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ABSTRACT Future average channel gains are recently reported predictable within a minute-level horizon
for a mobile user. Predictive resource allocation for non-realtime service with future average channel gains
in a time window of one or more minutes long has been demonstrated effective in improving user experience
and network throughput as well as reducing energy consumption. Nonetheless, existing studies for predictive
resource allocation never consider inter-cell interference (ICI), which severely limits the user experience and
network performance in densely-deployed cellular networks. This paper investigates predictive resource
allocation in heterogeneous networks, where some base stations generate strong ICIs to some mobile users
requesting non-realtime service. Optimizing the resource allocation in a predictive manner for interference
networks is challenging, since how to allocate future resources depends on the future signal to interference-
plus-noise ratio, which in turn relies on the assigned resources. To deal with this difficulty, we introduce
a predictive interference coordination scheme to divide all BSs and users into groups, where the BS-user
pairs in each group can communicate simultaneously in a second-level frame. Then, we optimize a common
resource allocation plan for all users in each group. The plan essentially determines which BSs in the group
should be muted and the users should be associated with which active BS in each frame of the prediction
window. By resorting to graph theory, we obtain the optimal solution and derive a low-complexity algorithm.
Simulation results show that the proposed scheme outperforms existing relevant methods in terms of user
satisfactory rate in heterogeneous networks with heavy traffic load.

INDEX TERMS Predictive resource allocation, interference coordination, average channel gains, hetero-
geneous networks.

I. INTRODUCTION

THE prevalent and future cellular networks are hetero-
geneous, where low-power base stations (BSs) are de-

ployed within the coverage of high-power BSs to offload traf-
fic and improve user’s quality of service (QoS) [1]. However,
the reuse of spectrum resources and dense deployment of
cells in heterogeneous networks (HetNets) cause severe inter-
cell interference (ICI), which is a limiting factor to boost
network throughput and improve user experience.

Many inter-cell interference coordination (ICIC) tech-
niques have been proposed for HetNets. With time domain
ICIC, the macro BSs are muted (i.e., do not transmit signals)
in the almost blanking subframe [2]. With frequency domain
ICIC, the macro BSs and pico BSs are assigned with different

spectrum [3]–[6]. Noticing that user association is able to
control the interference level by adjusting the traffic load [7],
joint user association and spectrum partition problems were
formulated for HetNets with different objectives and the
optimal solutions were obtained in [4]–[6]. Considering that
user association and resource allocation are coupled, the joint
user association and power control was investigated in [8]–
[10], and the joint user association and orthogonal resource
allocation was studied in [11]–[14]. All existing methods
along this line of research mitigate ICI in the time scale
of millisecond (when small scale channels vary) or at most
in the time scale of seconds (when user locations change),
without considering the feature of services.

Wireless industry has recently witnessed an unprecedented
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growth of data traffic, which is expected to account for over
78% of global traffic by 2021. This type of non-realtime
traffic such as video-on-demand or file downloading is delay-
tolerant. The QoS of a user requesting such service will
be satisfied if its requested video segment or file can be
transmitted completely within an expected duration. On the
other hand, the total amount of data that should be transmitted
cannot exceed the number of bits in a requested segment or
file. While radio resource allocation has been investigated ex-
tensively, such as the ICIC techniques for HetNets [2]–[14],
and various methods proposed for relay systems, small cell
networks, vehicular communication networks, and device-to-
device communications [15]–[19], these traffic features are
rarely taken into consideration.

Meanwhile, big data analysts reveals that human mobility
is highly predictable [20]. In particular, trajectories of mobile
users can be predicted with various machine learning tech-
niques [21], [22]. By further combining with a radio map
[23], which stores or learns the pathloss and shadowing in
each location, predicting the average channel gains within a
minute-level time window becomes possible [24]. With the
predicted channel information, both the system performance
such as throughput [25] and energy consumption [26]–[28]
and the user experience for non-realtime service [29] can
be improved dramatically by allocating radio resources in a
predictive manner. The basic idea is to transmit to a mobile
user when the user moves to the vicinity of a BS [26].
Such an idea can be realized by optimizing a predictive
resource allocation plan for a user to convey the requested
file before the expected deadline. The plan determines which
BSs alongside the trajectory of a mobile user serve the user
in which time to satisfy the user’s QoS according to the
predicted channel condition. In [26], the potential of predic-
tive resource allocation is demonstrated by optimizing future
time resource allocation with channel state information (CSI)
(i.e., instantaneous channel gain) perfectly known over a
minute-level time horizon. In practice, however, CSI is hard
to predict beyond channel coherence time (in millisecond-
level) if not impossible. Based on the average channel gains
in a prediction window, resource allocation among future
frames (in second-level, to be defined later) was developed
in [27], [29], either to improve the QoS of each user or to
minimize the energy consumption of the system. In [30],
a predictive proportional fair scheduling was designed by
exploiting the average channel prediction. In [28], a robust
optimization framework was proposed to cope with the errors
on the predicted data rate.

Different from the non-predictive resource allocation [2]–
[19] that is optimized according to current instantaneous or
average channel gain, predictive resource allocation is de-
signed by assuming that future average channel gains or data
rates within a time window can be obtained by prediction.
As a consequence, predictive resource allocation can ensure
the QoS of non-realtime user (i.e., transmit the requested
file or video segment before the expected deadline) directly
by optimizing a resource allocation plan at the start of the

prediction window, before the real-time transmission at the
start of each time slot with known CSI.

All existing works along this line of research do not take
into account ICI (or treating ICI as noise), and consider
simplified network topology (e.g., homogeneous network or
even a single cell) [25]–[30]. When applied to HetNets where
traffic load varies drastic among cells, some ICIs are strong
that cannot be treated as noise, and hence the performance
achieved by these methods will inevitably degrade. Intu-
itively, ICI can be controlled more flexibly by leveraging
future average channel gains to improve QoS of mobile
users with delay tolerant service, since the interference can
be coordinated in a much larger time-space range. In the
interference networks, however, transmitting to a user with
good channel condition does not necessarily lead to high data
rate. The resource allocation plan should be optimized based
on the future information of signal to interference-plus-noise
ratio (SINR) instead of the average channel gain of each user.
On the other hand, the SINR depends on how the ICI is to be
coordinated and the resource is to be allocated. Owing to such
a “chicken-and-egg” problem, predictive resource allocation
in interference networks is more complex than interference-
free networks. So far, how to optimize the resource allocation
plan in interference networks is an open problem.

In this paper, we investigate predictive resource allocation
for mobile users requesting non-realtime service in HetNets
with ICI. To coordinate interference, we allow a BS mut-
ing when the BS generating strong ICI. To deal with the
“chicken-and-egg” challenge, we design the resource alloca-
tion plan in two steps at the start of a prediction window,
when future average channel gains are available. We first
optimize a predictive interference coordination scheme to
find which BSs can transmit to which users concurrently that
ensures a given average SINR. Then, we optimize a common
resource allocation plan for this group of BS-user pairs that
maximizes a network utility aiming to improve user satisfac-
tory rate. Since the common plan is made for a group of users
that request files with different sizes and are with different
average SINRs, it is non-trivial to satisfy the QoS for all these
users meanwhile not to waste radio resources. By resorting to
graph theory, we obtain the optimal interference coordination
scheme and the optimal resource allocation plan, and further
derive a low-complexity algorithm.

