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Abstract—The high training cost of massive multiple-input
multiple-output (MIMO) systems motivates the use of hybrid dig-
ital/analog (HDA) beamforming structures. This paper considers
the joint design of analog beamformers when both link ends of a
millimeter (mm)-wave massive MIMO system are equipped with
such HDA structures. We aim to maximize the multi-user (MU)
MIMO net average throughput of the downlink in an Frequency
Division Duplex (FDD) system. To achieve this, we develop an
optimization framework, namely user-centric virtual sectorization
(UCVS), to explore the tradeoff of training overhead, beam-
forming gain, and spatial multiplexing gain. In the UCVS, both
the channel-statistics-based analog beamforming design and a
non-orthogonal donwlink training scheme are investigated to
reduce the necessary cost of instantaneous channel acquisition. By
maximizing an approximate net average throughput, we devise
efficient algorithms to realize the suboptimal UCVS. With generic
mm-wave channel models, we demonstrate by simulations that
our proposed scheme outperforms state-of-the-art methods in
various typical scenarios of mm-wave communications.

Index Terms—Massive MIMO, mm-wave, training overhead,
hybrid beamforming, user-centric virtual sectorization.

I. INTRODUCTION

DUE to the large available bandwidth [1], the millimeter
(mm)-wave spectrum will be an important component

of fifth generation (5G) cellular communications. However,
challenges brought by channel characteristics at such high
frequencies, e.g., large pathloss, impede a direct extension
of the legacy systems. The requirement of overcoming se-
vere channel conditions for mm-wave systems ties seamlessly
into another important candidate technology for 5G systems,
namely massive multiple-input multiple-ouput (MIMO), which
employs dozens or hundreds of antenna elements at the base
station (BS) to enable high multiuser capacity, simplify signal
processing, and enhance beamforming gain [2, 3]. Neverthe-
less, combining massive MIMO with a mm-wave system in a
cost- and energy-effective way is not straightforward [4, 5].

One of the main difficulties for massive MIMO implemen-
tation is the prohibitive cost and high energy consumption to
enable a complete radio frequency (RF) up (down) conversion
chain for every antenna element, especially at mm-wave
frequencies. A promising solution to these problems lies in
the concept of hybrid transceivers, which uses a combination
of analog beamformers in the RF domain, together with a
smaller number of RF chains. This concept was first introduced
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by one of the authors and collaborators in [6, 7]. While
formulated originally for MIMO with arbitrary number of
antenna elements, the approach is applicable in particular
to massive MIMO, and in that context interest in hybrid
transceivers has surged over the past years, e.g., [8–14] and
the references in [15].

Many beamformer optimizations for massive MIMO with
hybrid digial/analog (HDA) structure assume the full ac-
quisition of, and adaptation to, instantaneous channel state
information (CSI). However, it is nontrivial to obtain the
full CSI with extremely large arrays, especially for mm-wave
channels. Main challenges lie in the following aspects: 1)
shorter coherence time at high carrier frequency caused by the
larger Doppler spread, 2) for a single channel use of training,
the number of sample measurements is less than that of the
conventional fully digital system due to lack of RF chains.
Achieving the same amount of measurements as a fully digital
system requires extending the training duration, worsening the
dilemma caused by 1).

Even in a system without hardware constraints, i.e., in
a fully digital implementation, the short coherence time
at mm-wave frequencies constitutes a problem for massive
MIMO. Considering a large-array BS serving single-antenna
user equipments (UEs), [2] suggests channel-reciprocity-based
uplink training in a time-division-duplexing (TDD) mode to
avoid the large overhead brought by the downlink training in
frequency-division-duplexing (FDD) mode. However, the large
pathloss at mm-wave frequencies necessitates both link ends to
be equipped with multiple antenna elements in order to exploit
beamforming gains. If the total number of antenna elements
from all UEs is then the same order as that of the BS, the
significant burden of uplink training at antenna level will also
make massive MIMO based on instantaneous CSI infeasible.
Therefore, analog beamforming has to be used at both link
ends during the training phase to reduce the effective channel
dimension without the full knowledge of instantaneous CSI.

Two major research directions dealing with the above
challenges have been investigated in the past few years:
1) compressive-sensing-based channel estimation plus analog
beamforming optimization [8, 9], 2) channel-statistics-based
analog beamforming design [16]. In this paper, we focus on the
latter approach to design analog beamformers at both link ends
based on second-order (covariance) channel statistics. Within
the stationarity time of the channel statistics, which can be
equivalent to tens or hundreds of coherence times [17], the
covariance-based analog beamforming reduces the effective
channel dimension to the number of RF chains. Consequently,
typical training schemes and digital beamformers, e.g., zero-
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forcing, for the MU-MIMO system can be easily employed.
Joint spatial division multiplexing (JSDM) [16] designs

the analog precoder at the BS as a function of the channel
covariance matrices, which bears some formal resemblance to
our investigations. However, its sector-specific design, which
enforces orthogonality between different groups of UEs, will
null out signals from common scattereres, and thus may
sacrifice not only significant beamforming gain but also spatial
multiplexing gain (see Section III-A for details). In this paper,
we intend to design channel-statistics-based analog beam-
formers from a perspective of user-centric beam clustering
(UCBC): the BS forms a beam cluster for an individual UE,
whereas the beam clusters of different UEs can overlap with
each other. The overlapped part of beam clusters indicates
the set of beams pointing toward common scatterers to serve
corresponding UEs.

Meanwhile, the allocation of training resources will also
be part of the optimization of our formulated problem. The
inherent sparsity of mm-wave channels can be exploited by
directional beams at both link ends [18]. With appropriately
designed analog beamformers, the effective spatial channels of
the UEs tend to be semi-orthogonal to each other, which cre-
ates the potential of non-orthogonal beam training (NOBT).
In [19], the tradeoff of training duration and achievable rate
with HDA structure at the BS side is investigated, but retains
the conventional orthogonal training scheme.

Our proposed user-centric virtual sectorization (UCVS)
scheme exploits the UCBC to form exclusive or partially
overlapped virtual sectors for different UEs, and the NOBT to
save overall training overhead. Moreover, periods of downlink
training for different UEs may end at different time slots in
UCVS. Therefore, for a particular UE whose effective CSI is
obtained by the BS before the completion of the training phase,
we may launch the downlink data transmission to it. This
simultaneous training-data transmission (STDT) phase is also
considered in [20] for the uplink, where orthogonal training
among UEs is assumed, and the interference between training
signal and payload data is mitigated by using successive
interference cancellation based on the orthogonality between
the independent and identically distributed (i.i.d.) UE channels.
The mm-wave channel with highly directional characteristics
is generally not i.i.d. [21]. With both NOBT and potential
STDT phase, we will utilize the spatial orthogonality to
suppress the interference between training signals and payload
data from the propagation perspective of the downlink.

To the best of our knowledge, there is little work exploring
the joint optimization of training resource allocation and
channel-statistics-based analog beamformer design, and we are
trying to close this gap. The main contributions of this paper
are summarized below:
• We develop an optimization framework for the mm-wave

massive MIMO downlink, where channel-statistics-based
UCBC, NOBT, and implied STDT phase are introduced
to combat the fast variation channel. A UCVS scheme
is realized by exploring the highly directional and sparse
characteristics of mm-wave channels.

• Given an analog beamforming design, we formulate the
problem to optimize the training resource allocation from

a graph theory perspective. An algorithmetic method
is developed for an approximate solution of training
resource allocation.

• We account for the coupling effect of training resource
allocation and analog beamformer optimization to jointly
maximize the overall net average throughput. We devise
efficient algorithms to realize user-centric beamformers.
Employing generic mm-wave channel models, simula-
tions demonstrate the advantages of the proposed scheme
over the state-of-the-art scheme under various typical
parameter settings.

The rest of the paper is organized as follows. In Section II,
the system and spatial channel model are presented. In Section
III, we first review the concept of JSDM, then elaborate on
the essential idea of UCBC. Section IV presents stepwise
procedures of the UCBC scheme, and summarizes the develop-
ments of the problem formulation, based on which algorithm
developments are exhibited in Section V. Simulations results
are presented in Section VI before drawing the conclusions in
Section VII.

Notations: X ∩Y, X ∪ Y, and X̄ indicate the intersection
and union of set X and Y, and the complement of X,
respectively. X \ Y indicates removing elements of Y from
X. |X| denotes the cardinality of X. (·)† and (·)T stand
for Hermitian transpose and transpose, respectively. tr (X)
and |X| denote the trace and determinant of X, respectively.
diag([xi]ni=1)=diag(x1, ..., xn), represents a diagonal matrix,
while diag([Xi]ni=1)=diag(X1, ...,Xn) is a block diagonal ma-
trix. diag(X) denotes a diagonal matrix with the diagonal
elements of X on its diagonal line. X 1

2 denotes the Cholesky
decomposition. In is the n-by-n identity matrix. CN (m,K)
is the circularly symmetric complex Gaussian distribution
with mean vector m and covariance matrix K. E[·] repre-
sents the expectation.

