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Abstract—It is widely accepted that a tradeoff exists between
transmit power and average delay. In this paper, we consider
wireless systems transmitting randomly arrived traffic over
fading channels with statistical quality-of-service requirement,
characterized by a delay bound and a delay bound violation
probability. We study the relation between the maximal energy
efficiency (EE) and the delay bound with given delay violation
probability. We prove that the EE-delay tradeoff vanishes if the
average total power consumption, including transmit and circuit
powers of the base station, linearly increases with the average
service/transmission rate. By taking massive multi-input-multi-
output (MIMO) system as an example, we show that if the
required total power consumption is a linear function of the
service rate, the maximal EE is independent of the delay bound.
If the required total power is strictly convex in the service rate,
then the EE can be improved by extending the delay.

I. INTRODUCTION

The fifth generation (5G) mobile networks are expected to

support a variety of services with diverse quality-of-service

(QoS) requirements [1]. To provide high throughput with sat-

isfactory user experience meanwhile reduce the cost and global

carbon dioxide emissions, energy efficiency (EE) has become

one of the major design goals. To optimize towards several

possibly conflicting performance metrics, the fundamental

relations between these metrics need careful examination [2,3],

among which the EE-delay relation has drawn significant

attention, which is especially important for multimedia traffic

with various delay-bounded QoS provisioning.

It is widely accepted that a tradeoff exists between transmit

power and average delay (and therefore between EE and delay)

[2,4–7]. This suggests that EE can be increased by extending

the delay. According to Shannon’s capacity, the transmit power

is a strictly convex function of the transmission rate (also

called service rate in the sequel) for a given channel state.

Based on this fact, the pioneering study in [4] shows that

the average transmit power and the average delay cannot be

minimized at the same time, unless both source and channel

are not random. When the QoS requirement is modeled by

a hard deadline, the power-delay tradeoff also exists when

transmit power is strictly convex in service rate [5]. An

exceptional example in [6] demonstrates that if the required

average transmit power is a piecewise linear function of the

average rate, then the optimal power-delay tradeoff in [4]

can be exceeded. These studies indicate that the power-delay

tradeoff depends on the relation between the power and rate.

Compared with average delay and hard deadline, statistical
QoS requirement, defined as a delay bound and a delay

violation probability, is more relevant for wireless multimedia

transmission [8]. In the context of statistical QoS requirement,

the power-delay tradeoffs of several systems were studied in

[7], where only transmit power was considered. However, the

policies in [7] are independent of queue state information

(QSI), and thus the achieved power-delay tradeoffs are not

optimal for randomly arrived data, as implied in [4].

Furthermore, adjusting transmit power is the only power-

saving mechanism considered in the prior studies. Noting that

the power consumed for running the circuits is not negli-

gible in prevalent systems, other power saving mechanisms

become necessary [9]. For example, we can further adjust the

bandwidth to reduce the circuit power after ensuring the QoS.

As a consequence, the relation between average total power

consumption and average service rate (i.e., power-rate relation)

and the resulting EE-delay relation may change.

In this paper, we investigate the optimal EE-delay relation

for wireless systems serving the traffic with random arrivals

and statistical QoS requirements, where both transmit and

circuit powers are taken into account. We show that for

any system if the required average total power consumption

linearly increases with the average service rate, the maximal

EE is independent of the delay bound and can be achieved by a

simple two-state policy. To demonstrate whether such a system

exists in practice, we take massive multi-input-multi-output

(MIMO) system as a concrete example. Our analyses show that

the maximal EE cannot be traded off by the delay bound when

the required service rate lies in the linear region of the power-

rate relation. When the required service rate lies in the strictly

convex region of the power-rate relation, which happens when

the delay bound is stringent, there exists a tradeoff between

the maximal EE and the delay bound.

II. STATISTICAL QOS REQUIREMENT AND DEFINITIONS

A. Queueing Model and Statistical QoS Requirement

Consider a downlink multiuser system, where a base station

(BS) serves K users with delay-sensitive services. The statisti-

cal QoS requirement of the kth user is defined as (Dmax
k , εk),

where Dmax
k is the delay bound and εk is the delay bound

violation probability allowed by the service, k = 1, ...,K.

