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Abstract— This paper studies secure transceiver design for
multiuser multi-antenna systems with an external passive
eavesdropper and a cooperative jamming helper. Due to the
finite-rate constraint of feedback channels, only quantized
channel state information (CSI) of the legitimate users is avail-
able at the transmitter and the helper. A nonlinear-precoded
secure transmission strategy is proposed using Tomlinson-
Harashima precoding at the transmitter and null-space beam-
forming at the helper based on the quantized CSI. The accurate
closed-form expression of an approximation for the ergodic
rate of each legitimate user is obtained using quantization cell
approximation for random vector quantization of the chan-
nels. Assuming the quantized CSI of the legitimate channels
and the helper’s channel at the eavesdropper, closed-form
expression of an upper bound of the ergodic rate of each
user’s message at the eavesdropper is also derived. Then, a
closed-form expression of an approximation for the worst-case
ergodic secrecy sum rate follows. We also theoretically show
that, besides the advantage in ergodic rate over the linear
precoding scheme, when the quantized CSI is not available
at the eavesdropper, Tomlinson-Harashima precoding is also
more effective in degrading the received signal quality at the
eavesdropper, and thus is more capable to enhance the secrecy
of the systems compared with the linear precoding scheme.
Given the total bandwidth constraint of CSI-feedback channels,
an adaptive feedback bit allocation algorithm is proposed
for each legitimate user to optimize the ergodic secrecy rate
performance. Numerical results illustrate that our proposed
nonlinear-precoded secure transmission strategy outperforms
the corresponding linear precoding scheme, and significant
advantage can be achieved by adaptively allocating the total
available feedback bits.

Index Terms— Physical layer security, secrecy (sum) rate,
jamming, nonlinear precoding, limited feedback.
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I. INTRODUCTION

As an alternative to the traditional cryptography-based
technologies, physical layer security (PLS) is an emerg-
ing technology that enables the exchange of confidential
messages over wireless channel by exploiting the physical
characteristics of channel fading and source. It has attracted
significant attentions from the research community recently
[1–7]. The pioneering works by Wyner [8] and I. Csisźar and
J. Körner in [9] introduced the wiretap channel model and
showed that, when the legitimate user’s channel is “more
capable” compared to the eavesdropping channel, a positive
perfect information rate (secrecy rate, SR) can be achieved
for degraded channels and the non-degraded broadcast chan-
nels. In the context of PLS, the signal processing methods
to achieve security for various contemporary architectures,
such as multiple-input-multiple-output (MIMO) systems and
relay systems, have been widely studied in [1–7].

In multi-antenna systems, combining controlled artifi-
cial noise (AN) or cooperative jamming noise (CJN) to-
gether with information signals, the spatial-multiplexing
capability is explored to simultaneously enhance legitimate
channels’ strength and reduce the eavesdropping channel
capacity, thus improve the SR significantly [1, 4–7]. Along
this line, for single-user (SU) multiple-input-single-output
(MISO) systems, the algorithms that combine linear precod-
ing/beamforming with AN and the corresponding ergodic
secrecy rate (ESR) were studied for the systems with perfect
channel state information at the transmitter (CSIT) in [1],
and for systems with limited CSI feedback in [6, 7]. For
multiuser (MU) MIMO systems, the ESR performance of
the linear secure MU precoding schemes based on zero-
forcing (ZF) criterion was studied in [2] for large-scale
MIMO systems. In spite of low complexity, the above
linear precoding/beamforming schemes inevitably incur ca-
pacity loss. Nonlinear precoding provides an alternative
approach that offers the potential for rate improvements over
linear schemes [10–12]. Particularly, nonlinear Tomlinson-
Harashima precoding (THP) can achieve a very good trade-
off between performance improvement and complexity in-
crease [10, 11].

It is well known that CSIT is important in wireless
communications. However, due to the implementation issues
in practise, only partial CSI will be available at the transmit
side. For example, limited CSI feedback is widely used
in frequency division duplex systems, where the CSI is
estimated at the receiver using pilot training, and conveyed
to the transmitter through the limited feedback channels.
The effects of quantized CSI on the transceiver design and
the performance have been extensively studied for both SU
and MU multi-antenna systems without considering security
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[13–15]. Moreover, it is almost impossible in general for
the transmitter to know instantaneous CSI of eavesdropper’s
channel in practice, especially if eavesdropper is “passive”
and keeps silent. Particularly, the schemes proposed in [1–
3] all assumed perfect CSI of the legitimate channels at the
transmitter for precoding design. With secrecy constraint,
some recent works have attempted to relax the perfect CSI
assumption. The work in [4, 16] focused on the robust signal
processing method design with Gaussian distributed channel
estimation errors. [5, 6] studied the impact of quantized
channel direction information (CDI) on the ESR. The work
in [7] maximized the ergodic secrecy sum rate (ESSR) under
a connection outage constraint on the legitimate channel and
a secrecy outage constraint against eavesdropping.

As far as we know, compared with linear processing
methods there have been very few PLS works employing
practical nonlinear precoding (e.g. THP) in multiple-antenna
systems, except for [17–21]. Particularly, [17] considered SU
MIMO systems with a multiple-antenna eavesdropper and
designed a nonlinear THP to guarantee a certain quality-
of-service level for the intended user in terms of mean-
squared-error (MSE). Partial transmit power was allocated to
message-bearing signals in order to achieve the target MSE
and the remaining power was allocated to AN to degrade the
eavesdropper’s channel. Thus, the secrecy is not primary
consideration of [17]. [18] and [19] designed nonlinear
successive optimization THP based on the perfect CSI of
the main channels of multiple legitimate users (LUs) for
MU-MIMO systems with multiple eavesdroppers. For the
scenario with Gaussian error imperfect CSIT assumption,
AN is added to enhance the secrecy performance of the
system. Through computer simulations, the ESR as well as
bit error rate performance of the proposed method is eval-
uated and compared with other traditional linear precoders
for system with both perfect and imperfect CSI of the main
channels. Based on the quantized CSIT, [20] proposed to
transmit LU’s signals pre-processed by THP together with
AN in a MU-MISO system. The advantage of THP over
the corresponding linear scheme was illustrated through
both the theoretical analysis and some simulation results.
Our previous work [21] proposed a similar scheme as this
work that employed THP with a coexisting cooperative jam-
ming helper. However, the eavesdropper in the system was
assumed to employ a genie-aided eavesdropping method.
Thus, the performance obtained is underestimated for any
possible practical scenario.

In this work, we aim to add some new results to nonlinear
secure transceiver for multi-antenna broadcast systems. We
consider a scenario where a multiple-antenna transmitter
simultaneously communicates with multiple single-antenna
LUs, while there is a passive external multiple-antenna
eavesdropper attempting to eavesdrop on the confidential
messages of all LUs. The transmitter employs nonlinear
THP for secure transmission and to reduce the interference
between the MU signals. Moreover, there is a cooperative
helper with multiple antennas to enhance the secrecy of the
legitimate channels via null-space beamforming approach
intended to produce jamming noise signals that are ideally
interference-free to all LUs. In contrast to the assumption
of CSI in the related works of [17–19], we consider there
exist limited-rate feedback channels from each LU to both
the transmitter and the cooperative helper and assume each

Fig. 1: System model.

LU can perfectly estimate the instantaneous main channel
and the helper’s channel. Then, the transmitter and the
helper both design the precoding/beaforming based on the
quantized CSI conveyed from multiple LUs. In contrast
to considering channel-distribution and quantization-method
dependent designs (such as the scheme in [22]), we focus
on designing low-complexity method in this work, which is
fit for easy implementation in practical systems and robust
to distributions of channel fading [12]. Thus, our scheme
will employ a more direct method which is only based on
quantized CDI at the transmitter.

For the study of the ESR and the ESSR, we consider
the worst case that the eavesdropper can acquire not only
the perfect CSI of the channels from the transmitter and
the helper, but also the quantized CSI of the main chan-
nels of all LUs. The obtained secrecy performance can be
viewed as a lower bound of the ESR/ESSR in practise.
Using random vector quantization (RVQ) codebooks [13]
and quantization cell approximation for RVQ [15], we first
derive some closed-form expressions of approximations for
both the ESR of each LU and the ESSR. We also derive
a closed-form upper bound on the mean loss of the ESR
for each LU due to limited CSI feedback. Based on the
results, we obtain a closed-form solution of the optimized bit
allocation to the main channel of each LU and the helper’s
channel. Our numerical results illustrate that the proposed
nonlinear-precoded secure transmission strategy based on
ZF criterion outperforms the linear ZF precoding scheme
for all system settings. The numerical results also illustrate
the optimized feedback bit allocation can further improve
the ESSR performance of the system.

Notation: C denotes the set of complex numbers. EX{·}
represents expectation with respect to random variable X .
x
d.
= y denote random variables x and y have the same

distribution.  =
√
−1. IN denotes N ×N identity matrix.

diag {M} denotes the vector consisting of the diagonal
elements of matrix M. [M]i,j denotes the (i, j)-th element
of matrix M. [M]i:j,k:l denote the submatrix of M obtained
by extracting rows i through row j and column k through
column l.

II. SYSTEM AND CHANNEL MODELS

We consider a downlink MU-MISO wiretap broadcast
system as illustrated in Fig. 1, where a multiple-antenna
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transmitter (Alice) simultaneously sends individual confi-
dential messages to K single-antenna LUs, while there
is an external passive multiple-antenna eavesdropper (Eve)
attempting to eavesdrop on the confidential information all
LUs. The message for each LU does not need to be kept
confidential among the other LUs, but must be protected
from the external eavesdropper. There is a friendly multiple-
antenna jammer (Helper) that has no knowledge about the
confidential messages and aids the secure communication
by sending jamming Gaussian noise to degrade the received
signal quality at Eve. We assume there are Na antennas with
Alice, Nh antennas with Helper and Ne antennas with Eve.

Let t ∈ CNa×1 denote the information-bearing confi-
dential signal vector transmitted by Alice and z ∈ CNh
denote the Gaussian jamming signal generated by Helper.
The signal vectors received at LU k and Eve are given by

yb,k = hb,kt + gb,kz + nb,k, (1)

and

ye = Het + Gez + ne, (2)

respectively, where hb,k ∈ C1×Na and gb,k ∈ C1×Nh (k =
1, 2, · · · ,K) are the channel vectors from Alice and Helper
to LU k respectively, He ∈ CNe×Na and Ge ∈ CNe×Nh are
channel matrices from Alice and Helper to Eve respectively,
nb,k ∼ CN (0, σ2

b,k) and ne ∼ CN
(
0Ne×1, σ

2
eINe

)
are

additive noises at LU k and Eve. All channels are assumed to
be fast block-faded and remain constant during a time block
of channel estimation, CSI feedback and data transmission.
Using similar model as in many previous works, we consider
a scenario with delay-tolerant traffics, where the coding
block of each LU’s messages is long enough, such that we
can use ESSR/ESR as our performance metric [6].

