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Abstract—Millimeter wave (mmWave) communication is a sig-
nificantly enabling technology in next generation cellular system.
Combined with massive number of antennas, the throughput
can be greatly improved but the computation complexity and
power consumption can also be incredibly high. In this paper, we
study the hybrid precoding design in mmWave three-dimensional
(3D) massive multiple-input multiple-output (MIMO) systems. To
exploit the characteristic of planar antenna arrays, we represent
the 3D-MIMO channel response with tensor, and find the null
space of interference users with tensor decomposition. The null
space can be well approximated by the Kronecker product of
azimuth and elevation directional array vectors, and thus the
designed analog precoder can eliminate inter-user interference.
Combined with the baseband digital precoding, which find the
maximal projection direction of the desired channel on the
null space, the conventional zero-forcing block-diagonalization
(ZF-BD) precoding method is extended to tensor context with
constant-modulus constraint of null space elements. Since there
are massive antennas and only limited RF chains, the proposed
method has larger freedom to suppress interference. Simulation
results verify its superiority.

Index Terms—3D-MIMO, hybrid precoding, massive-MIMO,
mmWave communication, tensor decomposition

I. INTRODUCTION

One of the primary technique in the fifth generation (5G)

cellular system is millimeter wave (mmWave), which is the

spectral frontier for wireless communication systems nowa-

days [1]. The propagation characteristic of mmWave channel

is different from the microwave channel. Due to the larger

penetration loss, less scattering and diffraction, mmWave

channel is more sparse both in time domain and space domain.

Hence, mmWave communication depends more extensively on

highly directional transmission.

Since the antennas in mmWave system will be numerous,

the complexity of computation and the consumption of device

power such as radio frequency (RF) are especially high, which

means that the full digital precoding is not practical. As an

alternative, the hybrid precoding structure is generally used,

where the analog precoder conducts phase-only precoding

with low-complexity phase shifters, and the baseband precoder

adjusts both the amplitude and phase with full-functional RF

chains [1, 2].

In typical hybrid precoding designs, such as in [3–5], the

analog precoder is used to improve the signal power, and the

digital precoder is used to suppress inter-user interferences.

More sophisticated algorithm has been proposed in [6], where

the analog precoder is optimized on manifold so that the

achievable rate of hybrid precoding can approach that of full

digital precoding. However, the algorithm needs alternating

minimization between two precoders and the computational

burden is high.

Considering the massive antenna number in future cel-

lular systems, placing antenna arrays in two dimensional

grid has been proposed, where the planar array can form

beams in both the azimuth and elevation dimensions, it is

thus called three-dimensional (3D) multiple-input multiple-

output (MIMO) system [7]. The precoding in 3D-MIMO

systems might be simplified if we deal with the azimuth

and elevation dimensions separately. In [8], the authors put

forward that a Kronecker production of the azimuth and

elevation correlations can well approximate the 3D-MIMO

channel correlation matrix. In [9], a more direct approach

has been taken to show the Kronecker production relationship

between azimuth and elevation channels by decomposing the

channel vector. A multi-layer precoding solution for 3D-

massive-MIMO systems is proposed in [10] that the channel

characteristics in the elevation direction is leveraged to manage

inter-cell interferences. However, these works did not consider

hybrid precoding architecture, and only single data stream is

transmitted for each user.

The channel response of a 3D-massive-MIMO system can

be represented by a large matrix, as the conventional represen-

tation of MIMO channels. But considering its unique feature,

it is more natural to describe it with a tensor [11]. Then the

channel in azimuth and elevation dimensions can be thought

as slices of the tensor with different modes, and tensor decom-

position can be used to analyze the signal subspace and null

subspace in different dimensions [12]. In this paper, we first

derive a null space representation of the channel tensor, and

then extend the conventional matrix-based zero-forcing block-

diagonalization (ZF-BD) precoding method [13] to the tensor

context. The null space of interference users can be expressed

by the combination of a series of Kronecker product between

horizontally and vertically dimensional channel vectors, and

these vectors can be well approximated by the azimuth and

elevation directional antenna array vectors. In this way, we find

an analog precoding method which can suppress multi-user

interference and inter-cell interference, and has larger design

freedom in the situation of limited RF chains. Combined

with the baseband digital precoding, which finds the maximal

projection direction in the null space, a new kind of hybrid

precoding design methodology is proposed. The roles of outer



layer analog precoding and inner layer digital precoding are

conversed with conventional settings.