In this paper, we consider the queuing delay and ignore the

coding and transmission delay as in [2, 4–7].

As in [10], we consider a fluid queueing model. Such a

mode is accurate when the inter-arrival time between packets

of the data source and the time interval for a system to update

transmit policy is much shorter than Dmax
k . At time t, the

data of the kth user enters a first-in-first-out buffer of the BS



at arrival rate ak(t), and is sent to the user at departure rate

bk(t), which are related as

bk (t) =

{
min{ak (t) , sk(t)}, Qk (t) = 0
sk (t) , Qk (t) > 0

, (1)

where sk(t) is the service/transmission rate and Qk(t) is the

queue length of the kth user. When the buffer size is infinite,

Qk(t) =
∫ t

0
ak (τ)− bk (τ) dτ . We assume that the queues are

in steady state when t > 0, and denote Q∞
k as the steady state

queue length of the kth user.

Effective bandwidth [11] and effective capacity [12] are

useful tools to study statistical QoS requirement. The effective

bandwidth of arrival process {ak(t), t > 0} and the effective

capacity of service process {sk(t), t > 0} are respectively

defined as [11, 12],

EBk
(θk) = lim

t→∞
1

θkt
lnE

[
eθk

∫ t
0
ak(τ)dτ

]
, (2)

ECk
(θk) = − lim

t→∞
1

θkt
lnE

[
e−θk

∫ t
0
sk(τ)dτ

]
, (3)

where θk is the QoS exponent. To guarantee statistical QoS

requirement (Dmax
k , εk), θk should satisfy [3]

Pr (D∞
k > Dmax

k ) ≈ exp [−θkEBk
(θk)D

max
k ] = εk, (4)

where D∞
k is the queueing delay when the queue stays in

steady state. Since EBk
(θk) increases with θk [11], given the

delay violation probability εk, a large value of θk indicates

a small Dmax
k , and vice versa. To ensure the statistical QoS

requirement, a resource allocation policy should satisfy [10]

ECk
(θk) ≥ EBk

(θk). (5)

B. Several Definitions

For easy exposition, we first define several notions to be

used throughout the paper.

Definition 1: Power-rate relation is defined as Eh(P
min
tot )−

(s̄1, ..., s̄K), which denotes the required minimal average

total power consumption to support the average service rates

Eh[sk(t)] = s̄k, k = 1, ...,K.

To support the average service rates s̄1, ..., s̄K , the policy

that minimizes average total power is independent of QSI [4].

Thus, the expectation is only taken over channel gain.

EE can be defined as the ratio of average throughput
K∑

k=1

E[bk(t)] to the average total power [13]. For ergodic

arrival process and service process, when (5) is satisfied,

E[ak(t)] = E[bk(t)] (the proof is omitted due to the lack of

space). Then, the EE can be expressed as

EE �

K∑
k=1

E [bk (t)]

EQ∞,h (Ptot)
=

K∑
k=1

E [ak (t)]

EQ∞,h (Ptot)
(bits/J). (6)

To maximize the EE of a system with random arrivals, the

policy should adapt to both the QSI, Q∞ = (Q∞
1 , ..., Q∞

K ),
and the channel state information (CSI) [4, 14]. Hence, the

expectation is taken over both queue length and channel gain.

Definition 2: Optimal EE-delay relation is defined as

EEmax(Dmax
1 , ..., Dmax

K ), which denotes the maximal EE un-

der delay requirement (Dmax
1 , ..., Dmax

K ) with given E[ak(t)]
and εk, k = 1, ...,K.

The optimal EE-delay relation is fundamental for a system,

which is not an EE-delay curve achieved by a given policy.

According to (6), with given traffic load
∑K

k=1 E[ak(t)], to

maximize EE, we can equivalently minimize the total transmit

and circuit power consumption.

Definition 3: Power limit is defined as the minimal average

total power consumption that is achieved for infinite delay

bound, i.e., P lim
tot = lim

Dmax
k →∞,k=1,...,K

EQ∞,h(Ptot).

Such a limit is a lower bound of the average total power

consumption for a system with arbitrary delay bounds.

To prove that the optimal EE-delay tradeoff vanishes in

some scenarios, we will show that P lim
tot can be achieved with

finite Dmax
k . To this end, we introduce a QSI-dependent policy.