II. SYSTEM AND SPATIAL CHANNEL MODEL

Consider a single cell downlink of a mm-wave system,
where a BS equipped with M antenna elements and lBS
RF chains serves K UEs, each equipped with N antenna
elements and a single RF chain, i.e., lUE = 1. With HDA
structures at both ends, we have M > lBS and N > lUE. In
the data transmission of the downlink, the BS broadcasts the
beamformed data streams to the UEs. Specifically, the BS
first projects the streams on digital beamforming vectors at
baseband followed by an analog beamforming matrix in the
RF domain. The received signal model at the UEi is

x̂i=w†aiHiFaFdx + w†aini, (1)

where x ∈ CK×1 is the sample symbol vector following the
distribution CN (0, IK ), Hi ∈ C

N×M denotes the transfer
matrix of UEi whose modeling will be elaborated later,
Fa ∈ C

M×lBS and Fd ∈ C
lBS×K denote the analog and digital

precoder, respectively, wai ∈ C
N×1 is the analog combiner

at UEi , and ni ∈ C
N×1 indicates the noise vector at UEi

following CN (0, δ2IN ). Note that we consider the fully-
connected hybrid beamforming structure, where each RF chain
has access to all antenna elements. For ease of notation,
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we assume that the UEs have the same number of antenna
elements, but the generalization to situations where UEs have
different array sizes is straightforward.

For the radio propagation at mm-wave band, multipath
components (MPC) suffering multiple diffractions have much
lower power than those at cellular band, leading to limited
scattering [22]. Due to this effect, and the existence of sparse
dominant MPCs, the Kronecker channel model [23], which is
popularly used for below 6 GHz channels, cannot effectively
represent the coupling effect between the directions of depar-
ture (DOD) and directions of arrival (DOA) of the MPCs.
Consequently, we consider the following double directional
channel description

Hi=
1√
Li

∑Pi

p=1 gipaUE(θip)a†BS(φip), (2)

where Pi is the number of MPCs from the BS to UEi , Li is
the large scale loss, including path loss and shadowing, and
gip ∼ CN (0, σ2

ip) reflects the small scale fading of the p-th
MPC. Note that MPCs occur in clusters in practice. If the
large antenna array is capable of resolving between clusters,
but not within them, then the effective MPC often fulfills the
condition of Rayleigh fading, which is also widely used in the
mm-wave literature [8,14], as well as the 3GPP channel model
[24] (which implicitly uses zero-mean Gaussian by using a
large number of equal-powered subpaths per cluster). aUE ∈

CN×1 and aBS ∈ C
M×1 indicate the steering vectors of DOA θ

and DOD φ, respectively. If uniform linear arrays (ULA) are
assumed at both link ends, the steering vector aUE(θ) becomes

aUE(θ) = [1, exp ( j 2π
λ d sin θ), exp ( j 2π

λ 2d sin θ), ...,

exp ( j 2π
λ (N − 1)d sin θ)]T , (3)

where λ is the wavelength and d denotes the antenna spacing.
The steering vector at the BS, aBS(φ), can be written in a
similar fashion.

Assuming that each MPC exhibits independent fading,1

we have
∑Pi

p=1 σ
2
ip = 1,∀i. With the block fading as-

sumption, [gip] varies across coherence blocks, while [σip]
remains the same within the stationarity time of the
second order channel statistics. Defining steering matri-
ces AUE,i , [aUE(θi1), aUE(θi2), ..., aUE(θiPi )] and ABS,i ,
[aBS(φi1), aBS(φi2), ..., aUE(φiPi )], we can rewrite (2) as

Hi =
1√
Li

AUE,iΣiḠiA†BS,i, (4)

where Σi,diag([σip]Pi

p=1), Ḡi,diag([ḡip]Pi

p=1), and
ḡip,

gi p
σi p

,∀i, p. Instead of treating each coherence block
isotropically, we propose to design analog beamformers
based on the knowledge of angular power spectra, including
[AUE,i], [ABS,i], and [Σi], which remain approximately the
same within the stationarity region of channel statistics.
Note that the acquisition of the long-term CSI does not
require the geometry locations of terminals or scatteres,
but rather efficient estimation algorithms: e.g., [25] utilizes
coprime sampling method to track the channel subspace
with a hybrid beamforming structure, which can be used

1This implies uncorrelated scattering, which is widely accepted in the
assumption of channel modeling.

to investigate the directional characteristics, either through
Bartlett beamforming, or through various high-resolution
techniques [26, 27]. Meanwhile, the cost of long-term
CSI acquisition is negligible after normalization by the
stationarity time of channel statistics. Averaging over
the small scale fading, we can develop the closed-form
expressions for channel covariance from the perspective of
BS and UE, respectively, as KBS,i,E[H†i Hi]= N

Li
ABS,iΣ2

i A†BS,i
and KUE,i,E[HiH†i ]=M

Li
AUE,iΣ2

i A†UE,i .
Since analog beamformers, i.e. [wai] and Fa, remain the

same across multiple coherence blocks, we can view the
instantaneous effective channel between BS and UEi as
h̄i,F†aH†i wai , whose dimension is reduced to the number of
RF chains, i.e. lBS × 1. Therefore, channel-statistics-based
analog beamformers significantly alleviate the burden of in-
stantaneous CSI acquisition for both FDD and TDD systems.
The covariance of the effective channel h̄i can be expressed as

K̄BS,i, E[h̄ih̄†i ]
= 1

Li
F†aABS,iΣi diag(A†UE,iwaiw†aiAUE,i)ΣiA†BS,iFa

= F†aK̃BS,iFa, (5)

where we define the combiner-projected channel covariance as
K̃BS,i,E[H†i waiw†aiHi].

Concerning the complexity of a practical massive MIMO
system, we assume that analog precoder at the BS consists
of columns of the DFT matrix, which can be simply imple-
mented by using a phase shifter network such as a Butler
matrix at the BS, or can be implemented by means of lense
antennas. Therefore, Fa becomes a function of the combiner-
projected channel covariance matrices and the DFT codebook,
i.e. Fa= fBS(ΩM, [K̃BS,i]), where ΩM indicates an M × M
normalized DFT matrix (each column has unit norm). In the
massive MIMO regime, the BS antenna array is able to resolve
infinitesimal angular differences and the DFT codebook can
effectively approximate the eigenspace of the channel covari-
ance [21, 28], which leads to the codebook-based suboptimal
solution to be close to the optimal one. For the analog
combiner at the UE, on the other hand, we do not enforce
this codebook constraint and directly treat it as a function of
UE-side channel covariance, i.e. wai= fUEi (KUE,i),∀i, since the
number of UE antenna elements is typically smaller than that
at the BS.

Due to the highly directional channel characteristics of mm-
wave channels, the analog combiner (receive beam) at UEi

may not be capable of collecting significant energy from all
transmit beams of analog precoder Fa, which is designed to
serve multiple UEs. To illustrate this concept, Fig. 1 exhibits
a beam measure table, where scatter dots indicate the MPCs
illuminated by different beam pairs, e.g., UE1 collects most of
its energy from transmit beam b2 (note that this table can be
interpreted as the beam coupling matrix in the Weichselberger
channel model [23]). Later, we will show how to acquire
this table in Section III-B. We can observe that the effective
channels of UEs are approximately orthogonal to each other,
which motivates us to perform parallel beam training and
further reduce the overhead. Similarly, TDD systems can also
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Fig. 1: Transmit/receive beam measure table between transmit
beams [bi]4

i=1 and 4 UEs, where each UE forms its own analog
combiner. Scatter dots indicate MPCs, different sizes denote
average power [σip], and different colors separately represent
different UEs.

benefit from the parallel uplink training for different UEs, as
Fig. 1 shows.

III. OVERVIEW OF USER-CENTRIC VIRTUAL
SECTORIZATION

The main objective of this paper is to provide a user-
centric optimization framework that incorporates the concern
of training overhead reduction. In this section, we will first
give a recap of JSDM, which provides a sector-centric analog
precoder design based on the channel statistics. Later, com-
paring JSDM and UCVS by illustrating some toy examples,
we elaborate on the usefulness of our proposed idea in typical
scenarios of mm-wave communications and also explain its
working mechanism conceptually.

