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Abstract—Caching at the wireless edge can improve the user
experience in transmission, while personalized recommendation
is targeted at satisfying users with contents and can also shape
the user demands. In this paper, we jointly optimize caching
and recommendation for helpers randomly deployed in cellular
networks towards both transmission and content satisfaction. We
first introduce a model to reflect the impact of the position of
a recommended file in the recommendation list on its request
probability. Then, we optimize probabilistic caching policy and
personalized recommendation policy to maximize the successful
offloading probability under the constraint that the ratings of the
recommended files exceed a threshold. We develop an alternating
algorithm to find an optimal solution. Simulation and numerical
results show evident performance gain over existing relevant
policies for both content satisfaction and transmission quality.

I. INTRODUCTION

Caching at the wireless edge, say at base stations (BSs),

helpers [1], and users, is expected to improve network per-

formance as well as user experience in terms of transmission

quality [1–3]. By optimizing caching policy with known con-

tent popularity or user preference, the average download delay

[1] or the maximal download delay [4] can be minimized, and

the successful offloading probability [5], average ergodic rate

[6], or cache-hit probability [7] can be maximized.

Due to the small population and user mobility at the wireless

edge, content popularity (i.e., the request probabilities for

contents from all users in a small region such as a cell

[1, 5–7]) is hard to predict. As a consequence, the gain

from wireless edge caching is inevitably reduced. To boost

network performance such as offloading probability or cache-

hit probability, one solution is to first predict the preference

of each user at service gateway in mobile core network, and

then aggregate user preference into content popularity for

caching policy optimization [2] or optimize caching policy

directly with user preference [4, 8]. Another solution is to

reduce the uncertainty on user demands by designing recom-

mendation policy friendly to caching [9, 10]. This is inspired

by the fact that a byproduct of recommendation is shaping

the user demands [11], which has been exploited to achieve

higher cache hit rate by content providers. For example, a

recommendation list reordering approach was proposed in [12]

to increase the likelihood that the already cached contents

will be chosen. In [9], a deterministic caching policy at BSs

This work is supported by National Natural Science Foundation of China
(NSFC) under Grants 61429101 and 61671036.

was optimized to maximize the cache hit rate, and a cache-

aware recommendation was proposed. Considering that many

users may not be determined to request a specific video, a

recommendation policy was proposed in [13] to increase soft

cache hits by recommending the related contents to each user

when the requested content is not cached.

Nonetheless, improving caching gain by leveraging person-

alized recommendation calls for the cooperation between con-

tent providers and mobile network operators, which fortunately

becomes possible recently. One example of the cooperation is

between China mobile and Alibaba (who has acquired Youku,

a video service provider in China). Traditionally, recommender

systems and wireless systems are designed independently.

Personalized recommendation is applied to relieve users from

information overload by providing the most preferred contents

to users [11], with gathered and predicted ratings of each

user. Wireless edge caching is designed to boost network per-

formance and improve user experienced transmission quality,

with predicted user demands. The cooperation between the two

parties can be justified at least partially if recommendation and

caching policies can be optimized to satisfy the users with

both recommended contents and transmission quality, since

user adhesiveness can be improved for both two parties.

In this paper, we attempt to jointly optimize caching and

recommendation policies to improve both transmission and

content satisfaction for users. To illustrate the gain of the joint

optimization, we take an interference-limited network with

randomly deployed helpers with cache as an example, employ

the integer-valued rating scales to reflect user preference, and

employ a required signal-to-interference ratio (SIR) threshold

to reflect user satisfaction for transmission. We consider the

request probabilities before and after recommendation. We

introduce a model to reflect the impact of the position of a

content in the recommendation list on the request probability.

To ensure content satisfaction, only the files (i.e., contents)

with ratings exceeding a threshold will be recommended. To

improve transmission satisfaction, we maximize successful

offloading probability, i.e., the probability that a requested file

can be downloaded from cache with receive SIR exceeding the

threshold. We develop an alternating optimization algorithm

to find a solution, and use synthesized data to evaluate the

performance of the proposed solution.