For the limited CSI feedback model, we assume LU k
can perfectly estimate each realization of hb,k and gb,k, and
Eve is capable to perfectly estimate He and Ge, but Alice
and Helper can only obtain quantized CSI via distinct finite-
rate feedback channels from each LU. Since Eve works
passively, the instantaneous CSI of the Eve’s channel is
unknown at Alice, whereas the distribution of the CSI of
the Eve’s channel is assumed to be available at Alice1.
Given the distinct quantization codebooks Wi with 2Bi

codewords and Vi with 2Di codewords (i = 1, 2, · · · ,K),
of which Wi (the codebook for the channel from Alice to
LU i) is known to Alice and the respective LU, and Vi (the
codebook for the channel from Helper to LU i) is known
to Helper and the respective LU. LU k (k = 1, 2, · · · ,K)
quantizes the channel direction vectors h̄b,k =

hb,k
‖hb,k‖ and

ḡb,k =
gb,k
‖gb,k‖ as ĥb,k = arg maxa∈Wk

{|h̄b,kaH |2} and
ĝb,k = arg maxb∈Vk{|ḡb,kbH |2} respectively. We assume
the corresponding indices of the selected codewords can be
fed back ideally to Alice and Helper [13]. Note that only the
CDI is quantized and fed back, since the proposed transmis-
sion scheme does not require information of ‖ hb,k ‖ and
‖ gb,k ‖.

1This assumption has been extensively used in the previous literatures
on PLS, e.g. [1, 2, 5–7].

III. NONLINEAR-PRECODED SECURE TRANSCEIVER
DESIGN AND EAVESDROPPING

A. Nonlinear Precoding
In this work, we propose to employ nonlinear THP at

Alice for interference pre-subtraction between multiple LUs.
Let s = [s1, s2, · · · , sK ]T represent the modulated symbol
vector for all LUs, where2 sk is the modulated symbol for
LU k with E{|sk|2} = 1. At Alice’s side, s is fed into
a structure with a backward square matrix B ∈ CK×K ,
which is strictly lower triangular to allow data precoding in a
recursive fashion [10]. The design of precoding matrix B is
based on the CSI of the LUs available at Alice’s side. Since
B is a function of the channels, the instantaneous power
of the output signal vector can be greatly increased. Thus, a

modulo operation MODτk(z) = z−τk
⌊
z+τk
2τk

⌋
is introduced

here to ensure that the transmit symbol xk is mapped into
the square region Rk = {x +

√
−1 y|x, y ∈ (−τk, τk)},

where τk is a modulation specific parameter3 and bxc is the
largest integer not exceeding x [10]. Considering the effect
of the modulo operation, the precoding procedure can be
equivalently given as follows:

x1 = s1, xk = sk + dk −
k−1∑
l=1

[B]k,lxl, k = 2, . . . ,K, (3)

where xk, k = 1, 2, · · · ,K, are the outputs of THP and dk ∈{
2τk(pI +

√
−1 pQ)| pI , pQ ∈ Z

}
is properly selected to

ensure the real and imaginary parts of xk to fall into R
[10]. Let x = [x1, x2, · · · , xK ]T and effective signal vector
be v = [v1, v2, · · · , vK ]T with vk = sk + dk. Equivalently,
we have v = s+d = Cx, where C , B+I. With THP, the
elements of x can be accurately approximated to be indepen-
dent and uniformly distributed over the Voronoi region of R
[10]. The power of x is somewhat increased compared to the
original symbols from the constellation which is quantified
by the precoding loss. The power increase decreases as
alphabet size increases and can be neglected for moderate
to large values of Mk. Thus, we assume E

{
xxH

}
= I as

in [10].

B. Secure Transceiver Design with Quantized CSI
In addition to THP, a spatial channel pre-equalization

is performed prior to transmission using a feedforward
precoding matrix F ∈ CNa×K , i.e., t = Fx. Throughout
this work, we assume equal power allocation to the K LUs.
The received signals of all LUs can be written in vector
form as

yb =

√
Pa
κ

HbFC−1v + Gbz + nb,

where yb = [yb,1, yb,2, · · · , yb,K ]T and nb =
[nb,1, nb,2, · · · , nb,K ]T are received signal vector at

2As a default premise in many previous works about PLS [1, 3, 6, 16],
sk carries both bits representing confidential message and random bits to
confuse Eve [8, 9], which is obtained by wiretap coding matching to LU
k’s and Eve’s channels.

3The modulo device of the THP precoder reduces the transmit signals to
a well prescribed range. The operation is tightly related to the used signal
constellation. For illustration purpose, we only present the operation with
square constellations in the content. τk is determined according to the used
modulation order and format [10]. We refer to [11] for the operation of
THP with more modulation formats.
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all LUs and the corresponding additive Gaussian noise

vector. Hb =
[
hTb,1, · · · ,hTb,K

]T
∈ CK×Na is the fading

channel matrix consisting of all channel vectors from Alice

to multiple LUs and Gb =
[
gTb,1, · · · ,gTb,K

]T
∈ CK×Nh is

the fading channel matrix consisting of all channel vectors
from Helper to multiple LUs. Each LU compensates for
the channel gain by dividing by a factor ek prior to the
modulo operation.

As presented in Section II, Alice obtains the
quantized downlink CSI through the limited feedback
by each LU. Using the result in [13], for LU k
we have h̄b,k = ĥb,k cos θ1,k + h̃b,k sin θ1,k and
ĝb,k cos θ2,k + g̃b,k sin θ2,k, where cos2 θ1,k = |h̄b,kĥHb,k|2,
h̃b,k ∈ C1×Na is a unit norm vector isotropically
distributed in the orthogonal complement subspace
of ĥb,k and independent of sin θ1,k. g̃b,k ∈ C1×Nh

and cos2 θ2,k are defined similarly. Then, Hb and Gb

can be decomposed as Hb = Γ
(
ΦĤb + ΩH̃b

)
and

Gb = Σ
(
ΥĜb + ΨG̃b

)
, where Γ = diag

(
ρ1, · · · , ρK

)
with ρk = ‖hb,k‖ and Σ = diag

(
ξ1, · · · , ξK

)
with

ξk = ‖gb,k‖. Φ = diag (cos θ1,1, · · · , cos θ1,K),
Ω = diag

(
sin θ1,1, · · · , sin θ1,K

)
, Υ =

diag (cos θ2,1, · · · , cos θ2,K) and Ψ =

diag
(

sin θ2,1, · · · , sin θ2,K

)
. Ĥb =

[
ĥTb,1, · · · , ĥTb,K

]T
,

H̃b =
[
h̃Tk,1, · · · , h̃Tb,K

]T
, Ĝb =

[
ĝTb,1, · · · , ĝTb,K

]T
,

G̃b =
[
g̃Tk,1, · · · , g̃Tb,K

]T
.

Define the LQ decomposition of compact channel ma-
trix Ĥb as Ĥb = R̂Q̂, where the matrices R̂ =
[r̂i,j ] ∈ CK×K is a lower left triangular matrix and Q̂ =
[q̂T1 , q̂

T
2 , · · · , q̂TK ]T ∈ CK×Na is a semi-unitary matrix with

orthonormal rows that satisfies Q̂Q̂H = IK . Then, using ZF
criterion, the feedforward precoding matrices is obtained as

F = Q̂H and the THP is given as B =
(

diag
{

R̂
})−1

R̂−I

[10, 12]. The diagonal matrix consisting of the scaling fac-

tors at the multiple LUs is E =
√

K
P

(
ΓΦ diag

{
R̂
})−1

.
We note that the transmitter only needs to inform LU k the
corresponding r̂k,k to obtain the scaling factor, since γk and
cos θ1,k is known by LU k. In addition, the jamming noise
signal z can be written as z =

√
Ph

Nh−K Γ̂hu, where the null

constraint is imposed on z such that Γ̂h ∈ CNh×(Nh−K)

is an orthonormal basis for the null space of Ĝb, i.e.,
ĜbΓ̂h = 0, and u ∼ CN (0, I(Nh−K)) such that the transmit
power of Helper is E

[
zHz

]
= Ph

Nh−KE
[
uHΓ̂Hh Γ̂hu

]
=

Ph
Nh−KE

[
uHu

]
= Ph. Following many previous related

works employing AN (e.g. [6, 7]), here, the transmit power
of Helper is uniformly assigned to the null space of Ĝb

due to the absence of Eve’s CSI. Then, the signals of all
LUs after compensation (before modulo operation) can be
written in vector form as

v̂ = E

√
Pa
K

Γ
(
ΦĤb + ΩH̃b

)
Fx

+

√
Ph

Nh −K
EΣ

(
ΥĜb + ΨG̃b

)
Γ̂hu + Enb

= v +
(
Φ diag

{
R̂
})−1

ΩH̃bQ̂
Hx +

√
PhK

(Nh −K)Pa

×
(
ΓΦ diag

{
R̂
})−1 (

ΣΨG̃bΓ̂hu + nb

)
, (4)

where we have used the relationship ĜbΓ̂h = 0 and v =(
diag

{
R̂
})−1

R̂x, and v̂ = [v̂1, v̂2, · · · , v̂K ]T with v̂k
denoting the estimate of the modified data vk. In (4), the first
term is the useful signal vector for all LUs and the second
term is the interference signal caused by the quantized CSI
and the effective additive noise. An estimate of LU k’s data
symbol sk can be obtained as

ŝk = MODτk [vk + yk + n̂k] = MODτk [sk + yk + n̂k] ,

where yk , sin θ1,k
r̂k,k cos θ1,k

h̃b,kQ̂
Hx +√

PhK
(Nh−K)Pa

ξk sin θ2,k
ρk cos θ1,k r̂k,k

g̃b,kΓ̂hu and n̂k ,√
K
Pa

1
ρk r̂k,k cos θ1,k

nk. It is easy to see that, conditioned on

the CSI, n̂k ∼ CN
(
0, KPa

σ2
b,k

ρ2k|r̂k,k|2 cos2 θ1,k

)
.

We note that, without signal shaping for channel signal
x, the elements of x can be well approximated as to be
independent and uniformly distributed over R [10], which
leads to the result that the achievable rate can be up to
1.53 dB from the channel capacity. To reduce this shaping
loss, x with close to uncorrelated Gaussian distribution
restricted to the region of R can be obtained by combining
signal shaping (e.g. trellis shaping) with THP into an entity
in a proper way [11]. But the detailed algorithm is more
involved and is not the focus of this work. Thus, for the
tractability of performance analysis, we approximate x as
being with Gaussian distribution in this work. It had also
been noted in [11] that, the effect of the modulo operation
at receiver can be neglected for moderate to high signal-
to-noise ratios (SNRs) and the end-to-end behavior can be
well approximated by the additive Gaussian (interference
and) noise model. This approximation had previously been
adopted in [10] for the capacity analysis of THP. Thus,
we will follow the above approximations with secrecy rate
analysis in Section IV.

Following the above assumptions of Gaussian distributed
x as in [10], the output signal-to-interference-plus-noise
ratio (SINR) γ̂k for LU k can be written as (5) at the top
of the next page.

C. Eavesdropping

Before proceeding, we first note that, since x is obtained
from symbol vector using THP based on the random quan-
tized CSI, if Eve does not know the quantized CSI of all LUs
(i.e., Ĥb), or he does not know the processing method of
Alice, he cannot the detect sk with any possible method with
the exception of x1 = s1. And the LU 1’s message x1 = s1

can be protected by employing proper wiretap coding. This
is an unique advantage of THP over the linear precoding
schemes to enhance secure communications.

