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Abstract Coherent multi-cell cooperative transmission, also referred to as coordinated multi-point transmis-

sion (CoMP), is a promising strategy to provide high spectral efficiency for universal frequency reuse cellular

systems. To report the required channel information to the transmitter in frequency division duplexing systems,

limited feedback techniques are often applied. Considering that the average channel gains from multiple base

stations (BSs) to one mobile station are different and the number of cooperative BSs may be dynamic, it is nei-

ther flexible nor compatible to employ a large codebook to directly quantize the CoMP channel. In this paper,

we employ per-cell codebooks for quantizing local and cross channels. We first propose a codeword selection

criterion, aiming at maximizing an estimated data rate for each user. The proposed criterion can be applied for

an arbitrary number of receive antennas at each user and also for an arbitrary number of data streams trans-

mitted to each user. Considering that the resulting optimal per-cell codeword selection for CoMP channel is of

high complexity, we propose a serial codeword selection method that has low complexity but yields comparable

performance to that of the optimal codeword selection. We evaluate the proposed codeword selection criterion

and method using measured CoMP channels from an urban environment as well as simulations. The results

demonstrate significant performance gain as compared to an existing low-complexity method.

Keywords base station cooperative transmission, channel quantization, limited feedback, codeword selection

Citation Hou X Y, Yang C Y, Lau B K. On channel quantization for multi-cell cooperative systems with limited

feedback. Sci China Inf Sci, 2013, 56: 022308(16), doi: 10.1007/s11432-012-4753-x

1 Introduction

Base station (BS) cooperative transmission, also known as coordinated multi-point transmission (CoMP)

in Long Term Evolution Advanced (LTE-A), is an effective way to avoid inter-cell interference in universal

frequency reuse cellular systems. CoMP joint processing (CoMP-JP) provides the full benefit of CoMP

systems, if both data and channel state information (CSI) can be obtained at a central unit (CU) [1,2].

For simplicity, we refer to CoMP-JP as CoMP in the following.

CoMP is often viewed as a large multiple-input and multiple-output (MIMO) system with a “super

BS” (i.e., the CU). However, there are distinct features in CoMP channels and systems. CoMP channel

is an aggregation of multiple single-cell channels from the cooperative BSs to each user. Considering

∗Corresponding author (email: hxymr@ee.buaa.edu.cn)
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that the number of cooperating BSs in a cluster may be dynamic, the dimension of the CoMP channel

seen by a user may be dynamic. Furthermore, the average channel gains from different BSs to each user

are different [2,3], due to different antenna power gains, path losses and shadowings. As a result, the

channels are no longer independent and identically distributed (i.i.d.) and the channel statistics of each

user highly depend on its position.

Limited feedback techniques are widely applied for reporting CSI to transmitter in frequency division

duplexing (FDD) MIMO systems and have been extensively studied [4]. If conventional methods for

single-cell systems are directly applied to design the codebooks for high-dimensional channel matrices in

CoMP systems, prohibitive complexity is required to dynamically generate the location-dependent and

cluster-dependent codebooks and to search for the optimal codewords. Moreover, frequently re-generating

large codebooks is neither flexible nor compatible to existing systems.

In fact, since CoMP channel is an aggregation of multiple single-cell channels, we can reuse the codebook

designed for single-cell systems to separately quantize multiple single-cell channels in the global CoMP

channel, which is referred to as per-cell codebook quantization [3]. Though this does not yield the

optimal codebook for CoMP channel, it can reduce the complexity to generate the codebook as well as

the complexity to select the codeword.

In this paper, we study codeword selection for CoMP transmission with per-cell codebook quantization.

We first provide a unified codeword selection criterion to maximize an estimated data rate at the user side,

which can exploit the feature of CoMP channel, and can accommodate general cases with an arbitrary

number of receive antennas at each user and an arbitrary number of data streams transmitted to each

user. Codeword selection criteria and methods are well explored for single-cell limited feedback MIMO

systems [5–9]. When each user is equipped with a single antenna and zero-forcing beamforming (ZFBF)

is applied, or when each user has multiple antennas and multiple data streams are transmitted to each

user with zero-forcing block diagonalization (ZFBD), a widely applied codeword selection criterion is to

minimize the chordal distance between the channel direction and the codeword [5,6]. When multiple

antennas are deployed at each user and a single data stream is transmitted to each user, the codeword

can be selected with various criteria [7–9]. It was shown in [8,9] that the codeword selection jointly

designed with a receive combiner outperforms the method of finding the codeword closest to the direction

of singular vector corresponding to the maximum singular value of channel matrix. Considering that

the selection of per-cell codewords via exhaustive searching is of high complexity [3], we proceed to

propose a low complexity method which selects the codewords for per-cell channels in a serial manner.

Both simulation results and the results using measured CoMP channels in [10] show that the proposed

codeword selection method has minor performance loss from the optimal selection, and outperforms the

low-complexity codeword selection method proposed in [3].

To the best of our knowledge, there are few available researches on the codeword selection for CoMP

multi-user MIMO (MU-MIMO) systems. A codeword selection method for CoMP MU-MIMO sys-

tems with per-cell codebooks was proposed in [3]. Our work differs from that in [3] in three aspects:

1) codeword selection criterion, 2) codeword construction method and 3) codeword selection method to

reduce complexity. Due to the first difference, our method can be applied for various numbers of the

antennas and data streams at each user, but the method in [3] can only be used when each user has

multiple antennas and the received antennas do not provide diversity gain. Due to the second difference,

in general cases where the large scale fading gains of a user are different, the proposed method can ex-

ploit the difference in the per-cell channel energies to improve the performance of codeword selection.

This is because the CoMP channel was normalized by the large scale fading gains of per-cell channels

to mimic an i.i.d. single-cell channel in [3]. As a result, the single-cell codeword selection method in [6]

can be applied, which selects per-cell codewords by minimizing the chordal distance between the nor-

malized CoMP channel and the aggregated codewords without large scale fading gains [3]. Finally, due

to the third difference, we can achieve the same performance as the method proposed in [3] with much

lower complexity. Simulation results demonstrate the performance gain of proposed codeword selection

criterion and method over that in [3].