A. Recap of JSDM

The JSDM-based framework can be interpreted as a sector-
centric beam clustering, where the BS individually forms
covariance-based analog precoders to illuminate each “sector”,
while different UE groups tend to be semi-orthogonal to each
other. Specifically, single-antenna UEs with similar channel
covariance are grouped together and inter-group interference
is suppressed by an analog precoder based on the approx-
imate block diagonalization method, which creates multiple
“virtual sectors”.

Treating each RF chain at a BS with M antenna elements
as an individual “BS”, we can view JSDM as a coordinated
multi-point (CoMP) transmission scheme [29] under particular
constraints: an exclusive set of “BSs” serves its corresponding
UE group in joint transmission (JT) mode, meanwhile, it also
needs to work in coordinated beamforming (CB) mode with
other groups, suppressing the leakage interference. However,
the enforced constraint may lead to a solution that is away
from net sum rate maximization. For example, Fig. 2 exhibits
a 2-path channel model of three UEs, where both UE1 and
UE2 have the line of sight (LOS) propagation to the BS.
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Fig. 2: Toy example of 3-UE channel: 1) both UE1 and
UE2 have LOS propagation to the BS, all three UEs “see”
a common cluster that couples them, and normalized average
power of MPCs, i.e. [σ2

ip], is also labeled next to dashed lines;
2) generation of beam pair bipartite graph from beam mea-
sure table.

Additionally, all UEs share a common cluster. Assume three
transmit beams illuminating all MPCs of this network: if
we place UE1 and UE2 into separate groups, the BS has to
null out b3 following the orthogonality principle of JSDM
across different groups. Although parallel training can be
implemented and simultaneously serve two UEs (channels of
b1 to UE1 and b2 to UE2 tend to be quasi-optical, which
are orthogonal to each other), we not only lose significant
beamforming gain since the average power from b3 to UE1
and UE2 is 0.8, but also lose one degree of freedom (DoF) by
generating a poor effective channel condition for UE3, which
lies in the sector edge between groups.

B. Basic Idea of User-Centric Virtual Sectorization

Maximizing the net sum rate of UEs necessitates the joint
consideration of training costs, beamforming gains, and over-
all spatial multiplexing gains. We generalize the JSDM-like
sector-centric beam clustering to a UE-centric one, where the
BS forms a cluster of transmit beams for each scheduled UE
individually. Unlike the constraint of JSDM that the common
set of beams is assigned to UEs within the same group, while
UEs in different groups exhibit exclusive beam clusters, we
allow partially overlapped beam clusters among UEs.

Define the UE-specific analog precoder as Bi ∈ C
M×li ,∀i,

where li is the number of BS RF chains used to serve UEi . In
the toy example exhibited in Fig. 2, two interesting scenarios
of UE grouping can be developed following the principle
of JSDM [16]: 1) separate UE1 and UE2 into two groups,
therefore B1=b1, B2=b2, and B3≈0; 2) Group all three UEs
together, and let B1=B2=B3=[b1, b2, b3]. Note that in scenario
1), since UE3 lies in the sector edge as we mentioned before,
its analog precoder is approximately zero. Comparing both
scenarios, we can simultaneously serve UE1 and UE2 with
one pilot dimension for parallel training at the expense of
beamforming gains from the common cluster in scenario 1),
while in scenario 2), all three UEs can be scheduled at the
cost of three pilot dimensions for orthogonal beam training.
However, there is no explicit conclusion as to which scenario,
i.e., UE grouping, is optimal to maximize the net sum rate in
[16, 21, 28, 30–32].
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Meanwhile, there is another scenario that is not covered
by JSDM, say scenario 3), where we have B1=[b1, b3], B2=
[b2, b3], and B3=b3. Although the overall analog precoder Fa
remains the same for both scenario 2) and 3), orthogonal beam
training is not necessary for scenario 3). Since the channels
of b1 to UE1 and b2 to UE2 are approximately orthogonal to
each other, we can assign the same pilot dimension to b1 and
b2, which will not cause the problem of pilot contamination
[2]. Therefore, we can use only two pilot dimensions to
complete the training of three beams by utilizing the spatial
orthogonality between effective channels.

Before proceeding to specific problem formulations in Sec-
tion IV, we explain core concepts that are introduced by our
scheme.

1) Beam pair bipartite graph: With the assumption of
DFT-codebook-based design, the optimization of analog pre-
coder at BS becomes a selection problem, which falls into
the realm of integer programming. Given the UE-side channel
covariance KUE,i , we can write its eigen decomposition as
KUE,i = EUE,iΛUE,iE†UE,i , where EUE,i = [ri1, ri2, ..., riri ] is a
semi-unitary matrix with rank ri ≤ min(N, Pi), ri j denotes the
j-th receive eigenmode of EUE,i , and ΛUE,i aligns eigenvalues
of KUE,i on its diagonal. Therefore, we can build up a measure
matrix between DFT beam tones and receive eigenmodes
as follows:

S(m, j +
∑i−1

k=1 rk )=b†mK̃BS,i, jbm, (6)

K̃BS,i, j,E[H†i ri jr†i jHi]

= 1
Li

ABS,iΣi diag(A†UE,iri jr
†

i jAUE,i)ΣiA†BS,i,

where bm denotes the m-th column of ΩM , and K̃BS,i,j
represents the BS side channel covariance of UEi projected
by ri j . S ∈ RM×

∑K
i=1 ri

>0 indicates the measure matrix between
M DFT beams and receive eigenmodes of all UEs. The entry
indexed by (m, j +

∑i−1
k=1 rk ) denotes the average channel gain

between m-th DFT beam tone and j-th receive eigenmode of
UEi , where j ranges from 1 to ri .

For the toy example exhibited in Fig. 2, we simply let
Li = 1,∀i, and N = 1, while the steering matrices consist of
normalized DFT columns with ABS,1=[b1, b3], ABS,2=[b2, b3],
and ABS,3=b3. Substituting the above parameter set into (6)
generates the beam measure table in Fig. 2, where we only
exhibit the measure table with effective transmit beams: b1,
b2, and b3. Equipped with a single antenna element, UEs in
the toy example receive omnidirectional signals. Therefore, we
only have one receive eigenmode for each UE. To build the
beam pair bipartite graph, we place nodes of transmit beams
and UEs at left and right side, respectively. If the entry between
a beam and a UE is non-zero, we connect the two nodes by
a weighted edge.

If UEs with multiple antenna elements are able to resolve
different MPCs, UEi will have Pi receive eigenmodes, ∀i,
which leads to the development of beam pair bipartite graph
as Fig. 3 exhibits. To display a toy example, we simply let
[AUE,i] also consist of normalized DFT columns, which then
become receive eigenmodes. With directional beams at both
ends, we can observe that the beam measure table becomes
even sparser, based on which non-orthogonal beam training
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Fig. 3: Generation of beam pair bipartite graph when there are
multiple receive eigenmodes. Both UE1 and UE2 exhibit two
receive eigenmodes, while UE3 has only one pointing to the
common cluster.

can be utilized to reduce the overhead cost. On the other
hand, [13,31] design analog combiners at the UEs by selecting
its strongest eigenmode individually, which may be far away
from the maximization of the net sum rate in a mm-wave
channel. For example, for the beam pair bipartite graph shown
in Fig. 3, if we let all three UEs point toward to the common
cluster, which exhibits the largest weights for all of them,
the DoF of the analog-combiner-projected MU-MIMO channel
will be only one. Therefore, we will also investigate the joint
optimization of analog combiners based on the beam pair
bipartite graph.

In reality, there will be no entry with exact zero-value in
the beam measure table, which implies a fully connected
beam pair bipartite graph. However, after an appropriate
thresholding, we strike out weak edges with weight below a
threshold, say the noise floor, so that we obtain an effective
bipartite graph as in Fig. 2 and Fig. 3. The threshold parameter
plays an important role in the beam clustering, which will be
elaborated in Section V. On one hand, striking weak beam
pairs generates a sparser beam measure table, which needs less
pilot dimensions for training. On the other hand, the effective
bipartite graph should maintain dominant directional charac-
teristics of the multi-user channel, or we will suffer severe
pilot contamination and inter-user interference (see below).

2) Non-orthogonal Beam Training (NOBT): Given the
analog beamformers at both ends, the beam measure table S
with the dimension M ×

∑K
i=1 ri is reduced to an effective one,

denoted by S̄, projected by analog beamformers, where S̄ has
dimension lBS × K . Based on S̄, we can develop the beam
cluster of an individual UE, containing all transmit beams
connected to it. For example, let us revisit the toy example
exhibited in Fig. 2. Considering a system with lBS = 3 and
N=lUE=1, we assume that the optimized analog precoder Fa
is [b1, b2, b3]. Therefore, Fig. 2 is equivalent to its reduced
beam measure table S̄. The analog precoders (beam clusters)
of the UEs are B1=[b1, b3], B2=[b2, b3], and B3=b3.

