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Abstract—Caching at base station (BS) has attracted significant
research efforts for future wireless networks. Most existing works
are based on the assumption of static content catalogue and
stationary popularity distribution, which however is far away
from the reality as recently reported in the literature. In this
paper, we take the popularity dynamics into account, and study
the caching policy at BS for a traffic model consisting of two
categories of contents respectively with long and short lifespans.
By modeling the two categories of contents with Independent
Reference Model (IRM) and Shot Noise Model (SNM), we
formulate a cache resource allocation problem to maximize the
total cache hit ratio for both categories of contents, which
gives rise to a hybrid proactive and reactive caching policy.
We solve the problem numerically for general case and provide
closed-form solutions for several special cases. Numerical and
simulation results demonstrate remarkable performance gain of
the proposed caching policy over non-hybrid caching polices.

I. INTRODUCTION

Caching at base station (BS) is a promising way to address

the explosive growth of mobile data demand in the fifth-

generation cellular systems [1,2]. Aimed at maximizing cache

hit ratio (CHR), network throughput or energy efficiency,

the optimization of caching policies has drawn significant

attention in the literature [1–3].

Most existing works are based on the Independent Reference

Model (IRM), which assumes static content catalogue and

stationary popularity distribution. Although widely used and

easy for optimization and analysis, IRM has been shown

insufficient to characterize the real-world arrival process of

content requests. In [4], a novel traffic model, Shot Noise

Model (SNM), was proposed to describe the temporal locality

between requests for a content and the dynamics of content

catalogue as well as popularity distribution. Under SNM, the

requests for a content arrive almost within a so-called lifespan,

beyond which the content is rarely requested. There exist

appropriate caching policies for the contents with different

lifespans. For instance, it is common to adopt Least Recently

Used (LRU) policy when caching the contents with short

lifespan [4,5], while popular caching policy (i.e., caching the

most popular contents) is more frequently used when caching

contents with long lifespan [1, 3]. Therefore, if the content

lifespan is known a priori, one can select the appropriate

caching policy for each content.
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The prediction of content lifespan has been studied, e.g.,

in [6–8]. It was pointed out in [6] that predicting the likelihood

of a content’s lifespan longer than a threshold is possible. In

[7], the lifespan of the contents at Tencent, one of the largest

video-on-demand service provider in China, was analyzed,

and the results indicate that News or Sports videos are age-

sensitive with short lifespan, but Movie and MV videos

have long lifespan. In [8], a lifespan model based on the

measurement of the characteristics of YouTube videos was

proposed, which provides a possible approach to predict the

content lifespan.

In this paper, we study the caching optimization for a

practical scenario where the contents requested by the users

in a cell are from two categories of contents, which can be

modeled by IRM and SNM, respectively. A hybrid caching

policy with both popular caching policy and LRU is considered

at the BS. Then, given the total cache size of the BS, we

formulate a caching resource allocation problem for the two

categories of contents to optimize the hybrid policy, aimed at

maximizing the total CHR. We provide a numerical solution to

the problem under the small-cache scenario, which is relevant

in wireless caching networks. In order to gain useful insights,

we further derive closed-form solutions in three special cases.

Numerical and simulation results validate our analysis, and

demonstrate the evident gain of the proposed caching policy

over LRU and popular caching policy even with inaccurate

knowledge of content lifespan.

II. TRAFFIC MODEL

Consider a hybrid traffic model consisting of two categories

of contents with long and short lifespans, which are charac-

terized by IRM and SNM models, respectively.

IRM describes a stationary request process, which assumes

that the content catalogue, N I
f , is constant, meanwhile the

content popularity is stationary. As widely considered in the

literature, e.g., [9], we assume that the request probability

of the i-th most popular content, qi, obeys Zipf distribution

with parameter δ, i.e., qi =
i−δ

∑NI
f

j=1 j−δ

, where 0<δ< 1 holds

generally according to numerous experimental studies [9]. Let

μ0 denote the average request arrival rate for IRM.

SNM is a dynamic request model, which can be character-

ized by content arrival process and content request process.