The major contributions are summarized as follows:

• We exploit predicted average channel gains to opti-
mize predictive resource allocation planning in hetero-
geneous interference networks. Existing works studying
predictive resource allocation either do not consider
interference at all [26], [28]–[30] or simply treat ICI as
noise [25], [27]. In addition, existing works either con-
sider time-division or frequency-division access to avoid
multi-user interference (MUI). To our best knowledge,
this is the first work to optimize predictive resource al-
location with interference coordination, or with spatial-
division multiple access.
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• We establish a framework for optimizing predictive
resource allocation plan in interference networks by
first optimizing a predictive interference coordination
scheme and then optimizing the resource allocation plan
to maximize the user satisfactory rate. To cope with the
difficulty in predictive interference coordination with
spatial-division multiple access, we divide each BS into
multiple virtual sub-BSs. To deal with the difficulty in
making a single plan for multiple users, we introduce
a logistic function to characterize the network utility
that can make more users satisfied without wasting
radio resources. Simulation results show that the pro-
posed low-complexity algorithm is near-optimal, and
provides much higher user satisfactory rate than existing
predictive resource allocation when the traffic load is
high and outperforms non-predictive resource allocation
remarkably when the prediction window is long.

The remainder of the paper is organized as follows. Section
II describes the system model. Section III introduces the pre-
dictive interference coordination and Section IV optimizes
the resource allocation plan. Section V provides simulation
results. Finally, we conclude this paper in Section VI.

Notations: Transposition and expectation are represented
by (·)T and E{·}, respectively. |X | denotes the cardinality of
a set X , X \ Y denotes the set of elements in X but not in
Y , ∅ denotes an empty set, and ‖x‖ denotes the norm of a
vector x.

II. SYSTEM MODEL
Consider a downlink HetNet as shown in Figure 1, which
consists of multiple-tier BSs (e.g., macro and pico BSs)
serving mobile users over a bandwidth of W . A macro BS is
equipped with more antennas and higher transmit power than
a pico BS, and hence has a larger coverage. To simplify the
notations, we do not differentiate the BSs in different tiers.
Denote the index set of G BSs as G = {1, · · · , G}, and the
index set ofK single-antenna users asK = {1, · · · ,K}. The
gth BS is equipped with Mg antennas and with maximum
transmit power Pg , ∀g ∈ G. Denote the gth BS and the kth
user as BSg and UEk, respectively.

Assume that the trajectory of each mobile user can be
predicted in a time window. At the start of the prediction
window, UEk requests a file with size of Bk bits that needs
to be transmitted within T , k = 1, · · · ,K. To obtain the
performance gain from predictive resource allocation, it is
no need to set the duration of the prediction window larger
than T . On the other hand, the duration of the prediction
window should be large enough such that the average channel
gains including the pathloss and shadowing of a mobile user
change significantly. If the predictable horizon is less than T ,
then multiple prediction windows are required to complete
the file transmission. For simplicity, we assume that the
duration of prediction window equals to T .

The prediction window is divided into Nf frames each
with the interval of Tf = T/Nf , and each frame is divided
into Ns time slots each with the interval of Ts = Tf/Ns, as

shown in Figure 2(a). The average channel gain is assumed
staying constant in each frame but may vary among differ-
ent frames. The instantaneous channel gain (i.e., the CSI)
changes independently among time slots.

From the predicted trajectories and with the help of a radio
map, a center point (CP) can predict the average channel
gains between all BSs and all users in each frame within the
prediction window. To demonstrate the potential of predictive
resource allocation in interference networks, we assume that
the future average channel gains in the window are perfectly
known. However, we only assume that CSI is perfect in cur-
rent time slot but do not assume that future CSI is predictable.
As a result, the minimal time unit for making a resource
allocation plan is frame duration, as illustrated in Figure 2
(b).

A. RESOURCE ALLOCATION PLANNING
At the start of the prediction window, the CP first finds an
interference coordination scheme and then makes a resource
allocation plan for each user, both with the predicted average
channel gains. Then, the CP informs the corresponding BSs
that will serve the users about the plans. The plan determines
which active BSs serve a user in which frames to meet the
request of the user. From another perspective, we can say that
the plan determines which BSs should be muted and the users
are associated with which BSs in each frame.

To indicate which BSs are able to serve a particular user
in each frame, we introduce a candidate BS set. In the
lth frame, the candidate BS set of UEk is denoted by Blk,
which contains several adjacent BSs who can provide higher
average received signal powers to the user in the frame.

When multiple users are associated with the same BS in a
frame (say the lth frame) according to the plans, these users
constitute a set called candidate user set, denoted by Alg .
From the candidate BS set of UEk in the lth frame (i.e., Blk),
we can obtain the candidate user set of BSg in the frame as

Alg =
{
k | g ∈ Blk, k ∈ K

}
, ∀k ∈ K, l = 1, · · · , Nf . (1)

We use a binary variable to indicate which BS serves a
user in a frame, called resource allocation planning variable,
which is

xlk,g ∈ {0, 1}, ∀g ∈ Blk, k ∈ K, l = 1, · · · , Nf . (2)

When BSg serves UEk in the lth frame, xlk,g = 1, otherwise,
xlk,g = 0.

We do not consider cooperative transmission among the
BSs, so that no more than one BS can serve a user at the
same time. Hence, the resource allocation planning variable
satisfies ∑

g∈Bl
k

xlk,g ≤ 1, ∀k ∈ K, l = 1, · · · , Nf . (3)
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B. TRANSMISSION SCHEME

At the start of each time slot, the instantaneous channel gains
of the users accessed to a BS can be available at the BS
by channel estimation. With the CSI, the BS transmits to
the users according to the resource allocation plan using the
following transmission scheme.

To exploit the antennas at each BS to serve multiple users,
we consider multi-user multi-input-multi-output (MIMO)
precoder to remove MUI. To simplify the analysis, we em-
ploy the zero-forcing (ZF) precoder. Since CSI is assumed
perfect, if the number of selected users in each time slot of
a frame (say the lth frame) does not exceed the number of
antennas at the BS (say the gth BS), i.e.,

Kl
g =

∑
k∈Al

g

xlk,g ≤Mg, ∀g ∈ G, l = 1, · · · , Nf , (4)

then MUI can be eliminated thoroughly.
We consider Rayleigh fading channel. Let wwwl,tk,g ∈ CMg×1

denote the ZF precoder of BSg for UEk, which satisfies{
‖wwwl,tk,g‖2 = 1,

(hhhl,tk,g)
Twwwl,tj,g = 0, ∀xj,g = 1, j 6= k

, (5)

where hhhl,tk,g ∈ CMg×1 is an Mg-length instantaneous channel
vector from BSg to UEk, which is the zero-mean Gaussian
vector satisfying ‖hhhl,tk,g‖2 = Mgα

l
k,g , and αlk,g is the average

channel gain in the lth frame.
To simplify the analysis, we consider equal power alloca-

tion among users in each frame. Then, the transmit power
allocated to UEk by BSg in the lth frame is

P lk,g =

{
Pg

Kl
g
, ∀xlk,g = 1,

0, otherwise.
(6)

When UEk is served by BSg in the tth time slot of the lth
frame, its received signal can be expressed as

yl,tk =
√
P lk,g(hhh

l,t
k,g)

Twwwl,tk,gs
l,t
k (7)

+

G∑
i=1,i6=g

∑
j∈Al

i

xlj,i

√
P lj,i(hhh

l,t
k,i)

Twwwl,tj,is
l,t
j + nl,tk ,

where sl,tk is the symbol transmitted to UEk, satisfying
E{sl,tk } = 0 and E{|sl,tk |2} = 1, nl,tk is the Gaussian noise
satisfying E{nl,tk } = 0 and E{|nl,tk |2} = σ2

n, and σ2
n is the

noise power. The second term in (7) is ICI.