The received signals at Eve in (2) can be rewritten as

ylfbe =

√
Pa
K

HeQ̂
Hx +

√
Ph

Nh −K
GeΓ̂hu + ne,(6)

which can be identified as a MIMO channel with co-
channel interference and noise. In real world, different
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γ̂k =
1

sin2 θ1,k
|r̂k,k|2 cos2 θ1,k

‖h̃b,kQ̂H‖2 + PhK
(Nh−K)Pa

ξ2k sin2 θ2,k
ρ2k cos2 θ1,k|r̂k,k|2

‖g̃b,kΓ̂h‖2 + K
Pa

σ2
b,k

ρ2k|r̂k,k|2 cos2 θ1,k

=

Pa
Kσ2

b,k
ρ2
k|r̂k,k|2 cos2 θ1,k

Pa
Kσ2

b,k
ρ2
k sin2 θ1,k‖h̃b,kQ̂H‖2 + Ph

(Nh−K)σ2
b,k
ξ2
k sin2 θ2,k‖g̃b,kΓ̂h‖2 + 1

. (5)

decoders with different complexities can be used, such as the
low-complexity linear decoders and the optimal maximum-
likelihood (ML) decoder whose complexity is exponentially
increasing with the dimension of x (or s) [23]. In this work,
instead of studying any concrete decoder, we will focus
on studying the maximum achievable ergodic rate of sk at
Eve for the very rigorous scenario of security, where Eve is
assumed to have the knowledge of the processing method
of Alice and the CSI of He, Ge, Ĥb and Ĝb. Notice that
these assumptions result in the worst-case ESR performance
of each LU (and also the worst-case ESSR of the system).

IV. ERGODIC SECRECY (SUM) RATE ANALYSIS

For the secrecy performance analysis of the pro-
posed scheme described above, all channels are assumed
to be mutually independent and spatially uncorrelated
Rayleigh fading4, i.e., hb,k ∼ CN (01×Na , INa), gb,k ∼
CN (01×Nh , INh), He ∼ CN

(
0Ne×Na , INe ⊗ INa

)
, Ge ∼

CN
(
0Ne×Nh , INe ⊗ INh

)
. For tractability, we further con-

sider the quantization cell approximation for RVQ employed
in [13, 15, 24]. Any reasonably well-designed codebook
should perform at least as well as RVQ, which gives a
performance lower bound of average rate. This quantization
cell approximation also provides an accurate performance
indication for any well-designed quantization codebook [15].
But the codebook design is not the focus of this work. Before
proceeding, we first derive some distribution results related
to the target signals, the interfers and the CJN leakage.
These results are very useful for the ESSR analysis and the
optimization of feedback bit allocation.

A. Some Preliminary Results

Some distribution results related to the target signals, the
interfers and the CJN leakage are given in the following
lemma.

Lemma 1: For 1 < K < Na and K < Nh, the random
variables ηk = ‖g̃b,kΓ̂h‖2 for k = 1, · · · ,K follow the
same beta distribution with shape (Nh −K) and (K − 1)
which is denoted as ηk ∼ Beta(Nh−K,K−1). In addition,
the probability density function (PDF) of ηk is given as

fηk(x) =
1

β(Nh −K,K − 1)
xNh−K−1(1− x)K−2, (7)

where β(a, b) =
∫ 1

0
ta−1tb−1dt = Γ(a)Γ(b)

Γ(a+b) is beta function
[25].

The random variables εk = ‖h̃b,kQ̂H‖2 for k = 2, · · · ,K
follow the same beta distribution with shape (K − 1) and

4The variances of all channels are determined by large-scale fading and
antenna gains. We first present the analytical results assuming all channel
elements’ variances are normalized to 1. We will illustrate later how to
obtain the results for the general case with arbitrary channel variances
based on the derived results.

(Na−K) which is denoted as εk ∼ Beta(K − 1, Na−K)
with PDF fεk(x) = 1

β(K−1,Na−K)x
K−2(1 − x)Na−K−1.

Particularly, when K = 1 there is no MU interference term.
When K = Na, εk = ‖h̃b,kQ̂H‖2 is equal to 1 which
is a constant. The random variable |r̂k,k|2 (k = 2, · · · ,K)
follows beta distribution with shape (Na−k+1) and (k−1)
with PDF f|r̂k,k|2(x) = 1

β(Na−k+1,k−1)x
Na−k(1 − x)k−2.

For k = 1, |r̂k,k|2 = 1.
Proof: See Appendix A.

B. Ergodic Secrecy (Sum) Rate Approximation

In this subsection, we study the ESSR focusing on the
general scenario that 1 < K < Na. The results for the
special cases of K = 1 and K = Na also can be directly
obtained from the derived results. In fact, the work in [6]
can be viewed as a special case of our scheme with K = 1.

The ESR of LU k with quantized CSI at Alice is

given by [1, 9] Rlfbsec,k =
[
Rlfbb,k −R

lfb
e,k

]+
, where Rlfbb,k =

EHb,Gb,Φ,Υ [1 + γ̂k] is the ergodic rate of LU k’s messages
over Alice-LU k channel and Rlfbe,k is the maximum ergodic
rate of LU k’s messages over Alice-Eve channel achieved by
any possible method at Eve. Although the exact distribution
of each random term in the denominator and numerator of
(5) is known, since the terms ρ2

k|r̂k,k| and cos2 θk,1 in the
numerator are correlated with the terms ρ2

k and sin2 θk,1
in denominator respectively, it is rather difficult if not
impossible to obtain the exact distribution of γ̂k in the very
direct way. Alternatively, we will derive an approximation
of Rlfbb,k in closed-form expression. Using (5), Rlfbb,k can be
re-expressed as in (8) shown at the top of the next page.

Now, as stated above, the first two terms in the first log2

of (8) are correlated to each other. Thus, the very direct
method to obtain the exact closed-form result of the first
expectation in (8) by first obtaining the distribution of the
sum inside the log2 is very difficult. Instead, we would like
to obtain some tight approximation of (8), which are given
the following theorem.

Theorem 1: Rlfbb,k & Rlfblow,k, where for k = 1, Rlfblow,k is
given by

Rlfblow,k = H (m1, ζ2)−H (m2, ζ3) +
K − 1

Na − 1
2Bk

×
Na−1∑
m=1

β

(
m

Na − 1
+ 1, 2Bk − 1

)

− log2(e)

Na − 1

Na−1∑
i=1

β

(
2Bk ,

i

Na − 1

)
. (9)

For k ≥ 2, Rlfblow,k is given by

Rlfblow,k = (1−Ak)H (m1, ζ1) +Ak H (m1, ζ2)−
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Rlfbb,k = EHb,Gb,He,Ge,Φ,Υ

[
log2

(
1 +

Pa
Kσ2

b,k

ρ2
k|r̂k,k|2 cos2 θ1,k +

Pa
Kσ2

b,k

ρ2
k sin2 θ1,k‖h̃b,kQ̂H‖2

+
Ph

(Nh −K)σ2
b,k

ξ2
k sin2 θ2,k‖g̃b,kΓ̂h‖2

)
− log2

(
1 +

Pa
Kσ2

b,k

ρ2
k sin2 θ1,k‖h̃b,kQ̂H‖2

+
Ph

(Nh −K)σ2
b,k

ξ2
k sin2 θ2,k‖g̃b,kΓ̂h‖2

)]
. (8)

H (m, ζ) =

 log2(e)
∏2
i=1

1
ζ
mi
i

∑2
j=1

∑mj
l=1 Ξj,l (m, ζ) ζ

mj−l+1
j exp

(
1
ζj

)∑mj−l+1
q=1 Eq

(
1
ζj

)
ζ1 6= ζ2

log2(e) exp
(

1
ζ1

)∑m1+m2

q=1 Eq

(
1
ζ1

)
ζ1 = ζ2

(11)

Ck =
β(K,Na −K)

[∑Na−1
j=K

(
Na−1
j

)
β(Na − k + j,Na + k − j − 2)

]
β(K − 1, Na −K)β(Na − k + 1, k − 1)

. (13)

H (m2, ζ3) +Ak

[
Ck2Bk

Na−1∑
m=1

β

(
m

Na − 1
+ 1, 2Bk − 1

)

− log2(e)

Na − 1

Na−1∑
i=1

β

(
2Bk ,

i

Na − 1

)]
, (10)

where H (m, ζ) is defined as (11) at
the top of this page with Ξj,l (m, ζ) =

(−1)l+1
(
m3−j+l−2

l−1

) (
1

ζ3−j
− 1

ζj

)−(m3−j+l−1)

, and
m = (m1,m2) and ζ = (ζ1, ζ2). m1 = (Na−k+1, Nh−K)
and m2 = (K − 1, Nh − K). ζ1 = ( 1

ϑa,k
,
δ2,k
ϑh,k

),

ζ2 =
(

1
ϑa,k

,
δ2,k

ϑh,kν1,k

)
and ζ3 =

(
δ1,k
ϑa,k

,
δ2,k
ϑh,k

)
. ϑa =

Kσ2
b,k

Pa
,

ϑh,k =
(Nh−K)σ2

b,k

Ph
. δ1,k = 2−

Bk
Na−1 and δ2,k = 2

− Dk
Nh−1 .

ν1,1 = E
[

cos2 θ1,1 + ‖h̃b,1Q̂H‖2 sin2 θ1,1

]
=

1 − Na−K
Na−1 2B1β

(
2B1 , Na

Na−1

)
. For k ≥ 2, ν1,k =

E
[
cos2 θ1,k +

‖h̃b,kQ̂H‖2
|r̂k,k|2 sin2 θ1,k

∣∣∣∣‖h̃b,kQ̂H‖2
|r̂k,k|2 ≤ 1

]
=

1− (1− Ck)2Bkβ
(

2Bk , Na
Na−1

)
. The coefficients Ak is

Ak =

Na−2∑
j=K−1

(
Na − 2

j

)
×β(Na − k + j + 1, Na + k − j − 3)

β(Na − k + 1, k − 1)
(12)

and Ck is given by (13) at the top of this page. El(x) =∫∞
1

e−xt

tl
dt is generalized exponential integral.

Proof: See Appendix B.
In the following, we will derive a closed-form expression

of Rlfbe,k . To satisfy the strict secrecy, we implicitly assume
Eve can acquire the information of Ĥe , HeQ̂

H and Ĝe ,
GeΓ̂h. Without causing ambiguity, given the above channel
matrices the following conditional mutual information and
the differential entropies will be implicitly written without
these random variables. First, we will show the following
lemma.