Notations: (x)∗ and Re(x) denote the conjugate and real part of scalar x, respectively. (X)T and (X)H
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denote the transpose, and the conjugate transpose of matrix X, respectively. tr{X}, ‖X‖F, and det{X}
represent the trace, Frobenius norm and determinant of matrix X, respectively. diag{·} is a diagonal

matrix. E{·} is the expectation operator. IN and 0N denote an identity matrix of size N and a zero

matrix of size N with all elements being 0, respectively. x ∈ CN (μ, σ2
x) represents a random variable x

following a complex Gaussian distribution with mean μ and variance σ2
x. � denotes a definition operator.

2 System models

Consider a cellular system with NB BSs cooperatively serving K mobile stations (MSs). Each BS is

equipped with NT antennas and each user is equipped with NR antennas. The total number of antennas

at all NB BSs is denoted by N sum
T � NBNT .

The global channel matrix of MSk is

Hk = [αk,1Hk,1, . . . , αk,NBHk,NB ] = Hw
k Rk, (1)

where αk,b and Hk,b ∈ C
NR×NT are respectively the large scale fading gain (including antenna power

gain, path loss and shadowing) and the small scale fading channel matrix between BSb and MSk, H
w
k =

[Hk,1, . . . ,Hk,NB ] is the aggregated small scale fading channel matrix, and Rk = diag{αk,1INT , . . .,

αk,NBINT }. It is shown from (1) that the global CoMP channel resembles a special transmit spatially

correlated channel. Specifically, the global channel matrix Hk can be regarded as the transformation of

Hw
k by Rk. To simplify the analysis and highlight the feature of CoMP channels, we assume that the

per-cell channels are uncorrelated, and each entry in Hk,b is subject to i.i.d. complex Gaussian random

variables with zero mean and unit variance.

We consider linear precoding and denote the precoding matrix of all the cooperative BSs for MSk by

Wk ∈ C
Nsum

T ×dk , k = 1, . . . ,K, where dk � NR is the number of data streams transmitted to MSk. Under

the assumption of Gaussian transmit signals and additive white Gaussian noise (AWGN), the achievable

data rate of MSk can be expressed as [6]

Rk = log2 det

(
σ2
kINR +

K∑
j=1

HkWjW
H
j HH

k

)
− log2 det

(
σ2
kINR +

K∑
j=1, j �=k

HkWjW
H
j HH

k

)
, (2)

where σ2
k is the variance of each element of the noise vector. To achieve such a data rate, each user only

decodes its desired signal and treats co-user interference as noise, and meanwhile, the dk data streams

intended for MSk are jointly decoded by the maximum likelihood (ML) receiver [11].

2.1 Finite rate feedback model

The required CSI at the BSs for precoding depends on the antenna configuration and the transmission

schemes. When the number of receive antennas is equal to the number of data streams and multi-cell

ZFBD precoding is applied, the spatial directions of global channel, i.e., the subspace spanned by the

columns of Hk, are the required CSI, which need to be quantized and fed back [3,6]. When multiple

antennas are equipped at each MS and only a single data stream is transmitted to each MS by ZFBF,

the channel matrix Hk can be combined into an effective channel vector, which are quantized and fed

back to the BSs [8,9].

In this paper, we consider a unified channel quantization and feedback model, which is applicable for

the general case of an arbitrary number of data streams transmitted to each MS. Specifically, we assume

that each MS has perfect knowledge of its own global channel matrix. Instead of sending back the full

channel knowledge, MSk can feed back an effective channel matrix Heff
k � UkHk ∈ C

dk×Nsum
T to reduce

the feedback overhead, where Uk ∈ C
dk×NR is a combining matrix that converts the global channel matrix

with dimensions NR × NBNT into the effective channel matrix with dimensions dk × NBNT . In order

to ensure that the channel vectors in Heff
k remains uncorrelated after combining, the combining matrix

should be a unitary matrix, i.e., UkU
H
k = Idk

.
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Note that the combining matrix Uk could be applied as the receiver for the desired signal during

downlink transmission. When multiple antennas are equipped at each user and only a single data stream

is transmitted to each user, i.e., NR > 1 and dk = 1, the combining matrix reduces to a combining vector

of size NR and it can be applied as the receiver [8,9]. However, it was shown in [9] that such a receiver

is inferior to the MMSE receiver designed with the precoded channel HkWk. In this paper, we do not

apply the combining matrix as the receiver. As explained earlier, we consider the ML receiver to achieve

the data rate shown in (2).

We consider the per-cell codebook based limited feedback [3] to quantize Heff
k . In particular, MSk

employs single-cell codebooks to separately quantize its per-cell effective channels, which are the effective

channels from all cooperated BSs, i.e., Heff
k,b = UkHk,b, b = 1, . . . , NB. We assume that the per-cell large

scale channel gains αk,b, b = 1, . . . , NB, can be obtained at MSk by averaging over the received signals

and be fed back to the BSs with negligible overhead. After MSk quantizes each effective per-cell channel

matrix Heff
k,b, it feeds back their quantized version to its local BS, i.e., BSbk , whose received signal has the

strongest energy. The cooperative BSs forward their gathered CSI to the CU, who finally reconstructs

the global channels for all MSs.

Denote the per-cell codebook for quantizing the effective channel matrix between MSk and BSb by

Ck,b, which consists of 2Bk,b matrices in C
dk×NT , i.e., Vk,b(1), . . . ,Vk,b(2

Bk,b), where Bk,b is the number

of feedback bits allocated to quantize Heff
k,b. For backward compatibility, we consider that the per-cell

codewords are unitary matrices [3,6], i.e., Vk,b(j)V
H
k,b(j) = Idk

. Define the aggregated codeword for the

global channel of MSk as

Vk(ik,1, . . . , ik,NB ) = [αk,1Vk,1(ik,1), . . . , αk,NBVk,NB (ik,NB )] = V w
k (ik,1, . . . , ik,NB )Rk, (3)

where Vk,b(ik,b) ∈ Ck,b, b = 1, . . . , NB, V
w
k (ik,1, . . . , ik,NB ) = [Vk,1(ik,1), . . . ,Vk,NB (ik,NB )] is the aggre-

gated codeword without large scale fading gains, which is the codeword for the aggregated small scale

fading channel matrix Hw
k in (1). Analogous to the special transmit spatially correlated channel struc-

ture shown in (1), the aggregated codeword for global channel can be viewed as a transformation of

V w
k (ik,1, . . . , ik,NB ) by Rk.