Notations: Scalars are denoted by lowercase letters, vectors

by lowercase boldface letters, matrices by uppercase boldface

letters, and higher-order tensors by calligraphic letters. (·)T ,

(·)H and (·)∗ are respectively the transpose, Hermitian and

conjugate operation. The Kronecker, outer, and n-mode prod-

ucts are denoted by the symbols ⊗, ◦, and ×n, respectively.

II. SYSTEM MODEL AND TENSOR PREREQUISITES

A. System model

We consider a multiple-user (MU)-MIMO downlink system,

where a BS serves K users. The BS is equipped with Nt

antennas, and the user k is equipped with Nr,k antennas. The

total number of antennas at all users is Nr =
∑K

k=1 Nr,k. The

transmit signal of user k is denoted by sk ∈ C
Lk , where Lk is

the number of streams. Fk ∈ C
Nt×Lk denotes the precoding

matrix of user k. The channel matrix from the BS to the user

k is denoted by Hk ∈ C
Nr,k×Nt . The received signal of user

k can be written as

yk = HkFksk +

K∑
l=1,l �=k

HkFlsl + nk. (1)

In (1), the first term is the expected signal, the second term is

interference, and nk ∈ C
Nr,k is the additive complex Gaussian

noise. The stacked channel and precoding matrices HS and FS

for all users can be defined as

HS =
[
HT

1 HT
2 · · · HT

K

]T
, (2)

FS = [F1 F2 · · · FK ] . (3)

B. Channel model

Due to the severe path loss, mmWave environment is

well characterized by a clustered channel model, i.e., the

Saleh-Valenzuela model [14]. In order to facilitate expression,

the index k, which means the k-th user, is omitted in this

subsection. Then, the channel matrix between the BS and one

user is defined as

H =

√
NtNr

NclNray

Ncl∑
i=1

Nray∑
l=1

αilar(φ
r
il, θ

r
il)a

H
t (φt

il, θ
t
il). (4)

In (4), Nt = Nth ×Ntv is the number of transmitter antennas

on the BS, and Nr = Nrh × Nrv is the number of receiver

antennas on the user end. Nxh and Nxv represent the number

of antenna elements on the horizontal and vertical dimensions

respectively, where x ∈ {t, r} denotes the transmitter or

receiver. When Nxh = 1 or Nxv = 1, the array is linear,

otherwise it is a uniform planar array (UPA) shown as the

structure in Fig. 1. Ncl and Nray denote the number of clusters

and the number of rays in each cluster. Generally, all of the

clusters are assumed to be uniformly distributed, while the

rays in one cluster follow Laplace distribution in their own

angle spread. αil represents the gain of the l-th ray in the i-th
cluster. We suppose that it is i.i.d. and follows the distribution

44tvN

tvd

6thN 6thd

Fig. 1. An example of a Ntv = 4, Nth = 6 UPA at the BS.

CN (0, σ2
α,i), where σ2

α,i is the average power of the i-th
cluster.

The vector ax(φ
x
il, θ

x
il) is the array response, in which φx

il

is the azimuth angle and θxil is the elevation angle. The angles

with superscript t denote angles of departure (AoDs) and that

with superscript r denote angles of arrival (AoAs). The array

response vector can be formulated as

ax(φ
x
il, θ

x
il) =

1√
Nx

[1, e−jvx
il , · · · , e−j(Nxh−1)vx

il ]T

⊗ [1, e−jux
il , · · · , e−j(Nxv−1)ux

il ]T

=
1√
Nx

ax,H(vxil)⊗ ax,V (u
x
il),

(5)

where ax,V (u
x
il) and ax,H(vxil) are the subarray vectors on

the vertical and horizontal dimensions, respectively, and ux
il

and vxil are corresponding phase difference between adjacent

elements [15].

ux
il =

2πdxv
λ

cos θxil, (6)

vxil =
2πdxh

λ
sin θxil sinφ

x
il, (7)

where dxv and dxh are antenna spacing on the vertical and

horizontal dimensions of the transmitter (x = t) or the receiver

(x = r), and λ is the signal wavelength.

