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ABSTRACT Wireless communication signal is a kind of coherent illuminator, and it can shed light on
surrounding environments. The mobile terminal receives the signal and estimate the propagation channel,
and can sense the moving objects passively. The localization module and communication module share
the RF front-end and baseband processing, and thus greatly reduce the implementation cost in mobile
terminals. Passive localization is based on the delay estimation of the dynamic reflection path. However,
several practical factors prohibit the accurate estimation of the propagation delays. The multipath reflection
and scattering are abundant in urban and indoor environments, and the signal bandwidth is usually not large
enough to reach a fine delay resolution. The synchronization error, sampling clock drift, frequency offset
and phase noise will severely impact the estimation performance. In this article, we propose a set of methods
to make the practical application of this method possible. We also derive the Cramer-Rao lower bound of the
delay estimation, and analyze the estimation error related with various impact factors. A prototype system
is built to test the performance in real environments, and various experiments have been done to verify its
feasibility. We believe that the fusion of wireless communication and sensing is a potential enhancement of
next generation cellular system, and the capability of passive location will bring interesting applications for
smart phones.

INDEX TERMS Cramer-Rao bound, delay estimation, external illuminator, passive localization,
super-resolution analysis.

I. INTRODUCTION
Wireless communication signals not only carry the informa-
tion of data but also encode the information of propagation
channels [2]. On the signal propagation path, the variations
of reflection, scattering, and diffractionwill affect the channel
response. Through analyzing the acquired channel state infor-
mation (CSI), we can sense the environment changes, such as
detecting the moving object, localizing its position, or follow-
ing its trajectory, whereas it is not required for the object to
carry any device on it [3]. Wireless sensing can be used as a
personal radar for intruder detection, or be used as a human-
computer interaction interface for gesture recognition [4].
It also has potential applications in e-Health, such as fall
detection and real-time assistance for older adults [5].

Many kinds of wireless signals have been used as exter-
nal illuminators, e.g., cellular, Wi-Fi, DAB/DVB, RFID, and
even GPS signals [6], [7]. Among these sources, Wi-Fi signal
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is most widely used, since there is commodity network card
that the channel state information (CSI) can be extracted
easily from the drivers [8].

A ‘‘WiSee’’ system was demonstrated in 2013 and has
attracted a lot of attention [9]. By analyzing the variation of
Doppler shift of the received Wi-Fi signal, it can distinguish
nine human gestures moving indoors. In [10], a ‘‘WiHear’’
system is proposed, which can detect channel changes caused
by mouth movement in the case of non-line of sight, so as to
listen to people’s conversation. In [11], an ‘‘RT-Fall’’ system
is proposed, which can detect human falls comparing with
other daily movement at home. A ‘‘BreathTrack’’ system is
proposed in [12], through calibration by the hardware and
software joint corrections, the phase variation of the CSI is
tracked to estimate the human breath rate. A device-free
human identification system is proposed in [13], the intrinsic
features such as respiration and gait are extracted from the
CSI to identify different peoples.

Wi-Fi signal is not continuously transmitted. When there
is a service requirement, there is a burst of data payload.
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The time intervals among the packets are random, thus there
will be a random initial phase for the synchronization of
each packet. In [14] and [15], the CSI correlation matrices
are used to do moving human detection. Through-the-wall
detection is studied in [16], since the line-of-sight (LOS)
signal and static reflected signal by the wall is much stronger
than the reflection after the wall, eigenvalue analysis at each
subcarrier are executed and the difference of the eigenvectors
are extracted as feature vectors. However, these works only
find the existence or not of a moving human, there is no
location information provided.

Radio and television signals can also be used as external
illuminators. Since these kind of radiation sources have high
power, we can use them to find distant targets [17], [18].
The passive radar system usually uses two receivers work-
ing simultaneously, which may have different beam width,
direction and amplifier gain. One receiver is used to receive
the reference signal and the other is used to monitor the target
echo. By comparing the reference signal and the surveillance
signal, range and Doppler information of the target can be
extracted. The digital audio broadcasting signal (DRM) is
used in [19]. Since the high frequency (HF) signal trans-
mits over-the-horizon in the form of sky wave ionospheric
reflection, the passive receiver can monitor the airspace over
a range of 2000 kilometers. The digital TV signals (DTMB)
from multiple TV stations are used in [20]. Since the DTMB
stations transmit the same signal at the same frequency, it is
difficult to distinguish the reflected signals of the same target
from those of different transmitters. Moreover, demodulating
and reconstructing the reference signal bring great burden of
computation and delay. In [21], OFDM waveform is inves-
tigated and the range and Doppler parameters are directly
estimated from the channel estimation. However, if the target
is close to the terminal and moves slow, as of a human walks
at home, the conventional range-Doppler detection mode will
fail.