The training overhead cost depends on the minimum number
of necessary orthogonal pilot dimensions. Define the set of
UEs whose beam cluster contains the i-th transmit beam as
Ki , i.e. Ki = {k |bi ∈ Bk }. Therefore, if Ki ∩ Kj , ∅,
∀i , j, we cannot schedule bi and bj for training on the same
pilot dimension, since any UE lying in the intersection set
will encounter severe pilot contamination. However, consider
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Fig. 4: Compare the training phase of JSDM and UCVS,
where (a) is an example of reduced beam pair bipartite graph,
(b) reflects the training process of the JSDM, while (c) and
(d) represent the training periods of the UCVS with different
training orders, respectively. τ is the duration of overall
training window.

a set of beams T , such that their served UE sets do not
overlap: in that case, we can train them simultaneously, i.e.
T = {i |Ki ∩ Kj = ∅,∀ j ∈ T \ {i}}.2 For example, in Fig. 2,
we have K1={1}, K2={2}, and K3={1, 2, 3}. BS cannot train
b1 and b3 (or b2 and b3) simultaneously, since K1 ∩ K3={1}
(K2∩K3={2}). On the other hand, b1 and b2 can be placed on
the same pilot dimension, since K1 ∩K2=∅. The total number
of orthogonal resource elements occupied by training can be
reduced to 2 for the toy example, while JSDM suggested
by [16, 21] will perform orthogonal training across [bi]3

i=1,
treated as intra-group transmit beams serving all three UEs.
Detailed developments on the minimization of training cost
can be found in Section V-A.

3) Simultaneous training-data transmission (STDT): Con-
ventional cellular systems will start the data transmission
phase after the completion of the training phase. However,
in this paper, we propose a novel training scheme where the
BS can “partially” launch the data transmission during the
training window. We illustrate its mechanism conceptually by
a toy example exhibited in Fig. 4.

To better clarify the STDT phase, we define the following
sets, which will be used in the remainder of the paper. Kcc,t is
the set of UEs who have completed beam training at time slot
t. Ktr,t denotes the set of UEs awaiting the training signal at
time slot t, and Kdd,t is the set of UEs receiving a data signal at
time slot t. Bt={i |bi ∈ ∪k∈Kcc, t Bk, bi < ∪k∈K̄cc, t

Bk }, indicating
the set of beams that are ready for data transmission at time
slot t, while Ttr,t is the set of beams trained at time slot t.

With the reduced beam pair bipartite graph exhibited in
Fig. 4a, JSDM will place UEs in the same group with the

2For a TDD system, a similar argument can be developed to utilize the
directional characteristics of mm-wave channels for uplink training. Then, we
need to investigate the set of UEs that can be trained together, whose set of
receive beams at BS shall be orthogonal to each other.

common analog precoder, i.e. Fa = [b1, ..., b4], and orthogonal
beam training is implemented as Fig. 4b shows. However,
with the partially overlapped beam clusters in UCVS shown
in Fig. 4c and Fig. 4d, UE-specific analog precoders are
B1 = [b1, b2] and B2 = [b2, b3, b4]. Since K1 ∩K3 = ∅, b1, b3
can be trained simultaneously and we only need 3 orthogonal
time slots to complete the training of 4 beams. For Fig. 4c,
based on the association between transmit beams and UEs in
Fig. 4, Ktr,1 = {1, 2}, Ktr,2 = {2}, and Ktr,3 = {1, 2}, while
Ttr,1 = {2}, Ttr,2 = {4}, and Ttr,3 = {1, 3}. Kcc,t = ∅,∀t ≤ 3, and
Kcc,4 = {1, 2}, indicating both UEs complete beam training
after the whole training window. Therefore, Bt = ∅,∀t ≤ 3.

However, for Fig. 4d, where we swap the order of training
b1, b3, and b4, an interesting observation is that Kcc,3 = {1},
and B3 = {1}, which denotes that b1 can be used for payload
transmission at time slot 3 to serve UE1. Although b2 and
b3 are also trained before time slot 3, scheduling them for
data transmission will leak interference to the training signal
of b4 at UE2. We will optimize the training order of beams in
Section V-A.

In summary, the NOBT phase exploits the directional char-
acteristics to reduce the training cost, while the implied STDT
phase utilizes additional DoFs in the training phase for data
transmission. Individual gains from NOBT and STDT respec-
tively depend on the topology of the beam pair bipartite graph.
For example, if we maintain dominant entries of the measure
table in Fig. 1 and build up its corresponding beam pair
bipartite graph, parallel training can be implemented across
different transmit beams. Although there is no STDT phase,
the training cost is tremendously reduced by the NOBT phase.
In Section VI, we investigate the individual contributions
from NOBT and STDT, respectively, through simulations with
random topology of the beam pair bipartite graph.

IV. PROBLEM FORMULATION

A. Training with STDT phase

1) Instantaneous Channel Estimation: To enable STDT,
UEs need to feed back the instantaneous estimated effective
channel to the BS at time slot t, ∀t. Then, the BS can extract
available beams to form Bt+1 for data transmission at time
slot t + 1. The received training signal at UEi at time slot t
can be expressed as

x̃tr,i,t =
√
ρp,tw†aiHiFaptr,t + w†aiHiFaxd,t + w†aini,t

=
√
ρp,t h̄†i ptr,t + h̄†i xd,t + n̄i,t

=
√
ρp,t h̄i,G(i,t)︸          ︷︷          ︸

Desired training signal

+
∑

j∈Ttr,t\{G(i,t) }

√
ρp,t h̄i, j︸                     ︷︷                     ︸

Training contamination

+ h̄†
i,dd,tFd,txt︸        ︷︷        ︸

Payload interference

+ n̄i,t︸︷︷︸
Noise

,

(7)

where ρp,t denotes the power used for training each beam in
every time slot, ∀t. ptr,t is an lBS×1 indicator vector to denote
whether a transmit beam is scheduled for training at time slot
t, e.g., if ptr,t (i) = 1, the i-th transmit beam is trained at time
slot t. ni,t ∈ C

N×τ indicates the i.i.d. complex Gaussian noise
vector at UEi , whose entries follow CN (0, δ2). The second
term in (7) denotes the interference by data transmission,
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where xd,t ∈ C
lBS×1 is the data symbol vector at time slot

t. Since partial beams may be scheduled for data transmission
instantly, xd,t only has a few (or none) non-zero entries, which
corresponds to beams in Bt , ∀t. For UEi belonging to Ktr,t ,
we define the effective channel from the j-th transmit beam as
h̄i, j , and G(i, t) denotes the index of training beam associated
with UEi at time slot t.

The pilot suffers interference from two components: one
from the pilot signal of other beams (Training contamination)
and the other from beams scheduled for data transmission
(Payload interference). In (7), h̄i,dd,t ∈ C

|Bt |×1 denotes the ef-
fective channel from beams transmitting data symbols at time
slot t. Fd,t ∈ C

|Bt |× |Kdd, t | denotes the digital precoder at time
slot t for payload transmission to |Kdd,t | UEs. xt ∈ C |Kdd, t |×1

denotes the data symbol vector, following CN (0, I |Kdd, t |).
From (7), we can estimate the effective channel h̄i,G(i,t) by
using existing channel estimation methods.

2) Partial data transmission: During the training window,
we may launch the partial data transmission as Fig. 4d exhibits.
Suppose UEk is able to receive a data symbol at time slot t,
where t ≤ τ. The received signal model at UEk is

x̂d,k,t =h̄†
k,dd,tFd,txt +

√
ρp,t

∑
j∈Ttr, t h̄k, j + n̄k,t

=h̄†
k,dd,t fd,t,k xt,k︸            ︷︷            ︸
Desired signal

+ h̄†
k,dd,t

∑
i∈Kdd, t \k

fd,t,i xt,i︸                       ︷︷                       ︸
Inter-user interference

+

√
ρp,t

∑
j∈Ttr, t

h̄k, j︸             ︷︷             ︸
Training interference

+ n̄k,t︸︷︷︸
Noise

, (8)

where Fd,t consists of individual digital precoders serving UEs
belonging to Kdd,t , i.e., Fd,t = [fd,t,k]k∈Kdd, t , and xt,i is the data
symbol transmitted to UEi at the time slot t. Similarly to (7),
there exist two kinds of interference: the conventional inter-
user interference and the interference from the simultaneously
transmitted training signals.

