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Abstract—Hand gesture recognition through wireless sensing is
a new method of human-machine interaction, and is an important
research direction for next generation integrated sensing and
communication systems. Recently, although there are plenty of
works on wireless sensing and hand gesture recognition, most of
them are applied in single user scenario. Since the recognition
algorithm is mainly realized by analyzing the variation of wireless
propagation channel, the simultaneous movement of multiple
people will cause superposition of the dynamic channel responses
and cause interference to each other. This paper proposes to
use spatial beamforming to alleviate the mutual influence of
multiuser hand gestures. Since the hands of multiple users
reflect the same signal, the channel responses are usually not
orthogonal even if the users are well separated in different
locations, and there is no reference signals to help distinguishing
the channel response reflected by different users. We propose
a preamble gesture scheme to estimate the spatial channel of
dynamic reflections under the impact of strong phase noise, and
use the Doppler variation feature to verify the channel response
belongs to hand movement. We have a thorough analysis of the
inter-user interference impacted by the transmitter-user-receiver
geometry relations, user movement speeds and directions. The
interference suppression effect is demonstrated by prototype
experiments under real LOS and NLOS scenarios exploiting LTE
signals.

Index terms— Beamforming, channel state information,
gesture recognition, multiuser, wireless sensing.

I. INTRODUCTION

Device-free wireless sensing (DFWS) is a promising tech-
nology which attracts much attention recently since it can
capture the electromagnetic disturbance caused by human
movement and does not need the user to carry any physical
device. The in-air propagated radio-frequency (RF) signal
not only carries information data, but also involves with the
surrounding environment during its transmission [1]. From
transmitter to receiver, the electromagnetic wave might goes
through many times of reflections and diffractions, by the static
or moving objects like walls, furnitures, and humans. With
human body movements, the propagation channel changes, and
the wireless sensing system aims to extract such changes and
further recognizes human motions [2].

Taking advantage of this capability, DFWS can be widely
used in many scenarios in daily lives, such as indoor human
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activity detections including localization [3], respiration de-
tection [4], and gait recognition [5]. Except for traditional
indoor scenes, DFWS also shows great potential on smart cars
[6] like driver’s behaviour detection [7], driver authentication
[8] and vehicle speed estimation [9]. Among these applica-
tions, hand gesture recognition is suitable for both indoor
and in-car circumstances, which enables human to interact
with intelligent electric appliances or automotive multimedia.
Hand gesture recognition is challenging compared with body
movement detection since hands have much less impact on
wireless propagation.

To capture the environment changes, multiple kinds of
channel measurement information are exploited, for example,
received signal strength (RSS) [10], [11], time-of-flight (ToF)
[12] and channel state information (CSI). Among these mea-
surement information, CSI is most widely used because CSI
can provide precise amplitude and phase variations of wireless
channels [13].

According to the electromagnetic wave propagation theory,
if the moving object can be viewed as a point target, there
is a deterministic relation between the CSI variation and
movement trajectory, given the positions of the transmitter and
receiver. In [14], the concept of Fresnel zone is first introduced
to reveals the effect of human position and orientation to CSI
fluctuations. In [15], the Doppler shift is calculated from CSI
and nine kinds of body movement can be recognized. In [16],
both amplitude and phase of CSI are used to detect moving
and stationary human. But the relation becomes complicated
if we take into account situations that one activity may
involves several body parts. There are researches focusing on
deep learning methods in these situations, using multi-layer
perception (MLP) [17], [18], convolutional neural network
(CNN) [19]–[21], or recurrent neural network (RNN) [22],
[23]. Such methods can achieve good performance in single
user scenario by capturing the hidden information it learned
from CSI [24].

However, there are few studies regarding the human activity
detection problem in multiuser scenario. If two or more people
move simultaneously, human activity effects are mixed up,
leading to strong inter-user interference (IUI) [25]. With differ-
ent dynamic path lengths, the activities of different people can
be separated by different ToFs. This method is usually imple-
mented by specialized system since it requires large bandwidth
to achieve higher ToF resolution. For example, DeepBreath
[26] and Witrack2.0 [27] use frequency-modulated continuous
wave (FMCW) signals with 1.5 GHz and 1.69 GHz band-
width, respectively. However, specialized system is hard to
be widespreadly used. Recently, some works focus on multi-



target recognition with WiFi systems. WiMU [28] generates
virtual samples for all possible single gesture combinations
and matches with real multi-gesture samples. This method
cannot associate gesture to users since it does not acquire
any user location information. MultiTrack [29] dynamically
switches 24 non-continuous channel in 5 GHz WiFi band
and the total frequency spanning achieves 600 MHz, thus
it can separate users by ToF. But in real communication
system, it is not viable to continually switch the channel during
transmission.

Except for the ToF, different reflection paths usually have
different angles of arrival (AoA) and angles of departure
(AoD). Some works propose to separate users by AoAs or
AoDs [4] [30], but indoor multipath deteriorates angle esti-
mation performance, especially in non line-of-sight (NLOS)
scenario. In conventional wireless communications, multiuser
beamforming can be applied directly based on the channel
response instead of the angle information. But the difference
is that it is hard to obtain accurate channel response here. In
wireless communications, the signal is strong, and there are
specially designed orthogonal reference sequences to estimate
the channel responses of different users. In DFWS, the dy-
namic reflection is weak, and multiple users reflect the same
signal. The channel responses from different users are usually
not orthogonal even that the users are well separated in space,
and there is no reference signals to help distinguishing them.

Furthermore, CSI calibration is another challenge. Raw CSI
extracted from device is polluted by carrier frequency offset
(CFO), sampling timing offset (STO) and phase noise. Such
interferences impose a time-variant random phase to real CSI,
which will cause power leakage from the static path to the
dynamic path. The detection performance will thus be severely
deteriorated as the phase variation is the most important
information for human motion detection [13]. A common used
method for single user detection is CSI ratio model [31], since
CFO, STO and phase noise is generated by oscillator vibration,
and neighbored antennas share the same CFO, STO and phase
noise. Set the CSI from one antenna as reference, by dividing
operation, the random phase is removed and the CSI ratio can
be used to extract movement information. Nevertheless, if the
dynamic part is relatively strong compared to the static part,
there will be severe distortion in the ratio.

In previous works, the CSI was often acquired by WiFi
signals since there are commodity devices like Intel WiFi
link 5300 wireless NIC and it is easy to extract CSI from
the drivers. But if not for research, WiFi signal is burst and
randomly arrived, it may has rare data packets to get enough
samples of CSI, especially when the network service is not
busy [32]. On the contrary, Long Term Evolution (LTE) signal
is always on the air, and is well covered in most inhabited
areas. Its cell-specific reference signal (CRS) is periodically
transmitted in every slot (0.5 ms), and we can acquire CSI in
a constant rate as high as 2 kHz.

In this work, we develop a practical multiuser hand gesture
recognition system based on LTE signal. We separate users
and suppress phase noise in spatial domain. To estimate the
spatial channel of the weak dynamic paths under the strong
interference of static paths, we use a two-layer method to find

optimal beam steering in the null space of static channels.
We design a preamble gesture which has distinct pattern in
Doppler-time domains, to insure the channel response belongs
to the expected user and is not interfered by other move-
ments. Since there is inter-user interference when two users
perform gestures simultaneously, we have a thorough analysis
of the interference impacted by the transmitter-user-receiver
geometry relations, and user movement speeds and directions.
The inter-user interference and phase noise effect are then
suppressed in a unified framework. The gestures of each user
are recognized by Doppler shift analysis after beamforming.
To verify the system performance, we build a prototype
system to receive LTE signals and perform beamforming and
gesture recognition in real-time. The interference suppression
capability and gesture recognition accuracies are evaluated
under LOS and NLOS scenarios.

Our main contributions are listed as follows:
1) We design a preamble gesture to estimate the spatial

channel of each user in multiuser scenarios. By analyz-
ing the impact of phase noise, we provide a two-layer
method to precisely extract the channel response of weak
dynamic paths, where the first layer is used to eliminate
the leakage of static paths and the second layer is to
maximize the power of dynamic paths.