C. Tensor prerequisites

For the convenience of readers, we briefly introduce some

prerequisite knowledge of tensors [11, 12]. A tensor is a

multidimensional array. The order of a tensor is the number of

dimensions. For instance, X ∈ C
I1×I2×···×IN is an N -th order

tensor whose elements are denoted by xi1i2···iN = [X ]i1i2···iN
where in ∈ {1, . . . , In}, n = 1, 2, . . . , N . Fibers are the higher

order analogue of matrix rows and columns. A fiber is defined

by fixing every index but one. The mode-n unfolding of X
is denoted by Xn and arranges the mode-n fibers to be the

columns of the matrix.

The n-mode product of X with a matrix U ∈ C
J×In is

denoted by X ×n U and is of size I1 × · · · × In−1 × J ×
In+1 × · · · × IN , whose element is

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNujin . (8)



Fig. 2. The tensor description of channels.

The Tucker decomposition is a form of higher-order prin-

cipal component analysis. It decomposes a tensor into a core

tensor multiplied by a matrix along each mode, which is

X = G ×1 A
(1) ×2 A

(2) · · · ×N A(N) (9)

=

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

gi1i2···iNa
(1)
i1

◦ · · · ◦ a(N)
iN

(10)

where A(n) ∈ C
In×In , n ∈ {1, 2, · · · , N}, are the factor

matrices and can be thought of as the principal components

in each mode. a
(n)
in

is the inth column in the A(n). The

tensor G ∈ C
I1×I2×···×IN is the core tensor and the entry

gi1i2···iN shows the level of interaction between the different

components a
(1)
i1

, · · · ,a(N)
iN

.

The matrix version of (9) is

X(n) = A(n)G(n)

(
A(N) ⊗ · · · ⊗A(n+1)

⊗A(n−1) ⊗ · · · ⊗A(1)
)T

. (11)

III. HYBRID PRECODING DESIGN BASED ON TENSOR

DECOMPOSITION

In this section, we will introduce the proposed hybrid

precoding scheme. For one user, the two-layer precoding

structure can be written as Fk = F1
kF

2
k, where F1

k represents

the outer layer analog precoding, and F2
k represents the inner

layer digital precoding. The focus is to design the analog

precoder through tensor decomposition.

A. Tucker decomposition of channel tensor

For convenience, we assume the number of receiver an-

tennas on each user equipment (UE) is equal to Nr, i.e.,

Nr = Nr,1 = Nr,2 = · · · = Nr,K . We define the stacked

channel matrix for all users other than user k as

H̃k =
[
HT

1 · · · HT
k−1 HT

k+1 · · · HT
K

]T
. (12)

The channel matrix Hk ∈ C
Nr×Nt can also be viewed from

a tensor perspective. Since the UPA has horizonal and vertical

dimensions, the channel response of a 3D-MIMO system can

be denoted as a 3rd-order tensor, i.e., Hk ∈ C
Nr×Ntv×Nth ,

as illustrated in Fig. 2. Similarly, the stacked matrix H̃k ∈
C

(K−1)Nr×Nt in (12) can be expressed as a stacked tensor

H̃k ∈ C
(K−1)Nr×Ntv×Nth . (13)

The Tucker decompositon of H̃k can be written as

H̃k = G̃k ×1 Ãk ×2 B̃k ×3 C̃k, (14)

and G̃k ∈ C
(K−1)Nr×Ntv×Nth is the core tensor, which can

be computed by

G̃k = H̃k ×1 Ã
H
k ×2 B̃

H
k ×3 C̃

H
k , (15)

where Ãk ∈ C
(K−1)Nr×(K−1)Nr , B̃k ∈ C

Ntv×Ntv and

C̃k ∈ C
Nth×Nth are the unitary factor matrices, representing

the signal space viewed from different modes of the tensor.

Tucker decomposition can be computed through high-order

singular value decomposition (HOSVD) algorithm [11]. We

apply (H̃k)(1), (H̃k)(2) and (H̃k)(3) to denote the mode-1,

mode-2, mode-3 unfolding of H̃k respectively. Ãk, B̃k and

C̃k are the left singular matrices of (H̃k)(1), (H̃k)(2) and

(H̃k)(3), respectively.

The channel matrix H̃k is equivalent to the mode-1 unfold-

ing of H̃k. According to (11), we can obtain

H̃k = (H̃k)(1) = Ãk(G̃k)(1)(C̃k ⊗ B̃k)
T

=

(K−1)Nr∑
t=1

Ntv∑
i=1

Nth∑
j=1

g̃ktij
ãkt

(c̃kj
⊗ b̃ki

)T ,

(16)

where (G̃k)(1) is the mode-1 unfolding of G̃k, and g̃ktij is the

(t, i, j)-th element of G̃k. ãkt is the t-th column of Ãk, b̃ki

is the i-th column of B̃k, and c̃kj is the j-th column of C̃k.