Lemma 2: Given the CSI of Ĥb and Ĝb at Eve, we have

I
(
sk; ylfbe

∣∣Ĥb, Ĝb

)
=

1

K
I
(
s; ylfbe

∣∣Ĥb, Ĝb

)
(14)

=
1

K
I
(
x; ylfbe

∣∣Ĥb, Ĝb

)
,(15)

for all k, and I
(
x; ylfbe

∣∣Ĥb, Ĝb

)
can be upper bounded by

the instantaneous rate Rins
e,sum as

I
(
x; ylfbe

∣∣Ĥb, Ĝb

)
≤ Rins

e,sum , log2 det
(Pa
K

ĤeĤ
H
e

+
Ph

Nh −K
ĜeĜ

H
e + σ2

eI
)

− log2 det

(
Ph

Nh −K
ĜeĜ

H
e + σ2

eI

)
, (16)

where the upper bound is achieved when x is Gaussian
distributed which can be approximately achieved combing
THP and signal shaping. Moreover, we have

I
(
s; ylfbe |Ĥb, Ĝb

)
> I

(
s; ylfbe

)
. (17)

Proof: See Appendix C.

Remark 1: I
(
s; ylfbe |Ĥb, Ĝb

)
> I

(
s; ylfbe

)
illustrates

the supported rate of Eve’s channel can be degraded by
preventing Eve obtaining the quantized CSI of Ĥb and Ĝb

and thus improve the secrecy performance of the system.
Whereas for linear precoding schemes (e.g. linear ZF pre-
coding), since Eve can directly obtain the effective channels
combing physical channels He and Ge with the precoding
matrices through channel estimation, the quantized CSI Ĥb

and Ĝb at Eve does not change the secrecy performance of
the system, i.e., I

(
s; ylfbe |Ĥb, Ĝb

)
= I

(
s; ylfbe

)
.

In the following, we will derive Rlfbe,k . According to
Lemma 2, we have

Rlfbe,k = E
[

max
p(s,x)

I
(
sk; ylfbe

∣∣Ĥb, Ĝb

)]
=

1

K
E[Rins

e,sum], (18)

where the maximization is taken over all possible input
distributions p(s,x). Thus, we first derive a closed-form
expression of E[Rins

e,sum]. It is easy to see that E[Rins
e,sum] can

be written as

E
[
Rins
e,sum

]
= E

[
log2

[
det
(
WSI + σ2

eI
)]
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− log2

[
det

(
Ph

Nh −K
WI + σ2

eI

)]]
, (19)

where WSI = HSIΣSIH
H
SI and WI = ĜeĜ

H
e

with HSI =
[
Ĥe Ĝe

]
∈ CNe×Nh and ΣSI =

blockdiag
{
Pa
K IK ,

Ph
Nh−K INh−K

}
. It is required that the

covariance matrix of the interference plus noise Ph
Nh−KWI+

σ2
eI is invertible for Eve. Otherwise, Eve will be able to

eliminate the CJN, resulting Rlfbe,k = ∞. In order to guar-
antee the covariance matrix of the interference plus noise is
invertible even for high signal-to-noise ratio (SNR) regime
(Pa/σ2

e , Ph/σ
2
e →∞), it is required that Nh ≥ Ne +K.

With uncorrelated Rayleigh fading channels,
we have Ĥe ∼ CN

(
0Ne×K , INe ⊗ IK

)
, Ĝe ∼

CN
(
0Ne×(Nh−K), INe ⊗ INh−K

)
. Thus, WSI and WI

have complex central Wishart distributions, i.e., WSI ∼
WNe

(
Nh,ΣSI

)
and WI ∼ WNe

(
Nh − K, INh−K

)
.

Denote the joint PDFs of the non-zero ordered eigenvalues
of complex matrices WSI and WI as f1(λ) and f2(λ)
respectively, where the Ne non-zero eigenvalues are denoted
as λ = (λ1, λ2, · · · , λNe). Then, E

[
Rins
e,sum

]
in (19) can be

rewritten as

E
[
Rins
e,sum

]
=

∫
· · ·
∫
D

[
Ne∑
k=1

log2(σ2
e + λk)

]
f1(λ)dλ

−
∫
· · ·
∫
D

[
Ne∑
k=1

log2

(
Ph

Nh −K
λk + σ2

e

)]
f2(λ)dλ,(20)

where the integral region is D = {λ |λ1 > λ2 > · · · >
λNe ≥ 0}. Thus, we first need the joint PDFs, which can be
obtained using results in [26, 27] and given in the following
lemma.

Lemma 3: (1a) For the scenario that PaK 6=
Ph

Nh−K , f1(λ)
is given as

f1(λ) = K1 det [V (λ)] det [Υ (λ,µ)] , (21)

where K1 = (−1)(Nh−Ne)Ne

Γ(Ne)(Ne)Γ(Nh−K)(Nh−K)Γ(K)(K) ×
( KPa )

KNe
(
Nh−K
Ph

)(Nh−K)Ne∣∣ K
Pa
−Nh−K

Ph

∣∣K(Nh−K) , and µ = [µ(1), µ(2)] with µ(1) =

max{ KPa ,
Nh−K
Ph
} and µ(2) = min{ KPa ,

Nh−K
Ph
}. The multi-

plicity of µ(i), mi ∈ {K,Nh −K}, is determined according
to which eigenvalue (PaK or Ph

Nh−K ) 1
µ(i)

is equal to and
the multiplicity of this eigenvalue. V (λ) is a Ne × Ne
Vandermonde matrix with elements [V (λ)]i,j = λi−1

j . The
Nh ×Nh matrix Υ (λ,µ) is given by

{Υ(λ,µ)}i,j

=



(−λj)m1−ie−µ(1)λj ,
i = 1, · · · ,m1; j = 1, · · · , Ne
(−λj)Nh−ie−µ(2)λj ,
i = m1 + 1, · · · , Nh; j = 1, · · · , Ne
[Nh − j](m1−i) µ

m2+i−j
(1) ,

i = 1, · · · ,m1; j = Ne + 1, · · · , Nh
[Nh − j](Nh−i) µ

i−j
(2) ,

i = m1 + 1, · · · , Nh; j = Ne + 1, · · · , Nh.

(22)

In addition, Γm(a) =
∏m
i=1(a− i)! is the normalized com-

plex multivariate gamma function. [a]k = a(a− 1) · · · (a−
k + 1), [a]0 = 1.

(1b) For the scenario that Pa
K = Ph

Nh−K , f1(λ) is given as

f1(λ) = K2 [det (V (µλ))]
2
Ne∏
i=1

e−µλi (µλi)
Nh−Ne ,(23)

where µ , K
Pa

= Nh−K
Ph

and K2 = µNe

ΓNe (Ne)ΓNe (Nh) .
(2) f2(λ) is given as

f2(λ) = Ldet [V (λ)]
2
Ne∏
i=1

e−λiλNh−Ne−Ki , (24)

where L = 1
ΓNe (Ne)ΓNe (Nh−K) .

Following the similar steps in [26] to evaluate the integrals
in (20) with Lemma 3, we can obtain the closed-from
expressions of Rlfbe,k given in the following theorem.

Theorem 2: Rlfbe,k = 1
KE[Rins

e,sum], where for the scenario
that (1a) Pa

K 6=
Ph

Nh−K ,

E[Rins
e,sum] = K1

Ne∑
p=1

det
(
Θ1,(p)

)
− L

Ne∑
p=1

det
(
Ξ(p)

)
,(25)

and for the scenario that (1b) Pa
K = Ph

Nh−K ,

E[Rins
e,sum] = K2

Ne∑
p=1

det
(
Θ2,(p)

)
− L

Ne∑
p=1

det
(
Ξ(p)

)
.(26)

Here, Θ1,(p) ∈ RNh×Nh is given by

Θ1,(p) =

[
A(p) C
B(p) D

]
, (27)

with the (i, j)-th elements of matrices A(p) ∈ Rm1×Ne ,
B(p) ∈ Rm2×Ne , C ∈ Rm1×(Nh−Ne) and D ∈
Rm2×(Nh−Ne) are given respectively as[

A(p)

]
i,j

= (−1)(m1−i)Γ(m1 − i+ j) µ
−(m1−i+j)
(1)

×Tj,p
(

log2(e) exp
(
σ2
eµ(1)

)m1−i+j∑
q=1

Eq
(
σ2
eµ(1)

) )
,(28)

[
B(p)

]
i,j

= (−1)m2−iΓ(m2 − i+ j)µ
−(m2−i+j)
(2)

×Tj,p
(

log2(e) exp
(
σ2
eµ(2)

)m2−i+j∑
q=1

Eq
(
σ2
eµ(2)

) )
,(29)

[C]i,j = [Nh −Ne − j](m1−i) µ
m2−Ne+i−j
(1) (30)

[D]i,j = [Nh −Ne − j](m2−i) µ
m1−Ne+i−j
(2) , (31)

where the function Tj,p(x) is defined as Tj,p(x) ={
x j = p
1 j 6= p

. The (i, j)-th element of Θ2,(p) ∈ RNe×Ne

is given by[
Θ2,(p)

]
i,j

=
Γ(i+ j +Nh −Ne − 1)

µ
Tj,p

(
log2(e)

× exp(σ2
eµ)

i+j+Nh−Ne−1∑
q=1

Eq(σ
2
eµ)
)
. (32)

The (i, j)-th element of Ξ(p) ∈ RNe×Ne is given by[
Ξ(p)

]
i,j

= Γ(i+ j +Nh −Ne −K − 1)

×Tj,p

(
log2(e) exp

(
σ2
e(Nh −K)

Ph

)
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×
i+j+Nh−Ne−K−1∑

q=1

Eq

(
σ2
e(Nh −K)

Ph

))
. (33)

The other symbols are the same as defined in Lemma 3.
We notice that the ergodic rate of each LU’s messages at
Eve does not dependent on Bk and Dk.

Remark 2: Since the distributions of Ĥe and Ĝe are
independent with those of Ĥb and Ĝb, with (16) it is not
difficult to see Rlfbe,k in (18) does not dependent on the
distributions of Ĥb and Ĝb.

Remark 3: According to (8) and the derivation of Rapprox
b,k

in Theorem 1, it is easy to see the corresponding results for
the general case with arbitrary channel variances can be ob-
tained by substituting Paσ2

h,k and Phσ2
g,k instead of Pa and

Ph respectively into Theorem 1, where σ2
h,k and σ2

g,k are the
variances of hk’s and gk’s elements respectively. In addition,
it is not difficult to see, still, WSI and WI have the Wishart
distribution as described above with different correlation
matrices ΣSI = blockdiag

{
Paσ

2
he

K IK ,
Phσ

2
ge

Nh−K INh−K

}
and

ΣI = σ2
geINh−K , where σ2

he and σ2
ge are the variances

of He’s and Ge’s elements respectively. Thus, Rlfbe,k for
the general case with arbitrary channel variances can be
obtained by substituting Paσ2

he,k and Phσ2
ge,k instead of Pa

and Ph respectively into Theorem 2.
With the analytical results of Theorem 1 and Theorem

2, the ESSR with the limited CSI feedback, Rlfbsec,sum =∑K
k=1R

lfb
sec,k, can be approximated as

Rlfbsec,sum &
K∑
k=1

[Rapprox
b,k −Rlfbe,k ]+. (34)

Remark 4: We note that the cell approximation method,
which has been used for performance analysis of the systems
with limited feedback in many previous works and also in
this work [13, 15], can lead to a little higher rate perfor-
mance than the real values for RVQ. This fact was also
shown by the numerical results in the very related PLS work
of [6] (see Fig. 3 - Fig. 5 in [6]) which employed RVQ. Due
to the above reasons, our derived analytical approximation
of Rlfbb,k (and also ESRs) can be a little larger than the real
values for certain system settings. However, as indicated
in [15], the analytical performance obtained using the cell
approximation method can be accurate for any well-designed
codebook other than RVQ. In addition, the terms which we
have discarded in deriving the approximation of Rlfbb,k in the
proof of Theorem 1 are very small. Thus, our analytical
results can still approximate the exact values well and is
useful for the optimization of bit allocation in the next
section.