II. SYSTEM MODEL

Consider a cache-enabled network, where BSs are without

cache and connected to the core network with backhaul, and

helpers are equipped with caches but without backhaul. There

are Nu users in a given region, which may request the files

from the library with Nf files. Assume that each file is

with same file size, but the results are applicable for general

case with different sizes by dividing each file into chunks of

approximately equal size. Each helper is with cache size of Nc

files. The locations of the helpers follow Poisson Point Process

with intensity λ0. To accommodate the location uncertainty of

mobile users when optimizing the caching policy, assume that

the users are uniformly located in the region. Each helper and

each user are equipped with a single antenna.

To maximize the offloaded traffic from helpers, each user

is associated with the nearest helper that caches the requested

file. If the requested file cannot be found at helpers, the user

will be served by the nearest BS to the user.

We consider a probabilistic caching policy, where each

helper independently caches files from a content library F =
{F ′

1, · · · , F ′
f , · · · , F ′

Nf
} according to an optimized probability

distribution, where F ′
f is the f th file in set F . Denote the

caching probability as c = [cf ]f=1,··· ,Nf
, where 0 ≤ cf ≤ 1.

We consider a personalized recommendation policy, which

recommends M files from F to each user with ratings no less

than r0, where M � Nf and r0 is a threshold for shaping

the user demands. Denote the file set that matches the taste

of the kth user adequately as Fk = {F ′
f |rf |k ≥ r0}. The

recommendation list to the kth user can be expressed as a

set Mk = {F1, · · · , Fi, · · · , FM}, where Mk ⊂ Fk ⊂ F
and F1 may not be the same as F ′

1 due to different orders

of the elements in F and Mk. After jointly optimized with

the caching policy, such recommendation policy can improve

user’s satisfaction for transmission by recommending some

cached files without compromising the user’s satisfaction

for contents. Denote the recommendation policy as X =
[xi,f,k]i=1,··· ,M,f=1,··· ,Nf ,k=1,··· ,Nu

, where xi,f,k = 1 if the

f th file in F is recommended to the kth user and is located

in the ith position of Mk (i.e., F ′
f is the same as Fi), and

xi,f,k = 0 otherwise.

While the recommendation list is updated after a user sends

a request in some recommender systems, the caching and

recommendation policies to be jointly optimized are updated

simultaneously during a given period (say each day).

III. USER PREFERENCE AND REQUEST PROBABILITY

In the literature of wireless edge caching, user preference

is defined as the request probability for contents from each

user [4, 8, 9]. In the literature of recommendation problem,

user preference is expressed by rating, which takes different

forms such as real- or integer-valued rating scales (e.g., 1-5

stars) or binary scales (like/dislike) [11]. The request proba-

bility from an individual user is assumed as identical to the

user preference in [4, 8, 9]. This is reasonable for caching,

which is concerned with the number of requests. Yet this

assumption may not be true for recommendation, which is

concerned with the taste of each user. Considering various

information propagation mechanisms, such as word-of-mouth,

advertisement, and recommendation, the request probability

of a user is not always consistent with the user preference. A

user not requesting a content may because the user dislikes or

simply is unaware of the content [14]. On the other hand,

a user may request a popular content (say a movie) with

high probability, but after watching, the user may give a low

rating score due to disliking it. In order to jointly optimize

caching and recommendation, we differentiate user preference

and request probability in this work.

The user preference, say the ratings provided by the kth

user, is denoted as rk = [rf |k]f=1,··· ,Nf
, where rf |k ∈

{1, 2, 3, 4, 5} is the rating of the kth user to the f th file in

a content library.

The request probability before recommendation of the kth

user is denoted as qb
k = [qbf |k]f=1,··· ,Nf

.

The request probability after recommendation of the kth

user is denoted as qa
k = [qaf |k]f=1,··· ,Nf

. Recommender sys-

tems can shape the user demands, i.e., affecting user behaviour

in requesting files, but do not change the user preference.

Whether or not a user will accept a recommendation depends

on how adequately the recommended files match the user

preference, and also depends on if the user has determined

to request a file. The request probability for a file in the

recommendation list further depends on the position of the

file in the list [15].

