user C

user A

user B

user A
user B

user D

user D

user B

user B
user A

user D

user D

user A

user D
user A

user B

user B

user A

user C

user A
user B

user C

user C

user B

user B
user A

user C

user C

user A

user C
user A

user B

user B

user A

user D

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(i)

(ii)

(iii)

(iv)

Sequence

Fig. 3. Example of selecting order of MSs for any given value of J .

• Step 1: Randomly pick one subbranch in each branch,

say subbranch (1), (7), (13) and (19), respectively from



the four branches. Then, judge whether problem (7) is

feasible for the given value of J for each of the four

orders of MSs.

• Step 2: If problem (7) is feasible for a branch, say

branch (i), then J is feasible. If problem (7) is infeasible

for all branches, then compute the completion rate for

every branch, and pick up the branch with the largest

completion rate.

• Step 3: After the branch with the largest completion rate

is selected in the first round, say branch (i), go back to

Steps 1 and 2, where there are three “new” branches each

starting with user B, user C and user D, respectively.

Iterate through the two steps 1 and 2 until the final order

of MSs is obtained, say the 1st user sequence marked

with “(1)” in the figure.

C. Transmission Policy for Pre-downloading

After the transmission plan is made for every MS in the 1st

time slot of the first frame, the CU informs the corresponding

BSs along the trajectory of each MS. When a mobile MS

enters the coverage of a BS who is planned to serve the MS

in the predetermined frames, the BS starts to estimate the

instantaneous channel information of the MS, and transmits

the file to the MS with MRT using the instantaneous residual

transmit power and residual bandwidth subsequently in every

time slot of every frames.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed

resource allocation planning by simulations.

Consider a Nb-cell system with cell radius D = 250 m,

where Nb = 13, and all BSs each equipped with Nt = 6
antennas are located along a straight line. Nine mobile MSs

with speed vtk uniformly distributed in (5, 25) m/s move along

three roads of straight lines with minimum distance from the

BSs as 50 m, 100 m and 200 m, respectively, as shown in

Fig. 4. Each MS will request a file with B = 30 Mbytes

[9] within a prediction window containing Tf = 200 frames.

Each frame is with duration of one second, and contains

Ts = 100 time slots, i.e., each time slot is with duration

Δt = 10 milliseconds. The MSs separately initiate their

requests every 10 seconds starting from the 100th second in the

prediction window. The maximal transmit power of each BS

is 40 W and cell-edge SNR is set as 5 dB, where the intercell

interference is implicitly reflected. The path loss model is

36.8 + 36.7 log10(d), where d is the distance between the BS

and user in meter. To reflect the different resource usage status

of the BSs by serving the RT traffic, we consider two types

of BSs: idle BS with average bandwidth W = 1 MHz and

busy BS with average bandwidth W = 10 MHz, which are

alternately located along the line as idle, idle, busy, busy, idle,

idle, and so on. The results are obtained from 100 Monte Carlo

trails, where in each trail the trajectory of each user stays the

same, while the small-scale fading channel is subject to i.i.d

Rayleigh block fading and the bandwidth in each time slot

uniformly varies with average value of W .

...

vt
1

vt
2

vt
3

D

BS 1 BS 2 BS Nb

User with NRT traffic User with RT traffic

Nb︷ ︸︸ ︷BSs

Fig. 4. Simulation setups, only three users with NRT traffic are shown in this
figure for simplicity.

We use the minimal transmission completion time of all

MSs as the performance metric. When this duration is short,

the residual resources in the prediction window are fully

used. Since context information is not obtained for free, a

nature question is whether only one level of information can

obtain most of the performance gain. Since user level and

network level context information should be employed jointly

to predict future data rate, the following transmission schemes

are simulated.

• Proactive resource allocation with three levels of context
information (with legend ”All Context”): The CU makes

a resource allocation plan for each MS arrived in the pre-

diction window with three levels of context information

by using the proposed algorithm. Then, the BSs transmit

to the MSs according to the plan informed by CU.

• Proactive resource allocation only with application level
context information (with legend ”A Context”): The CU

knows that several MSs will initiate their requests within

the prediction window and knows the files that each MS

will request. With this information at the start time of the

window, the CU informs the BSs who are closest to the

MSs to pre-download the files to the MSs before their

requests actually arrive and continue to transmit if some

files have not been completely conveyed after the requests

arrive. The transmission before and after the requests

arrive can be performed with best efforts, i.e., using all

the instantaneous residual bandwidth and transmit power

of the BS. When several MSs are in the same cell at

the same time slot, the BS transmits to the MS who can

achieve the highest data rate in the time slot.

• Reactive resource allocation without context information
(with legend ”No Context”): This is the traditional trans-

mission scheme, where the transmission begins right after

the requests truly arrive, again with best efforts.

To observe the gain brought by the prediction, we consider

two representative application scenarios.

• Scenario 1: At the start time of the prediction window,

the MSs who will initiate requests are located in the same

cell, where the BS (called the 1st BS) may be in idle or

busy state. When the MSs actually send their requests,

they move into different cells due to the different speeds.

• Scenario 2: At the start time of the prediction window,



the MSs who will initiate requests are located in different

cells. When the MSs actually send their requests, they

enter into the same cell, where the BS (called the last

BS) may be in idle or busy state.
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Fig. 5. Minimal transmission completion time of different transmission
schemes. (a) Scenario 1, (b) Scenario 2. The legends “idle BS” and “busy
BS” indicate the resource usage status of the 1st or last BS when multiple
MSs are gathered.

The simulation results are provided in Fig. 5. It is shown

from Fig. 5(a) that in scenario 1 “All Context” performs better

than “A Context”. This is because only with the application

level context information the 1st BS always transmits to the

MSs with good channels, which may miss the good channels

or large residual bandwidth for other MSs. Both proactive

resource allocation schemes exhibit remarkable gains over the

reactive scheme, where the gains are even remarkable when

the 1st BS is idle (more than three-fold performance gain in

terms of reducing the transmission completion time). The gain

comes from “serving” the MSs in advance before they start to

request. This indicates that in this scenario, knowing all the

context information is beneficial.

It is shown from Fig. 5(b) that “A Context” performs almost

the same as “All Context” and both are much better than

“No Context”. The performance gain comes from offloading

the traffic in the last BS where congestion will occur, by

exploiting the context information for transmitting in advance.

The proactive resource allocation schemes provide more than

six-fold performance gain in terms of reducing the trans-

mission completion time when the last BS is busy. Since

the MSs naturally distributed in different cells at the start

of the prediction window, the traffic is in fact automatically

offloaded to different BSs simply by using the application level

information. This indicates that only exploiting application

level context information is sufficient in this scenario.

V. CONCLUSIONS

In this paper, we investigated the performance gain of proac-

tive resource allocation by exploiting the application level,

network level and user level information. We first formulated a

resource allocation planning problem to minimize the maximal

transmission completion time within a prediction window.

We then provided a heuristic algorithm to find the solution.

Simulation results illustrated that the proactive transmission

mechanism can improve the spectrum usage efficiency by

exploiting the residual resources in the network and provide

substantial gain over the reactive transmission mechanism that

starts after the users’ requests truly arrive.
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