According to [4], the content arrival process is assumed as

a homogeneous Poisson process with an average arrival rate

λ, while the request process of each content is assumed as978-1-5386-3531-5/17/$31.00 © 2017 IEEE



an inhomogeneous Poisson process. Specifically, for the m-

th content, its request process is captured by the following

four features: 1) arrival time tm, 2) popularity profile Λm(t),
satisfying Λm(t) ≥ 0 and

∫∞
0

Λm(τ)dτ = 1, 3) lifespan Tm,

defined as Tm = 1∫ ∞
0

Λ2
m(t)dt

, and 4) the volume of requests

Vm. In [4], Vm is modeled as an independent identically dis-

tributed (i.i.d.) random variable following Pareto distribution

with parameters of β>1 and Vmin, and the probability density

function is fV (v) =
βV β

min

vβ+1 , v ≥ Vmin. One can find that the

SNM model leads to a time-varying request arrival rate for

each content, and the instantaneous request arrival rate of the

m-th content at time t can be obtained as VmΛm(t− tm).
The analysis in [4] indicates that the shape of popularity

profile has little impact on the performance of LRU caching

policy and the performance essentially depends only on the

average lifespan. Therefore, a simplified SNM model has

been employed in the literature, e.g., in [10], where all the

contents in the SNM category have the same lifespan T and

a rectangular popularity profile is considered with Λ(t) = 1
T ,

t ∈ [0, T ]. Given the simplified SNM model, we can obtain the

average number of active contents, i.e., the average number of

arrival contents within the lifespan, as NS
f = λT , which can

be regarded as the content catalogue of SNM. The impact of

such simplification will be evaluated by simulations later.

III. CACHE RESOURCE ALLOCATION

Appropriate caching policies for the two categories of con-

tents differ. For IRM category, which can model contents with

long lifespan and hence content popularity can be accurately

predicted, the proactive popular caching policy is optimal if

one user can only associate with one BS, which caches the

most popular contents at the BS [1]. For SNM category, which

can model contents with short lifespan, the reactive LRU

caching policy is often employed, e.g., in [4]. As a result, when

a BS has the requests of both categories of contents, the BS

should apply both the popular caching policy and LRU policy.

This naturally leads to a hybrid proactive and reactive caching

policy: allocating a fraction of the cache resource to cache the

contents in IRM category with popular caching policy and the

rest resource to cache the contents in SNM category with LRU.

In this section, we design the hybrid caching policy by

optimizing the fraction of cache resource allocated to each

category. We formulate and solve the cache resource allocation

problem, aimed at maximizing the total CHR for both cate-

gories of contents. To gain useful insights, we further derive

closed-form solutions in three special cases. For simplicity, in

the sequel we call the contents in IRM and SNM categories

IRM contents and SNM contents, respectively.

A. Problem Formulation

Consider a single-cell wireless caching system, where the

BS has the cache size of Nc contents and multiple uniformly

located users request contents from the BS. If the requested

content of a user is cached, the BS will fetch the content from

its local cache directly and transmit to the user. Otherwise,

the BS will fetch the content from core network via backhaul

link. Denote the fraction of cache resource allocated to cache

SNM contents as η, then the cache sizes for SNM and IRM

contents are ηNc and (1 − η)Nc, respectively, where ηNc is

an integer.

Let QS and QI denote the numbers of received requests

for SNM and IRM contents during an evaluation period T0,

respectively. Then, the total CHR of the BS, defined as the

ratio of the average number of requests for the cached contents

to that for all contents, can be expressed as

p̄toth (η) =
E
[
QS
]
p̄Sh(η) + E

[
QI
]
p̄Ih(η)

E [QS +QI]

� wSp̄Sh(η) + wIp̄Ih(η),

(1)

where p̄Sh(η) and p̄Ih(η) are the average CHRs of SNM

contents and IRM contents, respectively, wS =
E[QS]

E[QS+QI] is

the fraction of requests for SNM contents, and wI =
E[QI]

E[QS+QI]
is the fraction of requests for IRM contents. It is clear that

wS + wI = 1.

For SNM contents, the number of requested contents during

the evaluation time T0, denoted by n0, is a random variable,

which obeys Poisson distribution with the average number

λT0. Then, the average number of requests for SNM con-

tents can be derived by taking the expectation over both n0

and the request volume of each content Vm as E[QS] =
E {E[∑n

m=1 Vm|n = n0]} = E {n0E[Vm]} = λT0E[Vm].
For IRM contents, the total number of requests received

by N I
f contents during T0, i.e., QI, has the expectation

E[QI] = μ0T0 � μ̄N I
f T0. Herein, we introduce an auxiliary

variable μ̄ = μ0

N I
f

to denote the average request arrival rate

for each single IRM content, which is used for performance

analysis later.