Denote the probability that the kth user accepts a recom-

mendation (i.e., requests a file from Mk) as ξk, and the

probability that the user requests a file in the ith position of the

list conditioned on accepting the recommendation as aki. If the

user accepts the recommendation, then the request probability

for the f th file is q′f |k =
∑M

i=1 akixi,f,k. Otherwise, the

user ignores the recommendation (with probability 1 − ξk)

and requests the file with probability qbf |k. Then, the request
probability after recommendation of the kth user for the f th

file in F can be expressed as

qaf |k(X) = ξkq
′
f |k + (1− ξk)q

b
f |k

= ξk

M∑
i=1

akixi,f,k + (1− ξk)q
b
f |k.

(1)

In such a model, the impact of the file position in the list is

considered.1 This is different from the assumption in [9] that

a user uniformly requests a file from the recommendation list

(i.e., aki = 1/M, i = 1, · · · ,M ).

It is worthy to note that the request probability may not be

correlated with the user preference. For instance, a user may

request a content with high probability but eventually gives a

low score after watching.

In practice, user preference can be predicted by collabora-

tive filtering [11], and the request probability can be learned

by probabilistic latent semantic analysis [8], say at the service

1According to the analysis from online experiment in [15], aki follows Zipf
distribution, i.e., aki = i−βk/

∑M
j=1 j

−βk , where βk models the skewness
of the kth user in requesting files in different positions of Mk .



gateway. The probability that a user accepts a recommendation

and the probability that a user requests a file in a particular

position of the recommendation list can also be learned from

the historical request records of the user. To demonstrate the

caching gain from reducing the uncertainty on the request

probability of each user, we assume that rk, qb
k, ξk and aki

are known in the sequel, and leave the issues about how to

learn these information in future work.

IV. JOINT CACHING AND RECOMMENDATION

In this section, we jointly optimize the probabilistic caching

policy and personalized recommendation policy aimed at

maximizing the successful offloading probability.

A. Problem Formulation

The successful offloading probability in interference-limited

networks is defined as the probability that a requested file

from a user can be downloaded from a helper with received

SIR larger than a threshold γ0 required by the user. It can be

expressed as

poff =

Nu∑
k=1

wk

Nf∑
f=1

qaf |k

∫ ∞

0

gf (r)P(γf,r > γ0)dr, (2)

where wk is the probability that a request is sent from the

kth user (i.e., the activity level of the user [8]), gf (r) is the

probability density function of the distance r between the user

requesting the f th file and the associated helper, and γf,r is the

SIR at the user when receiving the f th file. For the considered

helper location distribution, gf (r) = 2πrλfe
−λfπr

2

, and λf =
λ0cf is the density of the helpers that cache the f th file.

Similar to the derivation in [16], for Rayleigh fading chan-

nel, we can obtain P(γf,r > γ0) = exp(−πr2γ2/α
0 (λ0ε0 −

λf ε1)), where ε0 =
∫∞
0

1
1+uα/2 du, ε1 =

∫ γ
−2/α
0

0
1

1+uα/2 du,

and α is the path-loss exponent.

By substituting P(γf,r > γ0) into (2), the successful

offloading probability can be derived as

poff (c,X) =

Nu∑
k=1

wk

Nf∑
f=1

qaf |k(X)
cf

cf (1− ε1γ
2/α
0 ) + ε0γ

2/α
0

,

(3)

where 1− ε1γ
2/α
0 = 1− ∫ 1

0
γ0

γ0+vα/2 dv > 1− ∫ 1

0
1dv = 0.

The problem of jointly optimizing caching policy c and rec-

ommendation policy X to maximize the successful offloading

probability can be formulated as

P1 : max
c,X

poff (c,X) (4)

s.t.

Nf∑
f=1

cf ≤ Nc, 0 ≤ cf ≤ 1, (4a)

M∑
i=1

xi,f,k ≤ 1, xi,f,k ∈ {0, 1}, (4b)

Nf∑
f=1

xi,f,k ≤ 1, (4c)

xi,f,k = 0, if rf |k < r0, (4d)

F ′
f ∈ F , i = 1, · · · ,M, k = 1, · · · , Nu,

where (4a) is the constraint on cache size, (4b) means that a

file can be recommended to a user at most once, (4c) indicates

that a position in the recommendation list can be assigned to

at most one file, and (4d) means that a non-preferred file for

a user can not be recommended.