Two-state policy: When Q∞
k = 0, to avoid serving empty

buffer, no resource is allocated to the kth user and hence

sk(t) = 0, which is referred to as “OFF” state. When Q∞
k > 0,

to guarantee (Dmax
k , εk), the resource is allocated such that (5)

is satisfied, which is referred to as “ON” state.

III. OPTIMAL EE-DELAY RELATION

According to the distinguished EE-delay relations, we study

the power-rate relation in linear and strictly convex scenarios.

In the linear scenario, the EE-delay tradeoff vanishes, since the

power limit can be achieved with arbitrary delay requirement,

as indicated in the sequel.

Linear scenario: This occurs for the scenario when

Eh(P
min
tot ) =

K∑
k=1

cks̄k + c0, where ck, k = 0, 1, ...,K are

positive constants.

In this scenario, it is not hard to show that the power limit

of a system is P lim
tot =

K∑
k=1

ckE[ak(t)] + c0.

Proposition 1. In linear scenario, P lim
tot of a system can be

achieved with arbitrary delay requirement (Dmax
k , εk) by a

two-state policy.
Proof: For K = 1, the proof can be found in Appendix

A. For K > 1, the proof is omitted due to the lack of space.

Strictly Convex Scenario: This occurs for the scenario when

Eh(P
min
tot ) is strictly convex in average service rate. In this

scenario, the EE-delay relation is very hard to obtain. We will

show that the strictly convex power-rate relation leads to a

tradeoff between the maximal EE and the delay bound.

IV. OPTIMAL EE-DELAY RELATION OF MASSIVE MIMO

To show when the different scenarios happen in real-world

applications, we consider a single cell downlink massive

MIMO system in this section.



A. System and Power Consumption Models

Consider a BS equipped with NT antennas serves K single-

antenna users. The spatial channel vector from the BS to

the kth user is hk ∈ C
NT×1, whose elements are assumed

as independent and identically distributed (i.i.d.) Gaussian

variables with zero mean and variance μk. Then, the receive

signal of the kth user can be expressed as

yk = hH
k

(
K∑
i=1

xi

)
+ nk, k = 1, ...,K, (7)

where xi ∈ C
NT×1 are the signal vector transmitted to the ith

user, and nk ∈ C
1×1 is white Gaussian noise.

Assume that CSI is perfectly known at the BS. When

NT is large enough, the channel vectors of multiple users

are asymptotically orthogonal, and the maximum achievable

service rates of the users can be expressed as [15]

Ck = Wklog2

(
1 +

μkNTPTk

N0Wk

)
, k = 1, ...,K, (8)

where N0 is the single-sided noise spectral density, PTk
and

Wk are the transmit power and bandwidth allocated to the kth

user, respectively.

Since the service rate of each user does not depend on the

instantaneous channel, ECk
(θk) = Eh[sk(t)] = Ck. Then,

constraint (5) degenerates into a constraint on service rate as

Ck ≥ EBk
(θk). (9)

and the power-rate relation, Eh(P
min
tot )− (s̄1, ..., s̄K), can be

simplified into Pmin
tot (s̄1, ..., s̄K). If the elements of hk are not

i.i.d. and intercell interference is considered, the expression of

ECk
(θk) will be very hard to obtain. Nonetheless, the final

conclusion will not change.

To save energy with ensured QoS, the BS can adjust the

service rate of each user by allocating transmit power and

bandwidth (e.g., by allocating the number of active subcarriers

in OFDM systems [9]). Denote Pmax
T and Wmax as the

maximal transmit power of the BS and the maximal available

bandwidth of the system. Considering that the users are

spatially well-separated, they can be served simultaneously in

the same frequency. Then,
K∑

k=1

PTk
≤ Pmax

T and Wk ≤ Wmax.

As an illustration, we only consider the impact of bandwidth

on circuit power. From the in-depth analysis of the powers

consumed for various modules in massive MIMO system [9],

the total power consumption at the BS can be modeled as

Ptot =
1

ρ

K∑
k=1

PTk
+ Pcw

K∑
k=1

Wk + P0, (10)

where Pcw is the circuit power consumed for baseband pro-

cessing per unit bandwidth, P0 is the fixed circuit power

independent of bandwidth, and ρ ∈ (0, 1] is the power

amplifier efficiency. The values of Pcw and P0 depend on NT .1

1When NT is jointly allocated with PTk
and Wk , the conclusion of this

paper will not change, although Ptot is a non-linear function of NT [9].