2) To analyze the inter-user interference, we derive the
effect of hand movement speeds and directions of two
users, on the eigenvalues and eigenvectors of the spatial
covariance matrix. We propose an active motion number
detection scheme, and design corresponding beamform-
ing methods to suppress inter-user interference and phase
noise.

3) We build a prototype system to receive LTE signals and
conduct gesture recognition experiments in real-time,
and experiment results show that our system can achieve
good SINR and high accuracy rate in different scenarios.

The rest of the paper is organized as follows. Section II
introduces the LTE related background, channel model and
analyzes the impact of phase noise. In Section III, we discuss
the preprocessing step to separate dynamic paths and static
paths. Section IV presents the preamble gesture design, and
the spatial channel estimation method. In Section V, inter-
user interference analysis, multiuser beamforming and gesture
recognition schemes are provided. In Section VI, we conduct
experiments on the prototype and evaluate the performance
and implementation complexity of the system. Finally, the
conclusion is drawn in Section VII.

II. SYSTEM MODEL

A. LTE Related Background

LTE is a complex system, and we only introduce the basic
downlink frame format and some reference signals that we
used in the signal processing flow. The complete description
of LTE signal can be seen in 3GPP Specification TS 36.211
[33].

In LTE signal, a system frame with duration 10 ms is
divided into 10 subframes and each subframe contains 14 or
12 symbols with normal cyclic prefix (CP) or extended CP,



respectively. In frequency domain, the subcarrier spacing is
15 kHz, and each resource block consists of 12 subcarriers.
For maximum, each cell supports 20 MHz bandwidth for data
transmission, where 1200 subcarriers are used, corresponding
to 18 MHz effective bandwidth.

For synchronization purpose, the predefined primary syn-
chronization signal (PSS) and secondary synchronization sig-
nal (SSS) are broadcasted in every half frame with fixed time-
frequency positions. In addition, CRS is configured for fine
synchronization and channel estimation, as shown in Fig.1.
LTE supports multiple-input multiple-output (MIMO) trans-
mission mode, and maximum four Tx ports CRS can be em-
ployed. According to different number of transmit ports, CRS
occupies different number of time and frequency resources.
For the signals transmitted from port 0 and 1, CRS occupies
four symbols in each subframe and is uniformly distributed
in frequency domain with six subcarriers interval. For the
signals transmitted from port 2 and 3, only two symbols in
each subframe are occupied by CRS. CRS sequence is defined
as a pseudo-random sequence initialized by the cell-ID N cell

ID .
In this work, we use frequency division duplexing (FDD)
mode so that channel estimations can be acquired in every
subframes.

Fig. 1. The symbols and subcarriers occupied by CRS in a resource block,
where N cell

ID = 0 and normal CP is used.

B. Channel Model
We consider a MIMO time-variant wideband channel, where

the transmitter has Nt antennas and the receiver is equipped
with Nr antennas. Ideally, CSI can be modeled as the summa-
tion of channel responses of static paths and dynamic paths,
for time t and angular frequency ω, as

H(ω, t) = Hs(ω) + Hd(ω, t), (1)

where Hs(ω) ∈ CNr×Nt is the static channel response, caused
by LOS path and other paths reflected from static objects,
and Hd(ω, t) ∈ CNr×Nt denotes the time-variant dynamic
channel response caused by moving reflections. In Eq. (1),
we can further expand the dynamic channel response as a
multiplication of the responses in time domain and in space
domain,

Hd(ω, t) =

M∑
i=1

ai(t)e
−jω di(t)c aR(θr,i)a

H
T (θt,i), (2)

where M is the number of dynamic reflection paths, c is
light speed, ai(t), di(t), θr,i, and θt,i are the channel gain,
path length, AoA, and AoD of path i, respectively. The vector
aR(θr,i) ∈ CNr×1, aT(θt,i) ∈ CNt×1 denotes array response
on AoA θr,i and AoD θt,i, which is also related with the
array manifold and antenna spacing. Since the hand movement
distance is small compared with the user-to-receiver and user-
to-transmitter distance, the AoA and AoD of the reflection
path can be assumed as a constant.

The channel gain ai(t) depends on the radar cross-section
(RCS) of the reflection object and the signal propagation path
length [34]. The path length di(t) usually varies in dozens of
centimeters for hand movement, but the caused phase variation
can be significant, since the phase lag changes 2π as the
propagation path increases one wavelength λ, i.e.,

e−jω
di(t)

c = e−j2π
di(t)

λ . (3)

Furthermore, the effect of RF imperfection cannot be ig-
nored. Except for the additive white Gaussian noise introduced
in the front-end, oscillator vibration introduces CFO, STO, and
phase noise. Even after tracking and compensation, there are
still residual errors of CFO and STO, and we can incorporate
them together into the phase noise. Phase noise is a kind
of multiplicative noise, which will affect both the static and
dynamic channel responses, i.e.,

H(ω, t) = e−jθn(t) [Hs(ω) + Hd(ω, t)] + N(ω, t), (4)

where θn(t) is the phase noise, and N(ω, t) ∈ CNr×Nt denotes
the white Gaussian noise.

Here we have assumed that phase noise is a scalar item,
since usually in one receiver the multiple RF chains will
share the local oscillator or be synchronized through some
phase locking mechanism. As the phase noise is time-variant
and multiplicative, and the static channel response is much
stronger than the dynamic part, phase noise will cause power
leakage from the static part to the dynamic part. To give
a straightforward explanation, we expand Eq.(4) to Eq.(5),
where the final step approximation comes from the fact that
|θn(t)| � 1, and cosθn(t) ≈ 1, sinθn(t) ≈ θn(t). Influenced
by phase noise, all the terms except Hs(ω) are time-variant. If
we define Ĥd(ω, t) as the summation of dynamic part channel
response, then

H(ω, t) = Hs(ω) + Ĥd(ω, t), (6)

where

Ĥd(ω, t) = Hd(ω, t)− jθn(t)Hs(ω)− jθn(t)Hd(ω, t)

+N(ω, t), (7)

the item jθn(t)Hd(ω, t) is negligible since dynamic path
reflected by hand is much smaller than static path and also
|θn(t)| � 1. Thus, the dynamic part channel response becomes

Ĥd(ω, t) ≈ Hd(ω, t)− jθn(t)Hs(ω) + N(ω, t), (8)

the strength of jθn(t)Hs(ω) is comparable to that of Hd(ω, t).
According to the experiments, actually jθn(t)Hs(ω) is usually
much stronger than Hd(ω, t), and causes severe contamination
to the dynamic channel response. We can see that the impact



H(ω, t) =e−jθn(t) [Hs(ω) + Hd(ω, t)] + N(ω, t)

=cosθn(t) [Hs(ω) + Hd(ω, t)]− jsinθn(t) [Hs(ω) + Hd(ω, t)] + N(ω, t)

≈Hs(ω) + Hd(ω, t)− jθn(t)Hs(ω)− jθn(t)Hd(ω, t) + N(ω, t).

(5)

depends on the channel gain ratio between the static paths and
the dynamic paths, but is not related to the SNR. That means,
we cannot reduce the phase noise impact by simply increasing
the transmit power.

III. PREPROCESSING

For LTE signal, after cell search and time-frequency syn-
chronization by PSS and SSS. We can generate local CRS
sequence and get the position of received CRS. If full 20
MHz bandwidth is used, there are NCRS = 200 subcarriers
occupied by CRS in each symbol. Then we can estimate the
channel response for each antenna port by, for example, the
least square (LS) algorithm.

Channel estimation is usually implemented in frequency
domain, and will be used in frequency domain for channel
equalization and decoding. To improve the SNR of estimated
channel response, inverse Fourier transform (IFFT) and time
windowing are often used, where the frequency response is
first transformed to time domain, in which noise samples
beyond the multipath delay spread are removed, and then
transformed back to frequency domain. But for the gesture
recognition task, the required information is involved in the
dynamic channel response in time domain, thus it is not
necessary to transform back to frequency domain again.