The channel quantization of MSk is to find NB codewords indices, i.e., {i�k,1, . . . , i�k,NB
}, in the NB per-

cell codebooks of MSk, i.e., Ck,1, . . . , Ck,NB , according to some criterion, as will be addressed in Section 3.

After MSk quantizes the effective channel matrices of all the per-cell channels, it feeds back the codeword

indices to its local BS, which requires Bk,sum =
∑NB

b=1 Bk,b bits in total. Then all BSs send the channel

information to the CU, and the CU reconstructs the global channel of MSk as

Ĥeff
k = Vk(i

�
k,1, . . . , i

�
k,NB

) = [αk,1Vk,1(i
�
k,1), . . . , αk,NBVk,NB (i

�
k,NB

)]. (4)

2.2 Multi-cell scheduling and precoding

With the reconstructed global channels of all MSs, the CU selects M MSs to serve in the same time-

frequency resource with multi-cell ZFBD precoding. ZFBD is a linear precoder for downlink MU-MIMO

systems, which has been extensively studied for single-cell transmission [12]. In the special case of

multiple-input and single-output (MISO) broadcasting channel, ZFBD reduces to the well-known ZFBF.

A major difference between multi-cell ZFBD and single-cell ZFBD lies in the power constraint [13,14].

While single-cell ZFBD has a sum power constraint (SPC), multi-cell ZFBD should be designed with

per-BS power constraint (PBPC). Considering that the optimal ZFBD precoder with PBPC is of high

complexity for practical application [14], herein we consider a sub-optimal precoder proposed in [13]. In

particular, the quantized channel matrices of all MSs are treated as the true channels and the precoding

matrix of MSk is obtained as

Wk = BkMkΛ
1
2

k , (5)

where Bk ∈ C
Nsum

T ×(Nsum
T −∑K

j=1,j �=k dj) is the orthonormal basis of the right null space of the matrix

formed by stacking all Ĥeff
j , ∀j �= k, together. Specifically, define the effective quantized channel matrix

of all MSs other than MSk as Ĥeff
−k = [ĤeffH

1 , . . . , ĤeffH

k−1 , Ĥ
effH

k+1 , . . . , Ĥ
effH

K ]H ∈ C
(
∑K

j=1,j �=k dj)×Nsum
T . Then
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Bk is constructed by the last (N sum
T −∑K

j=1,j �=k dj) column vectors of the right-singular matrix of Ĥeff
−k.

Mk ∈ C
(Nsum

T −∑K
j=1,j �=k dj)×dk is the matrix formed by the first dk column vectors of the right singular

matrix of Ĥeff
k Bk, and Λk ∈ C

dk×dk is the diagonal power allocation matrix of MSk.

The sum-rate maximizing power allocation with PBPC can be founded numerically by convex opti-

mization tools [13], whose complexity is too high for practical use. In this paper, we consider equal power

allocation, which is suboptimal but more practical. We consider that the transmit powers of all BSs are

the same, which is denoted by P0. To meet PBPC, the transmit power of all users are scaled by a factor

μ as suggested in [13]. Then the power allocation matrix becomes Λk = μNBP0/
∑K

j=1 djIdk
, where the

scaling factor μ ∈ (0, 1) is given by

μ = min
b=1,...,NB

∑K
j=1 dj/NB

‖Cb

∑K
j=1 BjMj‖2F

,

where Cb is a block-diagonal matrix of dimension N sum
T ×N sum

T with block size NT , and the bth block is

INT and other blocks are zeros, b = 1, . . . , NB.

3 Codeword selection criterion

The optimal codeword selection should maximize the achievable data rate of MSk shown in (2). Nonethe-

less, the actual data rate of MSk achieved during data transmission is a function of the precoding matrices

of all MSs. When each MS quantizes its own channel, it is unable to know the precoding matrices in

advance. To circumvent this problem, we select the codewords to maximize an estimated data rate.

In this section, we first propose a codeword selection criterion to accommodate the transmission of an

arbitrary number of data streams to each user, and then provide its special forms under various system

configurations. Finally, we show the connection of the proposed criterion with an existing one for CoMP

systems.

3.1 Proposed codeword selection criterion

When MSk quantizes its channel, it has neither a priori knowledge of the number of MSs scheduled with

itself nor the number of data streams transmitted to other MSs. Moreover, it does not know the channels

of its own co-scheduled MSs. Therefore, it is impossible for MSk to know the precoders of all MSs during

downlink transmission, which determines the achievable data rate. This is a fundamental challenge in

the design of MU-MIMO limited feedback systems. Herein we propose a codeword selection criterion to

maximize an estimated data rate of MSk.

To estimate the downlink data rate, MSk makes the following three assumptions.

Firstly, full multiplexing is assumed, e.g.,
∑K

j=1 dj = N sum
T . With this assumption, the matrix Mk

in (5) becomes a unitary matrix of dimension dk × dk, which indicates MkM
H
k = Idk

. Secondly, the

PBPC is relaxed to SPC, such that the power scaling factor μ = 1. Together with the first assumption,

the power allocation matrix in (5) becomes Λk = NBP0/N
sum
T Idk

. Then the term WkW
H
k in (2) can be

expressed as

WkW
H
k = BkMkΛkM

H
k BH

k =
NBP0

N sum
T

BkB
H
k . (6)

The term Bk is formed by the orthonormal basis of the null space of Ĥeff
−k, which is the matrix stacked

by the effective quantized channel matrices of all MSs other than MSk. Since MSk does not have a

priori information of the quantized channel matrices of other MSs, it is unable to know the true value

of Bk. Therefore, we need the third assumption: the scheduled MSs are mutually orthogonal in terms

of their quantized effective channel matrices, i.e., Ĥeff
k ĤeffH

j = 0, j = 1, . . . ,K, j �= k. Then, the term

WkW
H
k only depends on the quantized channel matrix of MSk. In practical systems, this is a reasonable

assumption when the number of candidate users is sufficiently large [15]. In Section 5, we will verify

through simulations that the codeword selection criterion based on the orthogonal scheduling assumption
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still performs fairly well in realistic scenarios without the assumption. In the following, we derive the

expression of WkW
H
k .