B. Problem Formulation

To find the power-rate relation and the optimal EE-delay
relation for the system, we formulate two problems.

According to the power model in (10) and Definition 1, the

power-rate relation can be found from the following problem,

min
PTk

,Wk,
k=1,...,K

K∑
k=1

PTk
+ ρPcw

K∑
k=1

Wk, (11)

s.t. Ck = s̄k, k = 1, ...,K, (11a)

K∑
k=1

PTk
≤ Pmax

T and Wk ≤ Wmax. (11b)

To obtain the optimal EE-delay relation, we need to find

the optimal two-state policy that minimizes the average total

power consumption under the QoS constraint. Then from the

maximal EE achieved by the optimal policy, we can find the

optimal EE-delay relation.

Denote ηk = Pr(Q∞
k > 0), which is the non-empty

probability of the buffer of the kth user. Then, the average total

power consumed by the two-state policy can be expressed as,

EQ∞(Ptot) =

K∑
k=1

ηk

(
P on
Tk

ρ
+ PcwW

on
k

)
+ P0, (12)

where P on
Tk

and W on
k is the transmit power and the bandwidth

allocated to the kth user when Q∞
k > 0 (i.e., the “ON” state of

the user). Then, the optimal two-state policy can be obtained

from the following problem,

min
P on

Tk
,W on

k ,

k=1,...,K

K∑
k=1

ηk

(
P on
Tk

ρ
+ PcwW

on
k

)
+ P0, (13)

s.t. Con
k ≥ EBk

(θk), ∀Q∞ > 0, k = 1, ...,K, (13a)

K∑
k=1

P on
Tk

≤ Pmax
T and W on

k ≤ Wmax, (13b)

where (13a) are the service rate constraints from (9) for the

“ON” state. It is not hard to prove that constraints in (9) and

(13a) are equivalent in the sense that they can guarantee the

same statistical QoS requirements. Due to the lack of space,

the proof is omitted.

In the following two sections, we only consider single

user case for easy exposition and notational simplification.

Then, the index k in problems (11) and (13) can be omitted.

For multi-user case, the conclusions are similar, as will be

illustrated by numerical results.

C. Optimal EE-Delay Relation in Linear Scenario

In this subsection, we solve problems (11) and (13) for

the services whose required delay bounds are large (i.e., the

required service rates are low) such that the constraints on

transmit power and bandwidth are inactive. We can show that

the required minimal total power Pmin
tot (s̄) linearly grows with

s̄, i.e., this is a linear scenario. Then, we discuss when the



resource constraints are inactive, from which we can find the

boundary of the EE-delay non-tradeoff region.
1) Power-Rate Relation: By solving problem (11) without

resource constraints (11b), we can obtain the following propo-

sition (proved in Appendix B).

Proposition 2. The optimal solution of problem (11), P ∗
T and

W ∗, satisfies
P∗

T

W∗ = P ∗
tw, where P ∗

tw is the optimal transmit

power per unit bandwidth, which is independent of s̄.

When transmitting with P ∗
tw, from (8) the optimal service

rate per unit bandwidth can be expressed as

r∗w = log2

(
1 +

μNT

N0
P ∗
tw

)
. (14)

Then, the optimal bandwidth and transmit power that minimize

the required total power to support s̄ can be expressed as

W ∗ =
s̄

r∗w
, and P ∗

T = P ∗
tw

s̄

r∗w
. (15)

Upon substituting into (10), the power-rate relation can be

obtained as,

Pmin
tot (s̄) =

(
P ∗
tw

ρr∗w
+

Pcw

r∗w

)
s̄+ P0, (16)

which is a linear function of s̄ since P ∗
tw and r∗w are indepen-

dent of s̄. In other words, this is a linear scenario.
2) Optimal EE-Delay Relation: To show that the EE-delay

tradeoff vanishes, we first find the power limit. Then, we show

that the minimal average total power achieved by the optimal

two-state policy for any delay bound equals to the power limit.
In massive MIMO systems, when θ → 0 (i.e., Dmax → ∞),