Since B̃k and C̃k are all unitary matrices, the column vectors

in them are orthogonal among each other, i.e.,

(b̃kv )
H b̃kv′ =(b̃kv )

T (b̃kv′ )
∗ =

{
0 v �= v′

1 v = v′,
(17)

(c̃kh
)H c̃kh′ =(c̃kh

)T (c̃kh′ )
∗ =

{
0 h �= h′

1 h = h′,
(18)

where v, v′ ∈ 1, 2, · · · , Ntv and h, h′ ∈ 1, 2, · · · , Nth.

B. Null space of interference users

The optimal solution of interference management is to make

all inter-user interference be zero. According to (1), it means

HlFk = HlF
1
kF

2
k = 0 for l �= k, (19)

and HSFS will be block diagonal (BD) [13]. Hence, in the

first-layer precoding, we try to find F1
k which satisfies the

condition

HlF
1
k = 0 for l �= k. (20)

Considering all the users, the constraint becomes to

[HT
1 · · · HT

k−1 HT
k+1 · · · HT

K ]TF1
k = H̃kF

1
k = 0. (21)

From the equation, it is obviously that F1
k should lie in the

null space of H̃k. Hence, in the context of tensor, we should

find the null space of H̃k.

For a matrix, it is easy to find its rank and orthogonal basis

by singular value decomposition (SVD). The null space is

formed by the orthogonal basis corresponding to those zero

singular values. However, in tensor field, there is no straight-

forward algorithm to determine the rank of a specific given



tensor. For a general third-order tensor X ∈ C
I×J×K , only the

following weak upper bound on its maximum rank is known

[16]:

rank(X ) � min{IJ, IK, JK}. (22)

Hence, it is intractable to utilize the rank of a tensor to find

the accurate number of linear combination of ãkt
(c̃kj

⊗ b̃ki
)T

in (16) to represent the channel tensor, as well as the null

space. For this reason, we instead resort to the element g̃ktij

of the core tensor G̃k. The value of g̃ktij
reflects the level

of interaction among ãkt
, b̃ki

and c̃kj
. When g̃ktij

= 0, the

component g̃ktij
ãkt

(c̃kj
⊗ b̃ki

)T in (16) is ineffective.

We assume that the number of∣∣g̃ktij

∣∣ > 0 (23)

is R. At first, compute each |g̃ktij
| and sort them in decreasing

order. The tensor element indexes of g̃ktij
corresponding to

the largest R values are denoted by (ts, is, js) and s ∈
{1, 2, · · · , R}.

Then, we can simplify (16) as the equation (24) at the top

of next page. We define the third matrix in (24) as

ṼR = [c̃kj1
⊗ b̃ki1

· · · c̃kjR
⊗ b̃kiR

]T . (25)

Define the pair {js, is} as the index of c̃kjs
⊗ b̃kis

. There are

some repetitive indexes in ṼR. For instance, if |g̃k123 | > 0
and |g̃k223

| > 0, we have the column c̃k3
⊗ b̃k2

and the index

{3, 2} in ṼR twice. Delete the column with the same {js, is}
and make every column unique. Then, we obtain

Ṽsignal = [c̃kx1
⊗ b̃ky1

· · · c̃kxd
⊗ b̃kyd

· · · c̃kxD
⊗ b̃kyD

]T ,

(26)

where d ∈ {1, 2, · · · , D} is the index of column of Ṽsignal,

and D ≤ R is the total number of columns. The pair index

{xd, yd} is picked from {js, is}, which refers to the xd-th

column of C̃k and the yd-th column of B̃k.

Theorem 1. A part of the basis for the null space of H̃k is
Ṽnull, where each column is

(c̃kj
⊗ b̃ki

)∗, for j �= xd or i �= yd. (27)

That means Ṽnull is composed by (C̃k ⊗ B̃k)
∗ excluding the

columns of ṼH
signal.