C. PERFORMANCE METRIC
The instantaneous SINR of UEk served by BSg in the tth time
slot of the lth frame is

γl,tk,g =
Pg
Kl
g

∣∣∣(hhhl,tk,g)Twwwl,tk,g∣∣∣2
I l,tk,g + σ2

n

, (8)
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where the ICI power is

I l,tk,g =

G∑
i=1,i6=g

∑
j∈Al

i

xlj,iPi

Kl
i

∣∣∣(hhhl,tk,i)Twwwl,tj,i∣∣∣2 . (9)

From (8), the instantaneous data rate in the tth time slot is

Rl,tk,g = W log2

1 +
Pg
Kl
g

∣∣∣(hhhl,tk,g)Twwwl,tk,g∣∣∣2
I l,tk,g + σ2

n

 . (10)

The transmitted data of UEk in the lth frame is

Dl
k,g = Ts

Ns∑
t=1

Rl,tk,g =
Tf
Ns

Ns∑
t=1

Rl,tk,g. (11)

Then, the overall amount of data transmitted to UEk in the
prediction window is Dk =

∑Nf

l=1

∑G
g=1 x

l
k,gD

l
k,g .

To reflect the service quality for UEk, we consider a
completion ratio defined as

Jk =
Dk

Bk
=

Nf∑
l=1

G∑
g=1

xlk,gD
l
k,g

Bk
. (12)

When Jk = 1, the demand of UEk is satisfied, i.e., the
required Bk bits are transmitted to the user within duration
T . Let ρk = 1(Jk = 1) indicate whether or not UEk is
satisfied, where 1(x) is the indicator function. Then, the user
satisfactory rate of the network is

ρ =
1

K

K∑
k=1

ρk =
1

K

K∑
k=1

1(Jk = 1), (13)

which reflects the percentage of users, whose requested files
can be completely conveyed before the expected transmission
deadline, among all non-realtime users.

III. PREDICTIVE INTERFERENCE COORDINATION
In interference networks, the resource allocation planning
variables should be optimized based on the future informa-
tion of the SINR. From (8) and (9) we know that the SINR
(and hence the amount of data transmitted to UEk in the
lth frame, Dl

k,g , as well as Jk) and the resource allocation
planning variables are coupled. As a consequence, when
we make the resource allocation plan to maximize the user
satisfactory rate of interference networks, the optimization is
challenging.

To circumvent this difficulty, we introduce a predictive
interference coordination scheme. The basic idea of the
scheme is to avoid strong interference in each frame by BS
muting and allow the BS-user pairs with weak interference
among each other to transmit simultaneously in a frame with
a satisfactory average QoS. After we find such a scheme, i.e.,
the BS-user pairs with weak interference, we can optimize
the predictive resource allocation plan to these BS-user pairs
to meet the user requirements.

To improve the performance of all users, we coordinate
the interference to ensure that the SINR exceeds a threshold.

Considering that only the average channel gains are available
at the start of the prediction window, we use the average
SINR in each frame γ̄lk,g , E{γl,tk,g} to reflect the QoS. The
interference coordination scheme is designed to guarantee
that the average SINR satisfies

γ̄lk,g ≥ γT, (14)

when BSg serves UEk in the lth frame.
Figure 3 illustrates the idea of predictive interference co-

ordination scheme, where only strong ICIs are coordinated
to meet the QoS constraint in (14). To make full use of
resources, a BS can share the resource with the BSs who
generate weak ICIs to the users served by the BS.

BS2

BS1

BS3

BS5

BS4
BS6

UE1

Served BS

Strong interfering BS

Weak interfering BS

FIGURE 3. Predictive interference coordination

In this section, we design the prediction interference co-
ordination scheme. We first study which interfering BSs
should be muted for a user to meet the QoS requirement of
the user. Then, we divide the BS-user pairs in the network
into different groups, and find the BS-user pairs with weak
interference, resorting to a graph-based method.

A. BS SET GENERATING STRONG ICI TO A UE
To coordinate strong ICIs to meet (14), we use an interfering
BS set to indicate which interfering BSs should be muted
when BSg serves UEk in the lth frame, denoted by Ilk,g .

To avoid the ICIs from the BSs in Ilk,g , the resource
allocation planning variables need to satisfy

xlk,g +
∑
j∈Al

i

xlj,i ≤ 1, ∀ i ∈ Ilk,g. (15)

It indicates that when BSg serves UEk in the lth frame, the
BSs in Ilk,g should be muted in the same frame.

To derive the interfering BS set for a user, in what follows
we derive the average SINR in each frame. After the strong
ICIs are coordinated, the residual ICIs are weak, which can
be approximated as Gaussian noise based on the Gaussian
approximation in [31]. Then, we can approximate the resid-
ual ICI power as its average power in one frame. From (9),
the average power of the residual ICIs generated to UEk in
the lth frame can be expressed as

I lk,g = E{I l,tk,g} =

G∑
i=1,i6=g

ρliPiE
{∣∣∣(hhhl,tk,i)Twwwl,tj,i∣∣∣2} , (16)

where ρli = 1(
∑
j∈Al

i
xlj,i > 0) is a binary variable denoting

whether or not BSi is active on the lth frame.
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Recall that the elements of hhhl,tk,i are Gaussian random vari-
ables with mean 0 and variance αlk,i. With ZF precoder, the
elements of wwwl,tj,i are independent of those of hhhl,tk,i and satisfy
‖wwwl,tj,i‖2 = 1. Hence, (hhhl,tk,i)

Twwwl,tj,i is a Gaussian random vari-
able with mean 0 and variance αlk,i, i.e., E{|(hhhl,tk,i)Twww

l,t
j,i|2} =

αlk,i. Upon substituting into (16), we have

I lk,g =

G∑
i=1,i6=g

ρliPiα
l
k,i. (17)

Since the strong ICIs are coordinated, i.e., the BSs in Ilk,g
mute, we have ρli = 0, ∀i ∈ Ilk,g . Besides, the other BSs only
generate weak ICIs, whether they are active or not has little
impact on I lk,g . Therefore, the average residual ICI power at
UEk in the lth frame can be approximated as

I lk,g ≈
G∑

i=1,i6=g

Piα
l
k,i −

G∑
i∈Ilk,g

Piα
l
k,i. (18)

When computing the SINR with (8), the number of served
users Kl

g =
∑
k∈Al

g
xlk,g is unknown. Here, we consider a

conservative estimation, i.e., approximating Kl
g as its upper-

bound K̂l
g = min{Mg, |Alg|}. Then, the SINR in the tth time

slot of the lth frame is approximated as

γl,tk,g ≈
Pg

K̂l
g

∣∣∣(hhhl,tk,g)Twwwl,tk,g∣∣∣2
I lk,g + σ2

n

. (19)

When the number of time slots in each frame is large, the
elements of hhhl,tk,g over different time slots are ergodic. Since
the residual interference is approximated as the Gaussian
noise independent of hhhl,tk,g , the instantaneous SINR is ergodic
over these time slots. From the analysis in [32], the average
SINR in the lth frame can be obtained as

γ̄lk,g =
Pg

K̂l
g

αlk,g(Mg − K̂l
g + 1)

I lk,g + σ2
n

. (20)

By substituting (20) into (14), the power of residual ICI
after interference coordination should meet

I lk,g ≤
Pgα

l
k,g(Mg − K̂l

g + 1)

γTK̂l
g

− σ2
n. (21)

Upon substituting into (18), the power of coordinated strong
ICI should satisfy

G∑
i∈Ilk,g

Piα
l
k,i≥

G∑
i=1,i6=g

Piα
l
k,i + σ2

n −
Pgα

l
k,g(Mg − K̂l

g + 1)

γTK̂l
g

.