In indoor environments, the distance differences between
LOS path and strong reflection paths are usually smaller than
15 meters, which is the distance resolution of LTE signal
with 20 MHz bandwidth. So the channel energy is highly
concentrated in the strongest path, which is defined as main
path. Since the hand movement is usually not far away from
the receiver, we consider that the dynamic path is not separable
with the main path. By extracting the main path in time
domain, the SNR of dynamic path can be improved. This
assumption does not hold if the delay difference between the
dynamic path and the strongest path is longer than the signal
resolution interval, say in outdoor environments or employing
signals with much higher bandwidth. But the idea still holds,
in those cases, that we can extract the time domain path with
the most amplitude variation.

In this work, we use a NIFFT = 256 points IFFT with
200 CRS subcarriers and 56 zero padding. By extracting the
strongest path, we obtain one samples in a subframe for each
Tx-Rx pair, so the sampling interval Ts is 1 ms. This time
domain channel is represented as Ĥ(t) ∈ CNr×Nt . In the
rest of this paper, all operations are implemented in time
domain, and we use ĥ(t) ∈ CNrNt×1 to stand for the channel
estimation result of the main path, which is a vectorized form
of Ĥ(t).

After initial synchronization, the residual CFO and STO
still need to be tracked. CFO will induce phase fluctuation for
the channel response, and STO will induce main path drift and

dramatic SNR drop. The phase tracking and delay tracking are
thus operated in two different loops. Timing drift is gradual
and non-integer, and is thus estimated and compensated in
frequency domain [35].

The static and dynamic channel response can be separated
by long and short term smoothing [34], which is proved to be
an effective and simple method. We can get the static channel
response as

ĥs(t) = F (ĥ(t), Llong), (9)

where F (·) is a smoothing filter with window length Llong.
Although static path should be constant, there is still some
slow environment and circuit changes. Such change has impact
on dynamic path extraction because dynamic path is much
smaller than static paths, thus the long term smoothing is used
to track such slow channel changes and also smooth the fast
changed channel. The dynamic channel is the rest part of time
domain channel, i.e.,

ĥd(t) = F (ĥ(t), Lshort)− ĥs(t), (10)

where the short term smoothing aims to reduce the white noise.
The selection of Llong and Lshort depends on the expected target
movement speed. In this work, we pick Llong = 101 and
Lshort = 21, taking into consideration the channel variation
periods of static paths and normal hand movement speed. If
we hope to track a slow movement behavior, like respiration,
we can select larger Llong and Lshort.

IV. SPATIAL CHANNEL ESTIMATION

To recognize gestures, we need to estimate the chan-
nel response of dynamic paths, i.e., the reflection paths of
transmitter-user-receiver, not like in wireless communications
where we estimate the channel response of transmitter to
receiver. Since the reflection of hand is weak, the amplitude
of dynamic path is usually far below that of other static
paths. According to Eq.(8), the phase noise will cause power
leakage of static paths, and severely deteriorate the estimation
of dynamic paths.

Furthermore, we know from Eq.(2) that the dynamic channel
response is the superposition of reflection paths from multiple
users. Different from wireless communications, there is no
orthogonal reference sequence to help distinguish different
users. When two users perform gestures simultaneously, the
channel responses between them may have strong correlation,
and there is no method to separate them precisely. Therefore,
we propose to use preamble gesture method to solve this
problem. Before formal gesture recognition, each user perform
a preamble gesture independently. The preamble gesture has
a special variation pattern in Doppler-time domains. If two
users perform preamble gestures separately in different time,
we can clearly see the pattern, so that we can make sure that



it is an effective channel estimation. Otherwise, if two users
perform preamble gestures simultaneously, or there are other
interference activities when one user performs, the interference
will cause distortion on this pattern, and we can find the
collision and ask the user to perform again.

When one user performs the preamble gesture, the main
interference is the power leakage of static paths, we will use a
two-layer method to estimate the spatial channel. The Doppler
variation pattern should be verified after spatial beamforming.
Thus, in this section we will first introduce the two-layer
spatial channel estimation method, and then introduce the
preamble gesture design and verification method.

A. Two-Layer Channel Estimation

After the separation of static and dynamic paths, according
to Eq.(8), the filtered dynamic path encounters strong power
leakage from the static path caused by phase noise. In time
domain, it can be written as

ĥd(t)≈ hd(t)− jθn(t)hs + n(t), (11)

where hs ∈ CNrNt×1 represents the static channel, and n(t)
is the residual noise with zero mean and covariance matrix
N0INrNt . Although the dynamic channel in time domain
changes fast, its array response in spatial domain changes
slowly, since the relative position of hand and antennas has
small variation in a gesture period. Thus we can inhibit the
impact of phase noise and refine the dynamic channel response
through spatial domain processing.

In a K1 points time window, the spatial covariance matrix
of the estimated dynamic path is

R̂d(t) =
1

K1

t∑
k=t−K1+1

ĥd(k)ĥHd (k)

=
1

K1

t∑
k=t−K1+1

[
hd(k)hHd (k)− jθn(k)hsh

H
d (k)+

jθn(k)hd(k)hHs + |θn(k)|2hsh
H
s

]
+N0I. (12)

Since the phase noise θn(t) is a random variable with zero
mean, and hd(t) and θn(t)hs are independent, the time average
of their cross term can be assumed as 0. Eq.(12) is then
simplified as

R̂d(t) =
1

K1

t∑
k=t−K1+1

[
hd(k)hHd (k)+

|θn(k)|2hsh
H
s

]
+N0I. (13)

In case of one hand movement, the spatial channel only
has minor change during each gesture, by eigenvalue decom-
position of R̂d(t), there should be two dominant eigenvalues.
From experiment, we have observed that the power of static
path leakage is much larger than the power of dynamic path.
Thus the largest eigenvalue is mainly induced by the second
term in Eq.(13), and the strength of dynamic path is reflected
by the second largest eigenvalue. We can set a threshold and
compare the second eigenvalue with the threshold to judge
whether there is a gesture or not. To illustrate the impact of
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Fig. 2. An example of CSI waveforms and eigenvalues when an approaching-
departing-approaching gesture is performed with Nr = 4, Nt = 1. (a)
Waveform of the raw CSI in one antenna. (b) Waveform of the separated
dynamic path after long and short term smoothing, where the dynamic path
is submerged in static path leakage. (c) When a gesture is performed, there
are two large eigenvalues, where the first one indicates the power of static
path leakage and the second one indicates the power of dynamic path. (d)
After beamforming, the influence of phase noise is removed and we can see
a clear waveform of the dynamic channel response.

phase noise, an example of ĥ(t), ĥd(t) and eigenvalues of
R̂d(t) is shown in Fig. 2(a), (b), and (c).

Obviously, suppress the static channel in spatial domain
can eliminate the effect of phase noise. We can first look
for the null space of the static channel, and then project the
contaminated dynamic channel response into this null space.

The null space of static channel hs can be calculated from
its spatial covariance matrix R̂s(t), i.e.,

R̂s(t) =
1

K2

t∑
k=t−K2+1

ĥs(k)ĥHs (k). (14)

Since the static channel is not completely static, the covariance
matrix R̂s(t) is still changing with time. But we can use a
longer integration period K2 for R̂s(t) than for R̂d(t). For
example, in this work, we use every 1000 samples to update
R̂s(t) which counts the slow variation of the static channel
in 1 second, and use the last 100 samples to calculate R̂d(t),
which can reflect the fast variation of the dynamic channel in
100 milliseconds.

With R̂s(t), we can get the signal subspace and null space
of the static channel. Since R̂s(t) is nearly a rank-1 matrix, by
eigenvalue decomposition, its signal subspace corresponds to
the eigenvector with the largest eigenvalue, and its null space
consists of the remaining NrNt − 1 eigenvectors. Denote the
null space matrix as W0 ∈ CNrNt×(NrNt−1), the projection
of the dynamic channel is

ĥd1(t) = WH
0 ĥd(t)≈WH

0 [hd(t) + n(t)] . (15)

We can see that, after projection, the impact of static channel
leakage is removed.

So we use W0 as the first layer weighting matrix, and we
need to search the direction of the dynamic path in the second



layer. To find the subspace where the power of the dynamic
path is concentrated on, we need construct the covariance
matrix of ĥd1(t) and choose the eigenvector corresponding
to the largest eigenvalue.