B. Dedicated Data Transmission

After the period of downlink training, the BS can utilize
all analog beams for data transmission and the received signal
model at UEk can be expressed as

x̂d,k =w†akHkFafd,k xk + w†akHkFa
∑

i,k fd,i xi + w†aknk

=h̄kfd,k xk + h̄k

∑
i,k

fd,i xi + n̄k, (9)

where we ignore the subscript t since the receive signal model
remains the same after the training window.

C. Beamformer Optimization

Given the analog beamforming, the achievable rate of
UEπ (i) at time slot t by using the dirty paper coding (DPC)
scheme in digital baseband is given by [33]

Cπ (i),t = log ���
δ2w†aπ (i)waπ (i)+h̄†

π (i),dd, t
∑

j≥i Γπ ( j ), t h̄†
π (i),dd, t

δ2w†aπ (i)waπ (i)+h̄†
π (i),dd, t

∑
j>i Γπ ( j ), t h̄†

π (i),dd, t

���, (10)

where π(i) ∈ Kdd,t and [π(i)] |Kdd, t |

i=1 is the ordered index set of
UEs in DPC, and Γπ (i),t is the input covariance of UEπ (i) at the

time slot t. Therefore, the net average MU-MIMO downlink
capacity within the coherence block is

Cavg,DL =

∑Tcor
t=1

∑
π (i)∈Kdd, t Cπ (i), t

Tcor
, (11)

where Tcor is the coherence time in units of channel use. If
we do not consider the data transmission during the training
window, Cavg,DL becomes (1− τ

Tcor
)
∑K

i=1 Cπ (i) , where Cπ (i) , in-
dependent of t, remains the same within the data transmission
phase of a coherence block.

Considering the whole stationarity region of channel statis-
tics, we intend to jointly optimize the analog beamformers and
pilot assignment matrix Ptr, which leads to the maximization
of the net average downlink capacity:

max
[Bk,wak ]K

k=1,[ρp, t ]τ
t=1,Ptr

E[ max
[Γπ (i), t,π (i)∈Kdd, t ]Tcor

t=1

Cavg,DL] (12a)

s.t . Bk ⊂ ΩM,∀k, luse = rank([Bk]K
k=1) ≤ lBS, (12b)

Ptr ∈ N
luse×τ,Ptr(i, j) = 1 or 0,∀i, j,

∑τ
j=1 Ptr(i, j) = 1,∀i,

(12c)
ρp,t |Ttr,t | +

∑
π (i)∈Kdd, t tr(Γπ (i),t ) ≤ ρd,∀t, (12d)

where the expectation of Cavg,DL is taken to average out the
small scale fading, i.e. [Ḡi] in (4), across multiple coherence
blocks within the stationarity time of the channel statistics.
Note that the CSI feedback can be realized by the dedicated
uplink channel right after the training. Since we focus on the
performance of the downlink, we assume ideal instantaneous
channel acquisition from the uplink feedback channel, and
do not incorporate the feedback cost in problem (12), an
assumption that is widely used in the literature [16, 21, 31].

(12b) indicates that an individual beam cluster consists of
normalized DFT columns and the total number of used trans-
mit beams, i.e. luse, shall not surpass lBS. Analog combiners
at UEs, [wai], are functions of UE-side channel covariance
matrices. Ptr denotes the pilot assignment matrix, where each
row has a single non-zero entry to indicate the assigned pilot
for the beam. In (12d), the total transmit power is constrained
by ρd, and tr(Γπ (i),t ) = tr(Fa,tΓπ (i),tF†a,t ) is the power for data
transmission to UEi at time slot t, and ρp,t |Ttr,t | is the total
power used for downlink training at time slot t.

The problem (12) is very challenging to solve, incorporating
three tiers of optimization with different time scales, and
also coupled together. In the first tier, we need to design
the channel-statistics-based analog beamformers, where the
codebook-based Fa is coupled with [wai]. Later, at the second
tier, the pilot matrix Ptr needs to be optimized based on the
effective beam pair bipartite graph as Fig. 4 shows, which not
only needs to minimize the training overhead but also optimize
the training order to achieve additional spatial multiplexing
gains in the STDT phase. For the first two tiers, our design
is based on the long-term CSI, while in the third tier, the
designs of input covariances [Γπ (i),t ] and permutation of
index set [π(i)] are based on the instantaneous CSI, which
will eventually determine the performance of the first two-
tier optimization.
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Resorting to the uplink-downlink duality theory [34], we
can develop an equivalent uplink problem of (12):

max
[Bk,wak ]K

k=1,[ρp, t ]τ
t=1,Ptr

E[ max
[Γ′i, t,i∈Kdd, t ]Tcor

t=1

Cavg,UL], (13a)

s.t . (12b), (12c),

ρp,t |Ttr,t | +
∑

i∈Kdd, t Γ
′
i,tw

†

aiwaiδ
2 ≤ ρd,∀t, (13b)

where Cavg,UL = 1
Tcor

∑Tcor
t=1 Ct,UL, and Ct,UL =

log |
∑K

i=1h̄i,dd,tΓ
′
i,t h̄
†

i,dd,t + I |Bt | |. Ct,UL denotes the
instantaneous uplink capacity at time slot t. Γ′i,t indicates the
uplink transmit power coefficient of UEi at the time slot t,
∀i, t. Constraints (12b) and (12c) remain the same for the
uplink dual problem, while the power constraint becomes
(13b) instead of (12d).

Detailed developments of the uplink-dual problem with
HDA structure at both ends are revealed in [35], which is
briefly summarized as follows. Based on [34], the downlink
channel has the same instantaneous sum rate as its dual uplink,
which can be expressed as

max
[Γ′i, t,i∈Kdd, t ]

Ct,UL = log |(
∑K

i=1h̄i,dd,tΓ
′
i,t h̄
†

i,dd,t +Q1,t )Q−1
1,t |

(14)
s.t.

∑
i∈Kdd, t Γ

′
i,tQ2i,t ≤ ρd − ρp,t |Ttr,t |,

where Q1,t = F†a,tFa,t = I |Bt | , since Fa,t consists of normalized
DFT columns, and Q2i,t = δ2w†aiwai, i ∈ Kdd,t,∀t. Based
on (14), we can obtain the optimization for the dual uplink
channel as (13). Our goal is still focusing on the downlink
problem, but we resort to its equivalent dual problem for
mathematical convenience.

1) Decoupled optimization with reduced complexity: Al-
though the uplink-dual problem (13) exhibits a more tractable
objective function than that of (12a), it still incorporates joint
multi-tier optimization with different time scales.

Decoupling the interaction between instantaneous [Γ′i,t ] and
channel-statistics-based variables can significantly reduce the
problem complexity. Therefore, rather than jointly optimizing
power allocations [Γ′i,t ], we stick with simple equal power allo-
cation among training signals and payload data, i.e., Γ′i,t = ρp,t ,
where i ∈ Kdd,t and t ranges from 1 to Tcor. With unit-
norm combiners [wai], we have the following power alloca-
tion equality:

ρp,t = Γ
′
i,t =

ρd
|Ttr, t |+δ2 |Kdd, t |

,∀i ∈ Kdd,t . (15)

At time slots dedicated for training, (15) is reduced to equal
power allocation over trained beams, i.e. ρp,t =

ρd
|Ttr, t |

, while
after the training window, (15) becomes equal power allocation
among UEs, i.e. ρp,t =

ρd
δ2 |Kdd, t |

. By introducing the power
allocation equality (15), Cavg.,UL becomes an achievable net
throughput rather than the net uplink capacity. However, we
reduce the original downlink problem over different time
scales to an uplink problem purely over the long-term CSI:

max
[Bk,wak ]K

k=1,Ptr

E[Cavg,UL] (16a)

s.t . (12b), (12c),
‖wak ‖ = 1,∀k, (16b)

2) Average throughput approximation: To avoid the com-
putational burden in evaluation of the expectation at (16a),
we consider the following upper bound of average uplink
throughput

E[Ct,UL]≤
(a)

CUL,upper=logE[|ρp,t
∑K

i=1h̄i,dd,t h̄†i,dd,t + IlBS |], (17)

where (a) follows from Jensen’s inequality: E[log |I + X|] ≤
logE[|I + X|]. Without loss of generality, we ignore the time
subscript in the following, and explore the uplink through-
put bound approximation for the dedicated data transmission
phase. The result is directly applicable for the STDT phase.