(22)

The interfering BS set Ilk,g satisfying (22) contains several
strongest interfering BSs, which can be constructed in a
recursive way. In particular, we first set Ilk,g = ∅ and

J lk,g = G \ {g} to initialize, and then find the BS with the
maximal interference power in J lk,g and put it into Ilk,g , i.e.,

i = arg max
j∈J l

k,g

{
Pjα

l
k,j

}
, (23)

Ilk,g ← Ilk,g ∪ {i}, J lk,g ← J lk,g \ {i}.

By repeating (23) until (22) is satisfied, Ilk,g is finally ob-
tained.

B. BS-UE PAIRS WITH WEAK ICI
From an interfering BS set for UEk when the user is associ-
ated with BSg in the lth frame (i.e., Ilk,g), we know which
BSs should be muted. According to the interfering BS sets
of all users in the network, we can find strong ICIs existing
among which BS-user pairs, i.e., conflicts exist among the
pairs. Then, we can obtain the BS-user pairs with weak ICI
in each frame, which are the group of BSs and users able
to communicate concurrently in a frame to satisfy the QoS
constraint in (14). Since a graph is easy to describe the
conflict relationships among the BS-user pairs, we resort to
graph theory [33] to find such group, i.e., the interference
coordination scheme.

Since (3) and (4) are satisfied when we derive (19), if the
constraints in (3), (4), and (15) with the interfering BS set
obtained from (23) are satisfied, the constraint in (14) will
be satisfied. We construct a graph to denote these constraints,
which is called conflict graph.

1) Conflict Graph
Definition 1 (Conflict Graph): A conflict graph is an undi-
rected graph, where the vertexes denote all possible BS-user
pairs and the edges denote the conflicts among these BS-user
pairs.

Let Cl =
(
V l, E l

)
denote the conflict graph in the lth

frame, where V l =
{

(k, g)
∣∣ g ∈ Blk, k ∈ K} is the vertex

set, and E l =
{

((k, g), (j, i))
∣∣∀xlk,g + xlj,i ≤ 1

}
is the edge

set. The vertex set can be obtained from the candidate BS sets
of all users directly. In the following, we construct the edge
set to represent the constraints in (3), (4), and (15).

The constraint in (3) is equivalent to

xlk,g + xlk,i ≤ 1, ∀i 6= g, i ∈ Blk, (24)

which mean that if UEk is served by BSg , the user cannot be
served by other BS in the frame. Then, an edge connecting
(k, g) and (k, i), ∀i 6= g can denote the constraint, which is
called BS conflict edge.

The constraint in (15) can be rewritten as

xlk,g + xlj,i ≤ 1, ∀j ∈ Ali, i ∈ Ilk,g, (25)

which means that if BSg serves UEk, BSi that is serving UEj
should be muted to avoid generating strong ICI. An edge
connecting (k, g) and (j, i), ∀j 6= k, i 6= g, i ∈ Ilk,g
can represent this constraint, which is called ICI coordination
conflict edge.
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However, the constraint in (4) can not be directly reflected
in conflict graph except in two extreme systems. One is
massive MIMO system and the other is single-antenna sys-
tem, where each BS is equipped with a single antenna. In a
massive MIMO system, since the number of candidate users
is far less than the number of antennas, the BS is able to serve
all users and the constraint (4) is unnecessary. While in a
single-antenna system, since (4) reduces to xlk,g + xlj,g ≤
1, ∀j 6= k, an edge connecting (k, g) and (j, g) can denote
the constraint.

To use the conflict edges to denote (4) for the systems with
general antenna configurations, we divide a BS equipped
with multiple antennas into multiple virtual sub-BSs each
with a single antenna. Then, BSg becomes Mg sub-BSs
whose indexes are denoted as a set Gg = {g1, · · · , gMg}.
When the different sub-BSs from one BS serve different
users, the interference among different sub-BS and user pairs
is MUI rather than ICI. Since the MUI can be eliminated
by the ZF precoder, there is no need to introduce any
conflict edge between these sub-BS and user pairs. From
the resource allocation planning variables of the sub-BSs,
we can obtain the planning variable of the original BS as
xlk,g =

∑
s∈Gg x

l
k,s.

By dividing each BS into multiple virtual sub-BSs, the
edges connecting (k, s) and (j, s), ∀s ∈ Gg can represent
the constraint in (4). However, when dividing all BSs, the
number of vertexes grows, which increases the complex-
ity of using the conflict graph to obtain feasible solutions.
Therefore, we should judge whether or not a BS needs to be
divided. When Mg ≥ |Alg|, since (4) is always satisfied, it
is unnecessary to divide these BSs. Then, we only need to
divide the BSs in G̃l = {g | Mg < |Alg|}. Therefore, (4) is
equivalent to

xlk,s + xlj,s ≤ 1, ∀j 6= k, s ∈ Gg, g ∈ G̃l. (26)

Then, the constraint is denoted by an edge connecting (k, s)
and (j, s), ∀j 6= k, which is called user conflict edge.

For BSg , ∀g ∈ G̃l, the BS index in the candidate BS set
Blk and interfering BS set Ilk,g should be replaced by the
corresponding virtual sub-BS indexes, which are denoted by
B̃lk and Ĩlk,g , respectively.

Finally, the conflict graph in the lth frame is constructed as
Cl =

(
V l, E l

)
, where V l is

V l =
{

(k, g)|g ∈ B̃lk, k ∈ K
}
, (27)

and E l is obtained from (24), (25), and (26), which is

E l =

((k, g), (j, i))

∣∣∣∣∣∣
j = k, i 6= g, g ∈ B̃lk, or

j 6= k, i = g, i ∈ Gs, s ∈ G̃l, or

j 6= k, i 6= g, i ∈ Ĩlk,g

 .

(28)

2) An Example of Conflict Graph
In the following, we illustrate how to construct a conflict
graph in each frame. We consider an example in Figure 4,

where five BSs serve five users. BS1 ∼ BS4 have one antenna
and BS5 has two antennas.

(1,1)

(3,51)

(3,52)

(2,2)

(4,3)
(4,4)

(5,4)

(1,51)

(1,52)

(2,51)

(2,52)

UE1

UE3

UE4

UE5

UE2

UE1

BS1 BS2

BS3 BS4

UE2

UE3

UE4

UE5

BS5

(a) Interference Network (b) Conflict Graph

FIGURE 4. Interference network and conflict graph for one frame.