The dynamic path only exists when a gesture is performed,
which can be recognized by the eigenvalue variation. Setting
an eigenvalue threshold λth, the time period involving hand
movement can be filtered out as

Tmotion =
{
t|λ̂d,2(t) > λth

}
, (16)

where λ̂d,i(t) denotes the ith biggest eigenvalue of R̂d(t). The
threshold λth can be set to a multiple of the noise variance,
say 10N0.

With Tmotion, we extract corresponding channel response set
by

Hd = concat
{
ĥd(t)|t ∈ Tmotion

}
, (17)

and

Hd1 = concat
{
ĥd1(t)|t ∈ Tmotion

}
, (18)

where Hd ∈ CNrNt×Ld , Hd1 ∈ C(NrNt−1)×Ld , Ld is the
number of sampling points in time period Tmotion, concat is
the concatenation operation.

The covariance matrix of ĥd1(t) is then calculated as
Hd1H

H
d1, and we can use its first eigenvector as the second

layer subspace vector w1 ∈ C(NrNt−1)×1. The overall spa-
tial channel is the production of the first and second layer
matrix/vector,

hu = W0w1. (19)

Since W0 and w1 are generated by eigenvalue decomposition,
hu has constant norm. If only for single user gesture recog-
nition, we can directly use this estimated spatial channel to
combine the MIMO channel, so the refined dynamic channel
response is beamformed as

ĥd(t) = hHu ĥd(t). (20)

With this two-layer channel estimation and beamforming
method, we suppress the leakage of static channel in the first
layer, and concentrate the power of dynamic channel in the
second layer. After beamforming, the CSI waveform of the
dynamic path can be significantly improved, as can be seen in
Fig. 2(d).

B. Preamble Gesture and Channel Verification

As shown in Fig. 3, the preamble gesture is designed as two
consecutive approaching-departing or departing-approaching
motions. For each approaching or departing motion, there are
two stages of movements where the first stage is acceleration
and the second stage is deceleration. The speed of hand starts
from zero, achieves maximum at the midpoint, and slows down
to zero again. So in the approaching stage, the Doppler shift
will first increase to maximum, and then decrease to zero;
in the departing stage, the Doppler shift will first decrease
to negative maximum, and then return to zero. As shown
in Fig. 4, the Doppler shift introduced by preamble gesture

will behave as a two-period sinusoid curve. From the physical
implication we know that this is a special variation pattern,
and it is hard to be mimicked by other interference movement.
Using this feature, we can calculate the Doppler shift and then
fit it with sinusoid curve to verify the preamble gesture.

Fig. 3. Preamble gesture.
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Fig. 4. A Doppler shift spectrum of preamble gesture.
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Fig. 5. A distorted Doppler shift spectrum.

In details, we divide the beamformed dynamic channel
response ĥd(t) to short windows with length K3. There is
overlapping between each windows, and the sliding step is
K3/2. In each window, we use discrete Fourier transform
(DFT) with resolution 1 Hz to calculate the Doppler shift
spectrum. We were not using FFT because the frequency
resolution of FFT is only 1/(K3Ts), i.e., 10 Hz for K3 = 100.
To reduce the computation complexity of DFT, we only
calculate the low frequency part in range of -30 to 30 Hz
since the LTE carrier frequency is around 2 GHz and the hand
movement speed varies from 0.5 m/s to 1.5 m/s.

After obtaining the Doppler shift spectrum, we can find the
frequency shift f̂D(n) with maximal amplitude at each short
window. Assume the nth window starts from sampling point
tn, then

f̂D(n) = argmax
f

DFT{[ĥd(tn), ..., ĥd(tn +K3)]}. (21)



We can first judge whether the sign of f̂D(n) is consistent
with the hand moving direction. Then we will fit f̂D(n) to
a sinusoid curve, and calculate the root-mean-square error
(RMSE) of the fitting. If the RMSE is less than a threshold, for
example 5 Hz, we can confirm that it is an effective preamble
gesture and the spatial channel estimation of user i is thus
obtained as hu,i. For example, in Fig. 4, the RMSE of sinusoid
fitting is 1.23 Hz. On the contrast, as in Fig. 5, when two
users perform preamble gestures simultaneously, there will be
large distortion on the Doppler shift variation pattern, where
the RMSE of sinusoid fitting is 11.43 Hz. In this case, we
will abort the estimation result of this time, and ask the user
perform the preamble gesture again.

V. MULTIUSER GESTURE RECOGNITION

In multiuser scenarios, each user keeps its position and
performs gesture without any time restriction. When two
users perform simultaneously, there will be overlapping on
the dynamic channel responses, and will cause inter-user
interference. The severity of interference depends on the
positions, moving speeds, and moving directions of two users.
We hope to distinguish different users and separate their
dynamic channel responses in spatial domain. For this purpose,
in each time window, we will detect the number of active
users, and employ different beamforming schemes according
to different number of users. To have explicit analysis results,
we only consider two users in this work, but the scheme can
be expanded to accommodate more users.

A. Inter-user Interference

A straight forward impact of the inter-user interference is
the eigenvalue distribution of the spatial covariance matrix.
The number of large eigenvalues is directly related with the
number of active users. But the dynamic channel responses of
different users are correlated, and higher correlation enlarges
the eigenvalue dispersion and makes the users indistinguish-
able. The correlation depends on many factors including the
geometry relation of the transmitter, receiver and users, the
hand moving speeds and directions, the spatial channel of
reflected signals, etc. We will have a theoretical analysis on
the correlation characteristics and eigenvalue distribution due
to these factors.

Using the same assumption of Eq.(2), the spatial channel
response of the dynamic path for user i is

hd,i(t) = ai(t)e
−j2π di(t)λ a(θr,i, θt,i), (22)

where a(θr,i, θt,i) ∈ CNrNt×1 denotes vectorized spatial
channel response aR(θr,i)a

H
T (θt,i).

In a two-user scenario, without considering the impact of
phase noise, the covariance matrix of the dynamic channel
response is represented in Eq.(23). hd,1(t) is the conjugate
of hd,1(t). We define λd,i(t) as the ith biggest eigenvalue in
Rd(t), and define the eigenvalue ratio as

rd(t) =
λd,2(t)

λd,1(t)
. (24)

To make the second user detectable, λd,2(t) should be no-
tably larger than the noise power. But in real applications,
only considering this relationship is not enough. During one
gesture period, the arm actually moves with the hand, and
the head and body may also have adjoint swings. There may
be secondary reflections in the environment and user’s spatial
channel may have minor change during the hand movement.
These imperfections might contribute to a second eigenvalue
larger than the noise power. Hence we need to constrain rd(t)
as well, to ensure that λd,2(t) is not less than a given portion
of λd,1(t), and there is a real second user.

For convenience, we define the middle part matrix of
Eq.(23) as Rtime(t) and define ρtime(t) = E

{
hd,1(t)hd,2(t)

}
.

Assume that the amplitude term ai(t) in Eq.(22) keeps in-
variant in a short time window K1, and its value equals one,
thus

Rtime(t) =

[
1 ρtime(t)

ρtime(t) 1

]
. (25)

The ratio of the second and the first eigenvalues of Rtime(t)
can be derived as

rtime(t) =
λtime,2(t)

λtime,1(t)
=

1− |ρtime(t)|
1 + |ρtime(t)|

. (26)

The time-domain correlation ρtime(t) can be expressed by the
phase variations of two dynamic paths,

ρtime(t) =
1

K1

t∑
k=t−K1+1

hd,1(k)hd,2(k)

=
1

K1

t∑
k=t−K1+1

e−j2π
d1(k)−d2(k)

λ . (27)

We can see that the correlation value is determined by the
dynamic path length difference d1(k) − d2(k), time window
length K1 and the wavelength λ.

To further investigate this issue, we build a geometry model
for LOS scenario as in Fig. 6. Points A and B denote the
transmitter and receiver, respectively. In a time period K1Ts,
user i moves his hand from point C to point D with a
constant speed vi, and we define the approaching direction
as positive. Since CD � CB, the length of dynamic path
changes approximately

∆di(t) =AC +BC −AD −BD
≈CD(cosαi + cosβi)
= viK1Ts(cosαi + cosβi). (28)

It can be seen that ∆di(t) depends on the moving speed vi
and two angles αi and βi. These two angles are determined by
moving direction and geometry relation among the transmitter,
receiver and user.