The orthogonal scheduling assumption indicates that Ĥeff
k lies in the null space of Ĥeff

−k. Since Bk

forms the orthonormal basis of the null space of Ĥeff
−k and Bk is of dimensions N sum

T × dk under full

multiplexing assumption, we can express the effective channel matrix as

Ĥeff
k = XkB

H
k , (7)

where Xk ∈ C
dk×dk is a square matrix.

Then we have min{rank(Xk), rank(Bk)} � rank(XkB
H
k ) = rank(Ĥeff

k ). Considering the fact that

rank(Ĥeff
k ) = dk in order to transmit dk data streams to MSk, we have min{rank(Xk), rank(Bk)} � dk,

which indicates rank(Xk) � dk. Together with the fact that Xk is a squared matrix of dimension dk, we

can obtain rank(Xk) = dk, i.e., the matrix Xk is full rank and invertible. Then we have

ĤeffH

k

(
Ĥeff

k ĤeffH

k

)−1
Ĥeff

k = BkX
H
k

(
XkB

H
k BkX

H
k

)−1
XkB

H
k = BkB

H
k . (8)

Substituting (8) into (6) gives rise to the following expression:

WkW
H
k =

NBP0

N sum
T

ĤeffH

k

(
Ĥeff

k ĤeffH

k

)−1
Ĥeff

k . (9)

Again with orthogonal scheduling assumption and (7), we have Ĥeff
k ĤeffH

j = XkB
H
k BjX

H
j = 0.

Recall that Xk has been shown as invertible, we can obtain BH
k Bj = 0. Define BAll = [B1, . . . ,BK ] ∈

C
Nsum

T ×(
∑K

k=1 dk). Since BH
k Bk = Idk

, we have BH
AllBAll = I∑K

k=1 dk
. With this property and under the

assumption of full multiplexing, i.e.,
∑K

k=1 dk = N sum
T , we can conclude that BAll is an N sum

T × N sum
T

unitary matrix, i.e., BAllB
H
All =

∑K
k=1 BkB

H
k = INsum

T
. Further considering (6), the term

∑K
k=1 WkW

H
k

in (2) can be expressed as

K∑
k=1

WkW
H
k =

NBP0

N sum
T

K∑
k=1

BkB
H
k =

NBP0

N sum
T

INsum
T

. (10)

By substituting (9) and (10) into (2), we can derive the estimated data rate of MSk as

R̂k = log2 det
(
σ̄2
kINR +HkH

H
k

)− log2 det
[
σ̄2
kINR +HkH

H
k −HkĤ

effH

k

(
Ĥeff

k ĤeffH

k

)−1

Ĥeff
k HH

k

]
(a)
= log2 det

{(
σ̄2
kINR +HkH

H
k

) [
σ̄2
kINR +HkH

H
k −HkĤ

effH

k

(
Ĥeff

k ĤeffH

k

)−1

Ĥeff
k HH

k

]−1
}

= log2 det

{[
INR −HkĤ

effH

k

(
Ĥeff

k ĤeffH

k

)−1

Ĥeff
k HH

k

(
σ̄2
kINR +HkH

H
k

)−1
]−1

}

=− log2 det

{
INR −HkĤ

effH

k

(
Ĥeff

k ĤeffH

k

)−1

Ĥeff
k HH

k

(
σ̄2
kINR +HkH

H
k

)−1
}
, (11)

where (a) is derived from two facts: 1)− log2 det(M) = log2[1/ det(M)] = log2 det(M
−1) for an arbitrary

invertible matrix M ; 2) det(MN) = det(M) det(N) for arbitrary matrices M and N , and σ̄2
k =

σ2
kN

sum
T /(NBP0) is the normalized noise variance.

The per-cell codewords can be selected to maximize the estimated data rate. Specifically, we can first

calculate R̂k by setting Ĥeff
k = Vk(ik,1, . . . , ik,NB ) = [αk,1Vk,1(ik,1), . . . , αk,NBVk,NB (ik,NB )], Vk,b(ik,b) ∈

Ck,b, b = 1, . . . , NB. Then, we find the per-cell codewords indices {i�k,1, . . . , i�k,NB
} that maximize

R̂k. Because unitary per-cell codewords are applied, we have Vk(ik,1, . . . , ik,NB)V
H
k (ik,1, . . . , ik,NB ) =∑NB

b=1 α
2
k,bVk,b(ik,b)V

H
k,b(ik,b) =

∑NB

b=1 α
2
k,b.

Considering that the selected codewords are the quantized version of the effective channel matrix Ĥeff
k ,

the optimal combining matrix Uk is implicitly included in the selected per-cell codewords Vk,b(i
�
k,b),

b = 1, . . . , NB. By observing the dimensions of the matrices Ĥeff
k , Vk(ik,1, . . . , ik,NB ) and Hk, we can see
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that the function of the combining matrix Uk is to reduce the dimension of global channel matrix Hk

before quantization based on the number of data streams dk. Therefore, it is unnecessary to provide its

explicit expression.

The codeword selection problem can be described as the following proposition.

Proposition 1. Finding the codewords indices {i�k,1, . . . , i�k,NB
} for MSk that maximize the estimated

data rate of MSk can be formulated as the following problem:

min
ik,1,...,ik,NB

f(Vk(ik,1, . . . , ik,NB)) s.t. Vk,b(ik,b) ∈ Ck,b, ∀b = 1, . . . , NB, (12)

where the expression of objective function is

f(Vk(ik,1, . . . , ik,NB )) �

det

{
INR − 1∑NB

b=1 α
2
k,b

HkV
H
k (ik,1, . . . , ik,NB )Vk(ik,1, . . . , ik,NB )H

H
k

(
σ̄2
kINR +HkH

H
k

)−1

}
. (13)

In the following, we show the resulting criteria in the proposition under various system configurations

and the connection with existing criteria in literature.

3.1.1 Criterion under configuration NR = 1, dk = 1

When MSk is equipped with a single antenna, the combining matrix reduces to a scalar, and its downlink

global channel degenerates to a vector, i.e., hk ∈ C
1×Nsum

T . The global codeword of MSk also degenerates

to a vector, i.e., vk(ik,1, . . . , ik,NB ) = [αk,1vk,1(ik,1), . . . , αk,NBvk,NB (ik,NB )] ∈ C
1×Nsum

T . The objective

function of codeword selection problem in (13) becomes

f(vk(ik,1, . . . , ik,NB)) = 1− |vk(ik,1, . . . , ik,NB )h
H
k |2

(
∑NB

b=1 α
2
k,b)(σ̄

2
k + ‖hk‖2)

. (14)

We can verify that finding the per-cell codewords vk,b(ik,b) ∈ Ck,b, ∀b = 1, . . . , NB, minimizing (14)

is equivalent to minimizing the chordal distance between vk(ik,1, . . . , ik,NB) and hk, whose definition is

d2(m,n) = 1− |mHn|2/(‖m‖2‖n‖2) for arbitrary column vectors m and n [4].