Considering that the term 1 − ε1γ
2/α
0 in poff (c,X) is

positive, it is not hard to show that problem P1 is not concave

by deriving the Hessian matrix of poff (c,X) with respect

to c and X. A locally optimal solution can be found by

using interior point method [17], which is with computational

complexity of O (
(Nf (Nu + 1))3.5

)
. When the size of library

and the number of users are large, such complexity is not

affordable.

B. An Alternating Optimization Algorithm

In what follows, we propose a low-complexity algorithm to

find the solution of problem P1.

First, we show that once the caching policy is given,

the optimal recommendation policy can be obtained. Then,

we show that once the recommendation policy is given, the

optimal caching policy can be obtained.

Proposition 1. With any given caching policy c, the optimal
recommendation policy for the kth user is

x∗
i,f,k =

{
1, if F ′

f = Fi,

0, if F ′
f �= Fi,

(5)

where each file in recommendation list Mk is obtained as

F1 =argmax
j∈Fk

cj ,

F2 =argmax
j∈Fk\F1

cj ,

...

FM = argmax
j∈Fk\{F1,··· ,FM−1}

cj .

(6)

Proof: See Appendix A.

In order not to deviate from the goal of recommender

systems, i.e., relieving users from information overload, M
is usually small. Then, the number of files in Fk is usually

larger than M , which is true even when r0 is set as 5 (as

shown in the dataset later). The proposition suggests that the

optimal recommendation policy for a given caching policy is

to select the files from Fk with the maximal M values of

caching probability. Besides, the file with the highest caching

probability (i.e., F1) ranks in the first position in the list.

Remark: If there is no constraint on the content satisfaction,

i.e., r0 = 1 such that Fk = F , ∀k = 1, · · · , Nu, the

recommendation list will be identical for all users as in [10].

Then, the policy becomes non-personalized.



With any given recommendation policy X, it is not hard

to prove that poff (c,X) is concave in c. Then, the optimal

caching policy can be derived from the Karush-Kuhn-Tucker

conditions as

c∗f =

⎡
⎣ 1

1− ε1γ
2/α
0

⎛
⎝(

ε0γ
2/α
0 p̃f (X)

μ

)1/2

− ε0γ
2/α
0

⎞
⎠
⎤
⎦
1

0

,

(7)

where [x]10 = min{max{x, 0}, 1} denotes that x is truncated

by 0 and 1, μ can be solved from
∑Nf

f=1 c
∗
f = Nc by bi-

section search, and p̃f (X) =
∑Nu

k=1 wkq
a
f |k(X) is the content

popularity of the f th file after recommendation.

According to previous analysis, we can resort to alternating

optimization algorithm to find a locally optimal solution of

problem P1, which improves the offloading gain at each

iteration by alternatively optimizing the recommendation and

caching policies until the algorithm converges. We can first

optimize the recommendation policy for a given caching

policy. The procedure is shown in Algorithm 1.

Algorithm 1 The alternating optimization algorithm.

1: Initialize caching policy c. ε is a predetermined value.

2: repeat
3: Given c, X′ is obtained from (5).

4: Given X′, c′ is obtained from (7).

5: Compute Δ = poff (c
′,X′)− poff (c,X

′) by (3).

6: c← c′,X← X′.
7: until Δ < ε
8: return c∗ = c,X∗ = X.

We can also first optimize the caching policy for a given

recommendation policy. Since problem P1 is not concave, we

can use different initializations and pick the best solution to

increase the opportunity to find the global optimal solution.

All the initializations can converge after only two iterations

when ε = 10−2, as shown by numerical results. When ε is set

as a less value, more iterations are required for convergence.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we evaluate the performance of joint caching

and recommendation policy and analyze the impact of several

key factors. We consider two performance metrics, respec-

tively from the perspective of mobile operators and content

providers. The first metric is successful offloading probability,

where γ0 can reflect user experience in transmission. The

second metric is user satisfaction probability, defined as the

probability that the request of a user is served by a helper with
SIR larger than γ0 and the ratings of the recommended files
are larger than a value r̄0, which can reflect both transmission

and content satisfaction.2 r̄0 is not always the same as r0.