In Figure 4(a), from each ellipse region we can obtain the
candidate BS sets. According to the BSs and users’ locations,
we can obtain the interfering BS sets. Both sets are listed in
Table 1, where I3,5 indicates the interfering BS set when BS5

serves UE3 in the lth frame (we remove the superscript that
indicating the frame index l for simplicity).

TABLE 1. Original candidate and interfering BS sets of different UEs

UEk Candidate BS set Interfering BS set
k = 1 B1 = {1, 5} I1,1 = {3, 5}, I1,5 = {1}
k = 2 B2 = {2, 5} I2,2 = {5}, I2,5 = {2}
k = 3 B3 = {5} I3,5 = {2, 4}
k = 4 B4 = {3, 4} I4,3 = ∅, I4,4 = {3}
k = 5 B5 = {4} I5,4 = ∅

From the candidate BS sets of all users in a frame, we
obtain the candidate user sets of different BSs in the frame
and list them in Table 2 (again we remove the superscript l).

TABLE 2. Candidate UE sets of different BSs

BSg Num. of antennas Candidate user set Num. of users
g = 1 M1 = 1 A1 = {1} |A1| = 1
g = 2 M2 = 1 A2 = {2} |A2| = 1
g = 3 M3 = 1 A3 = {4} |A3| = 1
g = 4 M4 = 1 A4 = {4, 5} |A4| = 2
g = 5 M5 = 2 A5 = {1, 2, 3} |A5| = 3

Since M5 > 1 and M5 < |A5|, it is necessary to divide
BS5 into M5 = 2 virtual sub-BSs, denoted by BS51 and
BS52 . Then, the final candidate BS and interfering BS sets
are obtained as shown in Table 3, where I3,51 indicates the
interfering BS set when BS51 (i.e., the first antenna of BS5)
serves UE3.

TABLE 3. Final candidate and interfering BS sets of different UEs

UEk Candidate BS set Interfering BS set
k = 1 B̃1={1, 51, 52} Ĩ1,1={3, 51, 52}, Ĩ1,51= Ĩ1,52={1}
k = 2 B̃2={2, 51, 52} Ĩ2,2={51, 52}, Ĩ2,51 = Ĩ2,52 ={2}
k = 3 B̃3 = {51, 52} Ĩ3,51 = Ĩ3,52 = {2, 4}
k = 4 B̃4 = {3, 4} Ĩ4,3 = ∅, Ĩ4,4 = {3}
k = 5 B̃5 = {4} Ĩ5,4 = ∅
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According to (27), we obtain all vertexes of the con-
flict graph, which are (1, 1), (1, 51), (1, 52), (2, 2), (2, 51),
(2, 52), (3, 51), (3, 52), (4, 3), (4, 4), and (5, 4).

From Table 3, we can see that BS3 or BS4 can serve UE4,
but only one BS can serve the user in the frame. Therefore,
we plot a solid line between (4, 3) and (4, 4) to denote a BS
conflict edge. BS4 can serve UE4 or UE5, but only serves
one user. Hence, we plot a dashed line between (4, 4) and
(5, 4) to denote a user conflict edge. Moreover, when BS3

and BS1 serve UE4 and UE1, respectively, UE1 suffers from
the strong ICI from BS3. To denote the ICI, we plot a dot-
dash line between (4, 3) and (1, 1). Following the same way,
we obtain all BS, user, and ICI coordination conflict edges.
The resulting conflict graph is shown in Figure 4(b), where
each small ellipse indicates a vertex.

3) Independent Set
After constructing the conflict graph, we can obtain the
possible interference coordination results, which are the in-
dependent sets of the conflict graph.
Definition 2 (Independent Set): Given a graph C = (V, E), an
independent set is a subset of vertexes D ∈ V , such that no
two vertexes in D are connected, denoted by D ∈ IS(C). A
maximal independent set (MIS) is an independent set that is
not a subset of any other independent set [33].

For the conflict graph C, we can obtain all its independent
sets with standard tools of graph theory [33]. Taking the
conflict graph in Figure 4 as an example, there are many
different independent sets. Due to the lack of space, we only
list some independent sets as follows,

D1 = {(1, 1), (2, 2), (4, 4)}
D2 = {(1, 51), (2, 52), (4, 3), (5, 4)},
D3 = {(1, 51), (2, 52), (4, 4)},
D4 = {(1, 51), (3, 52), (4, 3)},
D5 = {(2, 51), (3, 52), (4, 3), (5, 4)},
· · ·

From the independent set, we know which BS-user pairs
can use the same frame after muting the BSs that generate
strong interference. Let Sl ∈ IS(Cl) denote the chosen
independent set in the lth frame.

Then, the resource allocation planning variables for the
users capable to be served by the BSs that belong to the
independent set in the lth frame can be set as identical, i.e.,

xlk,g =

{
1, ∀(k, g) ∈ Sl,
0, otherwise.

(29)

This indicates that the resource (i.e., each frame) can be
allocated to a group of users rather than a single user.

IV. PREDICTIVE RESOURCE ALLOCATION PLANNING
In this section, we optimize the resource allocation plan
to the BS-user groups obtained from the independent sets,
based on the average channel gains in the prediction window.
We first formulate the optimization problem to maximize a

network utility to improve user satisfactory rate, and then
find the globally optimal solution. Finally, we develop a low-
complexity algorithm.

A. PROBLEM FORMULATION
The user satisfactory rate defined in (13) can be applied for
evaluating the performance of the proposed solution, but is
not appropriate for serving as an optimization objective for
resource allocation. This is because ρk is a step function of
the completion ratio Jk, which cannot reflect the contribution
of the allocated resources to Jk when a file has not been
completely transmitted.

To properly adjust the allocated resources to UEk with
different values of Jk, we take a logistic function with a “S”
shape, U(Jk), as the performance metric of each user, where

U(x) =
1

1 + exp(−a(x− x0))
, (30)

and a > 0 controls the steepness of the curve, and x0 is the x-
value of the sigmoid’s midpoint, as shown in Figure 5. When
a = 1 and x0 = 0, U(Jk) is the standard sigmoid function.
When a → ∞ and x0 = 1, U(Jk) is equal to ρk, which
indicates whether or not UEk is satisfied.
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FIGURE 5. Logistic functions with different parameters.

U(x) is a monotonically increasing function from 0 to 1.
The growth is approximately exponential in the initial stage,
then slows down in the saturation stage, and stops in the
maturity stage. The rationale to select such a function as the
weight function is explained as follows.

In predictive resource allocation for the users requesting
files, a common way to avoid assigning unnecessary frames
to UEk is to impose a constraint of Dk ≤ Bk. However,
our analysis in Section III-B3 indicates that the resource can
be assigned to a group of users at the same time rather than
a single user after the interference coordination. When the
file transmission of some users in the group are completed
but those of others are not, such a constraint may cause that
the files of other users cannot be completely transmitted.
As shown in Figure 5, the considered logistic function can
adjust its growth according to the completion ratio. When
Jk increases and approaches to one, the growth slows down
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and finally stops. With such function, more resources will be
allocated to a user whose file transmission will be completed
soon (say a cell-central user) and less resources will be
allocated to a user who has little hope to satisfy. Besides,
instead of using a simple exponential function, the saturation
stage of the function allows more users to satisfy, since the
weight for an almost-completed user is already very large.
By choosing appropriate parameters of the function, we can
reduce the waste of resources by not allocating frames to
the users who have been satisfied, without imposing the
constraint of Dk ≤ Bk.