Then, upon substituting E[QS] and E[QI] into wS and

recalling that NS
f = λT , we can obtain wS =

E[Vm]NS
f

E[Vm]NS
f +μ̄TN I

f

.

Further denoting kμ as the ratio between the average request

arrival rate of each IRM content, μ̄, and that of each SNM

content,
E[Vm]

T , we can rewrite wS as

wS =
NS

f

NS
f + kμN I

f

. (2)

Based on Che’s approximation, the average CHR of LRU

policy under SNM can be approximated as [4]

p̄Sh(η) ≈ 1−
∫ ∞

0

Λ(τ)
φ′
V

(
− ∫ Tc

0
Λ(τ − θ)dθ

)
E[Vm]

dτ, (3)

where φ′
V (x) = E

[
VmexVm

]
, Tc is the cache eviction time,

representing the duration from the time when a content enters

the cache until the content is evicted, which is the unique

solution of the following equation [4]

ηNc = λ

∫ ∞

0

1− φV

(
−
∫ Tc

0

Λ(τ − θ)dθ

)
dτ, (4)

where φV (x) = E
[
exVm

]
.

For IRM contents, the average CHR of popular caching



policy can be expressed as [9]

p̄Ih(η) =

(1−η)Nc∑
i=1

qi =

∑(1−η)Nc

i=1 i−δ∑N I
f

j=1 j
−δ

. (5)

By substituting (2), (3) and (5) into (1), we can finally

formulate the optimization problem of cache resource allo-

cation to maximize the total CHR at the BS, averaged over all

possibly requested contents and stochastic request process, as

max
η

p̄toth (η)

s.t. 0 ≤ η ≤ 1, ηNc ∈ Z.
(6)

B. Optimization of Cache Resource Allocation

To solve problem (6), we first find closed-form expressions

of p̄Sh(η) and p̄Ih(η) from (3) and (5) by introducing approxi-

mations.

For SNM contents, we resort to the approximation under

the small-cache scenario, which is relevant in wireless caching

networks where the cache size of a BS is typically far smaller

than the content catalogue, i.e., Nc � min
{
NS

f , N
I
f

}
. The

approximated CHR is given in the following proposition.

Proposition 1. The average CHR for SNM contents under the

small-cache scenario, i.e., Nc

NS
f

≈ 0, can be approximated as

p̄Sh(η) ≈ 1− 1

E[Vm]
E

[
Vm

∫ ∞

0

Λ(τ)e−
VmΛ(τ)
λE[Vm]

ηNcdτ

]
. (7)

The proof is given in [11] due to lack of space.

For IRM contents, we approximate p̄Ih(η) by converting the

summation in (5) into integration. Specifically, we approximate∑k
i=1 i

−δ with
∫ k

0
x−δdx = k1−δ

1−δ for δ ∈ (0, 1), and obtain

p̄Ih(η) ≈
[
(1− η)Nc

N I
f

]1−δ

. (8)

Then, considering Λ(τ) = 1
T , τ ∈ [0, T ], and sub-

stituting (7) and (8) into (1), we have p̄toth (η) ≈
wS

{
1− 1

E[Vm]E

[
Vme

− Vm
NS

f
E[Vm]

ηNc

]}
+ wI

[
(1−η)Nc

N I
f

]1−δ

�
p̂toth (η).

It can be proved that p̂toth (η) is a concave function of η by

examining its second derivative. Thus, the optimal value of η
that maximizes p̂toth (η) under the integer constraint ηNc ∈ Z

can be found in two steps: first omit the integer constraint and

find the optimal solution to the relaxed problem, denoted by

η∗, and then compare p̂toth (η) corresponding to the ceiling and

floor of η∗Nc and choose the one with larger p̂toth (η) as the

final solution.

The optimal solution without the integer constraint can be

derived from the Karush-Kuhn-Tucker conditions [12] of prob-

lem (6) by replacing p̄toth (η) with p̂toth (η) as η∗ = max {η0, 0},

where η0 is the solution of the equation
dp̂tot

h (η)
dη = 0, which

can be expressed as

wSNc

NS
f E

2[Vm]
E

[
V 2
me

− Vm
NS

f
E[Vm]

ηNc

]

− wI(1− δ)

(
Nc

N I
f

)1−δ

(1− η)−δ = 0.