3.1.2 Criterion under configuration NR > 1, dk = 1

When MSk has more than one antenna and only a single data stream is transmitted to the MS, its global

codeword is a vector, i.e., vk(ik,1, . . . , ik,NB ) = [αk,1vk,1(ik,1), . . . , αk,NBvk,NB (ik,NB )] ∈ C
1×Nsum

T , and

the combining matrix is also a vector of size NR. Then the objective function in (13) becomes

f(vk(ik,1, . . . , ik,NB ))

=det

{
INR − 1∑NB

b=1 α
2
k,b

Hkv
H
k (ik,1, . . . , ik,NB )vk(ik,1, . . . , ik,NB )H

H
k

(
σ̄2
kINR +HkH

H
k

)−1

}

=1− 1∑NB

b=1 α
2
k,b

vk(ik,1, . . . , ik,NB )H
H
k

(
σ̄2
kINR +HkH

H
k

)−1
Hkv

H
k (ik,1, . . . , ik,NB ), (15)

where the last step is obtained from the fact that det
{
I−mnH

}
= 1−mHn for arbitrary column vectors

m and n.

We can verify that selecting codewords to minimize (15) is the same as the codeword selection criterion

proposed in [9] for single-cell MU-MIMO systems, which is derived by combining the received signals at

multiple antennas of each MS to maximize the expected signal-to-interference-plus-noise ratio (SINR).

As shown in [9], this criterion corresponds to the criterion derived by combining the received signals at

multiple antennas with the quantization-based combining proposed in [8] when σ̄2
k is small, and reduces

to that derived by maximum receive combining [16] when σ̄2
k is large.
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3.1.3 Criterion under configuration NR > 1, dk = NR

When the number of data streams transmitted to MSk is NR, its global codeword V H
k (ik,1, . . . , ik,NB )

becomes a matrix of size NR ×N sum
T . The objective function in (13) can be approximated as

f(Vk(ik,1, . . . , ik,NB)) ≈
1− 1∑NB

b=1 α
2
k,b

tr
{
HkV

H
k (ik,1, . . . , ik,NB )Vk(ik,1, . . . , ik,NB )H

H
k

(
σ̄2
kINR +HkH

H
k

)−1
}
, (16)

where the approximation comes by considering that det(I + εM) ≈ 1 + εtr(M) when the constant ε is

small.

When the SNR is high, i.e., σ̄2
k � ‖HkH

H
k ‖2F, (16) becomes

fapp
HSNR(Vk(ik,1, . . . , ik,NB ))

� 1− 1∑NB

b=1 α
2
k,b

tr
{
V H
k (ik,1, . . . , ik,NB )H

H
k

(
HkH

H
k

)−1
HkVk(ik,1, . . . , ik,NB )

}
. (17)

When the SNR is low, i.e., σ̄2
k � ‖HkH

H
k ‖2F, (16) turns into

fapp
LSNR(Vk(ik,1, . . . , ik,NB )) � 1− 1

σ̄2
k

∑NB

b=1 α
2
k,b

∥∥HkV
H
k (ik,1, . . . , ik,NB )

∥∥2
F
. (18)

It is easy to verify that selecting the per-cell codewords by minimizing (17) corresponds to minimizing

the chordal distance between Vk(ik,1, . . . , ik,NB ) and Hk. For matrices M and N of size NR ×Nc and

NR � Nc, the chordal distance is defined as d2(M ,N) = NR − tr{MH(MMH)−1MNH(NNH)−1N}
[6]. Meanwhile, minimizing (18) is the same as maximizing the data rate of MSk under single-user

transmission, which was proposed in [17].

3.2 Relationship with an existing codeword selection criterion for CoMP systems

In [3], a per-cell codebook based limited feedback scheme was proposed for the case where dk = NR.

Remind that we have employed a “transformed” global codeword to quantize the CoMP channel direction

to incorporate the channel imbalance feature of CoMP channel, as shown in (3). By contrast, the method

in [3] converts CoMP channels to i.i.d. channels in order to apply the codeword selection methods for

single-cell systems. Specifically, the authors in [3] selected the per-cell codewords aiming at minimizing the

chordal distance between the aggregated small scale fading channel Hw
k shown in (1) and the aggregated

small scale fading codeword V w
k (ik,1, . . . , ik,NB ) shown in (3). The codeword selection problem was

described as the following problem in [3]:

min
ik,1,...,ik,NB

g(V w
k (ik,1, . . . , ik,NB )) s.t. Vk,b(ik,b) ∈ Ck,b, ∀b = 1, . . . , NB, (19)

where

g(V w
k (ik,1, . . . , ik,NB )) � NR− 1

NB
tr

{
V w
k (ik,1, . . . , ik,NB )H

wH

k

(
Hw

k HwH

k

)−1

Hw
k V wH

k (ik,1, . . . , ik,NB)

}
.

After MSk finds the per-cell codewords from (19), it feeds back the indices of selected codewords,

i�k,1, . . . , i
�
k,NB

. Then, the CU reconstructs the quantized CoMP channel according to (4), which is

Ĥeff
k = Vk(i

�
k,1, . . . , i

�
k,NB

).

Comparing the objective function of problem (19) and fapp
HSNR(Vk(ik,1, . . . , ik,NB )) in (17), which is

the approximation of our objective function at high SNR, we can observe that they are the same only

when all the large scale fading gains of MSk are equal, i.e., αk,1 = · · · = αk,NB � αedge. Under this

scenario, the global channel of MSk reduces to Hk = αedgeH
w
k , and the global channel codeword becomes

Vk(ik,1, . . . , ik,NB ) = αedgeV
w
k (ik,1, . . . , ik,NB ). It is clear that in this case minimizing the objective

function of (19) and (17) lead to the same codewords. However, in practical systems when considering
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the path loss, shadowing and sector antenna power gains, the large scale fading gains of MSk will be

different in a large probability. This indicates that in general, selecting codewords according to (19) does

not ensure the minimization of chordal distance between the global channel Hk and the reconstructed

channel Ĥeff
k .