2r̄0 can reflect the real user satisfaction for contents. If the ratings of the
recommended files of a user exceed r̄0, then the user is satisfied with the
recommendation.

We compare the policy obtained from the alternating algo-

rithm (with legend “Proposed-Joint”) with two baselines:

• “Existing-Joint”: This is the strategy proposed in [9].

The strategy first optimizes a deterministic caching policy

to maximize the cache hit rate assuming known request

probability after recommending the top-M files to each

user according to the user preference (i.e., rating). Then,

the strategy adjusts the recommended files according to

the cached files, and finally shows the adjusted recom-

mendation list to each user.

• “Separate”: This is the strategy where caching and

recommendation policies are designed separately, which

reflects the common practice. The strategy optimizes a

probabilistic caching policy that maximizes the successful

offloading probability according to the request probability

before recommendation,3 and recommends the top-M
files according to the user preference.

In many real datasets available in the literature, either only

the ratings given by each user (say MovieLens [18]) or only the

numbers of requests from each user (say Million Songs [19])

are recorded. Different datasets correspond to different sce-

narios (say different collections of users), reflecting different

user behaviors (e.g., content popularity, user similarity). Under

the same content popularity, which is the weighted average

of the request probabilities of multiple users, the similarity

among the request probability of each user has large impact

on the caching gain [8]. To investigate the impact of request

probability and user preference on the performance for systems

serving different groups of users, we synthesize the request

probability and user preference. The ratings in MovieLens
dataset are integer, which will lead to coarse-grained quan-

tization of request probability if a rating is translated to the

probability. Therefore, we first synthesize request probability

before recommendation, and then synthesize user preference.

The request probability and activity level of each user

are synthesized using the method in [8] for given content

popularity and user similarity in request probability.

To capture the relation between request probability and user

preference, we consider two approaches to synthesize user
preference from the request probabilities. One is assuming

that user preference is correlated with request probability, i.e.,

the rating is high when the request probability is large. As

shown in Fig. 1, we first sort the files according to the request

probabilities of each user in descending order, and then divide

the corresponding files into five subsets according to the rating

distribution (i.e., the probabilities that the five ratings are given

by all users). In particular, the files in the first subset are with

highest request probabilities and hence they are with rating of

5, the files in the second subset are with rating of 4, and so

on. The other approach reflects an extreme case where user

3In practice, the reason of a user requesting a file may be that the user
knows something about the file from friends or advertisement, and may also
be that the user accepts a recommendation. For the latter case, the strategy
is to optimize the caching policy according to the request probability after
recommendation. Simulation results show that such a strategy outperforms
the “Separate” strategy slightly only when ξk is high.



preference is irrelevant to request probability, i.e., the ratings

are random variables following the rating distribution.
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Fig. 1. Synthesizing user preference from request probability.

The rating distribution can be obtained from real datasets.

In [20], the rating distribution is analyzed for several datasets,

among which MovieLens 1M and Netflix are with similar

distribution. Table I provides the rating distribution in the

original MovieLens 1M dataset (the second row).

TABLE I
ORIGINAL AND COMPLETED RATING DISTRIBUTION

Ratings 1 2 3 4 5

Original 0.056 0.108 0.261 0.349 0.226

Complete 0.13 0.138 0.381 0.315 0.036

We can observe high probability of the rating of 5. Using

such rating distribution to synthesize user preference will

yield optimistic results. This is because a user usually gives

rating to a content after the user has watched the content,

and a user usually requests a content if the user expects to

like it. In real datasets, the ratings provided by users are

extremely sparse, where there exists massive missing data (i.e.,

the data samples without ratings). The missing data may be

attributed to dislike of the users (i.e., negative ratings), or

simply owing to unawareness of the contents (i.e., unknown

ratings) [14]. As a result, the rating distribution obtained from

the original dataset may deviate from the real distribution. To

deal with this problem, we use matrix factorization technique

in collaborative filtering to predict the missing ratings [11],

where the predicted values are rounded to 1∼5. Table I shows

the rating distribution of all ratings included the predicted

ratings (the third row), which is employed to synthesize user

preference.