(9)

It is easy to observe that the left-hand side of (9) is a

monotonically decreasing function of η. Thus, we can readily

find the unique solution of η0 by, e.g., bisection search.
We also find that η < 1 must be satisfied in (9) under

0 < δ < 1, hence, η0 = 1 will never happen, which indicates

that only caching SNM contents at BS is not optimal.

C. Special-case Analysis and Insight
In order to gain useful insights, in what follows, we derive

closed-form solutions of (9) under the small-cache scenario in

three special cases.
We start with a brief discussion on the popularity skewness

of SNM contents. Since the request volume of each SNM

content follows i.i.d. Pareto distribution with parameter β,

it is proved in [13] that the sorted request volumes (i.e.,

content popularity) in descending order approximately obey

Zipf distribution with parameter δI = β−1 for a large content

catalogue. For notational simplicity, in this subsection we

consider the case where SNM and IRM contents have the same

popularity skewness, i.e., δI = δ. The analysis for arbitrary δI

and δ is similar.
By substituting δ = β−1 and (2) into (9), we obtain that

β

kμ(β − 1)E2[Vm]
E

[
V 2
me

− Vm
NS

f
E[Vm]

ηNc

]
︸ ︷︷ ︸

gl(η)

=

[
(1− η)Nc

N I
f

]− 1
β

︸ ︷︷ ︸
gr(η)

,

(10)

where the left- and right-hand sides are denoted by gl(η) and

gr(η), respectively.

Proposition 2. Under the small-cache scenario, i.e., Nc

NS
f

≈ 0,

the solution of equation (10) can be approximated as

η0 ≈
⎧⎨
⎩h−1(KNc), if 1 < β < 2,

1−
(
kμ

β−2
β−1

)β
N I

f

Nc
, if β > 2,

(11)

where K =
[
(Aβ)

β
(
NS

f

)(2−β)β

kβ
μN

I
f

] 1
(β−1)2

> 0 for 1 < β < 2,

Aβ = β
(
β−1
β

)β−1
Γ(2 − β), h(x)= x

(2−β)β

(β−1)2

(1−x)
1

(β−1)2
, and h−1(·)

is the inverse function of h(·). Apparently, h−1(KNc) mono-

tonically increases with Nc. The proof is omitted due to lack

of space (refer to [11] for details).

In the following, we solve equation (10) in closed form for

three special cases.
1) Case 1: β ≈ 1, i.e., the popularity distribution is

quite skewed with δI = δ ≈ 1. In this case, gl(η) can be

approximated by
NS

f

kμηNc
, then the solution to equation (10)

can be obtained from (11) as η0 ≈ NS
f

NS
f +kμN I

f

.



TABLE I
SIMULATION PARAMETERS

Evaluation duration, T0 30 days

Content lifespan, T 5 days

Average content arrival rate, λ 103 contents/day

Average request volume of each SNM

content during lifespan, E[Vm]
3 [4]

Content catalogue of IRM, N I
f 5× 103 contents

Cache size of BS, Nc 100 contents

Average request arrival rate ratio of each

IRM content to each SNM content, kμ
0.5

Popularity skewness, δ = β−1 2/3

Compared with (2), we find that η0 ≈ wS, which is irrele-

vant to Nc. This can be explained as follows. When content

popularity is quite skewed, almost all requests are generated

by very few popular contents. Therefore, it is sufficient to only

proactively cache a small number of popular contents and then

reactively cache the contents with short lifespan according to

the fraction of requests for SNM contents wS.

2) Case 2: β = 3, i.e., the popularity distribution has

moderate skewness. In this case, the expression of η0 can be

obtained from (11) as η0 ≈ max
{
1− k3

μN
I
f

8Nc
, 0
}

.

It is shown that for less skewed popularity distribution, the

fraction of cache resource allocated to IRM contents, i.e., 1−
η0, is proportional to N I

f , but inverse proportional to Nc.

3) Case 3: β is very large, i.e., the popularity distribution

tends to be uniform. Then, we can derive η0 from (11) based

on the approximation
(

β−2
β−1

)β
≈ e−1 as

η0 ≈

⎧⎪⎪⎨
⎪⎪⎩
0, if kμ > 1,

max
{
1− e−1N I

f

Nc
, 0
}
, if kμ = 1,

1, if kμ < 1.