4 Serial codeword selection

4.1 Serial codeword selection

The problem of (12) is a standard combinatorial optimization problem and the optimal solution requires

an exhaustive searching over the NB per-cell codebooks. Moreover, from the expression of the objective

function in (13) we can observe that the operation of matrix determinant is required during the com-

binatorial search, whose order of complexity is O(N3
R). Owing to these two aspects, the complexity of

the codeword selection method from solving problem (12) is too high for MS to afford in practice. In

the following, based on the observation that the codewords of different per-cell channels have different

impacts on the objective function, we propose a low-complexity codeword selection method.

Rather than minimize the objective function shown in (13), which requires matrix determinant oper-

ation, we can minimize its approximation shown in (16), which approximates the determinant of matrix

by the operation of matrix trace. This will reduce the complexity significantly when the value of NR is

large. After some regular derivations, we can further show that the approximation in (16) is the same

as (13) when a single data stream is transmitted to each MS. When multiple data streams are transmitted

to each MS, the approximation will lead to a performance loss, which is however not severe, as will be

shown in simulation.

Minimizing the approximation of objective function shown in (16) is equivalent to maximizing

f̄app(Vk(ik,1, . . . , ik,NB ))

� tr
{
HkV

H
k (ik,1, . . . , ik,NB )Vk(ik,1, . . . , ik,NB )H

H
k

(
σ̄2
kINR +HkH

H
k

)−1
}

(a)
= tr

{(
σ̄2
kINR +HkH

H
k

)−1
NB∑
b=1

α2
k,bHk,bV

H
k,b(ik,b)

NB∑
a=1

α2
k,aVk,a(ik,a)H

H
k,a

}

=

NB∑
b=1

NB∑
a=1

α2
k,bα

2
k,a tr

{(
σ̄2
kINR +HkH

H
k

)−1
Hk,bV

H
k,b(ik,b)Vk,a(ik,a)H

H
k,a

}
︸ ︷︷ ︸

βk(b,a)

, (20)

where (a) is obtained by substituting the expressions of global channel matrix and the global codeword

of MSk shown in (1) and (3).

We can observe that f̄app(Vk(ik,1, . . . , ik,NB )) = (f̄app(Vk(ik,1, . . . , ik,NB )))
∗, which implies that it is a

real scalar and its expression can be further derived as

f̄app(Vk(ik,1, . . . , ik,NB )) = Re
{
f̄app(Vk(ik,1, . . . , ik,NB ))

}
=

NB∑
b=1

α4
k,bβk(b, b) +

NB∑
b=1

NB∑
a=1,a �=b

α2
k,bα

2
k,aRe {βk(b, a)}

(a)
=

NB∑
b=1

α4
k,bβk(b, b) +

NB∑
b=1

b−1∑
a=1

2α2
k,bα

2
k,aRe {βk(b, a)}

=

NB∑
b=1

α2
k,b

[
α2
k,bβk(b, b) +

b−1∑
a=1

2α2
k,aRe {βk(b, a)}

]
︸ ︷︷ ︸

Γk,b

, (21)

where (a) is obtained from the fact βk(b, a) = (βk(a, b))
∗.
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Now we see that the objective function can be expressed as a weighted summation of Γk,b defined

in (21), and the weighting coefficients are the squared large scale fading gains of the links between MSk
and BSs. As stated in Section 3, the large scale fading gains of MSk are different with high probability.

Therefore, the values of Γk,b for different b have different contributions to the final objective function.

For a strong link, i.e., a large value of α2
k,b, the value of Γk,b plays an important role in the objective

function. By contrast, for a weak link, i.e., a small value of α2
k,b, the value of Γk,b has an insignificant

contribution to the objective function.

The expression of Γk,b includes both βk(b, b) = tr{(σ̄2
kINR + HkH

H
k )−1Hk,bV

H
k,b(ik,b)Vk,b(ik,b)H

H
k,b}

and Re{βk(b, a)} = Re{tr{(σ̄2
kINR+HkH

H
k )−1Hk,bV

H
k,b(ik,b)Vk,a(ik,a)H

H
k,a}}, a = 1, . . . , b−1. The value

of βk(b, b) is determined only by the index of codeword Vk,b(ik,b), and can be considered as the individual

part of the per-cell codeword. The value of Re {βk(b, a)} depends on the indices of both Vk,b(ik,b) and

Vk,b(ik,a), and can be considered as the interactive part of two per-cell codewords. As shown in (21),

when selecting the codeword index of Vk,b(ik,b), both the individual part and the interacting parts related

to this codeword should be taken into consideration.

Based on these observations, we propose a serial codeword selection, which is to select the codeword for

each per-cell channel matrix in a serial manner, whose order depends on the contribution of Γk,b to the

objective function. Specifically, we sort the per-cell channel matrices indices according to the descending

order of average gains of per-cell channels, i.e., α2
k,b. Define the sorted indices vector as Ω � [l1, . . . , lNB ],

where li represents the index of per-cell channel matrix with the ith largest average gain. Considering

that the value of Γk,l1 contributes most to the objective function, we first choose a codeword for this

per-cell channel matrix to maximize Γk,l1 = α2
k,l1

βk(l1, l1). Next, we quantize the l2th per-cell channel.

If the per-cell channel with the second largest average channel gain is quantized independently, we can

obtain a codeword to maximize the individual part related to this codeword, i.e., α2
k,l2

βk(l2, l2). However,

this does not ensure the maximization of the interacting part 2α2
k,l1

Re{βk(l1, l2)}, whose value depends

on the per-cell channel matrices and codewords of both l1th and l2th per-cell channels. Therefore, when

selecting the codeword for the l2th per-cell channel, we should choose a codeword from codebook Ck,l2
that maximizes Γk,l2 = α2

k,l2
βk(l2, l2) + 2α2

k,l1
Re{βk(l2, l1)}.

The procedure of the serial codeword selection method is summarized as follows.

Serial per-cell codeword selection

Step 1: Sort the per-cell channel matrices indices in descending order of their large scale fading gains α2
k,b as

Ω = [l1, . . . , lNB
].

Step 2: Initialize the codeword selection by setting j = 1.