We consider a circular area with radius 500 m and

Nu = 100 users.4 The density of the helper is λ0 =
50/(5002π) m−2. The path-loss exponent is α = 3.7. The SIR

threshold is γ0 = −10 dB, which corresponds to 2.75 Mbps

with the transmission bandwidth 20 MHz. The content sat-

isfaction threshold is r0 = 5. We also provide the results

for r0 = 1 to show what happens if user preference is not

taken into account in the optimization. The library size is

Nf = 1000. Nc = 50 files can be cached at each helper,

and M = 10 files are recommended to each user. The content

popularity is Zipf distribution with skewness parameter 0.6.

4Considering that the users are with different activity levels and only the
requests able to be successfully offloaded are served by the helpers, each
helper will serve at most one user in the setup.

The user similarity in request probability is s = 0.3. The

probability of requesting files from recommendation list is set

as ξk = ξ0 = 0.5. aki follows Zipf distribution, and βk = 0.6.

The pre-determined value, ε, in Algorithm 1 is set as 10−6.

All numerical and simulation results are averaged over 20

tests. In each test, the user preference, request probability, and

activity level are synthesized independently. Unless otherwise

specified, these parameters are used in the sequel.

The successful offloading probability is evaluated from

numerical results, which are computed from (3) with c and X.

The user satisfaction probability is evaluated by simulations

results obtained from 20 tests, each consisting of 20 Monte

Carlo trials. In each trial, the locations of each helper and each

user, and the channel coefficients change independently. The

cached files in each helper change according to the optimized

caching probability using the method proposed in [7], and

200 requests are generated according to the activity level and

request probability after recommendation of each user. The

value reflecting the real content satisfaction is set r̄0 = 5, i.e.,

each user will be satisfied with the recommendation only if

the recommended files are with rating of 5.
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(a) User preference is correlated with request probability.
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(b) User preference is irrelevant to request probability.

Fig. 2. Impact of the probability of accepting recommendation.

In Fig. 2, we show the impact of the probability of accepting

recommendation as well as the relation between user prefer-

ence and request probability on the two metrics. From the left



figures of Figs. 2(a) and (b), we can see that for the successful

offloading probability, the proposed policy outperforms two

baselines consistently. The performance gain is remarkable

for large value of ξ0, which corresponds to the scenario

where users are flexible to request files and the recommended

files are preferred by each user. The gain over “Existing-
Joint” strategy comes from two factors. 1) The proposed

solution satisfies the user requirement for transmission quality

and user preference for contents. 2) The proposed solution

recommends files considering the impact of their positions

in the recommendation list. The “Separate” strategy performs

the worst, because recommendation and caching policies are

independent, resulting in the recommended files being less

cached. Comparing the left and right figures in Fig. 2(a),

we find that the user satisfaction probabilities are very close

to the successful offloading probabilities for the proposed

solution and “Existing-Joint” strategy with r0 = 5 (because

r̄0 is also 5), but become inferior to the successful offloading

probabilities when r0 = 1. The user satisfaction probability of

the proposed policy deteriorates more severely for r0 = 1.

This is because when setting r0 = 1 in the optimization,

the proposed policy only recommends the popular contents

without considering user preference, while “Existing-Joint”
strategy attempts to recommend some cached files with higher

ratings. Comparing Figs. 2(a) with (b), we find that the perfor-

mance will degrade if the user preference becomes irrelevant

to the request probability, except the successful offloading

probability achieved by the proposed solution with r0 = 1.
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Fig. 3. Impact of the SIR threshold and request similarity, r0 = 5.

In Fig. 3, we show the impact of γ0, user similarity in

request probability (denoted as s) and different values of ξk.

We set ξk ∼ [0, 1], i.e., the probability of accepting recommen-

dation by each user is a uniformly distributed random variable.

The maximal SIR threshold, 0 dB, corresponds to 20 Mbps

with the transmission bandwidth 20 MHz. User preference is

correlated with request probability. The results in the left and

right figures are close since r̄0 = r0 = 5, which show that the

proposed solution outperforms the two baselines. As expected,

both the successful offloading probability and user satisfaction

probability decrease with the SIR threshold. The performance

increases with the user similarity in request probability. This is

because when the user demands are less heterogeneous (which

implies that the user demands become less uncertain), the

content popularity is more skewed.
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Fig. 4. Impact of the size of recommendation list, γ0 = −10 dB.