EB(θ) = E[a(t)] [11]. Therefore, constraint (13a) can be re-

expressed as C ≥ E[a(t)]. Then, P lim
tot can be achieved by a

policy that minimizes the total power consumption under this

constraint. It is easy to see that the power-minimizing policy

should adjust the resource such that C = s̄ = E[a(t)]. From

the minimal total power consumption required to support s̄ in

(16), the power limit can be expressed as,

P lim
tot =

(
P ∗
tw

ρr∗w
+

Pcw

r∗w

)
E[a(t)] + P0. (17)

In what follows, we find the optimal policy from problem

(13) and derive the average total power achieved by the

policy. By rewriting (A.1) as E[a(t)] = EQ∞,h[s(t)] =

ηEh[s(t)|Q∞ > 0], we have η = E[a(t)]
Eh[s(t)|Q∞>0] . In massive

MIMO systems, Eh[s(t)|Q∞ > 0] = Con. Then, the average

total power consumption in (13) can be expressed as

E[a(t)]

Con

(
P on
T

ρ
+ PcwW

on

)
+ P0. (18)

Because E[a(t)] is fixed for any given traffic, minimizing (18)

is equivalent to minimizing

P on
tot − P0

Con
, (19)

where P on
tot � P on

T /ρ + PcwW
on + P0 is the total power

consumption in “ON” state.

According to the analysis in section IV.C.1, to support any

given Con = s̄, the minimal total power consumption in “ON”

state can be expressed as P on∗
tot = Pmin

tot (s̄), where Pmin
tot (s̄) is

expressed in (16). Moreover, the power-minimization policy

should satisfy the following condition

P on∗
T = P ∗

twW
on∗

, (20)

under which Con∗
= W on∗

r∗w, where r∗w is expressed in (14).

Substituting Con∗
into the QoS constraint (13a), we obtain

W on∗ ≥ EB(θ)/r
∗
w. (21)

It follows that any policy that satisfies (20) and (21) can

minimize the total power in “ON”’ state meanwhile ensure the

QoS. Next we show that the average total power consumption

achieved by such policies is equal to the power limit, which

is the lower bound of the minimal average total power. In this

way, we know that these policies are the optimal solution of

problem (13).

Substituting P on∗
tot and Con = s̄ into (19), the minimum

value of (19) can be expressed as
P∗

tw

ρr∗w
+ Pcw

r∗w
, and then the

minimum value of (18) is

EQ∞(Ptot) =

(
P ∗
tw

ρr∗w
+

Pcw

r∗w

)
E[a(t)] + P0, (22)

which is exactly the same as P lim
tot in (17).

This indicates the average total power achieved by the

optimal two-state policy for the delay bounds equals to the

power limit. In other words, there is no EE-delay tradeoff.

3) Boundary of EE-delay Non-tradeoff Region: From the

maximum resource constraints, we can find the boundary of

non-tradeoff region. Substituting (15) into (11b), we can obtain

s̄ ≤ min (Pmax
T r∗w/P

∗
tw,W

maxr∗w) � s̄th, (23)

where s̄th is the boundary of the linear region of power-rate

relation. If the first term in min(·, ·) is larger, i.e., Pmax
T >

P ∗
twW

max, the boundary is

s̄th = Wmaxlog2

(
1 +

μNT

N0
P ∗
tw

)
, (24)

where P ∗
tw = P ∗

T /W
max. If the second term is larger, the

result is similar and hence is not shown.

Considering the maximum resource constraints in (13b),

the policy satisfying (20) and (21) exists when EB(θ)/r
∗
w ≤

W on∗ ≤ Wmax and P ∗
twEB(θ)/r

∗
w ≤ P on∗

T ≤ Pmax
T , i.e.,

EB(θ) ≤ min (Pmax
T r∗w/P

∗
tw,W

maxr∗w) . (25)

If the required delay bound of a service satisfies (25), the

EE-delay tradeoff vanishes. From (4), the related delay bound

can be obtained from Dmax
th = − ln ε

θthEB(θth)
, where EB(θ

th) =
s̄th. When Dmax ≥ Dmax

th , the maximum EE is independent

of the delay bound.