V. ERGODIC SECRECY RATE LOSS AND ADAPTIVE
LIMITED FEEDBACK

Another important performance metric is ESR loss due
to the quantized CSI at the transmitter. Here, we derive an
upper bound of the ESR loss of each LU, based on which
we optimize the number of feedback bits for the legitimate
channel and Helper’s channel to each LU with a constraint
of the feedback channel capacity of each LU.

A. Ergodic Secrecy Rate Loss
Using the similar notations to the previous ones, with

perfect CSI at Alice, the precoder given by F = QH

is obtained from the LQ decomposition Hb = RQ. The
diagonal matrix E consisting of the scaling factors of all
LUs is given as E =

√
K
P ∆ with ∆ = [diag (R)]

−1
=

diag
(
r−1
1,1, · · · , r

−1
K,K

)
. The feedback matrix reads B =

∆HbF−I = ∆R−I. In addition, the jamming noise z now
becomes z =

√
Ph

Nh−KΓhu, where Γh is an orthonormal
basis for the null space of Gb. The ESR loss of LU k is
given by ∆Rsec,k = Rpersec,k −R

lfb
sec,k, where Rpersec,k denotes

the ESR of LU k’s messages with perfect CSI at Alice, i.e.,

Rpersec,k =
[
Rperb,k −R

per
e,k

]+
with Rperb,k = E[log2(1 + γk)],

γk = Pa
K |rk,k|

2. Rpere,k is defined for the case with perfect
CSI in the same way as Rlfbe,k .

Previously, we have seen that Rlfbe,k does not depend on

the feedback bits Bk and Dk. In fact, since Q̂
d.
= Q, Γ̂h

d.
= Γh

and they are independent with He and Ge, it follows that
H́e , HeQ

H d.
= Ĥe and Ǵe , GeΓh

d.
= Ĝe. Thus, Rpere,k =

Rlfbe,k . Since it is clear that Rpersec,k ≥ Rlfbsec,k, the ESR loss
∆Rsec,k can be upper bounded as ∆Rsec,k ≤ Rperb,k −R

lfb
b,k

[6]. Using the existing results with Theorem 1, we can obtain
an upper bound of the ESR loss in the following theorem.

Theorem 3: The ESR loss of LU k between the perfect
CSI and the quantized CSI at Alice is upper-bounded as
∆Rsec,k ≤ ∆Rupsec,k, where ∆Rupsec,k is given by

∆Rupsec,k = log2

(
1 +

(K − 1)Na
(Na − 1)ϑa,k

2Bkβ(2Bk ,
Na

Na − 1
)

+
(Nh −K)Nh
(Nh − 1)ϑh,k

2Dkβ(2Dk ,
Nh

Nh − 1
)

)
+$k2Bkβ(2Bk ,

Na
Na − 1

) (35)

with $1 = Na−K
Na−1 and $k = Ak(1−Ck) for k ≥ 2, where

the other symbols are as those defined in Theorem 1.
Proof: See Appendix D.

It is easy to check that, given the transmit power, ∆Rupsec,k →
0 as Bk goes to ∞. Thus, the rate approximation Rlfbb,k in
Theorem 1 and ESR lower bound in (34) is asymptotically
tight as Bk goes to 0.

B. Adaptive Feedback Bit Allocation Algorithm
In this subsection, we minimize the upper bound on the

ESR loss in (35), with respect to the constraint on the total
feedback bits assigned to the legitimate channel and Helper’s
channel at each LU, i.e., Bt = Bk + Dk. For analytical
tractability, we will simplify (35) in high-resolution regime
(Bk, Dk are large), and then derive the bit allocation.

First, by applying Gautschi’s inequalities for the gamma

function [28]
(

1
x+1

)1−s
< Γ(x+s)

Γ(x+1) <
(

1
x

)1−s
, 0 ≤ s <

1, x > 0 with x = 2Dk − 1 + 1
Nh−1 and s = 1 − 1

Nh−1 ,

we have
(

1
2Dk+ 1

Nh−1

) 1
Nh−1

<
Γ(2Dk)

Γ
(

2Dk+ 1
Nh−1

) <(
1

2Dk−1+ 1
Nh−1

) 1
Nh−1

. Using Gautschi’s inequalities

with xΓ(x) = Γ(x + 1), we can approximate as

2Dkβ
(

2Dk , Nh
Nh−1

)
≈ Γ

(
1 + 1

Nh−1

)
2
− Dk
Nh−1 . Similarly,

we have 2Bkβ
(

2Bk , Na
Na−1

)
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≈ Γ
(

1 + 1
Na−1

)
2−

Bk
Na−1 , β

(
2Bk , i

Na−1

)
≈

Γ
(

i
Na−1

)
2−

Bk
Na−1 and 2Bk

∑Na−1
i=1

Γ(2Bk−1)Γ( i
Na−1 +1)

Γ(2Bk+ i
Na−1 )

≈

Γ
(

1
Na−1 + 1

)
2−

Bk
Na−1 . Thus, we can approximate the

upper bound of the ESR loss of LU k as ∆Rupsec,k ≈

log2

(
1 + αk2−

Bk
Na−1 + βk2

− Dk
Nh−1

)
+ ςk2−

Bk
Na−1 =

∆̃Rsec,k, where αk =
(K−1)NaΓ(1+ 1

Na−1 )

(Na−1)ϑa,k
> 0

and βk =
(Nh−K)NhΓ(1+ 1

Nh−1 )

(Nh−1)ϑh,k
> 0. ςk =

(log2(e)Ak −$k) Γ(1 + 1
Na−1 ). It is easy to check

that ςk > 0 for all k. Then, the feedback bit allocation
problem can be written as

minimize
Bk,Dk

∆̃Rsec,k (36)

subject to Bk +Dk = Bt. (37)

The optimum bit allocation method according to the problem
in (36) - (37) is given in the following algorithm, which are
proved in Appendix E.

Algorithm 1: (1) For the case that Nh = Na, consider
the cubic equation

E0,kx
3 + E1,kx

2 + E2,kx+ E3,k = 0, (38)

where E0,k = βk
Nh−12

− Bt
Nh−1 , E1,k = − ln(2)βkςk

Na−1 2
− Bt
Nh−1

and E2,k = − ln(2)ςk+αk
Na−1 , E3,k = − ln(2)αkςk

Na−1 . The equation
has a unique positive real root x?, which can be obtained
in closed form using the well known root formula for cubic
equation. If 0 < x? ≤ 1, then the optimal bit allocation is
Bok = 0 and Do

k = Bt. If x? > 1, the minimum value of the
upper bound ∆̃Rsec,k is achieved at the unique stationary
point B?k = (Na − 1) log2(x?). Then, the practical optimal
bit allocation can be found by checking the one or two
integer values in [0, Bt] nearest to B?k .
(2) For the general case that Nh 6= Na, consider the equation

E0,ky
2

Na−1 + 1
Nh−1 + E1,ky

1
Na−1 + 1

Nh−1 + E2,ky
1

Na−1

+E3,k = 0. (39)

Generally, there is no simple closed-form solution to (39).
One method to obtain the practical optimal bit allocation is
to first obtain the unique positive real root x? of equation
(39) using numerical method and then follow the same
method used in the case with Na = Nh. Here, the unique
stationary point B?k = log2(x?).
Note that the parameters αk, ςk and βk are the functions
of the transmit power Pa and Ph, the number of transmit
antennas Na and Nh, and the channel and noise statistics re-
flected in σ2

b,k (See footnote 3.). Thus, the optimal feedback
bit allocation remains fixed as long as the channel and noise
statistics are constant and the transmit power allocation is
given.

VI. NUMERICAL RESULTS

For the simulations, we consider a MU MISO system with
Na = Nh = 5, Ne = 2, K = 2 and σ2

e = 1. In Fig. 2 -
Fig. 4, we will consider the systems with equal noise power,
where σ2

b,k = 1 for all k. In Fig. 5, we will consider the
systems with both equal and unequal noise power. All the
channel coefficients are distributed as assumed in Section IV
with variances equal to 1. Since our focus is the rigorous

scenario of security, we assume Eve can obtain Ĥb for all
numerical results. The other assumptions are the same as
described in the previous sections for system using nonlinear
THP. For the clearness of the figures, in the following we
will only show the results for the rigorous secrecy scenario
but not for any other possibly practical scenario where the
Eve cannot obtain Ĥb and Ĝb. However, as proved in
Lemma 2, better performance can be expected for nonlinear
THP (and larger gap between the performance curves of
THP and ZF precoding) in any practical scenario. For
the performance of the system using linear ZF precoding,
we assume Eve can perfectly obtain the effective channel
matrices HbWzf and GbΓzf , where Wzf is the precoding
matrix obtained at Alice based on Ĥb and ZF criterion,
and Γzf is the precoding matrix for AN obtained at Helper
satisfying the null constraint ĜbΓzf = 0. The Eve employs
the optimal maximum ratio combining receiver that achieve
the maximum rate over the Eve’s channel for each LU’s
messages5.

Fig. 2 shows the simulation results of ESSRs achieved
by our proposed nonlinear precoding scheme and the linear
ZF precoding scheme versus Pa with Ph = αPa for α =
0.5, 5 and Bt = 20 with equal bit allocation method. The
corresponding analytical results of (34) based on Theorem
1 and Theorem 2 are also plotted. We can observe that, for
different transmit power of Helper, the proposed nonlinear
precoding scheme outperforms the linear precoding scheme
for all system settings even in the rigorous secrecy scenario.

Fig. 3 plots the simulation results of the ESSRs and the
corresponding analytical results given by (34) versus Ph for
different values of Bt (Bk) with equal bit allocation method.
We can see the natural result that the ESSRs increase as the
quantization bits of CDI increases. We also see that, given
Bt, the ESSRs do not always increase as Ph increases. This
can be explained as, when the CSI at Helper is not perfect,
the Helper’s CJN degrades the received signal quality at
both Eve’s and each LU’s sides. When Ph is too large,
the degradation at each LU’s side can be even greater
than that at Eve’s side. Moreover, we also observe that the
optimal transmit power of Helper needs to be decreased
as Bt increases. This can be explained as when more
feedback bits are available, the desired signal space and
the null space of Helper’s channels can be more accurately
characterized. Thus, Helper’s CJN becomes more effective.
Moreover, it has been shown in our previous work [12] that
nonlinear precoding suffers from quantized CSI more than
linear precoding does. However, when SNR is not large or
the feedback quantization resolution is high enough, THP
can still achieve better ergodic rate than that of the linear
precoding. The similar result can be observed by comparing
the ergodic secrecy rates of the systems employing THP and
those of the systems employing linear precoding in Fig. 3.