In Fig. 4, we show the impact of the size of recommendation

list. User preference is correlated with request probability.

When r0 = 5, the performance of the proposed solution

decreases with M , because the recommendation policy be-

comes more personalized to users. Then, the user demands

will be more heterogeneous if the list is long, and hence

the content popularity after recommendation will become

less skewed, resulting in the deteriorated performance. When

r0 = 1, the proposed solution always recommends the same

list of files to all users as discussed in the remark, and

almost recommends same files to all users when r0 = 4
because there are more than 300 files with ratings of 4.

Since M < Nc, the content popularity of the Nf − Nc less

popular files does not change with M , and hence the successful

offloading probability almost does not change with M when

r0 = 1 and 4. For the proposed solution with r0 = 4, the

successful offloading probability is high for all values of M
but the user satisfaction probability is low. This indicates that

shaping user demands can improve transmission experience

but may sacrifice overall user satisfaction. However, when

setting r0 = 5, the proposed solution can achieve almost

the same performance for both metrics. There exist optimal

values of M for both metrics achieved by “Existing-Joint”
strategy (also true for the successful offloading probability

when r0 = 1 and 4 if M is larger than 15, not shown in

the figure). This is because this strategy tends to recommend

the cached files with high ratings when M is small. As M
grows, a long recommendation list may contain more cached

files, where more files are with ratings less than r̄0 (hence no

longer makes users satisfied). However, if M is too large, the

user demands will become more heterogeneous, resulting in

the deteriorating performance.

VI. CONCLUSIONS

In this paper, we jointly optimized caching and recom-

mendation to improve the network performance without com-

promising the transmission quality and content satisfaction

of each user. We employed SIR threshold to reflect user



requirement for transmission quality and ratings to reflect user

satisfaction for contents. We considered the impact of the file

position in recommendation list on the request probability. We

formulated a joint caching and recommendation problem for

an interference-limited network and developed an alternating

optimization algorithm to find the caching and recommenda-

tion policies. Simulation and numerical results showed that the

proposed solution outperforms the existing policies in terms

of both successful offloading probability and user satisfaction

probability. The preliminary results suggest that both mobile

network operators and content providers can benefit from the

cooperation by the joint optimization.

APPENDIX A

PROOF OF PROPOSITION 1

Since the recommendation policy is personalized for each

user, when caching policy c is given, problem P1 can be split

into Nu sub-problems. In particular, the optimal recommen-

dation policy to the kth user, X∗
k = [x∗

i,f,k], can be obtained

from the following problem

P2 : max
Xk

wk

Nf∑
f=1

qaf |k(Xk)
cf

cf (1− ε1γ
2/α
0 ) + ε0γ

2/α
0

(A.1)

s.t. (4b), (4c), (4d), F ′
f ∈ F , i = 1, · · · ,M.

Substituting (1) into the objective function of problem

P2, we can see that wk, ξk and qbf |k do not affect the

solution of the problem. Then, the objective function

degenerates into
∑Nf

f=1

∑M
i=1

akicfxi,f,k

cf (1−ε1γ
2/α
0 )+ε0γ

2/α
0

=∑M
i=1 aki

∑Nf

f=1
cf

cf (1−ε1γ
2/α
0 )+ε0γ

2/α
0

xi,f,k, which can be

shown as monotonically increasing with cf by examining its

first derivative with respect to cf .

Further considering that aki and
cf

cf (1−ε1γ
2/α
0 )+ε0γ

2/α
0

are

decoupled in the objective function and aki determines the

position of each recommended file, we can obtain the optimal

recommendation policy as follows. First, we find the file in-

dices with the maximal M values of caching probability in Fk

to constitute the recommendation list. Then, we successively

assign the recommended files to corresponding positions in

the list. According to the rearrangement inequality [21], to

maximize the objective function, the file with maximal value

of cf should occupy the position with maximal value of aki.
This completes the proof.
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