Step 3: Choose the quantization of effective channel matrix with the jth largest large scale fading gain as Vk,lj (i
�
k,lj

),

whose index is chosen as

i�k,lj = arg max
Vk,lj

(ik,lj
)∈Ck,lj

{
α2
k,lj

βk(lj , lj) +

j−1∑
b=1

2α2
k,lb

Re{βk(lj , lb)}
}
,

where

βk(lj , lj) = tr{(σ̄2
kINR

+HkH
H
k )−1Hk,ljV

H
k,lj

(ik,lj )Vk,lj (ik,lj )H
H
k,lj

},
βk(lj , lb) = tr{(σ̄2

kINR
+HkH

H
k )−1Hk,ljV

H
k,lj

(ik,lj )Vk,lb (i
�
k,lb

)HH
k,lb

},

and Vk,lb(i
�
k,lb

) is the selected codeword for the lbth channel in the previous steps.

Step 4: j = j + 1. If j � NB , go to step 3, otherwise stop the selection algorithm.

4.2 Complexity analysis

When the per-cell codewords are selected by maximizing the objective function in (20) through an ex-

haustive searching, which is referred to as joint codeword selection method in this subsection, we can

show that its order of complexity is O(
∏NB

b=1 2
Bk,b).

A per-cell codeword selection method of low complexity was proposed in [3]. The basic idea is to first

construct a sub-codebook with codewords that lie in the neighborhood of the per-cell channel to be quan-

tized, and then to find the indices through exhaustive searching among the reconstructed sub-codebooks
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Table 1 Computational complexity of three codeword selection methods

Methods Computational complexity

Joint codeword selection method O
(∏NB

b=1 2
Bk,b

)

Method in [3] O
(∑NB

b=1 2
Bk,b

)
+O

(∏NB
b=1 ϕk,b

)

Serial codeword selection method O
(∑NB

b=1 2
Bk,b

)

to maximize the objective function in (19). The order of complexity of the first step is O(
∑NB

b=1 2
Bk,b),

and the order of complexity of the second step is O(
∏NB

b=1 ϕk,b), where ϕk,b is the cardinality of the

sub-codebook for quantizing the bth per-cell channel. A tradeoff between complexity and performance

can be adjusted by the range of the neighborhood, i.e. the size of ϕk,b.

From the procedure of the proposed serial per-cell codeword selection method, we can observe that to

quantize the ljth per-cell channel of MSk, we only need to search for a codeword in the codebook Ck,lj .
Thereby the order of complexity of the ljth step is O(2Bk,lj ). The serial codeword selection includes

NB steps and its overall complexity is on the order of O(
∑NB

b=1 2
Bk,b). For ease of comparison, the

computational complexity of the three codeword selection methods are summarized in Table 1.

As an example, we consider a case where the number of cooperative BSs NB = 3, and MSk is located

at the exact cell edge of the three cells. This setup indicates that the large scale fading gains from the

three BSs to MSk are equal. Let the size of three per-cell codebooks be Bk,1 = Bk,2 = Bk,3 = 4 bits.

Then, the order of complexity of joint codeword selection is O(4096). The order of complexity of the

codeword selection method in [3] is O(48 +
∏3

b=1 ϕk,b). When ϕk,b = 8, which means that the size of

sub-codebook is half of the original codebook, the complexity is on the order of O(560). In contrast, the

complexity of the proposed serial codeword selection method is only on the order of O(48).

5 Simulation results

In this section, the performance of different codeword selection methods will first be compared via simu-

lation and then using measured channels from an urban environment.

5.1 Performance comparison with simulated topology and channel model

5.1.1 Simulation setup

We consider a CoMP system with three faced sectors forming a cooperative cluster, as shown in Figure 1.

Each BS is equipped with four antennas. The sector antenna power gain is a function of the horizontal

angle φ (in degrees) follows 3GPP LTE specification [18], i.e., AGdB = 14 −min{12(φ/70)2, 20}, −π <

φ < π. The path-loss model is PLdB = 35.3 + 37.6 log10(dk,b), which is employed in LTE, where dk,b
(in meter) is the distance between MSk and BSb. We assume that the receive SNR of the cell-edge

MS is 10 dB. The small scale fading channels between BSs and MSs are i.i.d. Rayleigh channels. The

codebooks used for quantizing the per-cell channels are obtained by random vector quantization (RVQ).

The codebook size for feeding back each per-cell channels is set as four bits. All simulation results are

obtained by averaging over 1000 realizations of the small scale fading channels. We consider that two

MSs are activated in each sector and the three BSs cooperatively serve the six MSs simultaneously.

To clearly observe the impact of large scale fading gains on the performance of different codeword se-

lection methods, we first consider a special scenario with the MS locations shown in Figure 1. Specifically,

the two MSs in the same sector are located in the same place and the MS-groups in different sectors are

at the same distance from their local BSs, which is denoted by d1. In this way, we only need to show the

performance of one MS. The performance under practical random MS locations will be shown later.
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Figure 1 An example of CoMP system, where the solid line denotes local channel while the dash lines denote cross channels

for an MS. The cell radius is 250 m. The MSs in the same cell are co-located in the same place, and the user-groups in

different cells are at the same distance from their local BSs.
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Figure 2 Average per-user data rate versus the BS-MS distance d1. Each user is equipped with two antennas and two

data streams are transmitted to each user, i.e., NR = 2, dk = 2.

5.1.2 Performance comparison of different codeword selection methods

To show the impact of different criteria for codeword selection on the performance, we first provide the

results with exhaustive searching. Note that the codewords cannot be selected to maximize the actual data

rate during downlink transmission in practical systems, due to the fundamental challenge of FDD systems

that the users do not have the CSI of other users. Although we can simulate the performance of the

codeword selection by maximizing the actual data rate, which can serve as an upper bound for comparison,

the codeword selection to maximize actual downlink data rate requires an exhaustive searching over the

NB per-cell codebooks of all K users, whose complexity is on the order of O(
∏K

k=1

∏NB

b=1 2
Bk,b). Under

the considered simulation settings, the order of complexity is as high as O(272), which cannot be afforded

in simulation. Moreover, such an upper bound is far from achievable in practice; therefore, we do not

provide its simulation results.