Proposition 1: By assuming a single-path channel
model, i.e. Pi = 1 in (2), ∀i, we have the following
equivalence: logE[|ρpF†a

∑K
i=1H†i waiw†aiHiFa + IlBS |] =

log |ρpF†a
∑K

i=1H̃†i waiw†aiH̃iFa + IlBS |, where H̃i ,
1
Li

AUE,iΣiA†BS,i .
Proposition 1 can be easily obtained from the result in [35].

Based on Proposition 1, we obtain a closed-form expression
to evaluate the net average uplink throughput under the single-
path channel model, and develop the following problem:

max
[Bk,wak ]K

k=1,Ptr

C̃avg,UL =
1

Tcor

∑Tcor
t=1 C̃t,UL (18)

s.t . (12b), (12c), (16b),

where C̃t,UL = log |ρp,tF†a,t
∑

i∈Kdd, t H̃
†

i waiw†aiH̃iFa,t + I |Bt | |.
Without the assumption of Pi = 1,∀i, Proposition 1 does not
hold in general and problem (18) becomes an approximation
of problem (16). Our simulation results in Section VI-B
demonstrate that the approximation performs well, even with
general settings of [Pi].

V. ALGORITHM DEVELOPMENT

Problem (18) is still generally non-convex, involving integer
programming for designing Ptr and [Bk]. Meanwhile, given a
topology of beam pair bipartite graph as shown in Fig. 4, there
is no closed-form expression for the minimum cost to complete
the training, not to mention which training order we should
apply to increase the opportunity of data transmission during
the training window. In this section, we will first provide a
graph-based algorithm to heuristically optimize the training
order. Then, a greedy algorithm is proposed to achieve a
suboptimal solution to problem (18).

A. Training Order Optimization

Given a beam pair bipartite graph, the minimum training
cost can be evaluated by the algorithm proposed in [36], which
provides a suboptimal solution to minimize an upper bound of
the training cost: whereas [36] treats left side nodes as BSs, we
view them as transmit beams. The algorithm is summarized
below:
• Build up the conflict graph of transmit beams by treating

them as vertices and connect any pair of them with which
a common UE is associated as Fig. 5 illustrates.

• Sort the degree of vertex in descending order, which will
be [b2, b3, b4, b1] in Fig. 5.
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Fig. 5: Conflict graph of transmit beams for beam pair bipar-
tite graph exhibited in Fig. 4, and different colors represent
different pilot dimensions allocated to transmit beams.

• Allocate pilot dimensions to vertices (beams) in a sequen-
tial manner. For every vertex awaiting pilot assignment,
if it is conflicted with all previous vertices, assign an
orthogonal pilot dimension to it. Otherwise, assign a pilot
dimension occupied by most transmit beams that have no
conflict with the vertex.

For the toy example in Fig. 5, the output of the algorithm
will be [t1, t2, t3, t2], corresponding to [b2, b3, b4, b1], where ti
indicates the time slot index of the i-th pilot dimension, ∀i.
However, the schedule order of pilot dimension for training is
not explored in above algorithm.

Considering that the purpose of optimizing the training or-
der is to increase the transmission opportunity for payload data
within the training window, we heuristically choose to maxi-
mize the total number of time slots for payload data transmis-
sion as the objective function, which is max

∑K
i=1(Tcor − Ttr,i),

where Ttr,k indicates the time instance when the BS completes
the training for UEk . Apparently, it is equivalent to minimize
the sum of training periods of all UEs, i.e. min

∑K
i=1 Ttr,i . The

aim of solving this problem is to complete as many as possible
UEs’ individual training earlier than τ by optimizing over all
possible sequential orders of [ti]τi=1. Minimizing the number
of time slots used for training is not the same thing as making
sure that we can send as many data slots as possible - there
could be non-training slots for a UE before its training is
finished (i.e., empty slots). However, the formulated problem
is physically intuitive and tractable.

To approximate the optimal solution to this typical integer
programming problem, we summarize our proposed algorithm
below:

1) Define the degree of time slot ti as D(ti), which is
the number of transmit beams assigned to time slot ti .
Define the set D = {D(t1), ..., D(tτ )}, which includes all
values of time slot degree, and sort the elements in a
descending order.

2) For the i-th element in D, i.e., D (i), extract the
set of time slots Pi = {tm |D(tm) = D (i)}, and calcu-
late their priority metrics

∑
j∈Ttr, tm

∑K
k=1

Ik (b j )
Ltran,k

,∀m ∈ Pi ,
where Ik (bj ) is an indicator to denote whether bj is
associated with UEk , Ltran,k is the number of transmit
beams connected to UEk , and Ttr,tm contains all transmit
beams trained on pilot dimension tm.

3) Sort the priority metrics of time slots belonging to
Pi in a descending order and sequentially assign in-
dices to them.

4) Repeat step 2) and step 3) for i = 1, ..., |D|.
At step 2) and 3), for pilot dimensions with the same degree,

sayD (i), we introduce a metric
∑

j∈Ttm

∑K
k=1

Ik (b j )
Lk

to evaluate
the priority order of the m-th pilot dimension, ∀m ∈ Pi .∑K

k=1
Ik (bj)
Lk

can be interpreted as the relative significance of bj .
If it is very large, bj is connected to a lot of UEs associated
with a few transmit beams, then scheduling bj first increases
the chance to finish training of many UEs earlier than τ.
Combining relative significance of trained beams on each pilot
dimension, we obtain the priority orders, or we say the relative
significance of pilot dimensions, and then we can schedule
them sequentially. Based on the result of training allocation
and order scheduling, we can build up the pilot assignment
matrix Ptr.

B. Greedy User-Centric Beam Clustering

We consider the case that the analog precoder and analog
combiner are chosen from the DFT codebook and the eigen-
mode of UE-side channel covariance, respectively. Therefore,
the beamformer optimization of (18) becomes to select the
effective beam pairs from the bipartite graph implied by S.
Thanks to the training order optimization in Section V-A, we
can evaluate the performance of any given topology of reduced
S̄, which lays the foundation of our proposed greedy user-
centric beam clustering (GUCBC) algorithm. The detailed
implementation procedure can be summarized as follows:

1) Initially, let wak = 0,∀k and Fa = ∅. Let Wa be the
ensemble of analog combiners as Wa , [wai, ...,waK ].

2) Extract the M ×
∑K

i=1 ri measure matrix S following (6),
enforce small entries to be zero if a certain portion, i.e.
γ, of total average energy can be maintained, and build
up the beam pair bipartite graph. Define a beam pair set
E containing all edges, i.e. (b, r) ∈ E if transmit beam
b and receive eigenbeam r are connected.

3) Let W′
a = Wa and F′a = Fa. For a candidate beam

pair e = (b, r) in E, we let F′a = [F′a, b] and assign r
to its corresponding UE, then run the evaULthroughput
given in Algorithm 1 to return the net average uplink
throughput approximation (NAUTA).

4) Repeat step 3) for every candidate edge and find
the optimal one e? = (b?, r?) that can enhance the
NAUTA most.

5) Update Wa by assigning r? to its corresponding UEk? ,
update Fa by Fa = [Fa, b?], and remove the beam pairs
starting with b? and beam pairs ended with all other
receive eigenmodes of UEk? from E.

6) Repeat step 3) to step 5) until rank(Fa) = lBS or the
NAUTA does not increase by adding additional beams.

The essential idea of the algorithm is to greedily add
effective beam pairs from the bipartite graph. For every
candidate beam pair, we need to utilize an inner function,
so called evaULthroughput, to evaluate the NAUTA of the
beamformed effective channel with this additional candidate,
and then select the best beam pair to update Fa and Wa.
For example, let us investigate the toy example exhibited by
Fig. 3, where initially we have total 5 edges in E. The first
step will select a beam pair that provides maximal NAUTA,
which is (b3, r31) with the largest weight. Then, edges (b3, r12)
and (b3, r22) have to be removed, since their transmit beam
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b3 has already been selected. The remaining beam pair set
will be {(b1, r11), (b2, r21)}, and we sequentially assign them
to Fa and Wa if the NAUTA can get enhancement. Detailed
specifics of evaULthroughput can be found in Algorithm 1.
Under the constraint of both channel rank and number of BS
RF chains, the proposed GUCBC algorithm not only designs
sub-optimal analog beamformers at both link ends, but also
implicitly incorporates the functionality of UE scheduling in
the sense that the users with wak = 0 are not scheduled.

Algorithm 1 evaULthroughput

1: Extract the effective beam pair bipartite graph projected by
F′a and W′

a. Follow procedures in SectionV-A to optimize
the pilot assignments Ptr.

2: for t ← 1 to Tcor do
3: Extract Kcc,t and its complement K̄cc,t .
4: Build up F′a,t by trained beams and make sure that no

beam in F′a,t is connected to UEs belonging to K̄cc,t ,
then calculate C̃t,UL in (18).