Proof. For the sake of clarity, we define

Ṽnull =
[
c̃km1

⊗ b̃kn1
· · · c̃kme

⊗ b̃kne
· · · c̃kmE

⊗ b̃knE

]∗
,

(28)

where e ∈ {1, · · · , E} is the index of column of Ṽnull, and

E = Nt−D is the total number of columns. From the theorem

above, we know that me �= xd or ne �= yd. Further, since the

pair index {xd, yd} is picked from {js, is}, we can get

me �= js or ne �= is. (29)

Combining (24) and (28), we get the equation (30) on the

top of next page. Define the product of last two matrixes in

(30) as Γ. Each block of Γ is(
c̃kjs

⊗ b̃kis

)T (
c̃kme

⊗ b̃kne

)∗
. (31)

Because

(X⊗Y)T = XT ⊗YT , (X⊗Y)∗ = X∗ ⊗Y∗, (32)

(X⊗Y)(M⊗N) = (XM)⊗ (YN), (33)

and combined with (17)(18)(29), the block (31) can be con-

verted to (
c̃Tkjs

c̃∗kme

)⊗ (
b̃T
kis

b̃∗
kne

)
= 0. (34)

It follows that Γ = 0 and

H̃kṼnull = 0. (35)

Hence, Ṽnull ∈ N(H̃k).

Similarly, we randomly choose the p-th and q-th column of

Ṽnull, and compute their correlation coefficient(
(c̃kmp

⊗ b̃knp
)∗
)H(

c̃kmq
⊗ b̃knq

)∗
=

(
c̃Tkmp

c̃∗kmq

)⊗ (
b̃T
knp

b̃∗
knq

)
=

{
0 p �= q

1 p = q
, (36)

where p, q ∈ {1, 2, · · · , E}. It means that the columns of Ṽnull

are orthogonal, and they are linearly independent of each other.

Apply the same method in (36) to (26). We will find that

the columns of Ṽsignal are also orthonormal, and Ṽsignal is the

unique form of ṼR, so

rank(ṼR) = rank(Ṽsignal) = D. (37)

Because the rank of matrix follows

rank(XYZ) ≤ min
{

rank(X), rank(Y), rank(Z)
}
, (38)

the rank of H̃k is

rank(H̃k) ≤rank(ṼR) = D. (39)

Combined with H̃k ∈ C
(K−1)Nr×Nt , the dimension of the

null space of H̃k is

dim N(H̃k) = Nt − rank(H̃k) ≥ Nt −D, (40)

then we can get

dim N(H̃k) ≥ E. (41)

Hence, the E columns in Ṽnull is not the full basis forming

the null space of H̃k.



H̃k =

R∑
s=1

g̃ktsisjs
ãkts

(c̃kjs
⊗ b̃kis

)T =
[
ãkt1

· · · ãktR

]
diag

(
g̃kt1i1j1

· · · g̃ktRiRjR

)[
c̃kj1

⊗ b̃ki1
· · · c̃kjR

⊗ b̃kiR

]T
.

(24)

H̃kṼnull =
[
ãkt1

· · · ãktR

]
diag

(
g̃kt1i1j1

· · · g̃ktRiRjR

)
⎡⎢⎢⎢⎢⎣

(
c̃kj1

⊗ b̃ki1

)T

...(
c̃kjR

⊗ b̃kiR

)T

⎤⎥⎥⎥⎥⎦
[(

c̃km1
⊗ b̃kn1

)∗
· · ·

(
c̃kmE

⊗ b̃knE

)∗]

(30)

C. Hybrid precoding design

From the expression of Ṽnull, we know that it is a combina-

tion of a series of Kronecker product of vertical and horizontal

factor vectors. If we use Ṽnull as the first layer precoder, it can

definitely inhibit inter-user interference, but it does not satisfy

the constraints for analog precoding.

To obtain precoding matrix with constant-modulus ele-

ments, we can approximate each b̃kne
and c̃kme

with the

subarray vectors at,V (u
t
e) and at,H(vte), respectively, i.e.,

ut
e = argmax

u
|b̃H

kne
at,V (u)|, (42)

vte = argmax
v

|c̃Hkme
at,H(v)|. (43)

Furthermore, due to the limited number of RF chains, we

can not use all E columns of Ṽnull to approximate the first

layer precoder, and only NRF
k columns are allocated to user

k. The column number of F1
k should be less than NRF

k . Thus

we can pick NRF
k columns from Ṽnull on which the channel

matrix Hk of the desired user can have maximal projection.