In Fig. 4, we plot the simulation results of the ESSRs
and the corresponding closed-form analytical results in (34)
versus the number of feedback bits allocated to Alice for two
different relative Alice-Helper transmit power allocations,
where the total number of feedback bits available to each
LU is constrained as Bt = 24 bits. We can see, for a fixed
transmit power of Alice, more bits need to be allocated to
Helper to achieve better ESSR performance as Ph increases.

5Notice that, when Eve can not recover the original confidential mes-
sages, this is indeed the optimal receiver for eavesdropping.
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Fig. 2: ESSR versus Pa for Ph = αPa and Bt = 20 with
equal bit allocation method.
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Fig. 3: ESSR versus Ph with different values of Bt and
Pa = 10dB.

This result agrees with those shown in Fig. 3. In addition,
we can observe, with total feedback bits for each LU, better
secrecy rate performance can be expected for system with
more Ph by adaptively allocating feedback bits for legitimate
channel and Helper’s channel to each LU. From Fig. 3 and 4,
we can see, although there is some gap between the curves
of the simulation results and the corresponding analytical
results, the analytical results can track the real values well.

At last, we study the performance of the proposed bit
allocation algorithm for the systems with both equal and
unbalanced noise power. For the system with unbalanced
noise power, we assume σ2

b,1 = 1.5, σ2
b,2 = 0.5, such that

the total noise power is the same as that of the system
with equal noise power. Fig. 5 compares the ESSRs versus
Ph achieved by the proposed nonlinear-precoded secure
transmission scheme with equal feedback bit allocation and
the proposed adaptive strategy given by Algorithm 1, where
Bt = 24 bits and Pa = 10 dB are fixed. We can see that the
proposed adaptive strategy performs better than the equal
bit allocation strategy for the systems with both equal noise
power and unbalanced noise power. Also, for some special
cases, the proposed adaptive algorithm happens to align with
equal bit allocation scheme.
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Fig. 4: ESSR versus Bk with Bt = 24.
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VII. CONCLUSIONS

In this paper, we have investigated secure communications
in multiuser multi-antenna systems with a passive multiple-
antenna eavesdropper and a cooperative helper. Using THP
at the transmitter and null-space beamforming at the helper,
a nonlinear-precoded secure transmission strategy has been
proposed based on quantized CSI of the downlink channels
from the transmitter and the helper to each LU. Based
on RVQ, we have derived closed-form expressions of the
approximations for the ergodic rate of each LU and the
ESSR. We have also derived an upper bound of the ESR
loss of each LU due to quantized CSI. Then, considering
a constraint on the total feedback bits of each LU for
the legitimate channel and the helper’s channel, we have
obtained an adaptive bit allocation strategy to minimize the
obtained upper bound on the ESR loss. We have showed
in theory that, besides the advantage in the ergodic rate
over the linear precoding scheme, the nonlinear precoder
is also more effective to degrade the received signal quality
at any possible eavesdropper. Numerical results have been
shown to illustrate our analysis. The numerical results have
also demonstrated that the obtained feedback bit allocation
algorithm can lead to further improvement in the ESR.
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APPENDIX

A. Proof of Lemma 1

Let LQ decomposition of Ĝb be Ĝb = LU, where L
is a K × K unit lower triangular matrix with the (i, j)-
th element li,j , and U =

[
uT1 , · · · ,uTK

]T
is a K × Nh

semi-unitary matrix whose rows are the orthonormal ba-
sis of the subspace spanned by quantized channel vectors
ĝb,k (k = 1, · · · ,K). With RVQ, ĝb,k (k = 1, · · · ,K)
are independently and isotropically distributed on the Nh–
dimensional complex unit sphere due to the i.i.d. Rayleigh
fading. Thus, the orthonormal basis u1, · · · ,uK have no
preference of direction, i.e., U is isotropically distributed in
the K ×Nh semi-unitary space. Thus, for the derivation of
the distribution of ηk = ‖g̃b,kΓ̂h‖2, we can assume ui = ei
for i = 1, · · · ,K w.l.g., where ei is the i-th row of the
identity matrix INh . Since ĜbΓ̂h = 0, we have UΓ̂h = 0.
Thus, we can let Γ̂h =

[
eHK+1, · · · , eHNh

]
. In addition, we

know g̃b,k is uniformly distributed in the null space of ĝb,k,
i.e., g̃b,k ⊥ ĝb,k, and ĝb,1 = l1,1e1. Thus, we can write
g̃b,1 = [0,α1] with α1 = [g̃b,1(2), · · · , g̃b,1(Nh)] being unit
vector isotropically distributed in CNh−1. Then, we have
η1 =

∑Nh
i=K+1 |g̃b,1(i)|2. Using the similar method of [12,

Apendix A], it can be proved that ηk
d.
= η1 for k 6= 1. In the

following, we will focus on the distribution of η1.
From the result in [29] we know the joint PDF of arbitrary

m elements (m = 1, 2, · · · ,M − 1) of a isotropically
distributed unit vector α in CM is

p(α(m)) =
Γ(M)

πmΓ(M −m)
(1−α(m)Hα(m))M−m−1, (40)

where α(m) = [α
(m)
1 , α

(m)
2 , · · · , α(m)

m ]T is m × 1 vector
composed of arbitrary m elements of α. Let r = ‖α(m)‖2,
we will use the methodology given in [30] for the calculation
of distribution of r2. For each j, let α(m)

j = xj +  yj .
Now, we use the following transformation of variables:
x1 = r sinϕ1 sinϕ2 · · · sinϕ2m−3 sinϕ2m−2 sinϕ2m−1,
y1 = r sinϕ1 sinϕ2 · · · sinϕ2m−3 sinϕ2m−2 cosϕ2m−1,
x2 = r sinϕ1 sinϕ2 · · · sinϕ2m−3 cosϕ2m−2,
y2 = r sinϕ1 sinϕ2 · · · cosϕ2m−3, · · · , xm =
r sinϕ1 cosϕ2, ym = r cosϕ1, where r > 0, 0 ≤ ϕi ≤ π
for i = 1, 2, · · · , 2m− 2 and 0 ≤ ϕi ≤ 2π for i = 2m− 1.
The Jacobian of this transformation can be easily obtained
as J = r2m−1 sin2m−2 ϕ1 sin2m−3 ϕ2 · · · sinϕ2m−2. In
addition, we have xj = rj cosψj , yj = rj sinψj and
r1 = r cosϕ1 cosϕ2 · · · cosϕm−3 cosϕm−2 cosϕm−1,
r2 = r cosϕ1 cosϕ2 · · · cosϕm−3 cosϕm−2 sinϕm−1,
r3 = r cosϕ1 cosϕ2 · · · cosϕm−3 sinϕm−2, · · · , rm−1 =
r cosϕ1 sinϕ2, rm = r sinϕ1, where, since ri > 0, it
follows that 0 ≤ ϕi ≤ π

2 for j = 1, · · · ,m. Thus, α(m)
j =

rje
ψj for j = 1, · · · ,m. Applying these results in (40), we

have p(α(m))dα(m) = p(r, ϕ1, ϕ2, · · · , ϕ2m−1)drdϕ1

dϕ2 · · · , dϕ2m−1. Thus, the PDF
of r2 is pr2(z) = pr(

√
z)

2
√
z

=
Γ(M)

πmΓ(M−m)
(1−z)M−m−1

2
√
z

√
z

2m−1 ∫ π
0

sin2m−2 ϕ1dϕ1∫ π
0

sin2m−3 ϕ2dϕ2 · · ·
∫ π

0
sinϕ2m−2dϕ2m−2

∫ 2π

0
dϕ2m−1.

Simplifying pr2(z) using the following results∫ π
2

0
sin2m xdx = π

2
(2m−1)!!

(2m)!! ,
∫ π

2

0
sin2m−1 xdx =

(2m−2)!!
(2m−1)!! ,

∫ π
0

sink xdx = 2
∫ π

2

0
sink xdx, we have

pr2(z) =
Γ(M)

Γ(M −m)Γ(m)
(1− z)M−m−1zm−1,

which is beta distribution with shape m and (M −m). (7)
follows from pr2(z).

We obtain LQ decomposition of Ĥb applying Gram-
Schmidt orthogonalization to the row vectors of Ĥb.
Then, we have the following important relations: ĥb,k =∑k
i=1 r̂k,iq̂i, where r̂k,i = ĥb,iq̂

H
i for k = 2, · · · , k and

|rk,k|2 = 1−
∑k−1
i=1 |rk,i|2. According to the above analysis,

for LU k, we can assume q̂i = ii for i = 1, · · · , k−1 w.l.g.,
where ii is the i-th row of the identity matrix INa . With this
assumption we have |r̂k,k|2 = 1 −

∑k−1
i=1 |ĥb,k(i)|2, where

ĥb,k(i) is the i-th elements of ĥb,k. Thus, using the result of
pr2(z), it is easy to obtain the distribution of |r̂k,k|2 follows
Beta distribution with shape (Na − k + 1) and (k − 1). At
last, the distribution of εk was obtained and given in [12].

B. Proof of Theorem 1

We can rewrite Rlfbb,k in (8) as

Rlfbb,k = E
[

log2

(
1 +

Pa
Kσ2

b,k

ρ2
k|r̂k,k|2

)

+ log2

(
cos2 θ1,k +

1 + Pa
Kσ2

b,k
ρ2
k‖h̃b,kQ̂H‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ1,k

+

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ2,k

)
− log2

(
1 +

Pa
Kσ2

b,k

ρ2
k sin2 θ1,k‖h̃b,kQ̂H‖2

+
Ph

(Nh −K)σ2
b,k

ξ2
k sin2 θ2,k‖g̃b,kΓ̂h‖2

)]
(41)

In the following, we look at each term individually.
First, we show that Zk = ρ2

k|r̂k,k|2 is distributed as
Gamma(Na − k + 1, 1). According to the result in [31],
if W1 and W2 are independent gamma random variables
with W1 ∼ Gamma(n1, λ) and W2 ∼ Gamma(n2, λ),
then ω = W1

W1+W2
∼ Beta(n1, n2). In addition, we know

(W1 +W2) ∼ Gamma(n1 +n2, λ). Thus, if W is a gamma
random variable distributed as W ∼ Gamma(n, λ), where
n = n1 + n2, then ωW ∼ Gamma(n1, λ). It is well
known that ρ2

k ∼ Gamma(Na, 1). Zk ∼ Gamma(Na −
k + 1, 1) follows from the above results and the distri-
bution of |r̂k,k|2 given in Lemma 1. Moreover, according
to the results in [15], ρ2

k sin2 θ1,k ∼ δ1,kGamma(Na −
1, 1) and ξ2

k sin2 θ2,k ∼ δ2,kGamma(Nh − 1, 1). With
the above discussions, we know ρ2

k sin2 θ1,k‖h̃b,kQ̂H‖2 ∼
δ1,kY1 and ξ2

k sin2 θ2,k‖g̃b,kΓ̂h‖2 ∼ δ2,kY2, where Y1

and Y2 are two independent gamma random variables,
i.e., Y1 ∼ Gamma(K − 1, 1) and Y2 ∼ Gamma(Nh −
K, 1). As we will see later, we don’t need to obtain

E
[

log2

(
1 + Pa

Kσ2
b,k
ρ2
k|r̂k,k|2

)]
to reach the final result.