In urban and indoor environments, non-line-of-sight
(NLOS) propagation and multipath reflections will cause
severe localization error. Using a signal with ultra-wideband
(UWB) will partly relieve this influence, since UWB signal
has fine delay resolution and can distinguish the reflective
paths of close objects. Passive localization of the reflectors
using UWB signal is studied in [22], [23], where multiple
distributed transmitters and receivers are used. The propa-
gation delays between each pair of transceivers are mea-
sured, including direct path and all reflection paths, and then
the propagation delays of the same reflector from the mea-
surements of multiple pairs of transceivers are correlated to
determine its position. However, the transmit power of UWB
signal is restricted and there is spectrum regulation problem
in many countries, it is difficult to integrate into the existing
mobile terminal architecture.

Back to the narrow band signal with a carrier, in [24]
the interference principle in optics is borrowed to explain
the phenomenon happened between the reflected signal of
a moving object and that of stationary objects. When the

propagation distance of the reflection path changes one wave-
length, the carrier phase of the dynamic reflection signal
changes 2π , the interferenced waveform changes one period.
In fact, the concepts of signal interference effect and Fres-
nel zone have been deeply studied in the field of wireless
communication [25]. However, in recent years, we have
been accustomed to interpreting this interference effect as
‘‘random’’ superposition between multipath signals, consid-
ering small-scale fading of channels as random variables
of Rayleigh or Rice distribution. We have overlooked the
deterministic aspects of the time-varying channel response
that can be analyzed with certainty.

While Wi-Fi signal distributes widely in homes and office
buildings, LTE signal has seamless coverage in all the cities
andmost of the rural areas. Besides, LTE base station has non-
stop broadcasting of the cell-specific reference signals (CRS)
so that we can acquire continuous channel estimation. In [26],
the device-free motion detection via LTE signal is tested
in real environments, where the amplitude fluctuation and
phase variation of the channel response are used as the judg-
ment basis. According to the reflection or scattering models,
the discovery region can be determined by the reflective
strength. In [27], exploiting LTE base stations as illuminators
of opportunity, a Bayesian framework for tracking mobile
targets and estimating their velocity has been developed.
In practice, it has another advantage to use LTE signal for
passive localization. Since the communication module also
need to do channel estimation, the localization module can
reuse the channel estimation results without requirement of
a separate RF front-end, thus can greatly reduce the imple-
mentation cost and power consumption of wireless sensing
in mobile terminals.

Passive localization starts from the estimation of the prop-
agation delay of the dynamic reflection path, where one value
of the delay will determine an ellipse given the positions
of the transmitter and receiver as two focal points. After
obtaining a group of delay estimations from multiple pairs of
transmitters and receivers, we can calculate the intersection
point of these ellipses as the localization result. However,
the estimation accuracy is usually limited by many practical
imperfections. The multipath reflection and scattering are
abundant in urban and indoor environments, and the signal
bandwidth is usually not large enough to reach a fine delay
resolution. The reflections by human bodies and arms are
weak. The synchronization error, sampling clock drift, fre-
quency offset and phase noise will severely impact the esti-
mation performance. In this paper, we design a preprocessing
method to compensate the frequency offset and separate the
weak dynamic reflection path from the strong direct and static
reflection paths. We apply the super-resolution method to
estimate the delay of the dynamic path, and apply the sparse
optimization method to estimate the delays of the static paths.
The impact of synchronization error, sampling clock drift and
phase noise are removed. We also derive the Cramer-Rao
lower bound (CRLB) of the delay estimation, and analyze
the estimation error depending on various impact factors.
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A prototype system is built to test the performance in real
environments, and various experiments have been done to
verify its feasibility.