In Figure 2, the average per-user data rates versus BS-MS distance d1 under three codeword selection

criteria are compared. In the simulation, each MS is equipped with two antennas and two data streams

are transmitted to each MS, i.e., NR = 2, dk = 2. The codewords are selected by exhaustive searching
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Figure 3 Average per-user data rate versus the BS-MS distance d1. Each user is equipped with single antenna and single

data stream is transmitted to each user, i.e., NR = 1, dk = 1.

according to the following three criteria: 1) the proposed criterion in (12), with the legend “Proposed

criterion + Joint selection”; 2) minimizing the approximated objective function in (16), with the legend

“Approx. of proposed criterion + Joint selection”; and 3) the criterion considered in [3], which is shown

in (19), with the legend “Criterion of Y. Cheng + Joint selection”. We can observe that the per-user data

rate achieved by our proposed criterion is the highest. Maximizing the approximation of the proposed

criterion causes performance loss, but it still outperforms the criterion proposed in [3]. The performance

gain of the proposed criterion over the criterion in [3] increases when the MSs move from cell edge to cell

center, i.e., the value of d1 at x-axis decreases. This is because the codeword selection criterion in [3]

does not exploit the large scale fading gains of CoMP channel during codeword selection.

To evaluate the performance of the proposed serial codeword selection method, the average per-user

data rates versus BS-MS distance d1 under three different codeword selection methods are compared in

Figure 3. In the simulation, each MS is equipped with a single antenna, i.e., NR = 1, dk = 1. The

three codeword selection methods are: 1) optimal selecting codeword method by exhaustive searching

according to the proposed criterion in (12), with the legend “Proposed criterion + Joint selection”;

2) the proposed serial codeword selection, with the legend “Proposed criterion + Serial selection”; and

3) the low-complexity method proposed in [3] with different complexities, with the legend “Criterion and

selection method of Y. Cheng”. As expected, the per-user data rate achieved with the optimal codeword

selection method is the highest, while the good performance is paid by high order of complexity as

O(4096). The performance of serial codeword selection method is close to the joint codeword selection,

and the performance gap decreases when the MSs move from cell edge to cell center. Despite such

a small performance loss, the complexity has been dramatically reduced, whose order is O(48) and is

about 1/85 of the optimal codeword selection method. As for the low-complexity method proposed in

[3], when its complexity is set the same as the serial codeword selection, the method reduces to selecting

each per-cell codeword that has the minimal chordal distance with the per-cell channel vector, and can

be regarded as an independent codeword selection for the per-cell channels. The independent per-cell

codeword selection method performs the worst, since it ignores the inter-cell phase information during

the selection. When the codeword selection complexity of method in [3] is increased to two times larger

than the serial codeword selection, the performance is substantially improved but is still inferior to the

serial codeword selection.

To evaluate the performance of the proposed criterion and the proposed serial codeword selection

method in a more realistic user distribution, in Figure 4 we provide the average per-user data rate when
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Figure 4 Average per-user data rate under different configurations.

six MSs are randomly distributed in a 10 dB “cell-edge region”, where minl �=bk(α
2
k,bk

/α2
k,l) for MSk is less

than 10 dB. This corresponds to randomly scheduling the MSs for transmission. In practice, any well-

designed scheduler will perform better than a random scheduler. Four codeword selection methods are

compared, which are: 1) exhaustively searching codewords according to (12), 2) exhaustively searching

codewords according to (19), i.e., the criterion of Y. Cheng; 3) selecting codewords by our proposed serial

codeword selection, and 4) the low complexity codeword selection method in [3]. The legends are the same

as before. For a fair comparison, the complexity of the method in [3] is set the same as that of the serial

codeword selection method. We can see that the serial codeword selection method yields approximately

the optimal result with exhaustive searching but with quite low complexity, and outperforms the method

in [3] with the same complexity.

5.2 Performance comparison in a measured urban environment

Finally, we evaluate the performance of different codeword selection methods in a realistic multi-sector

scenario based on channel measurements. The measurement was performed in an urban macrocellular

environment at Kista, near Stockholm, using one four-antenna MS and a three-sector BS site, where each

sector is equipped with a cross-polarized antenna pair. The equipments and setup are described in detail

in [10], which are omitted here for brevity. Although the MS in the measurement is equipped with four

antennas, here we only consider one receive antenna, in order to support multiple MSs in each sector and

apply the method in [3]. The collected channel measurement is used to generate our evaluation scenario,

where six MSs are moving around in the area covered by the three BS sectors, as shown in Figure 5.

To study the impact of codeword selection methods on the performance of individual MSs, the six MSs

are initially placed at the positions shown in Figure 5 and moved at a constant speed (of approximately

30 km/h) according to the indicated directions. The transmit power of each BS and the thermal noise

power of MSs are set as 46 dBm and −96 dBm, which are in accordance with the LTE specification [18].

Each data rate sample is obtained by averaging over 162 frequency samples and 50 time domain channel

samples.

The performance is compared in Figure 6, where the data rates of the six MSs versus their moving

distances are provided. The four codeword selection methods are the same as that considered in Figure 4.

From the results we can observe that when exhaustively searching the codewords, the proposed criterion

in (12) always outperforms the criterion proposed in [3]. The performance gap differs for various MSs
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Figure 6 The data rates of six MSs versus their moving distances. (a) Data rate of MS1; (b) data rate of MS2; (c) data

rate of MS3; (d) data rate of MS4; (e) data rate of MS5; (f) data rate of MS6.

and different locations of each MS. The performance of serial codeword selection almost overlaps with

that from the optimal codeword selection method by exhaustively searching according to (12), and is

superior to the low complexity method in [3], no matter where the MS is located. This results further

substantiate the good performance of the proposed low-complexity method.

6 Conclusions

In this paper, we studied codeword selection for limited feedback CoMP-JP systems with per-cell code-

book. A unified codeword selection criterion was provided for an arbitrary number of antennas and an
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arbitrary number of data streams, which degenerates to various selection criteria under different config-

urations, and outperforms other criterion for CoMP known in literature. By exploiting the imbalance

of average channel gains from multiple BSs to an MS, we proposed a low-complexity codeword selection

method. The proposed codeword selection criterion and method were evaluated in a measured urban

environment and through simulations. The results showed that the serial codeword selection method

performs closely to the optimal codeword selection that maximizes the estimated data rate with exhaus-

tive searching, and outperforms existing scheme with the same complexity.
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