Now, we look at the second log2 term. Let Ek and Ēk
denote the events that Ek =

{
‖h̃b,kQ̂H‖2 ≥ |r̂k,k|2

}
and
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E
[

log2

(
cos2 θ1,1 +

1 + Pa
Kσ2

b,1
ρ2

1‖h̃b,1Q̂H‖2

1 + Pa
Kσ2

b,1
ρ2

1|r̂1,1|2
sin2 θ1,1 +

Ph
(Nh−K)σ2

b,1
ξ2
1‖g̃b,1Γ̂h‖2

1 + Pa
Kσ2

b,1
ρ2

1|r̂1,1|2
sin2 θ2,1

)]

≥ E
[

log2

(
cos2 θ1,1 + ‖h̃b,1Q̂H‖2 sin2 θ1,1 +

Ph
(Nh−K)σ2

b,1
ξ2
1‖g̃b,1Γ̂h‖2

1 + Pa
Kσ2

b,1
ρ2

1

sin2 θ2,1

)]

≥ E
[

log2

(
cos2 θ1,1

)
+ log2

(
1 + ‖h̃b,1Q̂H‖2 sin2 θ1,1

cos2 θ1,1

)]

+E
[

log2

(
1 +

Ph
(Nh−K)σ2

b,1
ξ2
1‖g̃b,1Γ̂h‖2(

1 + Pa
Kσ2

b,1
ρ2

1

)
E
[

cos2 θ1,1 + ‖h̃b,1Q̂H‖2 sin2 θ1,1

] sin2 θ2,1

)]
(42)

≥ E
[

log2

(
cos2 θ1,1

)
+ ‖h̃b,1Q̂H‖2 sin2 θ1,1

cos2 θ1,1

]
+ E

[
log2

(
1 +

Z1

ϑa,1
+

δ2,1Y2

ϑh,1ν1,1

)
− log2

(
1 +

Z1

ϑa,1

)]
(43)

E
[

log2

(
cos2 θ1,k +

1 + Pa
Kσ2

b,k
ρ2
k‖h̃b,kQ̂H‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ1,k +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ2,k

)]

≥ Pr {Ek} E
[

log2

(
1 +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ2,k

)∣∣∣∣Ek]

+Pr
{
Ēk
}
E
[

log2

(
cos2 θ1,k +

‖h̃b,kQ̂H‖2

|r̂k,k|2
sin2 θ1,k +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ2,k

)∣∣∣∣Ēk]

≥ Pr {Ek} E
[

log2

(
1 +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ2,k

)∣∣∣∣Ek]+ Pr
{
Ēk
}
E
[

log2

(
cos2 θ1,k +

‖h̃b,kQ̂H‖2

|r̂k,k|2
sin2 θ1,k

)

+ log2

1 +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2 sin2 θ2,k(

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

)
E
[(

cos2 θ1,k +
‖h̃b,kQ̂H‖2
|r̂k,k|2 sin2 θ1,k

) ∣∣Ēk]
∣∣∣∣Ēk]. (44)

Ēk =

{
‖h̃b,kQ̂H‖2 < |r̂k,k|2

}
. It is easy to prove that,

for Ek, 1 ≤
1+ Pa

Kσ2
b,k

ρ2k‖h̃b,kQ̂H‖2

1+ Pa
Kσ2

b,k

ρ2k|r̂k,k|2
≤ ‖h̃b,kQ̂H‖2

|r̂k,k|2 and for Ēk,

‖h̃b,kQ̂H‖2
|r̂k,k|2 ≤

1+ Pa
Kσ2

b,k

ρ2k‖h̃b,kQ̂H‖2

1+ Pa
Kσ2

b,k

ρ2k|r̂k,k|2
< 1. Thus, for k = 1,

since |r̂1,1|2 = 1, we have (42) and (43) at the top of this
page, where (42) follows from Jensen’s inequality and (43)
follows from the fact that log2(1+x) ≥ x for 0 ≤ x ≤ 1. It
was shown in [14] that the PDF of cos2 θ1,k is given by
fcos2 θ1,k(x) = Nk(Na − 1)

[
1− (1− x)Na−1

]Nk−1
(1 −

x)Na−2, 0 ≤ x ≤ 1, where Nk = 2Bk . Using this PDF
and change of variables, after some manipulations, we can
obtain E

[
sin2 θ1,k
cos2 θ1,k

]
= 2Bk

∑Na−2
m=0 β

(
m+Na
Na−1 , 2

Bk − 1
)

.
The mean of log2

(
cos2 θ1,k

)
has been obtained in [32] as

E
{

log2

(
cos2 θ1,k

)}
= − log2(e)

Na−1

∑Na−1
i=1 β

(
2Bk , i

Na−1

)
.

Using the distribution result in Lemma 1, we have

EHb,{Wk}

{
‖h̃b,kQ̂H‖2

}
= K−1

Na−1 . E
[

log2

(
cos2 θ1,1

)
+

‖h̃b,1Q̂H‖2 sin2 θ1,1
cos2 θ1,1

]
can be obtained by combing the above

results. Similarly, for 2 ≤ k ≤ K, we have (44) at the top

of this page.

Since εk = ‖h̃b,kQ̂H‖2 is independent with |r̂k,k|2, using
the property that Iy (a, b− a+ 1) =

∑b
j=a

(
b
j

)
yj(1−y)b−j ,

Pr
{
Ēk
}

can be obtained as

Pr
{
Ēk
}

= Pr{‖h̃b,kQ̂H‖2 ≤ |r̂k,k|2}

=

∫ 1

0

Pr{εk ≤ y}f|r̂k,k|2(y)dy

=

∫ 1

0

Iy (K − 1, Na −K)
yNa−k(1− y)k−2

β(Na − k + 1, k − 1)
dy

=

∫ 1

0

Na−2∑
j=K−1

(
Na − 2

j

)
yj(1− y)Na−2−j

× yNa−k(1− y)k−2

β(Na − k + 1, k − 1)
dy = Ak, (45)

which is given by (12). Then, Pr {Ek} = 1 − Pr
{
Ēk
}

.
Similarly, for k ≥ 2, we can obtain

E

[
‖h̃b,kQ̂H‖2

|r̂k,k|2
∣∣Ēk] =

∫ 1

0

∫ y

0

x

y
fεk(x)f|r̂k,k|2(y)dxdy

=

∫ 1

0

(∫ y

0

x

y

xK−2(1− x)Na−K−1

β(K − 1, Na −K)
dx

)
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E

log2

1 +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2 sin2 θ2,k(

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

)(
cos2 θ1,k +

‖h̃b,kQ̂H‖2
|r̂k,k|2 sin2 θ1,k

)
∣∣∣∣Ēk



≥ E

log2

1 +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2 sin2 θ2,k(

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

)
E
[(

cos2 θ1,k +
‖h̃b,kQ̂H‖2
|r̂k,k|2 sin2 θ1,k

) ∣∣Ēk]

 (48)

= E
[

log2

(
1 +

Pa
Kσ2

b,k

ρ2
k|r̂k,k|2 +

Ph
ν1,k(Nh −K)σ2

b,k

ξ2
k‖g̃b,kΓ̂h‖2 sin2 θ2,k

)
− log2

(
1 +

Pa
Kσ2

b,k

ρ2
k|r̂k,k|2

)]
= E

[
log2

(
1 +

1

ϑa,k
Zk +

δ2,k
ϑh,kν1,k

Y2

)]
− E

[
log2

(
1 +

1

ϑa,k
Zk

)]
, (49)

× yNa−k(1− y)k−2

β(Na − k + 1, k − 1)
dy

=
β(K,Na −K)

β(K − 1, Na −K)

∫ 1

0

Iy (K,Na −K)

× yNa−k−1(1− y)k−2

β(Na − k + 1, k − 1)
dy

=
β(K,Na −K)

β(K − 1, Na −K)

Na−1∑
j=K

(
Na − 1

j

)∫ 1

0

yj

×(1− y)Na−1−j y
Na−k−1(1− y)k−2

β(Na − k + 1, k − 1)
dy = Ck

which is given by (13). In addition, according to [14],
we have Ehb,k,Wk

{
cos2 θ1,k

}
= 1 − 2Bkβ

(
2Bk , Na

Na−1

)
.

Combining the above results, it is easy to obtain ν1,k given
in the main context. Moreover, still using the property that
log2(1 + x) ≥ x for 0 ≤ x ≤ 1, we have

E

[
log2

(
cos2 θ1,k +

‖h̃b,kQ̂H‖2

|r̂k,k|2
sin2 θ1,k

)∣∣∣∣Ēk
]

≥ E
[
log2

(
cos2 θ1,k

)]
+ E

[
‖h̃b,kQ̂H‖2

|r̂k,k|2

∣∣∣∣Ēk
]

×E
[

sin2 θ1,k

cos2 θ1,k

]
, (46)

which can be expressed using the obtained results above. In
addition, we have

E
[

log2

(
1 +

Ph
(Nh−K)σ2

b,k
ξ2
k‖g̃b,kΓ̂h‖2

1 + Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

sin2 θ2,k

)∣∣∣∣Ek]
= E

[
log2

(
1 +

Pa
Kσ2

b,k

ρ2
k|r̂k,k|2 +

Ph
(Nh −K)σ2

b,k

ξ2
k

×‖g̃b,kΓ̂h‖2 sin2 θ2,k

)]
− E

[
log2

(
1 +

Pa
Kσ2

b,k

ρ2
k|r̂k,k|2

)]
= E

[
log2

(
1 +

1

ϑa,k
Zk +

δ2,k
ϑh,k

Y2

)]
−E
[

log2

(
1 +

1

ϑa,k
Zk

)]
, (47)

and (48) (49) shown at the top of this page, where (48)
follows from Jensen’s inequality.

For the general case that δ1,k
ϑa,k

6= δ2,k
ϑh,k

, using the result

in [33], the PDF of Jk = Pa
Kσ2

b,k
ρ2
k sin2 θ1,k‖h̃b,kQ̂H‖2 +

Ph
(Nh−K)σ2

b,k
ξ2
k sin2 θ2,k‖g̃b,kΓ̂h‖2

d.
= δ1,k

ϑa,k
Y1 +

δ2,k
ϑh,k

Y2 is given by fJk(y) =∏2
i=1

1
ζ
mi
i

∑2
j=1

∑mj
l=1

Ξj,l(m,ζ)
(mj−l)! y

mj−le
− y
ζj U(y) with

m = (m1,m2) = m2 = (K − 1, Nh − K) and
ζ = (ζ1, ζ2) = ζ3 =

(
δ1,k
ϑa,k

,
δ2,k
ϑh,k

)
, where U(y) is

Heaviside step function. Thus,

E
[

log2

(
1 +

Pa
Kσ2

b,k

ρ2
k sin2 θ1,k‖h̃b,kQ̂H‖2

+
Ph

(Nh −K)σ2
b,k

ξ2
k sin2 θ2,k‖g̃b,kΓ̂h‖2

)]
(50)

=

∫ ∞
0

log2 (1 + y) fJk(y)dy

=

2∏
i=1

1

ζmii

2∑
j=1

mj∑
l=1

Ξj,l (m2, ζ3)

(mj − l)!