Furthermore, define the equivalent speed difference of two
users as

∆v = v1(cosα1 + cosβ1)− v2(cosα2 + cosβ2), (29)

the modulus of ρtime(t) can be simplified as

|ρtime(t)| =
1

K1

∣∣∣∣∣
K1−1∑
k=0

e−j
2πkTs∆v

λ

∣∣∣∣∣ ≈
∣∣∣∣sinc

K1Ts∆v

λ

∣∣∣∣ . (30)



Rd(t) = E
{
hd(t)hHd (t)

}
=
[
a(θr,1, θt,1) a(θr,2, θt,2)

] [ E
{
|hd,1(t)|2

}
E
{
hd,1(t)hd,2(t)

}
E
{
hd,1(t)hd,2(t)

}
E
{
|hd,2(t)|2

} ] [
aH(θr,1, θt,1)
aH(θr,2, θt,2)

]
(23)

Fig. 6. Geometry model for gesture recognition in LOS scenario.

With given parameters K1, Ts and λ, the time-domain corre-
lation is a sinc function of ∆v . It has maximal value 1 when
∆v = 0 and minimal value 0 when ∆v = n λ

K1Ts
, where n

is any non-zero integer. The example curves of ρtime(t) and
rtime(t) are shown in Fig.7.
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Fig. 7. Curves of ρtime(t) and rtime(t) with variable ∆v, RF frequency
2.27GHz, K1 = 100.

In real applications, the carrier frequency is often fixed and
thus λ is fixed. A larger K1 can help to reduce the main-
lobe width. Statistically, a simple gesture like approaching or
departing only lasts 200-400 ms. So we choose the observing
window parameter K1 = 100. For example, in an LTE system,
the carrier frequency is 2.27 GHz, and the corresponding
wavelength λ is 0.133 meter. The mainlobe width of ρtime(t)
is λ/(K1Ts) = 1.33 m/s, i.e., the first zero-crossing point of
∆v is 1.33 m/s. In 5G millimeter band, the wavelength can
be as small as several millimeters, and |ρtime(t)| will have a
very narrow mainlobe.

Considering that the typical hand movement speed is about
1 m/s, according to the given parameters of λ, Ts and K1,
there are two cases for |∆v|. The first is that two users move
in opposite directions, which has a relative large |∆v|. With
the effect of αi and βi, |∆v| may vary from 2 m/s to 4 m/s,
and it will fall outside the mainlobe of |ρtime(t)|. The second
is that two users move in the same direction. In this case, |∆v|

is as smaller as 0-1 m/s, and it will fall within the mainlobe
of |ρtime(t)|.

As can be seen from Eq.(23), except the time domain
correlation characteristic ρtime(t), spatial channel responses
a(θr,1, θt,1) and a(θr,2, θt,2) also have influence to the co-
variance matrix Rd(t) and its eigenvalue ratio rd(t) when
they are not orthogonal. To further derive the joint effect of
the time domain and spatial domain correlations, let us first
execute the singular value decomposition (SVD) on the spatial
channel matrix as Eq.(31), where U is a unitary matrix, and
ρa = aH(θr,1, θt,1)a(θr,2, θt,2) is the inner product of two array
responses with different AoAs and AoDs. The value of ρa
reflects the spatial correlation characteristic of two dynamic
channels.

Thereafter, Rd(t) can be represented as in Eq.(32), and
we can derive closed-form expressions of the eigenvalues as
in Eq.(33), where φ is the phase difference between ρa and
ρtime(t).

From these explicit expressions, we can see that:
1) If any of ρa and ρtime(t) equals to 1, λd,2(t) is 0. That

means, if there is full correlation no matter in spatial
domain or in time domain, the eigenspace of two users
collapses to dimension one. When ρtime(t) ≈ 1, Rd(t)
approximates to a rank-1 matrix, i.e.,

Rd(t) ≈ [a(θr,1, θt,1) + a(θr,2, θt,2)] ·
[a(θr,1, θt,1) + a(θr,2, θt,2)]

H
. (34)

In this case, we can get a new dominant eigenvector

u =
a(θr,1, θt,1) + a(θr,2, θt,2)

||a(θr,1, θt,1) + a(θr,2, θt,2)||2
. (35)

It is like a single user case, but the equivalent spatial
channel response changes.

2) If ρa equals to 0, rd(t) is the same with rtime(t). That
means, if the array responses of two users are orthogonal,
the eigenvalue ratio only depends on the time-domain
correlation characteristic.

Compared with ρtime(t), ρa is more controllable since it is
only determined by user position, and it is nearly constant
during hand movement. We provide an intuitive example in a
widely used Nr × 1 uniform linear array (ULA) deployment,
where the antenna spacing is set as half of the wavelength.
The array response is formulated as

aULA(θ) =

√
1

Nr

[
1, e−jπcosθ, ..., e−jπ(Nr−1)cosθ

]T
. (36)

To change ρa, we fix one user in direction θr,1 = 90◦ and
move the other user in range θr,2 ∈ [0◦, 180◦]. The eigenvalue
ratio results are shown in Fig. 8, where θr,2 and ∆v are
independent variables. These results also prove that to get a
bigger eigenvalue ratio, |ρa| and |ρtime(t)| should be as small
as possible. An outlier is θr,2 = 98.4◦ and ∆v = −0.373. In
this point, ρa = −ρtime(t), so rd(t) = 1.



[
a(θr,1, θt,1) a(θr,2, θt,2)

]
= U

√1 + |ρa| 0

0
√

1− |ρa|
0 0

[ 1√
2

1√
2

ρa√
2|ρa|

− ρa√
2|ρa|

]H
(31)

Rd(t) = U

(1 + |ρa|)(2 + ρaρtime(t)
|ρa| +

ρaρtime(t)
|ρa| )

√
1− |ρa|2(−ρaρtime(t)

|ρa| +
ρaρtime(t)
|ρa| ) 0√

1− |ρa|2(ρaρtime(t)
|ρa| − ρaρtime(t)

|ρa| ) (1− |ρa|)(2− ρaρtime(t)
|ρa| − ρaρtime(t)

|ρa| ) 0

0 0 0

UH (32)

λd,1(t) = 1 + |ρa||ρtime(t)| cosφ+

√
|ρa|2 + |ρtime(t)|2 − |ρa|2|ρtime(t)|2 sin2 φ+ 2|ρa||ρtime(t)| cosφ

λd,2(t) = 1 + |ρa||ρtime(t)| cosφ−
√
|ρa|2 + |ρtime(t)|2 − |ρa|2|ρtime(t)|2 sin2 φ+ 2|ρa||ρtime(t)| cosφ (33)

Fig. 8. Eigenvalue ratios with independent variables θ2 and ∆v. In this
example, Nt = 1, AoA for user 1 is 90◦, RF frequency is 2.27GHz, antenna
spacing is half of the wavelength, and K1 = 100.

B. Active User Number Detection

Since each user may perform gesture in any time, in
each time window with dynamic path, there may be one or
two gestures performed. If there is only one user, we only
need to inhibit the phase noise impact using the single user
beamforming scheme in Eq.(20). If there are two users, we
need to inhibit both the phase noise impact and the inter-user
interference. So we should first detect the number of active
users in each time window.

As aforementioned, there is static path leakage contained in
the observed dynamic channel response ĥd(t), whose spatial
covariance matrix is shown in Eq.(13). The first and second
eigenvalues λd,1(t) and λd,2(t) of Rd(t) actually correspond
to the second and third eigenvalues λ̂d,2(t) and λ̂d,3(t) of
R̂d(t). In the implementation, we will set an eigenvalue ratio
threshold rth and an absolute threshold λth,2. For example,
rth = 0.1 and λth,2 = λth/2, to distinguish real gestures from
the noise and disturbance.