(12)

It follows that the allocation of cache resource simply

depends on kμ: the BS only caches the category of contents

with higher average request arrival rate. When the IRM and

SNM contents have the same average request arrival rate, i.e.,

kμ = 1, and the cache size is small so that Nc

N I
f

≤ e−1 = 0.37

holds (which is often the case in real-world cellular networks),

then only IRM contents are cached.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, we evaluate the accuracy of introduced

approximations in Sec. III, and then compare the performance

of the proposed caching resource allocation policy with two

benchmark policies, finally, we observe the impact of equal-

lifespan modeling. The simulation parameters are listed in

Table I, which are used throughout the simulations if not

otherwise specified. All results are averaged over 100 random

realizations of content request processes.

A. Accuracy of the Approximations

We first evaluate the accuracy of the approximations adopted

to obtain the numerical solution η∗. The results are shown in
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Fig. 2. Accuracy of approximations in special cases.

Fig. 1, where legend “Num” denotes the numerical solution

and legend “Simu” denotes the solution obtained by exhaustive

searching of η with step size 0.02. It is shown that the

numerical solution is very close to the solution by exhaustive

searching, meaning that the employed approximations, includ-

ing Che’s approximation and the approximations to derive

p̄Sh(η) and p̄Ih(η), have minor impact on the optimization of

cache resource allocation.

We next evaluate the accuracy of the approximations used

to obtain the results under the special cases. The results are

depicted in Fig. 2(a) and (b) for the cases with β ≈ 1 and β =
3, respectively, where legend “Appr” denotes approximation

results, and different λ and N I
f are considered. It is shown

that the approximations used in the case with β ≈ 1 is very

accurate, but the accuracy for the case with β = 3 relies on
Nc

NS
f

(note that NS
f = λT ). Nevertheless, one can find that the

numerical and approximation results exhibit the same trends,

making the insights gained from the approximation result in

Case 2 still valid.

B. Performance Comparison

We compare the proposed caching resource allocation policy

(with legend “Propose”) with two benchmark caching policies,

LRU and popular caching policy (with legends “LRU” and
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“Popular”, respectively). The total CHR achieved by the three

policies are depicted in Fig. 3. We can observe that the

proposed policy obviously outperforms the two benchmark

policies for both small and large average request arrival rate

ratios kμ. In particular, the gain of the proposed policy over

the popular caching policy is remarkable for small kμ. This is

because popular caching policy implicitly assumes static pop-

ularity, so that the cached SNM contents are seldom requested

beyond their lifespan, leading to the waste of cache resource.

C. Impact of Equal-lifespan Modeling

The proposed cache resource allocation policy is based on

the simplified model that all SNM contents have equal lifespan

T [10]. In Fig. 4, we simulate the performance of the proposed

policy under random lifespan, where the lifespans of SNM

contents follow uniform distribution between [1, 9] days with

a mean value of 5 days. To apply the proposed policy in this

scenario, we replace the fixed lifespan T with a predicted mean

value of the random lifespan, denoted by Tp. We consider

different values of Tp to reflect different prediction accuracy.

If Tp = 5 days, then the prediction is accurate, otherwise it

is inaccurate.

In Fig. 4(a), the curve with legend “Upper Bound” denotes

the simulation results where all SNM contents have the same

lifespan of 5 days. We can find that considering random

lifespan but with accurate prediction of mean lifespan (i.e.,

Tp = 5 days) only leads to slight performance loss. When

inaccurate prediction is considered (e.g., Tp = 1 day or 20
days), the proposed policy exhibits a larger performance loss

as expected, which however still outperforms the two bench-

mark policies. Interestingly, the performance with Tp = 20
days is better than that with Tp = 1 day, which implies that

an aggressive prediction of the mean lifespan is more desirable

than a conservative prediction. This can be explained by Fig.

4(b). It is shown that the increasing speed of η∗ decreases

with Tp, which means that a conservative prediction of mean

lifespan tends to lead to a larger bias of the optimal caching

resource allocation.

V. CONCLUSIONS

In this paper, we studied the wireless edge caching problem

under a hybrid traffic model consisting of two categories of

contents with long and short lifespans, which are respectively

characterized by IRM and SNM models. Aimed at maximizing

the total cache hit ratio of the BS, a cache resource allocation

problem was formulated and solved, and the behavior of the

optimal solution was analyzed in several special cases. Nu-

merical and simulation results demonstrated the performance

gain of the proposed hybrid caching policy over non-hybrid

caching policies for the scenarios with either equal or random

lifespan for SNM contents.
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