5: end for
6: Substitute [C̃t,UL] into (18) and we can obtain the NAUTA

C̃avg,UL.

To evaluate the complexity of the proposed algorithm,
we compare it with the exhaustive beam search. Given lsel.
selected transmit eigenmodes and stream assignments [yi]Ki=1,
where yi represents whether or not assigning a stream to UEi ,
and

∑K
i=1 yi ≤ lsel., there are total

(
ri
yi

)
possible sets of receive

eigenmodes which can be used to form the analog combiner at
UEi , ∀i. Therefore, for all K UEs, there will be total

∏K
i=1

(
ri
yi

)
possibilities for given stream assignments [yi]Ki=1 and transmit
beams. The total number of combinations that the exhaustive
search method needs to investigate is:

Ncomb. =

lBS∑
lsel.=1

(
M

lsel.

) ∑
∑K

i=1 yi ≤lsel.

K∏
i=1

(
ri
yi

)
, (19)

where the second summation is over all possible realizations
of stream assignments, and the first summation is over all
possible numbers of transmit beams. The computational bur-
den grows extremely fast with the increasing of variables M ,
ri , and lBS, which is prohibitive for implementation. For the
proposed method, the iteration time is up to lBS. At step 5) of
the greedy user-centric beam clustering (GUCBC) algorithm,
we will remove beam pairs that are not effective beam pair
candidates for follow-up iterations. Considering the worst-case
scenario, where we only remove the selected beam pair from
the beam pair set E for every iteration, its complexity is upper
bounded by

∑lBS
t=1(|E | − t + 1) = lBS |E | −

lBS (lBS−1)
2 ≤ lBS |E |,

where t indicates the index of iteration. Therefore, the com-
plexity order of the proposed scheme is roughly O(lBS |E |).
If we conservatively remove weak beam pairs whose effective
channel gains are below the noise power, the cardinality of
E is approximately the ensemble of all MPCs, i.e.,

∑K
i=1 Pi .

Therefore, the complexity of the proposed scheme is upper
bounded by O(lBS

∑K
i=1 Pi), which is significantly less than

Ncomb. shown in (19), especially for mm-wave frequencies
where dominant MPCs are much fewer than those at low

!"
#$

%&'(()*)*
+,+-%.//0*(

Fig. 6: Illustration of GSCM with UEs and scatterers in a
range of DOD support.

frequencies. Considering a numerical example, we let M = 64,
lBS = 8, and K = 4. Since the number of dominant MPCs is
usually less than 10 in the mm-wave band [37], we temporally
set Pi = 10,∀i. According to (19), the size of search space for
the exhaustive search is extremely large, e.g.,

(64
8

)
is around

4.4×109. However, the complexity of the proposed method is
upper bounded by lBS

∑K
i=1 Pi = 320.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
UCVS scheme via simulations. All simulation results exhibit
the comparison with JSDM/BDMA [16, 31] with respect to
net average throughput. To have a fair comparison of different
schemes, we always use a least squares (LS) channel esti-
mation during the training phase, and a zero-forcing digital
precoder for the payload transmission. Meanwhile, the BS
performs a greedy UE scheduling algorithm based on the
instantaneous reduced-dimensional CSI to achieve the approx-
imate optimal performance with different analog beamformer
designs, respectively.

A. Geometric Stochastic Channel Model (GSCM)

Following the dominant characteristics of mm-wave propa-
gation, we mainly focus on the MPCs interacting with a single
scatterer. Fig. 6 illustrates an example of how to generate the
synthetic channel profiles. We place the scatterers and UEs in
an angular range (as seen from the BS) that we call support
interval of DOD. Therefore, different options of DOD support
range can represent different scenarios. For example, for a
crowded cafeteria, we may use a narrow DOD support, while
for UEs separated far away from the BS perspective in the
angular domain, we can use a wide DOD support range.

To activate scatterers for the channels between the BS and
the UEs, we utilize the following probabilistic model:

Pactive = PUE,LOS · PBS,LOS, (20)

where Pactive is the probability that a scatterer is active for a
UE, which is the product of marginal probabilities that both
ends can “see” this scatterer. The marginal probability that a
terminal has LOS propagation to the scatterer follows

PUE/BS,LOS = min (d1/d, 1)(1 − exp(−d/d2)) + exp(−d/d2),
(21)

where d1 and d2 are modeling parameters, and d is the distance
from the BS/UE to the scatterer. When d < d1, we have
PUE/BS,LOS = 1 indicating that the scatterer is deterministically
visible by the UE/BS. For d > d1, the probability is expo-
nentially decreasing with increasing of d, where the decay
rate is determined by d2. Settings of both d1 and d2 will



1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2767580, IEEE
Transactions on Wireless Communications

11

be environment-dependent [37],3 e.g., urban, rural, and the
terminal heights will also make a difference. Note that this
model provides an implementation of the “common scatterer”
concept used, e.g., in COST 2100 [38]. Unless otherwise
specified, the parameter settings for channel model and system
configuration are exhibited in Table I.

TABLE I: Simulation parameters

DOD support range θall = 20◦ or 40◦
LOS from BS to scatterer d1,BS2S=24 m, d2,BS2S=45 m
LOS from UE to scatterer d1,UE2S=2 m, d2,UE2S=10 m

Scatterer density ρs = 0.01 ∼ 0.09
Energy threshold γ = 0.7 ∼ 1
Number of UEs K = 4

No. of BS antennas and RF chains M = 64, lBS = 8
No. of UE antennas and RF chains N = 8, lUE = 1
Antenna spacing (in wavelength) D = 1

2

For modeling parameters in (21), since the BS is usually
located higher, d1,BS2S and d2,BS2S are respectively larger than
d1,UE2S and d2,UE2S (we use subscripts “BS2S” and “UE2S”
to distinguish parameter sets for different terminals). The
coherence time in the units of channel use can be evaluated
by 1

fdTs
, where fd is the Doppler spread, and Ts is the symbol

duration, which is 66.7µs in the LTE standard. Substituting
the mobility speed ranging from 6.5 km/h to 18 km/h and
carrier frequency of 60 GHz, we can obtain coherence times
approximately ranging from 40 to 15 channel uses of the LTE
standard. For all simulation sets, we maintain the noise power
and large scale loss to be unity, i.e. δ2 = 1, Li = 1,∀i.
Therefore, transmit power ρd is equivalent to the signal-to-
noise ratio (SNR) subsuming the impact of large scale loss.

For every drop of UEs, multiple scatterers are independently
generated following a Poisson process with parameter ρs in
the sector-shape region as Fig. 6 shows. Meanwhile, random
locations of UEs are constrained in the region, whose sep-
aration distances to the BS range from 50 to 60 m. With
the assumption of uncorrelated scattering, we independently
generate [σip] following a uniform distribution within [0, 1],
and then normalize them to satisfy

∑Pi

p=1 σ
2
ip=1,∀i. Given

locations of UEs and scatterers, we randomly generate UE-
scatterer association graphs following the probabilistic model,
based on which we can obtain double directional channel
descriptions (4) of all UEs.

The net average throughputs exhibited are all obtained by
averaging over 100 UE drops, each of which consists of 20
independent realizations of UE-scatterer association graph and
50 independent realizations of small fading. We investigate
the ensemble average over different realizations of beam pair
bipartite graph to demonstrate the advantages of the proposed
method in various propagation environments. Intuitively, if UE
channels are fully spatially orthogonal to each other as Fig. 1
shows or their transmit eigenmodes are fully coupled, both
schemes will achieve approximately the same performance,
where in the former case each UE forms an independent UE
group, while in the latter case, all UEs are grouped together.

3 [37] proposes the LOS probability model (21) for mm-wave channels
between BS and UE, whereas here we use this model to indicate the
probability of LOS between a terminal and a scatterer.
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Fig. 7: Net average throughput vs. ρd for Tcor = 20 and γ = 0.9

In the Section VI-B, we investigate system performance under
more realistic mm-wave channel models, which lies between
above two extreme examples.