When both thresholds are satisfied, we can directly judge
that there are two active users. Otherwise, we will further
compare the spatial correlation coefficients. From the inter-

user interference analysis in Section V-A, we know that when
the time-domain correlation of two dynamic paths is high, the
eigenspaces of two users collapse to one and we can only
observe a very small eigenvalue ratio. In this case, we will
first calculate the beamforming vector wd by Eq.(19) as if
there is only one active user. Then, calculate the correlation
coefficients between wd and three possible channels

ρi = |wH
d hu,i|, (37)

and

ρsum =
|wH

d (hu,1 + hu,2)|
‖hu,1 + hu,2‖2

, (38)

where ρi stands for the correlation with user i, and ρsum stands
for the correlation with the superposed channels. If ρsum is
larger than any of ρi, we can determine that there are actually
two users moving simultaneously.

The complete procedure is summarized in Table I.

TABLE I
USER NUMBER DETECTION

1. Obtain the spatial channel hu,i of user i using preamble gesture;

2. Calculate R̂d(t), λ̂d,2(t) and λ̂d,3(t);

3. if
λ̂d,3(t)

λ̂d,2(t)
> rth and λ̂d,3(t) > λth,2

There are two active users
elseif λ̂d,2(t) > λth

Calculate wd and correlation coefficients ρ1, ρ2, ρsum
if ρsum > max(ρ1, ρ2)

There are two active users
else

There is one active user

C. Beamforming

The beamforming scheme in multiuser case relies on the
active user number in each time window. In time windows
with only one active user, we still use the single-user two-
layer beamforming scheme introduced in Section IV. In time
windows with two active users, we should suppress the inter-
user interference and separate the dynamic path of each user.



A simple method to do this is using zero-forcing (ZF) beam-
forming [36], where the beamforming vectors are acquired
through pseudo-inverse of the channel matrix.

To mitigate the inter-user interference and meanwhile sup-
press the impact of phase noise, the constructed channel matrix
should not only involve the dynamic channel of each user, but
also involve the static channel,

Hcon =
[
hu,1 hu,2 ĥs(t)

]
, (39)

where ĥs(t) is the dominant eigenvector of Rs(t) and stands
for the eigenspace of static channel. Through pseudo-inverse
of this matrix, we obtain the beamforming vectors as[

wzf,1 wzf,2 wzf,3
]H

= pinv(Hcon), (40)

where pinv denotes the Moore-Penrose inverse operation. In
Eq.(40), wzf,1 and wzf,2 are ZF beamforming vectors for user
1 and 2 respectively, and wzf,3 is not used. The beamforming
vector of each user is orthogonal to the spatial channel of other
user, and orthogonal to the static channel as well.

The ZF beamforming result for user i can then be written
as

ĥd,i(t) = wH
zf,iĥd(t), (41)

where ĥd(t) is the original dynamic channel response as
defined in Eq.(10), a mixture of dynamic paths of all users
and the leakage from the static path. We finally can acquire
a clean scalar channel response for the dynamic path of each
user.

In Fig. 9, we provide three examples of the beamforming
results when two users perform gestures simultaneously. In
the first row of Fig. 9, we plot the second and the third eigen-
values of R̂d(t). As illustrated in Fig. 9(a), when two users
perform gestures with opposite directions, we can observe
two evident eigenvalues. If two users perform in the same
direction, sometimes we can also find the third eigenvalues as
in Fig. 9(d), but this value is relatively small. Occasionally,
as in Fig. 9(g), there may be only one dominant eigenvalue.
However, in all these cases, by ZF beamforming we can
successfully separate two dynamic paths, as can be seen from
the waveforms demonstrated in each column.

For two users with close distance, there will be strong
interference between users, which affects the performance of
gesture recognition. In LOS channel, the angular resolution
depends on the number of antennas and antenna spacing.
For linear arrays with half wavelength spacing, the angular
resolution is about π/N , where N is the antenna number.
In NLOS channel, due to multipath scattering, the channel
response may have low correlation even that the two users
are relatively close, thus with the same array the spatial
resolution is usually better than in LOS case. In any cases,
increasing antenna number is always effective to achieve better
beamforming performance.

D. Gesture Recognition

In this work, to focus on the spatial domain processing
and inter-user interference suppression, we only use one
receiver and identify the gesture movement in one dimension,

i.e., identify the movement direction of approaching towards
or departing from the receiver. To recognize more complex
gesture, we need more receivers deployed in different locations
to form a triangular geometry relation.

The beamforming result ĥd,i(t) is used to calculated the
Doppler shift of the dynamic path, as elaborated in Section
IV-B. Positive and negative Doppler shifts are corresponding
to approaching and departing gestures, respectively. For one
user, the difference of hand moving speed only affects the
possible values of Doppler shift, and does not affect the sign.
For two or more users, however, their difference of velocities
do affect the inter-user interference, as we have clarified in
Section V-A.

Although we can calculate DFT at 1 Hz interval, the actual
resolution actually depends on the width of time window
(which is 100 ms in our experiment). That means the frequency
response calculated by DFT still has a main lobe with zero-
to-zero width 20 Hz. Thus if the Doppler shift is too small,
for example only a few Hz, it has chance to make wrong
decision on the sign. The small Doppler shift usually happens
in the transition point. Thus, we will not confirm the transition
unless we observe that the Doppler shift changed its sign
for several consecutive time windows. To distinguish the
combination gesture like approaching-departing, we set the
maximal interval of separate motions as 0.5 second. Beyond
this interval, it will be treated as two gestures.

The moving distance of the hand is a quite robust parameter.
Given the moving speed, the moving distance only affect the
signal lasting time. The provided gesture recognition algorithm
is not sensitive to the lasting time, it only looks for the
transition point of the Doppler shift sign.

In most cases, the gestures of two users are not synchronized
but partially overlapped. We divide the whole waveform into
short windows, and the motion number detection, beamform-
ing and Doppler shift estimation are processed independently
for each window. So there is no influence of the start timing
difference.

VI. EVALUATIONS

A. Experiments Environment and Configuration

To verify the gesture recognition system, we conduct some
experiments with single user and multiuser. To make the
test condition under control, i.e., no other movement in the
environment, we designed a prototype system to transmit and
receive LTE signal. It is noteworthy that currently there is no
off-the-shelf device to extract CSI for LTE signal. This forces
us to build a system by software radio platform to estimate
and extract the CSI for validating our method. If LTE-based
wireless sensing is applied on mobile phones, CSI acquisition
will not be a problem, the baseband module will continually
estimate CSI when the terminal is in connected state.

The transmitter is implemented on AD-FMCOMMS2,
which is an evaluation board of the 2 × 2 RF transceiver
chip AD9361. AD9361 is a widely-used RF chip in LTE base
stations, it has transmission frequency range from 47 MHz
to 6 GHz. We transmit 20MHz bandwidth signal with carrier
frequency 2.27 GHz, and the maximum transmit power is 10
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Fig. 9. Examples of multiuser separation by ZF beamforming: (a)(b)(c) user1 departing, user2 approaching; (d)(e)(f) user1 approaching, user2 approaching;
(g)(h)(i) user1 departing, user2 departing.

dBmW. For comparisons, the maximum transmit powers of
macro-BS and micro-BS in commercial networks are typical-
ly 46 dBmW and 30 dBmW, respectively. But the signals
received from outdoor base stations generally suffer from
penetration loss. We have measured that the received power of
our own signal is comparable or even weaker than the signal
from commercial network.

In Rx side, we use a software radio platform YunSDR
Y550s, which has four channels of RF links and enables us to
perform beamforming with four receiving antennas. Antennas
are deployed as a ULA with half wavelength spacing. Four-
antenna is also a common configuration in cell phones nowa-
days. Y550s is equipped with two chips of AD9371, and can
support 100MHz bandwidth, while in our prototype system
only 20MHz is used. The software radio platform implements
down-conversion and sampling, and all baseband processing
are implemented in the host computer with an Intel Core i7-
8700 CPU working at 3.20 GHz. There is an optic fiber link
between Y550s and the host computer, and the transmission
rate is 4 Gbps for four channels IQ sampling with 30.72 MHz
sampling rate.

In order to improve the processing speed, a self-developed
C/C++ program is implemented to do LTE physical layer
time-frequency synchronization, LS channel estimation and
dynamic-static channel separation. The dynamic channel re-
sponses are then sent to MATLAB by local loopback network
connection, where the beamforming and gesture recognition
are accomplished. The whole system is implemented in real-
time, and we can observe the CSI waveforms, beamforming
patterns, and recognized gestures immediately.