The main contributions of this paper are in the following
four aspects:

1) we introduce a system model that incorporating
the propagation environment, target characteristic, and
transceiver imperfections, so that build the relationship
between the channel response and the target location;

2) we design the preprocessing method to compensate the
frequency offset and separate the dynamic and static paths,
and design the delay estimation methods with the impact of
phase noise;

3) we derive the Cramer-Rao lower bound of the delay
estimation, and analyze the estimation error related with the
reflection strength, signal bandwidth, integration time and
path distance differences;

4) we implement a prototype to work in real environments,
and carry on various experiments to test its performance.

The rest of this paper is organized as follows. In Section II,
we introduce the system model. In Section III, we propose
the preprocessing method and the delay estimation methods
of the dynamic and static paths, and constitute the com-
plete passive localization algorithm. In Section IV, CRLB is
derived and different factors that impacting on the system
performance are analyzed. In Section V, the prototype imple-
mentation and experiment results are demonstrated. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL
For the propagation of wireless communication signals,
except of LOS channel, there are multipaths caused by reflec-
tion, refraction, diffraction, and scattering. When there is a
moving object appeard in the propagation environment, there
will be a dynamic path reflected or scattered by this object,
and the dynamic reflection signal will combine with other
static reflection signals at the receiver antenna. The channel
response is composed of the amplitude, phase and delay of
every path, and is impacted by the synchronization error,
sampling clock drift, frequency offset and phase noise as
well. If we can correctly estimate the propagation delay of
the dynamic reflection path, we can localize the position of
that reflective object by triangular method using information
from several pairs of transceivers.

A. CHANNEL MODEL
The channel response estimated in the receiver is the superpo-
sition of the static reflection paths and the dynamic reflection
path caused by the moving target. When the moving object
changed its position, the sum distance from the transmitter
to the target and from the target to the receiver will change
accordingly. This will change the amplitude and phase of the
channel response of the reflection path, and will certainly
change the overall channel response. As shown in Fig. 1,
at time t , when the sum distance between the target and
transceivers is di(t), the received baseband signal can be

FIGURE 1. Typical scenario of multipath propagation.

expressed as

r(t) =
L∑
l=1

ale−jωc
dl
c s
(
t −

dl
c

)
+ ai(t)e−jωc

di(t)
c s

(
t −

di(t)
c

)
+ n(t), (1)

where s(t) is the baseband transmit signal, c is the light speed,
ωc = 2π fc and fc is the carrier frequency. The wavelength
of the carrier is λ = c/fc. The summation of L signals in the
first term of the right side represents the summation of signals
from the direct path and all other static reflection paths, and
al is the channel gain of the l-th path. The second term of
the right side is the signal reflected from the moving object.
When di(t) changes within several wavelengths, the vari-
ation of channel gain ai(t) and propagation delay di(t)/c
can be omitted. The significant variation is only the carrier
phase 2πdi(t)/λ. For simplicity, we only consider the
single-hop reflection as the dynamic path, since the multi-hop
reflections would be too weak to be separated.

The amplitude of the reflection path ai(t) depends on the
large-scale path loss and the reflective features of the moving
object. If the surface of the object is large and smooth relative
to the wavelength, and the positions of Tx, Rx and the moving
object agree with the reflection law, the specular reflection
effect will be dominant in the received power [25], i.e.,

PR = PT + 20 log
0rλ

4π (dT + dR)
, (2)

where PT denotes transmit power, and 0r is the reflective
coefficient that depends on the incident angle θi, the rel-
ative permittivity of the material εr , and the polarization
of the electromagnetic wave. For perpendicular polarization
(E-field not in the plane of incidence),

0r =
sin θi −

√
εr − cos2 θi

sin θi +
√
εr − cos2 θi

, (3)

and for parallel polarization,

0r =
−εr sin θi +

√
εr − cos2 θi

εr sin θi +
√
εr − cos2 θi

. (4)

From (2), we can see that in this situation the large-scale path
loss depends on the sum of dT and dR.
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Otherwise, the scattering effect is dominant. The received
power will be determined by the radar cross section (RCS) of
the object [25], i.e.,

PR = PT + 20 log
λ

dT dR
+ RCS − 30 log (4π) , (5)

where RCS is in units of dB·m2 and is related with the surface
area and scattering characteristic of the object. Note that in
this situation the large-scale path loss depends on the product
of dT and dR.

In both cases, ai(t) can be calculated as

ai(t) = 10
PR−PT

20 . (6)

From the measurement results in [26], in most cases the
scattering model is more preferable. After all, the reflective
law is hard to be kept when the human moves naturally.