Then, the network utility is defined as

U =

K∑
k=1

U(Jk)

=

K∑
k=1

U

Nf∑
l=1

G∑
g=1

xlk,gD̂
l
k,g

Bk

 , (31)

where D̂l
k,g is the amount of data transmitted to UEk by BSg

in the lth frame, which can be obtained from (11) as

D̂l
k,g = Tf R̂

l
k,g, (32)

where R̂lk,g = 1/Ns
∑Ns

t=1 R̂
l,t
k,g is the time-average rate in

the lth frame after the predictive interference coordination.
To obtain the achieved data rate of UEk when served by

BSg in the tth time slot of the jth frame after the interference
coordination, R̂l,tk,g , we need to derive the corresponding
SINR. Recall that (21) is derived from (14), which is the
target of the ICI coordination. When the equality of (14)
holds, (21) is satisfied after the coordination. By substituting
the right-hand side of (21) into (19), the SINR achieved after
the interference coordination becomes

γl,tk,g ≈
γT

∣∣∣(hhhl,tk,g)Twwwl,tk,g∣∣∣2
αlk,g(Mg − K̂l

g + 1)
, (33)

which follows Gamma distribution with shape m = Mg −
K̂l
g + 1 and scale θ = γT/(Mg − K̂l

g + 1) [34].
Then, from (33) we have

R̂l,tk,g = W log2

1 +
γT

∣∣∣(hhhl,tk,g)Twwwl,tk,g∣∣∣2
αlk,g(Mg − K̂l

g + 1)

 , (34)

which depends on the CSI that is unavailable at the start of
the prediction window.

To make the resource allocation plan with future average
channel gains, we need to derive the average data rate. When
the number of time slots in each frame is large and the
instantaneous SINR is ergodic over the time slots, we have

lim
Ns→∞

R̂lk,g = R̄lk,g = WE
{

log2

(
1 + γl,tk,g

)}
= W

∫ ∞
0

log2 (1 + x) fγ(x)dx, (35)

where fγ(x) is the probability distribution function (PDF)
of the SINR γl,tk,g . The analysis in [27] indicates that when
Ns ≥ 100, R̂lk,g ≈ R̄lk,g , which is accurate.

From the analysis in [34], for Rayleigh fading channels,
the ensemble-average data rate R̄lk,g can be obtained as

R̄lk,g =
W

ln 2Γ(m)θm
·G3,1

2,3

(
−m,−m+ 1
−m,−m, 0

∣∣∣∣1θ
)
, (36)

where Γ(x) is the Gamma function and G(x) is the Meijer
G-function. Recalling the expressions ofm and θ below (33),
R̄lk,g in (36) only depends on the average channel gain.

By replacing R̂lk,g in (32) with R̄lk,g , we have D̄l
k,g =

Tf R̄
l
k,g . After the interference coordination, we can make

the resource allocation plan to the BS-user pairs that can
communicate at the same time. Such a plan determines which
BSs in the network transmit signals to which users in a frame.
This amounts to find the independent sets that maximize
the network utility in all frames in the window. Then, the
optimization problem can be formulated as follows,

P1 : max
Sl
U =

K∑
k=1

U

Nf∑
l=1

G∑
g=1

xlk,gD̄
l
k,g

Bk


s.t. Sl ∈ IS(Cl), (29), l = 1, · · · , Nf .

B. MAXIMAL INDEPENDENT SET AND OPTIMAL
SOLUTION
Given two resource allocation solutions S1 = {S11 , · · · ,S

Nf

1 }
and S2 = {S12 , · · · ,S

Nf

2 }, let U(S1) and U(S2) denote the
network utility of S1 and S1, respectively. Considering that
U(x) is a monotonically increasing function, it is not hard to
show that if Sl1 ⊆ Sl2, l = 1, · · · , Nf , then

U(S1) ≤ U(S2). (37)

Thus, we can obtain the optimal solution from the MISs of
the conflict graphs, since an MIS is an independent set that
is not a subset of any other independent set. This indicates
that the globally optimal solution of problem P1, denoted as
S = {S1, · · · ,SNf }, satisfies

Sl ∈ MIS(Cl), l = 1, · · · , Nf , (38)

where MIS(Cl) denotes a set consisting of all MISs of Cl.
Consequently, the optimal solution S can be obtained by

first finding MIS(Cl) in each frame and then exhaustively
searching the combination of MISs in Nf frames to maxi-
mize U(S). By finding the optimal solution from the MISs
rather than all independent sets, the computational complex-
ity can be reduced. Although finding MISs is still NP-hard,
there exist efficient algorithms to find the MISs, such as [35].

With the solution S, we can find the optimal resource
allocation planning variables xlk,g, k = 1, · · · ,K, g =
1, · · · , G, l = 1, · · · , Nf from (29), after removing the
redundant frames assigned to a user that are unnecessary.

To help understand the optimal resource allocation plan,
we again consider the example in Section III-B2 for illustra-
tion. We set the number of frames in the prediction window
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as Nf = 3. For easy exposition, we assume that the conflict
graphs of all frames in the prediction window are same. Each
user requires a file with size ofBk = 2 megabytes (MB), and
the transmitted data after interference coordination in each
frame is D̂k,g = 1 MB. Therefore, it is necessary to assign
each user two frames. By exhaustively searching the MISs
that maximizes U , we obtain the optimal solution S as

S1 = D2 = {(1, 51), (2, 52), (4, 3), (5, 4)},
S2 = D4 = {(1, 52), (3, 51), (4, 3)},
S3 = D5 = {(2, 51), (3, 52), (4, 3), (5, 4)}.

It means that the first, second, and third frames are assigned
to the BS-user pairs in the independent sets D2, D4 and D5.
We can see that UE1, UE2, UE3, and UE5 are assigned with
two frames, while UE4 are assigned with three frames. Since
two frames are enough for each user, it is not necessary
to assign the third frame to UE4. Therefore, the optimal
resource allocation planning variables in the three frames are

x11,5 = x12,5 = x14,3 = x15,4 = 1,

x21,5 = x23,5 = x24,3 = 1,

x32,5 = x33,5 = x35,4 = 1.

C. LOW-COMPLEXITY ALGORITHM
To obtain the globally optimal solution of problem P1, we
need to first find all MISs of Nf conflict graphs and then find
the combinations of the MISs. Letting zl denote the number
of MISs in Cl, the searching space is O

(∏Nf

l=1 z
l
)

. As the
number of frames Nf increases, the complexity becomes
unacceptable.

In what follows, we develop a low-complexity algorithm,
which is inspired by an alternating optimization algorithm in
[30]. For each frame, given the assignment results of other
frames, we can find the optimal assignment in the frame. By
searching iteratively, we can obtain a suboptimal solution.