To verify the performance, we select two indoor scenarios,
a computer lab (scenario 1) and an apartment (scenario 2) to
conduct experiments. In scenario 1, there is LOS path between
the transmitter (Tx) and the receiver (Rx); in scenario 2, the

Tx and Rx are placed in two rooms and thus it is an NLOS
scenario.

We design six gestures to recognize, which are shown in Fig.
10. These gestures are the combinations of two basic gestures,
approaching or departing the transmitter or receiver. To verify
the robustness of our recognition algorithm, we invite seven
volunteers to do the experiments. Volunteers may perform
gestures with their own habits, e.g., with different timings,
velocities and hand shapes.

Fig. 10. Six gestures to be recognized.

B. Performance

1) Scenario 1: In scenario 1, except for accuracy rate, we
will study the influence of AoA, reflection path distance and
antenna number to single user and multiuser recognition. As
shown in Fig. 11, the LOS path length of Tx and Rx is set
to 3 m, and we select eight positions to perform gestures as
marked. Positions 1-4 and 5-7 are distributed in two ellipses
with two focal points located at the Tx and Rx. Thus, these
two groups of positions have nearly the same dynamic path
length and signal path loss. In addition, the LOS path between
Tx and Rx has AoA 0◦, which has orthogonal spatial channel
response with position 1 and position 2 theoretically. Positions



TABLE II
POSITION PARAMETERS

Position AoA (◦) Dynamic path length (m)
Pos1 60 5
Pos2 90 5
Pos3 135 5
Pos4 180 5
Pos5 60 7.5
Pos6 75 7.5
Pos7 90 7.5
Pos8 90 10

2, 7, 8 are distributed in the same column with AoA 90◦. The
distances and AoAs for all positions are listed in Table II.

Fig. 11. The layout of a computer lab and user positions.

We first evaluate the performance of single user case,
where the user stands in positions 1-4 and 7, 8 in Fig. 11.
In each position, we perform six groups of gestures, each
group consists of 30 candidate gestures, which is generated
randomly. In the beginning of each group, we perform a
preamble gesture to estimate the spatial channel and indicate
the start of recognition.

The performance metrics are dynamic path SNR and gesture
recognition accuracy. We use dynamic path SNR because it is a
comprehensive result of transmitting power, path loss, receiver
front-end noise, beamforming and phase noise suppression.
To measure the SNR, we should separate motion time period
Tmotion and static time period Tstatic to calculate signal and noise
power respectively. The existence of a motion is determined
by Eq.(16). Outside the period of Tmotion, we set 200 ms
as the transition period, then the rest time is considered as
Tstatic. The extraction of dynamic channel set Hd has been
introduced in Eq.(17), and the corresponding channel set
Hd,static is acquired by substituting Tmotion to Tstatic in Eq.(17).
Assume the sampling number in Hd and Hd,static are Ld and
Ls, respectively. Then the SNR is calculated as

SNR =
‖wH

d Hd‖22/Ld

‖wH
d Hd,static‖22/Ls

. (42)

The average SNR results are provided in Table III. However,
in experiments we have observed that subtle changes like hand
shape, speed and height will have influence on the SNR. To

TABLE III
AVERAGE SNR

Position SNR (dB)
Pos1 19.6
Pos2 23.8
Pos3 21.5
Pos4 17.0
Pos7 19.0
Pos8 17.6

better present the results, we plot the cumulative distribution
function (CDF) curves in Fig. 12. For each position, we get
one CDF curve by the statistic of 180 times of hand gestures.
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Fig. 12. CDF of the SNR for users in different positions.

From these results we can see that, SNR is good in all
positions. This should attribute to IFFT and beamforming
processing. The SNR is affected by both distance and AoA.
For positions 2, 7 and 8, there is no doubt that the SNR reduces
when the path length increases. While comparing the results of
positions 1, 2, 3, 4, position 4 has the worst SNR. Position 4 is
at the line of Tx-Rx LOS path, theoretically position 4 is at the
blind area. However, from the experiment result, we can still
conduct gesture recognition in this area and obtain a relatively
high average SNR. We believe that there are two reasons to
explain this phenomenon. The first is that, in indoor multipath
environments, static path is not equivalent to LOS path, there
are many other static reflections from different angles. The
second is that, there is hand movement direction bias each
time, it is impossible for the hand to have strictly consistent
AoA with the LOS path. From the CDF curves of SNR, we
find that position 4 has nearly 6% gestures with SNR lower
than 10 dB. This proves that in blind area, SNR fluctuates with
minor change of hand movement, and it has more chances to
get low SNRs.

Recognition accuracy is the most important indicator for
this system. In our test, both the wrong recognition results
and false alarms are counted as errors. The accuracy rates are
shown in Table IV. In all positions, our accuracy is higher than
96%. Although position 2 has the highest average SNR, there
is no evident accuracy advantage compared with positions 1,
3 and 7, since most error detection cases happen when SNR



TABLE IV
SINGLE-USER RECOGNITION ACCURACY

Position Accuracy (%)
Pos1 99.4
Pos2 99.4
Pos3 99.4
Pos4 96.1
Pos7 99.4
Pos8 98.3

is extremely low. Position 4 only has minor disadvantage in
average SNR than position 8. But with more lower SNR cases,
it has 2.2% gap in accuracy.

Next, let us evaluate the performance in multiuser scenarios.
We will illustrate the beam patterns, SINRs and recognition
accuracies under different kinds of gesture and user position
combinations.

Beam pattern is a straightforward way to observe the effect
of beamforming. To observe the beam pattern, we use the
AoA of LOS path to calibrate the antenna array and remove
the random phase offset on each element. After obtaining
the beamforming vectors in Eq.(40), we can calculate the
beamforming gain for user i at each direction θ, i.e.,

gi(θ) = |wH
zf,iaR(θ)|2. (43)

The beam pattern can thus be drawn as in Fig. 13. Since there
are two users, the ZF algorithm forms a main lobe at the target
user’s direction to maximize signal power, and generates a null
at the interference user’s direction to suppress interference.
For the beam patterns of both users, there are also nulls at the
direction of Tx-Rx LOS path, which is at 0◦ in Fig. 13, to
mitigate the impact of static path power leakage.

To measure the SINR of the multiuser beamforming,
we need to first extract the dynamic channel set Hd,1 ∈
CNrNt×Ld,1 and Hd,2 ∈ CNrNt×Ld,2 separately, when the two
users perform gestures one by one. Otherwise, the dynamic
channel responses are mixed up, we cannot get the accurate
values of signal and interference power. However, as long
as other conditions are fixed, the obtained SINR estimation
is actually the SINR when the two users perform gestures
simultaneously. Taking user 1 as an example, the SINR is
calculated by

SINR1 =
‖wH

zf,1Hd,1‖22/Ld,1

‖wH
zf,1Hd,2‖22/Ld,2

, (44)

where the numerator represents the mean power of the target
user, and the denominator represents the residual interference
after ZF beamforming. In Table V, we present the average
SINR under different user position combinations. In each
combination, the SINRs of both users are given, and the
correlation coefficient ρa of two array responses is also listed.
In Fig.14, we draw the CDF curves of SINR corresponding to
three groups of position combinations.

From the results we can see that, for all combinations the
average SINR can achieve at least 13 dB. Compared with the
SNR results in single user case, there is 4 to 9 dB degradation.

TABLE V
SINR RESULT

Combination

SINR (dB) Position
Pos1 Pos2 Pos3 |ρa|

1 (Pos1, Pos2) 15.5 18.1 - 0.306
2 (Pos2, Pos3) - 16.4 13.0 0.576
3 (Pos1, Pos3) 13.2 - 17.5 0.365

TABLE VI
MULTIUSER RECOGNITION ACCURACY IN SCENARIO 1

Combination

Accuracy (%) Method
Proposed AoA

Pos1, Pos2 97.5 97.5
Pos2, Pos3 97.5 96.4
Pos1, Pos3 96.1 93.6

The SINR degradation is the worst in the second combination,
where users in position 2 and 3 have the highest spatial
channel correlation. To suppress the inter-user interference,
ZF beamformer may deviate its main lobe from the signal
direction, and thus reduce the signal power. Basically, the
signal power decreases along with the increasing of the spatial
channel correlation. Besides, since there is small change in
each time of hand movement, the channel responses used in
beamforming matrix design and subsequent detections are not
totally invariant. This kind of mismatching will also enlarge
the inter-user interference. Our measured SINR is the result
of these comprehensive factors.