×
∫ ∞

0

log2 (1 + y) ymj−le
− y
ζj dy

= log2(e)

2∏
i=1

1

ζmii

2∑
j=1

mj∑
l=1

Ξj,l (m2, ζ3) ζ
mj−l+1
j

× exp

(
1

ζj

)mj−l+1∑
q=1

Eq

(
1

ζj

)
= H (m2, ζ3) .(51)

For the special case that ζ1 = ζ2 =
δ1,k
ϑa,k

=
δ2,k
ϑh,k

,

Jk
d.
= δ1,k

ϑa,k
(Y1 +Y2). Since Y1 +Y2 ∼ Gamma(m1 +m2, 1),

(50) is given by∫ ∞
0

log2

(
1 +

δ1,k
ϑa,k

y

)
ym1+m2−2e−y

Γ(m1 +m2 − 1)
dy

= log2(e) exp

(
ϑa,k
δ1,k

)m1+m2−1∑
i=1

Ei

(
ϑa,k
δ1,k

)
(52)

= H (m2, ζ3)

where (51) and (52) follow from the result in [34] that∫ ∞
0

ln (1 + ax) exp (−µx)xq−1dx

=
(q − 1)! exp

(
µ
a

)
µq

q∑
i=1

Ei

(µ
a

)
. (53)
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Similarly, the first expectations in (49) and (47) can be

respectively obtained as E
[

log2

(
1+ 1

ϑa,k
Zk+

δ2,k
ϑh,k

Y2

)]
=

H (m1, ζ1) and E
[

log2

(
1 + 1

ϑa,k
Zk +

δ2,k
ϑh,kν1,k

Y2

)]
=

H (m1, ζ2). (10) follows by substituting all above results
in (41).

C. Proof of Lemma 2
Firstly, we have I

(
x; ylfbe

)
= H(ylfbe )−H(ylfbe

∣∣x), and

H(ylfbe ) ≤

log2 det

(
Pa
K

ĤeĤ
H
e +

Ph
Nh −K

ĜeĜ
H
e + σ2

eI

)
,(54)

where the inequality is due to the fact that, with the average
power constraint of x, the maximum differential entropy of
ylfbe is achieved if and only if x is a circularly symmetric
complex Gaussian vector (u is already circularly symmetric
complex Gaussian distributed). For the same reason, we have

H(ylfbe
∣∣x) = log2 det

(
Ph

Nh −K
ĜeĜ

H
e + σ2

eI

)
. (55)

(16) follows by combing (54) and (55).
According to (3), given the quantized CSI Ĥb, x can be

uniquely determined from s by THP and vice versa. Thus,
we can denote the THP operation as a one-to-one mapping
T from (s, Ĥb) to x, which is given as x = T (s, Ĥb) and
s = T−1(s, Ĥb). According to data-processing inequality
[35], I

(
x; ylfbe

∣∣Ĥb, Ĝb

)
= I

(
s; ylfbe

∣∣Ĥb, Ĝb

)
. In fact,

we can prove when Eve knows Ĥb and also knows the
processing method of Alice, s,x,ylfbe form a Markov chain
and vice versa, i.e., s ↔ x ↔ ylfbe and x ↔ s ↔ ylfbe
as follows. First, since p(ylfbe |s, Ĥb,x) = p(ylfbe |s, Ĥb),
we have p(x,ylfbe |s, Ĥb) = p(ylfbe |x, s, Ĥb)p(x|s, Ĥb) =
p(ylfbe |s, Ĥb)p(x|s, Ĥb), which means x and ylfbe are con-
ditionally independent given s and Ĥb. In fact, given s
and Ĥb the conditional probability mass function of x is

p(x|s, Ĥb) =

{
1 x = T (s, Ĥb)

0 x 6= T (s, Ĥb)
. Thus, x ↔ s ↔

ylfbe holds. Similarly, it is easy to see p(s,ylfbe |x, Ĥb) =
p(ylfbe |s, Ĥb,x)p(s|x, Ĥb) = p(ylfbe |Ĥb,x)p(s|x, Ĥb),
which means s and ylfbe are conditionally independent given
x and Ĥb. Thus, s↔ x↔ ylfbe holds.

Using the properties of mutual information and differen-
tial entropy [35], we have

I
(
s; ylfbe

∣∣Ĥb, Ĝb

)
=

K∑
i=1

I
(
si; y

lfb
e

∣∣Ĥb, Ĝb, s1, s2, · · · , si−1

)
=

K∑
i=1

[
H
(
si
∣∣Ĥb, Ĝb, s1, s2, · · · , si−1

)
−H

(
si
∣∣Ĥb, Ĝb,y

lfb
e , s1, · · · , si−1

) ]
. (56)

Since sk for k = 1, 2, · · · ,K, Ĥb and Ĝb are
independent with each other, we conclude that
H(si

∣∣Ĥb, Ĝb, s1, s2, · · · , si−1) = H
(
si
∣∣Ĥb, Ĝb

)
=

H (si) and H
(
si
∣∣Ĥb, Ĝb,y

lfb
e , s1, s2, · · · , si−1

)
=

H
(
si
∣∣Ĥb, Ĝb,y

lfb
e

)
. Combing these results with (56), we

have I
(
s; ylfbe

∣∣Ĥb, Ĝb

)
=
∑K
k=1 I

(
sk; ylfbe

∣∣Ĥb, Ĝb

)
. In

addition, it is obvious that the order of sk (k = 1, 2, · · · ,K)
in s does not change the distribution of x, thus does not
change I

(
x; ylfbe

)
and I

(
s; ylfbe

∣∣Ĥb, Ĝb

)
. Thus, we

conclude that I
(
sk; ye

∣∣Ĥb, Ĝb

)
for all k are equal.

Moreover, ylfbe depends on Ĥb through Q̂ from LQ
decomposition of Ĥb and also x, and x is determined from
(Ĥb, s). Given ylfbe , Ĥb and s are related through ylfbe given
by (6). Thus, s implicitly becomes conditionally dependent
with Ĥb. Then, we have H

(
s|ylfbe

)
> H

(
s|ylfbe , Ĥb, Ĝb

)
,

since condition reduces entropy [35]. Thus, we can prove
I
(
s; ylfbe

∣∣Ĥb, Ĝb

)
> I

(
s; ylfbe

)
as follows.

I
(
s; ylfbe

∣∣Ĥb, Ĝb

)
= H

(
s|Ĥb, Ĝb

)
−H

(
s|ylfbe , Ĥb, Ĝb

)
> H (s)−H

(
s|ylfbe

)
= I

(
s; ylfbe

)
. (57)

D. Proof of Theorem 3
It is known that γk ∼ χ2

Na−k+1, or equivalently ∼
Gamma(Na−k+1) [36]. According to the proof of Theorem

1, γk
d.
= ρ2

k|r̂k,k|2. Thus, it follows that Rperb,k = E
[

log2

(
1+

Pa
Kσ2

b,k
ρ2
k|r̂k,k|2

)]
. Combining this fact with (41), (42) and

(43), and using Jensen’s inequality, for k = 1, we have

∆Rsec,1 ≤ log2

(
1 + E

[
Pa

Kσ2
b,1

ρ2
1 sin2 θ1,1‖h̃b,1Q̂H‖2

+
Ph

(Nh −K)σ2
b,1

ξ2
1 sin2 θ2,1‖g̃b,1Γ̂h‖2

])
− E

[
log2

(
cos2 θ1,1

)
+ ‖h̃b,1Q̂H‖2 sin2 θ1,1

cos2 θ1,1

]
, (58)

where we have omitted the term related to sin2 θ2,1 in (43).
Similarly, for k ≥ 2, combing (41), (44) and (46), and using
Jensen’s inequality, we have

∆Rsec,k ≤ log2

(
1 + E

[
Pa

Kσ2
b,k

ρ2
k sin2 θ1,k‖h̃b,kQ̂H‖2

+
Ph

(Nh −K)σ2
b,k

ξ2
k sin2 θ2,k‖g̃b,kΓ̂h‖2

])
− Pr

{
Ēk
}

{
E
[
log2

(
cos2 θ1,k

)]
+ E

[
‖h̃b,kQ̂H‖2

|r̂k,k|2

∣∣∣∣Ēk
]

×E
[

sin2 θ1,k

cos2 θ1,k

]}
, (59)

The final result follows from substituting the existing results
in Appendix B into (58) and (59).

E. Proof of Algorithm 1
First, we can rewrite ∆̃Rsec,k as ∆̃Rsec,k =

log2

(
βk2
− Bt
Nh−1 2

(
1

Na−1 + 1
Nh−1

)
Bk + 2

Bk
Na−1 + αk

)
−

Bk
Na−1 + ςk2−

Bk
Na−1 . Notice that, treating Bk, Dk as real

numbers, ∆̃Rsec,k is continuous and differentiable
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d∆̃Rsec,k
dBk

=

βk
Nh−12

− Bt
Nh−1 2

(
2

Na−1 + 1
Nh−1

)
Bk − ln(2)βkςk

Na−1 2
− Bt
Nh−1 2

(
1

Na−1 + 1
Nh−1

)
Bk − ln(2)ςk+αk

Na−1 2
Bk
Na−1 − ln(2)αkςk

Na−1[
βk2
− Bt
Nh−1 2

(
1

Na−1 + 1
Nh−1

)
Bk + 2

Bk
Na−1 + αk

]
2

Bk
Na−1

. (60)

in Bk. It obvious that − Bk
Na−1 + ςk2−

Bk
Na−1

is convex function of Bk. Let Lk(Bk) =

log2

(
βk2
− Bt
Nh−1 2

(
1

Na−1 + 1
Nh−1

)
Bk + 2

Bk
Na−1 + αk

)
.

In the following, we prove the term Lk(Bk) is convex in
Bk. First, after some manipulations we can obtain

1

L′k(Bk)
=

(Na − 1)(Nh − 1)

Na +Nh − 2

+

Na−1
Na+Nh−2 + αk2−

Bk
Na−1

Na+Nh−2
(Na−1)(Nh−1)βk2

− Bt
Nh−1 2

Bk
Nh−1 + 1

Na−1

.

It is easy to see that L′k(Bk) > 0 and is a monotonic
increasing function of Bk, or equivalently L′′k(Bk) > 0.
Thus, Lk(Bk) is a convex function of Bk. It follows that
∆̃Rsec,k is a convex function of Bk. Thus, d∆̃Rsec,k

dBk
is a

monotonic increasing function of Bk, which is obtained
as (60) shown at the top of this page. The value of Bk
that minimizes ∆̃Rsec,k will be a single global optimal
value and is obtained by equating the numerator of (60)
to zero (Since the denominator is positive.). Observing the
numerator of (60), we find, for the case that Na = Nh, the
unique global optimal value Bk can be obtained by solving
the cubic equation (38) with x = 2

Bk
Na−1 = 2

Bk
Nh−1 > 0 for

real number Bk. d∆̃Rsec,k
dBk

= 0 has a unique real solution.
The practical optimal bit allocation can be obtained as
described in Algorithm 1. Similarly, for the general case
that Na 6= Nh, the unique global optimal value Bk can be
obtained by first solving (39) with y = 2Bk > 0 and then
following the same method for the case Na = Nh.
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