When assigning the resources in the lth frame, we aim to
maximize the network utility

U l =

K∑
k=1

U

(
xlk,gD̄

l
k,g

Bk
+ ηlk

)
, (39)

where ηlk =
∑l−1
τ=1,τ 6=l

∑G
i=1 x

τ
k,iD̄

τ
k,i/Bk is the total com-

pletion ratio in other frames.
Considering that xlk,g is a binary variable, it is not difficult

to rewrite (39) as

U l =

K∑
k=1

xlk,g∆U
l
k,g + U

(
ηlk
)
, (40)

where

∆U lk,g = U

(
D̄l
k,g

Bk
+ ηlk

)
−U(ηlk) (41)

is the utility increment when xlk,g = 1.
In (40), since U(ηlk) is independent of the plan-

ning variables in the lth frame, we can maximize

∑K
k=1

∑G
g=1 x

l
k,g∆U

l
k,g instead of maximizing U l. As a

result, we can formulate the problem as

P2 : max
Sl

K∑
k=1

G∑
g=1

xlk,g∆U
l
k,g

s.t. Sl ∈ MIS(Cl), (29).

In graph theory [33], a maximal weighted independent set
(MWIS) is an independent set with maximum total weight.
By setting the weight of vertex (k, g) in the conflict graph Cl
as ∆U lk,g , the optimal solution of problem P2 can be obtained
from the MWIS of Cl. According to the near-optimal solution
to find MWIS in [36], we obtain a low-complexity algorithm
with details shown in Algorithm 1.

Algorithm 1 Low-complexity Algorithm
Step 1:Initialization

Step 1.1: Construct the conflict graph in all frames Cl =(
V l, E l

)
, l = 1, · · · , Nf , according to (27) and (28).

Step 1.2: Choose a MIS of Cl denoted as Sl and set the
initial value of xlk,g, l = 1, · · · , Nf .

Step 2: Find resource allocation plan
For l = 1 : Nf

Step 2.1: Set the weight of each vertex in Cl as ∆U lk,g
in (41).
Step 2.2: Solve the MWIS of Cl denoted as Sl.
Step 2.3: Update the planning variables xlk,g from Sl.

Return Step 2 until the network utility stops increasing.

Since the computational complexity of solving MWIS by
the method in [36] is O(n3), where n is the number of
vertexes in graph, the complexity of Algorithm 1 is

O
(
b

Nf∑
l=1

|V l|3
)
≤ O

(
b

Nf∑
l=1

( G∑
g=1

|Alg|Mg

)3)
. (42)

where b is the number of iterations.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
solution by simulation.

Consider a HetNet, where Nm macro BSs and Np pico
BSs respectively equipped with Mm and Mp antennas serve
mobile users. Macro BSs are located along one side of a
straight road, with inter-site distance of 500 m. Pico BSs
are randomly located along both sides of the road, with the
minimal inter-site distance of 80 m. The distance from each
macro BS to the road is 120 m, and the distance from the
pico BSs to the road is uniformly distributed from 40 m to 60
m. The users move along the road with random speeds of 50
km/h ∼ 60 km/h. At the beginning of a prediction window,
each of K single-antenna users starts to request a file with
size of B MBytes in a random location on the road. In each
frame, three BSs providing the highest signal powers to a user
belong to the candidate BS set of the user. The road is with

10 VOLUME 4, 2018



K. Guo et al.: Interference Coordination and Resource Allocation Planning with Predicted Average Channel Gains for HetNets

length ofLm. To avoid the edge effect, a user arriving the end
of the road will re-enter the road from the other side. Other
system parameters are set according to Third Generation
Partnership Project (3GPP) specifications in [37], which are
summarized in Table 4. All results are obtained by averaging
over 500 simulation trails. In each trail, the locations of pico
BSs are random, the locations where the users initiate the
requests are random, the moving speed and direction of each
user are random, the shadowing is random according to log-
normal distribution with 50 m coherence distance, and small
scale channels among time slots are randomly generated
according to Rayleigh distribution.

TABLE 4. Simulation Setup

Parameters Values
System bandwidth W = 10 MHz

Duration of the prediction window 60 s
Duration of a frame 1 s

Duration of a time slot 10 ms
Noise power -95 dBm

Macro BS Pico BS
Transmission power 46 dBm 30 dBm
Path loss at 1 meter 15.3 dB 30.6 dB
Path loss exponent 37.6 36.7

Standard deviation of shadowing 8 dB 10 dB

A. ACCURACY OF THE APPROXIMATION
In Figure 6, we provide the cumulative distribution function
(CDF) of the average data rate in each frame numerically ob-
tained with (36) and from simulation to evaluate the accuracy
of the approximated average data rate.

We can see that the approximation is accurate when γT =
15 dB or 25 dB and is less accurate when γT = 5 dB.
This is because when deriving the approximated rate, we
conservatively estimate Kl

g as its maximal value, so that the
approximated data rate is a lower bound of the real data rate.
Besides, when γT is large, only a few BSs in the network
are active. Then, more users are severed by an active BS,
and the active BSs need to apply full multiplexing, hence the
conservative estimation of Kl

g is accurate in this case.
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FIGURE 6. Accuracy of approximated average rate in each frame.

B. PERFORMANCE LOSS OF THE LOW-COMPLEXITY
ALGORITHM
In Figure 7, we show the performance gap between the low-
complexity algorithm and the optimal solution of problem
P1 in a small-scale network, where we employ the user
satisfactory rate of the network (i.e., ρ in (13)) to evaluate
the performance.

The network parameters are Nm = 1, Np = 10, Mm = 2,
Mp = 1, K = 5, B = 30 MB, L = 500 m, T = 5 s
and γT = 25 dB. The related parameters in the proposed
low-complexity algorithm are x0 = 0.7 and a = 15,
respectively. We can see that the low-complexity algorithm
performs closely to the optimal solution.

C. IMPACT OF KEY PARAMETERS
To show the impact of the key parameters and evaluate
the performance of the proposed solution by simulating the
network with a more practical scale, we only consider the
low-complexity algorithm in the rest of this section.

Unless otherwise specified, in the sequel we consider the
following network setup: Nm = 4, Np = 30, Mm = 4,
Mp = 2, K = 30, B = 150 MB, L = 1500 m, T = 60 s and
γT = 25 dB, the related parameters in the low-complexity
algorithm are x0 = 0.7 and a = 15, respectively.
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FIGURE 7. User satisfactory rate of optimal and low-complexity solutions.

In Figure 8, we show the impact of the two parameters used
in the utility function on the behavior of the resource allo-
cation planning. We provide the complementary cumulative
distribution function (CCDF) of completion ratio Jk achieved
with different values of a and x0, recalling that the network
utility depends on the parameters of logistic function. The
user satisfactory ratio can be obtained from the value of
CCDF at the point of the curve where Jk equals to one at
the first time. We can see that when a and x0 increase, user
satisfactory rate grows. Besides, for larger values of a and x0,
more users are with Jk = 0 or Jk = 1. This indicates that the
resource allocation planning is more aggressive. That is, if a
user will not be satisfied at the end of the prediction window
due to not experiencing good channel condition, almost no
resource is allocated to the user. On the other hand, if a user
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is more likely to be satisfied, then more resource is allocated
to the user.
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FIGURE 8. Impact of parameters a and x0 on the completion ratio Jk.

In Figure 9, we show the impact of the SINR threshold
γT on the performance, ρ. We can see that the value of ρ
first increases and then decreases with γT, i.e., there exists
an optimal SINR threshold to maximize the user satisfactory
rate. This is because the SINR threshold has a two-fold
impact on user satisfactory rate. For large value of γT , most
BSs are muted to avoid ICI, so that fewer BS-UE pairs can be
transmitted concurrently and hence fewer users in different
cells can be served in a frame. On the other hand, because
most ICI are avoided through BS muting, the achieved SINR
and thus the achievable rate of each user are high. This sug-
gests a tradeoff between the resource reuse and the achieved
data rate. Hence, there exists the best value of γT leading to
the maximal user satisfactory rate.
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FIGURE 9. Impact of the SINR threshold γT.