Note that the right hand sides of (23) and (25) are identical.

This means that if the required service rate for a traffic lies in

the linear region of the power-rate relation, then the EE-delay

tradeoff vanishes.



D. EE-Delay Tradeoff in Strictly Convex Scenario

In this subsection, we consider the scenario when Dmax ≤
Dmax

th , i.e., s̄ > s̄th. For such kind of traffic, the power-rate

relation is strictly convex as shown in the sequel.

1) Power-Rate Relation: We study the case where the first

term in min(·, ·) in (23) is larger (i.e., Pmax
T > P ∗

twW
max).

For the other case where Pmax
T ≤ P ∗

twW
max, the results are

similar and hence are omitted.

When s̄ ≥ s̄th, the constraint on Wmax is active. To support

higher server rate s̄, the system needs to increase transmit

power, and thus PT > P ∗
twW

max. From the maximum achiev-

able rate in (8), we can obtain the minimal transmit power

to support service rate s̄ as P ∗
T = N0W

max

μNT

(
2s̄/W

max − 1
)
.

Substituting P ∗
T and W ∗ = Wmax into (10), the power-rate

relation can be expressed as

Pmin
tot (s̄) =

N0W
max

ρμNT

(
2s̄/W

max − 1
)
+ PcwW

max + P0,

(26)

which is strictly convex in s̄. In other words, this is a strictly
convex scenario.

2) EE-Delay Tradeoff: In the sequel, we show that if the

required service rate lies in the strictly convex region of the

power-rate relation, then there will be a tradeoff between the

maximal EE and the delay bound.

Similar to the linear scenario, the power limit can be

obtained from the related power-rate relation in (26) with

C = s̄ = E[a(t)], i.e., P lim
tot = Pmin

tot {E[a(t)]}.

Denote C(Q∞) as the service rate of a QSI dependent pol-

icy (e.g., the two-state policy). When the power-rate relation

is strictly convex, the average total power consumption of this

policy satisfies

EQ∞
{
Pmin
tot [C(Q∞)]

} ≥ Pmin
tot {EQ∞ [C(Q∞)]} (27)

≥ Pmin
tot {E[a(t)]} , (28)

where (27) comes from the Jensen’s inequality, and (28)

comes from EQ∞ [C(Q∞)] ≥ E[a(t)], which is the necessary

condition for a policy to guarantee finite delay [6].

The equality in (27) will hold if and only if the service rate

is independent of QSI according to the property of the Jensen’s

inequality. Denote C(Q∞) = C0, ∀Q∞ ≥ 0 as the service

rate of a QSI independent policy, with which the statistical

QoS requirement can be satisfied if C0 ≥ EB(θ) [7]. When

the arrival rate is random, with positive θ (i.e., finite Dmax),

EB(θ) > E[a(t)] [3] and hence C0 > E[a(t)], i.e., the equality

in (28) does not hold.

It follows that the power limit can not be achieved, no matter

with QSI dependent or independent policy. This implies that

the EE-delay relation is a tradeoff.

The analysis indicates that under the statistical QoS require-

ment, the tradeoff between maximal EE and delay bound stems

from the strictly convex power-rate relation. This is consistent

with prior results [4,5], where average delay and strict deadline

requirements were considered.

V. NUMERICAL RESULTS

In this section, we illustrate the power-rate relation and the

EE-delay curve achieved by the optimal two-state policy via

numerical results.

For comparison, the EE-delay curve achieved by a QSI

independent policy in [7] is provided, where the transmit

power is minimized (with legend “Existing policy”).

We consider K = 10 users, served by a BS with NT =
100 antennas over bandwidth Wmax = 20 MHz. With 10

users, the EE-delay relation will be a 11-dimensional curve.

To capture the essence of the problem but without loss of

generality, all users are set with identical delay bound and

identical distance to the BS of d = 200 m. The conclusion will

not change in more practical scenarios. Then, the maximum

transmit power for each user is Pmax
T /K, and the multi-user

policy can be decomposed into K single user policies. Pmax
T is

set as 41 dBm. The path loss model is 35.3+37.6 log10 d dB,

and the noise power spectral density is N0 = −174 dBm/Hz.