The finally obtained analog precoder is expressed as

F1
k =

[
at,V (u

t
1)⊗ at,H(vt1), · · · ,at,V (ut

NRF
k
)⊗ at,H(vtNRF

k
)
]
.

(44)

To obtain the second layer digital precoding matrix F2
k, we

need first construct the equivalent channel HkF
1
k, which is an

interference-free channel. Thus we can use the technique of

SU-MIMO to design F2
k. Actually, it is well known that the

best precoding matrix for F2
k is the right singular matrix of

HkF
1
k.

In this way, the new hybrid precoding method is proposed,

where the outer layer analog precoder is to suppress inter-

ference and the inner layer digital precoder is to maximize

transmit power. We can see that the design procedure is like the

ZF-BD algorithm. But with the special constraints of analog

precoding, we have resorted to tensor decomposition to obtain

the approximation of null space using subarray vectors. Due

to the large number of antennas, we have large freedom to

inhibit inter-user interference as well as inter-cell interference,

by introducing more interference channel matrices into (12).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed

scheme in different situations and compare it with other hybrid

precoding schemes. In our scenario, the BS serves K users,

and each user transmit Lk data streams. The UPA is amounted

with 64 antennas, where Ntv = Nth = 8, dv = dh = 1
2λ.

The number of RF chains is equal to the total number of

data streams of K users. In the channel model, Ncl = 8,

Nray = 10, and each cluster’s average power is σ2
α,i = 1. The

azimuth and elevation dimensional AOAs and AODs follow

the Laplacian distribution with uniformly distributed mean

angles and angular spread of 5 and 2.5 degrees.
Through the simulations, we find that sometimes there

is no g̃ktij
= 0 in the core tensor G̃k. The reason is

that when we compute the Tucker decomposition with rank-

(R1, R2, · · · , RN ), if Rn < rankn(X ) for one or more mode

n, the decomposition will be truncated and the result does not

exactly reproduce X . To implement our proposed algorithm,

we define a threshold η > 0 to replace the 0 in (23). The

appropriate η defines the size of the null space of H̃k.
In Fig. 3, we compare the performance of the proposed

precoding scheme with the full-size digital ZF-BD, an extend-

ed orthogonal matching pursuit (OMP) scheme, and a simple

beam steering scheme. The extended OMP scheme is based

on the spatially sparse precoding proposed in [17], and we

extend it to hybrid precoding in MU-MIMO scenarios through

setting Fopt as that of ZF-BD scheme, where the analog

layer maximizes signal power and the digital layer deals with

interference. The simple beam steering solution just steers its

data streams to the channel’s best propagation paths. In this

figure, we set K = 4 and NRF
k = Lk = 2. As can be seen from

the figure, the proposed hybrid precoding schemes outperforms

the extended OMP scheme and the simple beam steering

scheme. Along with the increasing of SNR, the performance

gap keeps growing.
In Fig. 4, we evaluate the performance of the proposed

scheme with different number of data streams, where the

user number is fixed as K = 4 and NRF
k = Lk. When

SNR = −10,−5 dB, with more data streams our method can

even outperforms the conventional ZF-BD scheme. Since the

ZF-BD scheme is a sub-optimal solution for the precoding
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Fig. 3. Sum date rate versus SNR when Lk = 2,K = 4.
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of MU-MIMO systems, the performance will decline when

the number of streams increases [18]. By incorporating ap-

proximation of the null space by the subarray vectors, our

method achieves a tradeoff between suppressing interference

and collecting power, thus behaves better in low SNR region.

When the SNR is larger, the performance of our scheme is

worse than that of ZF-BD, but the gap shrinks when the system

serves more data streams.

V. CONCLUSIONS

We have designed a two-layer hybrid precoding scheme for

mmWave 3D-massive-MIMO systems. Exploiting the nature

of planar antenna arrays, the 3D-MIMO channel response is

represented by a tensor, and the null space of interference users

is found through Tucker decomposition. The idea of ZF-BD

precoding method is extended to accommodate the constraints

of analog precoding. The null space is approximated by the

Kronecker product of azimuth and elevation directional array

vectors, and thus the designed analog precoder can eliminate

inter-user and inter-cell interference. With limited number

of RF chains, the proposed method has larger freedom for

interference suppression than conventional hybrid precoding

designs. Simulation results demonstrated that the performance

of the proposed scheme is close to ZF-BD scheme when

the number data streams grows, and exceeds other hybrid

precoding method which only collect power using the analog

precoder.
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