D. COMPARISON WITH EXISTING SOLUTIONS
Finally, we compare the proposed low complexity algorithm
(with legend “Pred RA (w/ ICIC)”) with existing solutions.

Because there are no methods in the literature that have
the same objective function, optimization variables, and con-
straints as ours, we modify two most relevant methods pro-
posed in [14], [25] for a fair comparison. To show the impact

of not considering ICI or not harnessing predicted average
channel gains, we compare with three reference resource
allocation strategies:

• Predictive resource allocation without ICI coordination
(with legend “Pred RA (w/o ICIC)”): This strategy can
be regarded as a revised version of an existing predictive
resource allocation strategy in [25], which also exploits
the predicted average channel gains in the prediction
window but simply treats ICI as noise and does not em-
ploy multi-user MIMO precoder. In each frame, the BS
with highest average signal power is the candidate BS
for a user. There is no BS muting. The revised strategy
is obtained from Algorithm 1 by setting γT → −∞ (in
particular, we set γT = −1000 dB for this strategy in
the simulation).

• Non-predictive resource allocation with ICI coordina-
tion (with legend “Non-pred RA (w/ ICIC)”): This
strategy can be regarded as a revised version of an ex-
isting interference coordination technique in [14], which
optimizes user association and resource allocation based
on CSI without exploiting future information. The re-
vised strategy is obtained by initializing all the resource
allocation planning variables as zero and then applying
step 2 in Algorithm 1 once (i.e., set Nf = 1 for this
strategy).

• Non-predictive resource allocation without ICI coordi-
nation (with legend “Non-pred RA (w/o ICIC)”): The
only difference from “Pred RA (w/o ICIC)” lies in that
this strategy does not employ predicted average channel
gains.

In Figure 10, we show the impact of traffic load on the
performance ρ by changing the file size of each user B, as
well as the impact of the prediction errors. To reflect the pre-
diction errors on the average channel gains in the prediction
window, we first add errors on the predicted trajectory of each
user, and then simulate the average channels gains in each
frame of each user with all BSs by using the pathloss and
shadowing setup stated in the start of this section. According
to the prediction results for vehicular users in city roads with
intersection and traffic lights in [24], the trajectory prediction
errors are bounded within 6 m for a 60-seconds prediction
window. To provide a conservative evaluation, we set the
prediction errors as uniform distribution between 0 m and
10 m. The results are with legend “Pred RA (w/ ICIC)
w/error”, which show that the prediction errors of future
average channel gains cause marginal performance loss.

In Figure 11, we further show the impact of traffic load by
changing the number of users K.

We can see from Figures 10 and 11 that the proposed
method outperforms the reference strategies for different val-
ues of B and K. No matter if the interference is coordinated,
predictive resource allocation is always superior to the non-
predictive counterpart. When B = 180 MB and K = 50,
the values of ρ achieved by “Non-pred RA (w/o ICIC)”
are almost zero, hence cannot be seen in the figures. When
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the traffic load is light (i.e., in the case of B = 60 MB),
both predictive strategies achieve 100% of user satisfactory
rate and outperform the non-predictive strategies. When the
traffic load is heavy (i.e., in the cases of B = 120, 150, 180
MB), “Pred RA (w/o ICIC)” is even inferior to ”Non-pred
RA (w/ ICIC)”. This suggests the necessity of interference
coordination for predictive resource allocation in heavy load
scenarios. By comparing the proposed method with “Pred
RA (w/o ICIC)”, we can observe the remarkable gain of the
interference coordination.
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FIGURE 10. User satisfactory rate with different file sizes, K = 30, Nf = 60.
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FIGURE 11. User satisfactory rate with different number of users, Nf = 60,
B = 150 MB.

In Figure 12, we show the impact of prediction window
on the performance by changing the number of frames in the
window, i.e., Nf . We can see that the user satisfactory rates
achieved by all the four strategies increase withNf , since the
available resources to transmit the file of each user increase.
When the value of Nf increases, the user satisfactory rate
of ‘Pred RA (w/ ICIC)’ grows faster than that of ‘Non-
pred RA (w/ ICIC)’. This is because the proposed strategy
exploits the predicted information to coordinate interference
in a proactive manner, where a longer prediction window
provides more flexibility for the coordination.
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FIGURE 12. User satisfactory rate with different prediction window durations,
K = 30, B = 150 MB.

Finally, we briefly address the complexity issue. Recall
that the complexity of the proposed low-complexity algo-
rithm is less than O

(
b
∑Nf

l=1(
∑G
g=1 |Alg|Mg)

3
)
, where the

algorithm is applied only at the start of each prediction
window. In [25], a series of linear programming problems
need to solved to find the optimal solution, each with KNf
variables and (K+GNf ) constraints. The complexity to find
the optimal solution is O(m[Nf (K + G)]3.5), where m is
the number of the linear programming problems. Again, the
solution needs to be found at the start of each prediction
window. For the considered scale of the network, where
K = 30, Nf = 60, G = 34, Mm = 4 and Mp = 2, the
complexity of the proposed algorithm is much lower than the
algorithm proposed in [25]. In [14], the proposed algorithm
is non-predictive, which needs to be implemented at the start
of each time slot, and hence is not comparable with our
algorithm operated in a much larger time scale.

VI. CONCLUSIONS
In this paper, we investigated predictive resource allocation
for non-realtime service in downlink interference HetNets.
To address the challenge of optimizing predictive resource
allocation planning in interference networks, we first opti-
mized an interference coordination scheme before making
the resource allocation plan, both harnessing the predicted
average channel gains in a prediction window. The coor-
dination scheme determines the BS-user pairs that can be
communicated simultaneously in each of the future frames
to ensure an average SINR. The resource allocation plan
determines which BSs are muted and the users are asso-
ciated to which active BSs in each frame to maximize a
network utility aiming at improving user satisfactory rate.
By resorting to the maximal independent set and maximal
weighted independent set, we obtained the globally optimal
solution and a low-complexity algorithm for finding the plan.
Simulation results demonstrated that the proposed method
provides much higher user satisfactory rate than existing
predictive resource allocation when traffic load is heavy and
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the non-predictive resource allocation when the prediction
window is long (say over one minute). The performance gain
is larger when the prediction window is longer.

To obtain the promising performance gain of the proposed
strategy, future average channel gains need to be predicted.
The information can be obtained by first predicting user
trajectory [38] with machine learning techniques [22] and
then integrating with the radio map. It is also possible to
be predicted directly from the measured average channels,
considering that establishing radio map via drive test is
expensive. Since the requests from minority of the users
account for majority of the traffic load according to real
data analysis [39], only the average channel gains of a small
fraction of mobile users need to be predicted, which may
justify the computational complexity introduced by the pre-
diction. Besides, a center point with strong computing ability
should be deployed in the network to gather information,
record historical data, and make the prediction. Considering
the predicability of the average channel gains in a required
prediction horizon, the framework could also be applicable
for drone BSs [40].
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