The arrival process of each user is a compound Poisson process

with average packets arrival rate 2000 packets/s and average

packet size 50 kbits. For other kinds of sources, the results will

not change. The parameters in (10) are as follows, ρ = 50 %,

Pcw = 0.075 W/MHz, and P0 = 13.6 W, which are predicted

by GreenTouch for the year of 2020 [9].
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Fig. 1. Power-rate relation.

Figure 1 shows the power-rate relation. In the linear region,

PTk
< Pmax

T /K and Wk < Wmax, and PTk
= P ∗

twWk is

satisfied. In the convex region, the maximal bandwidth is used.

To increase the service rate of each user, the system can only

increase the transmit power.

Figure 2 shows the EE-delay curve achieved by the optimal

two-state policy. In the non-tradeoff region, P on∗
Tk

= P ∗
twW

on
k ,

corresponding to the linear region of Fig. 1. In the tradeoff

region, W on∗
k = Wmax and P on∗

Tk
> P th

T , corresponding to

the convex region of Fig. 1. This confirms that the EE-delay

relation is determined by the power-rate relation. It is shown

that the maximal EE achieved by the optimal two-state policy

is much higher than that of existing policy in the two regions

of the delay bounds.
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Fig. 2. EE-delay relation with 10 compound Poisson sources, where ε =
0.01 and E[ak(t)] = 0.1 Gbps.

VI. CONCLUSION

In this paper, we studied the optimal EE-delay relation for

wireless systems serving the traffic with random arrivals and

statistical QoS requirements. We proved that when the required

minimal average total power consumption of a system linearly

increases with the average service rate, the EE-delay tradeoff

vanishes. By taking massive MIMO system as an example,

we showed that the optimal EE-delay relation includes a non-

tradeoff region when the desired delay bound is large and a

tradeoff region when the delay bound is small. The existence

of such an EE-delay non-tradeoff region implies that we cannot

improve the maximal EE by extending the delay bound when

the delay bound lies in the non-tradeoff region. Moreover,

under the statistical QoS requirement, the EE-delay tradeoff

stems from the strictly convex relation between average total

power and average service rate.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: When the two-state policy is applied, from (1) we

know that s1(t) = b1(t). Moreover, it is not hard to show that

E[a1(t)] = E[b1(t)] when (5) is satisfied, i.e., (Dmax
1 , ε1) is

ensured. Therefore, we have

E[a1(t)] = E[b1(t)] = EQ∞
1 ,h[s1(t)]. (A.1)

In the linear scenario, the average power consumption of the

two-state policy can be expressed as

EQ∞
1
[Eh(P

min
tot )] =Pr(Q∞

1 > 0){c1Eh[s1(t)|Q∞
1 > 0] + c0}

+Pr(Q∞
1 = 0){c1Eh[s1(t)|Q∞

1 = 0] + c0}
=c1EQ∞,h[s1(t)] + c0

=c1E[a1(t)] + c0,

which equals to the power limit.

APPENDIX B

PROOF OF PROPOSITION 2

Proof: To prove Proposition 2, we analyze the Karush-

Kuhn-Tucker (KKT) conditions, which are the necessary con-

ditions that the optimal solution of problem (11) should satisfy.

From the KKT conditions of this problem, we can derive that

μNT

N0

(
ρPcw + PT

W

)
1 + μNTPT

N0W

− ln

(
1 +

μNTPT

N0W

)
= 0, (B.1)

from which we can obtain the solution of the transmit power

per unit bandwidth, Ptw � PT

W . To find this solution of Ptw,

we define g (Ptw) �
μNT
N0

(ρPcw+Ptw)

1+
μNT
N0

Ptw

− ln
(
1 + μNT

N0
Ptw

)
. It

is easy to show that g(0) > 0, g(∞) < 0, and g′(Ptw) <
0, ∀Ptw ∈ [0,∞). Therefore, g(0) > 0, g(∞) < 0, and g(Ptw)
strictly decreases with Ptw. It follows that the equation in

(B.1) has a unique solution, P ∗
tw, which is independent of s̄.

Therefore, the optimal solution of problem (11) should satisfy

the following condition:
P∗

T

W∗ = P ∗
tw.
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