Let us see the recognition accuracy rate in multiuser cases.
In our experiments, we provide several position combinations.
In each combination, every user still perform six groups of
gestures with 30 randomly generated gestures in each group.
After preamble gestures, users can either perform gesture
simultaneously or separately. To show the performance of
our algorithm, we select an AoA based multiuser separation
method as baseline [4]. It is worth noting that due to the
difference in hardware and test scenario, we cannot reproduce
the overall system of [4]. To compare the performance of
different methods, we substitute the estimated spatial channel
by an AoA based beamsteering vector, as obtained in Eq.(36),
to implement the beamforming. The rest parts are the same.
The recognition accuracy rates are shown in Table VI. We
can see that the accuracy rates in multiuser cases are slightly
lower than in single user cases, but are still above 96%. In
this scenario, the proposed method is slightly better than AoA
based multiuser separation. But the performance gap is small
because in this scenario the spatial channel mainly consists of
LOS path between the hand and receiver.

In the end, we study the influence of antenna number. We
use one and two Tx antennas to compare the accuracy. In this
experiment, we use position 5, 6 and 7, where position 6 are
quite close to the other two, their AoA difference is only 15◦

and their distance is about 1 m. For fair comparison, we run
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Fig. 13. Beam patterns in multiuser scenarios, where user 1 and user 2 are at different positions and have different AoAs to the receiver. The radial distance
in the polar coordinates stands for the beamforming gain in linear scale.
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TABLE VII
MULTIUSER RECOGNITION ACCURACY WITH DIFFERENT

ANTENNA NUMBER

Combination

Accuracy (%) Antenna
Nt = 1 Nt = 2

Pos5, Pos7 97.5 98.6
Pos5, Pos6 91.4 98.1
Pos6, Pos7 84.7 97.5

our real-time test and count accuracies with Nt = 2, and the
4 × 2 MIMO channels are saved so that we can reuse the
same channel to calculate accuracies for Nt = 1. The overall
accuracy results are shown in Table VII. When Nt = 1, the
recognition accuracies obviously decrease when users are quite
close, but with Nt = 2, all three position combinations show
significant performance improvement. It also turns out that by
increasing antenna number, we can overcome the restriction
of spatial distance of users.

2) Scenario 2: As shown in Fig. 15, in the apartment
scenario, the straight-line distance of Tx and Rx is 2.5 meters.
The users sit on sofa or bed, in the same room or in different
rooms. The NLOS configuration is more realistic for home
applications. Besides, the transmission signal and hand reflec-

tion signal should go through a concrete wall, which leads to
a severe penetration loss. Before our gesture experiments, we
first measure the received signal strength and compare it with
that in scenario 1. We use the frequency scan function in our
hardware to measure the spectrum in these two environments.
We find that in NLOS scenario, the received power drops about
20 dB.

Fig. 15. The layout of an apartment and user positions.

Thus, we use 4 × 2 MIMO configurations to improve the
detection performance. In this scenario, we only test the
accuracy rate. As there are antenna arrays equipped in both
the receiver and transmitter, we estimate the dominant AoA
and AoD in the baseline method and recover the MIMO
array response. We try three typical position combinations,
corresponding to three common situations in daily lives:

1) users sit closely on the sofa;
2) users sit closely in the bedroom;
3) one user sits on the sofa, the another one sits in the

bedroom.
The recognition accuracies are shown in Table VIII. From

these results we can see that, in NLOS scenario the pro-
posed method can still reach high accuracy. For all three
position combinations the recognition accuracies exceed 94%.
By comparision, AoA/AoD based method has performance
degradation in this scenario. With NLOS, there is no dominant
reflection path, which makes it hard to estimate the AoA/AoD.



TABLE VIII
MULTIUSER RECOGNITION ACCURACY IN SCENARIO 2

Combination

Accuracy (%) Method
Proposed AoA/AoD

Pos9, Pos10 94.7 91.9
Pos11, Pos12 95.0 83.1
Pos10, Pos12 95.6 86.4

Even that we can find the AoA/AoD in the strongest path, there
must be some biases between the complete spatial channel and
the beamsteering vector.

Compared with LOS scenario, for the proposed method the
performance drop is small despite the received signal power
reduces dramatically. We believe that there are two reasons: 1)
the power of hand reflection path is enhanced by beamforming
with 4 × 2 antennas; 2) as we have proved in Eq.(5)-(8), the
biggest non-ideal factor is multiplicative phase noise instead
of additive white noise, and the influence of phase noise is not
related to SNR.

C. Complexity Analysis

As our gesture recognition algorithm runs on a real-time
system, computational complexity of each step is critical. We
analyze the complexity issues from three parts. The first part
is the simplified LTE raw signal processing. Since we only
use one symbol in each subframe (1ms), the main complexity
consists of a NFFT = 2048 points FFT, frequency offset
compensation and LS channel estimation. The second part
includes preprocessing, spatial domain eigenvalue decomposi-
tion and beamforming. These steps are also required in every
milliseconds. The last part is Doppler shift calculation made
by DFT in NK frequency points. When no gesture performed,
this operation is skipped. Table IX shows the complexity of
each module averaged in every 1 ms.

From operation time perspective, with 4 × 2 MIMO con-
figuration, in C/C++ program we spent 2.1 ms in average to
process a frame of LTE signal (10 ms), in which the FFT
and LS channel estimation cost 0.6 ms in total, frequency
offset compensation costs 1.2 ms, and the other processes cost
0.3 ms. The running time of frequency offset compensation
is much longer than we analyzed, because we used sine and
cosine function to calculate the compensation values, which is
time-consuming for CPU implementation. If we use look-up
tables, the complexity can be greatly reduced. In MATLAB,
for each time window (100 ms), the gesture recognition
algorithm including eigenvalue decomposition, beamforming
and Doppler shift calculation costs less than 1.5 ms in total.

With this analysis, we find that the biggest computation-
al burden comes from LTE signal processing. The gesture
recognition algorithm has much less complexity. To apply
gesture recognition in a mobile phone, this part does not
introduce much extra complexities, because there is baseband
chip demodulating LTE signal and acquiring CSI in every
subframe.

TABLE IX
COMPLEXITY EVALUATION

Module Complexity
Raw data FFT O(NrNFFT log2(NFFT))

Frequency synchronization O(NrNFFT)
LS channel estimation O(NrNtNCRS)

Channel IFFT O(NrNtNIFFT log2(NIFFT))
Long and short smoothing O((Llong + Lshort)NrNt)
Eigenvalue decomposition O((NrNt)

3)
Beamforming O(NrNt)

Doppler shift DFT O(NK)

VII. CONCLUSION

This paper proposed a beamforming based multiuser wire-
less gesture recognition method, and built a prototype sys-
tem using LTE signals to verify the performance. Firstly,
to estimate the spatial channel of reflection path and solve
the static path leakage interference caused by phase noise,
a preamble gesture is introduced and a two-layer channel
estimation method was proposed. The first layer suppresses
the interference caused by static path leakage, and the second
layer collects power of the dynamic path. Then, in multiuser
scenario, the influencing mechanisms of inter-user interference
were clearly analyzed. By calculating the correlations of
dynamic channel responses in time and spatial domain, we de-
rived the eigenvalue distribution of spatial covariance matrix,
and found its connection with user positions and movement
speeds. Then, we proposed a beamforming method that can
suppress the influence of inter-user interference and phase
noise at the same time. Finally, we demonstrated experiment
results on beam patterns, SINRs and recognition accuracies in
different configurations, and verified the good performance of
the proposed method in both LOS and NLOS scenarios. As
a real-time implementation, the computational complexity of
each module is also analyzed.

In the future, there are many interesting works to further im-
prove the system performance. For example, recognizing com-
plicated gestures by introducing more receivers, suppressing
interferences caused by unknown movements in background,
and upgrading the experiment platform to exploit 5G new radio
(NR) signals.
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