B. Results and Discussions

We first fix the coherence time Tcor to be 20 and the
threshold parameter γ to be 0.9, then investigate the behavior
of the net sum rate varying with SNR as Fig. 7 exhibits. Note
that since there is no clear conclusion on the optimal UE
grouping for JSDM in [16, 30], we make comparisons with
the JSDM scheme under different UE groupings, where K-
means clustering to group UEs with similar channel covariance
is applied [30]. We can observe that for both DOD support
intervals, grouping all UEs together is optimal in the high SNR
regime, since the channel-covariance-based analog precoder in
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Fig. 8: Net average throughput vs. Tcor for θall = 20◦

JSDM cannot fully eliminate the inter-group interference, and
forming more user groups will make the system operate in
interference-limited mode. However, for the low SNR regime,
the system tends to be noise-limited, and using more UE
groups introduces additional gains from training cost reduction
and thus obtains better performance. With θall = 40◦, we
can observe that the impact of user grouping for JSDM is
smaller, which is because dropping scatterers and UEs in
a wider DOD support range leads more UE channels to
be spatially orthogonal. Incorporating non-orthgonal training,
STDT phase, and user-centric beamformer optimization, the
proposed UCVS scheme outperforms JSDM with the optimal
UE grouping setting in both cases.

Fig. 8 and Fig. 9 show the net average throughput as a
function of the coherence time under different DOD support

(a) ρd = −5 dB

(b) ρd = 5 dB

Fig. 9: Net average throughput vs. Tcor for θall = 40◦

ranges θall and SNRs ρd. For the proposed UCVS scheme, we
also investigate different settings of threshold parameter γ, i.e.
0.9 or 1. Comparing Fig. 8a and 8b, or Fig. 9a and 9b, we
notice that appropriate settings of γ are scenario-dependent.
Specifically, for the low SNR regime, compared with the
situation where γ = 1, the UCVS with a relatively smaller
γ = 0.9 generates a sparser beam measure table and obtains
more gains from the reduction of training overhead, while for
the high SNR regime in Fig. 8b and Fig. 9b, the interference-
limited system is more sensitive to the threshold parameter,
since striking out “weak” beam pair edges may generate
nontrivial pilot contamination in the training phase and inter-
user interference during data transmission, whose performance
can be even worse than that of optimal JSDM as long as Tcor
is large enough. However, for typical coherence times below



1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2767580, IEEE
Transactions on Wireless Communications

13

30, the proposed scheme at γ = 0.9 still outperforms the state-
of-art method.

To evaluate the individual contributions from the NOBT
and STDT respectively, we also investigate the performance
of UCVS without consideration of the STDT phase, whose
legend is “UCVS no STDT” in Fig. 8 and Fig. 9. Although
individual gains by STDT are not significant in the simulated
scenarios with terminals and scatterers in a narrow DOD sup-
port range, they could be dominant in other typical scenarios.
For example, with two UEs spatially orthogonal to each other
in the angular domain, one has a much larger DOD spread than
that of the other. The reduction of training cost by NOBT will
be limited by training the UE channel with large DOD spread,
while the system can start data transmission once the training
for UE with narrower angular spread is completed, making
STDT more advantageous.

In conclusion, for the interesting range of parameter settings
for mm-wave systems, i.e. operating at SNR below 0 dB and
coherence time below 50 channel uses, the proposed UCVS
exhibits significant performance advantage over JSDM, e.g.,
more than 38% when ρd = −5 dB and Tcor = 20 as Fig. 8a
shows. Meanwhile, for the large coherence time and high SNR
regime, which is usually out of the scope of mm-wave systems,
the proposed scheme with appropriate threshold setting still
outperforms the state-of-the-art method in Fig. 8b and Fig. 9b.

To further investigate the impact of the threshold γ, we fix
ρd = 5 dB, Tcor = 20, and compare UCVS with JSDM by
net average throughput varying with γ in Fig. 10. The optimal
JSDM will still group all UEs together, and its net sum rate
does not vary with parameter γ. For the proposed UCVS,
we cannot adjust γ to be too small. Otherwise, the UCVS
based on the reduced beam pair bipartite graph will cause
training contamination and inter-user interference, whose per-
formance may be even worse than that of JSDM, e.g., when
γ = 0.7 ∼ 0.8 in Fig. 10a. With θall = 20◦, the angular
spectra of UEs tend to be largely overlapped. Therefore, with
a relatively high SNR, the optimal γ is one, and we need
to maintain the original fully-connected beam pair bipartite
graph for orthogonal beam training. However, in Fig. 10b,
because UE channels under a wider DOD support range tend
to be more spatially orthogonal to each other, UCVS is more
robust to small values of γ and it still performs better than
that of JSDM when γ = 0.7. Meanwhile, with more spatial
orthogonality of UE channels, the NOBT phase will introduce
tolerable pilot contamination and interference, but the system
performance can benefit more from the training cost reduction.
Therefore, the optimal γ is less than one as Fig. 10b exhibits.

Fig. 11 exhibits results of net average throughput varying
with the scatterer density ρs. Due to lack of space, we only
present results with θall = 20◦, while behavior of the average
rate is similar when θall = 40◦. With the increase of scatterer
density, the UE channel is less sparse and the performance
gap between UCVS and JSDM becomes smaller. Consider
a scenario with dense scatterers in a narrow DOD support
interval; in that case many close-by scatterers act as a common
scatterer, which can not be distinguished from the perspective
of either BS or UE. The eigenspace of UE channel covariances
will probably largely overlap. Therefore, by grouping all UEs
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Fig. 10: Net average throughput vs. γ for ρd = 5 dB

together and forming the JSDM-like analog beamformer ap-
proaches the optimal covariance-based solution, which aligns
with our proposed method eventually for large ρs. However,
for a typical sparse mm-wave channel, e.g., when ρs = 0.01,
the number of MPCs is typically less than 10, ∀i, and the
proposed scheme shows significant performance advantage for
a typical mm-wave system operating at −5 dB: it outperforms
JSDM by 35%.

In summary, with short coherence times at mm-wave fre-
quencies, the UCVS benefits from NOBT and STDT, while
with large coherence time at the high SNR regime, orthogonal
training is necessary to avoid pilot contamination, and both
UCVS and JSDM scheme achieve almost the same perfor-
mance as Fig. 8 and Fig. 9 show. From Fig. 10b, we can
observe an optimal trade-off between the reduction of training
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cost and interference suppression, which illuminates the future
work to explore the optimal threshold setting dependent on
different propagation environments. For the impacts by the
scatterer densities, we can find that sum rates of both schemes
monotonically decrease with the channel sparsity until the
saturation from Fig. 11. The performance gap compared with
JSDM is much larger at low scatterer density than that at large
one, since the proposed scheme is able to exploit the channel
sparsity to improve the system peroformance.

To incorporate the impacts of non-ideal knowledge of
channel statistics, we consider the following estimation model
of MPC directions φ̃ip=φip + eBS,ip, θ̃ip=θip + eUE,ip,∀i, p,
where eBS,ip ∼N (0, δ2

e ) and eBS,ip ∼N (0, δ2
e ) represent the

estimation error of DOD and DOA, respectively. φ̃ip and θ̃ip
are estimated DODs and DOAs, respectively. For simplicity,
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we let estimation error variables follow i.i.d. Gaussian distri-
bution with mean zero and variance δ2

e . Therefore, by adjusting
different values of δe, we can investigate impacts of direction
misalignment with different extents.

Fig. 12 exhibits sum rates varying with δe for different
parameter settings at Tcor = 20, where channel model and
system configurations are maintained the same as in Section
VI-A. For the JSDM at Tcor = 20, we only exhibit results
corresponding to one UE group, which is optimal as exhibited
in Fig. 8 and Fig. 9. For the proposed UCVS, we consider
different settings of energy threshold γ for different SNRs:
at ρd = 5 dB, we let γ to be 1, and maintain the full
beam pair bipartite graph, while γ is adjusted to be 0.9 at
ρd = −5 dB. We can observe that the proposed scheme
requires more accurate directional characteristics, while JSDM
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without UE grouping is more robust to imperfect channel
statistics. However, with the help of a large array and sufficient
SNR, the angle estimation deviation can be made small, e.g.,
less than 1 degree, with which the proposed scheme can
outperform the JSDM scheme.

VII. CONCLUSIONS

In this paper, we built up an optimization framework based
on the user-centric virtual sectorization for the implementation
of massive MIMO systems in FDD mode, which incorporates
three coupled optimization tiers with different time scales,
including analog beamformer design, training resource allo-
cation, and digital beamformer design, respectively. A UE-
specified “virtual sectorization” employs the STDT phase and
NOBT to fully exploit the mm-wave channel characteristics.
Heuristic low-complexity algorithms were devised to approach
the suboptimal solution of analog beamformer design. Simu-
lations revealed significant gains of the proposed scheme over
state-of-the-art methods in typical mm-wave channels. For fu-
ture work, we will consider the optimization of the threshold in
the proposed scheme to strike weak paths, which is dependent
on different propagation environments. Meanwhile, simula-
tions over real mm-wave channel data will be investigated to
check the practical applicability of the proposed scheme.
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