When there are multiple moving objects in the environ-
ment, there are multiple dynamic reflections, the received
signal is then

r(t) =
L∑
l=1

ale−jωcτl s (t − τl)

+

K∑
i=1

aie−jωcτi(t)s (t − τi(t))+ n(t), (7)

where the time delay di(t)/c is substituted by τi(t). Assuming
the bandwidth of the baseband signal is B, it is worth to note
that the time delay resolution in the time domain is 1/B.When
the delay difference between two reflection paths is less
than 1/B, it is hard to recognize them as two distinct paths.
For example, an LTE signal has a bandwidth of 20 MHz, its
delay resolution is 50 ns.

For LTE signal, we can use CRS to do channel estimation.
In each subframe that with 1 ms duration, there are four
OFDM symbols that contains CRS, and for 20 MHz band-
width configuration, in each symbol there are 200 subcarriers
occupied by CRS.

From the received signal, we can estimate the channel state
information (CSI) through the known CRS subcarriers. Since
the propagation channel is composed by the direct path, static
reflection paths, and the dynamic reflection paths, the CSI can
be separated into two parts, i.e., the static part and dynamic
part, as shown in the following,

H (ω, t) =
L∑
l=1

ale−jωcτl e−jωτl

+

K∑
i=1

ai(t)e−jωcτi(t)e−jωτi(t) + n(ω, t)

= Hs(ω)+ Hd (ω, t)+ n(ω, t), (8)

where ω is the angular frequency of the baseband subcarriers,
Hs(ω) is the static channel response and Hd (ω, t) is the
dynamic channel response, n(ω, t) is the received noise.

B. THE EFFECT OF NON-IDEAL FACTORS
In practical system, there are synchronization error, sampling
clock drift, frequency offset and phase noise. Considering
these factors, the baseband received signal will be

r(t) = ej[ωd t+φ(t)]
{

L∑
l=1

ale−jωcτ
′
l (t)s

[
t − τ ′l (t)

]
+

K∑
i=1

aie−jωcτ
′
i (t)s

[
t − τ ′i (t)

]}
+ n(t), (9)

where ωd is the frequency offset, φ(t) is the phase noise. The
delays τ ′l and τ

′
i are affected by the synchronization error 1

and the sampling clock drift δ(t), i.e.,

τ ′l (t) = τl +1+ δ(t),

τ ′i (t) = τi(t)+1+ δ(t). (10)

The drifting speed of the sampling clock is not neglectable
comparing with the the variation speed of τi. For example,
if a human moves with a speed of 1 m/s, the delay τi changes
within 6.6 ns per second. Whereas the clock drift is 10 ns
per second if a very high quality crystal oscillator is used
(assuming its frequency stability is 0.01 ppm). Nowadays,
however the frequency stability of commodity communica-
tion modules is often in between 1 ppm to 10 ppm. The clock
drift can be as large as 10 us in one second.

Correspondingly, the channel estimation result is affected
by these non-ideal factors

H ′(ω, t)= ej[ωd t+φ(t)]
{

L∑
l=1

ale−jωcτ
′
l (t)e−jωτ

′
l (t)

+

K∑
i=1

ai(t)e−jωcτ
′
i (t)e−jωτ

′
i (t)

}
+ n(ω, t)

= ej[ωd t+φ(t)]{H ′s(ω, t)+H
′
d (ω, t)}+n(ω, t). (11)

In the process of delay estimation, we must explore various
methods to eliminate the impact of these factors.

C. LOCALIZATION MODEL
From (10) we can see that, in the delay estimation of the static
and dynamic paths, the bias terms caused by synchronization
error and sampling clock drift are same, i.e.,

τi(t)− τl = τ ′i (t)− τ
′
l (t). (12)

Thus the propagation delay of the i-th reflection path can be
calculated as

τi(t) = τ0 + (τ ′i (t)− τ
′

0(t)), (13)

where τ0 is the real propagation delay of the direct path,
τ ′0 is the estimated delay of the direct path. The true value of
τ0 is calculated by the known positions of the transmitter and
receiver, where the position of base station is fixed and can be
provided by the telecommunication carrier, and the position
of mobile terminal is obtained by existed techniques such
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FIGURE 2. The localization model.

as satellite and innertial navigations, or localization through
cellular or Wi-Fi signals.

In practice, there might be obstacles between the transmit-
ter and receiver and the direct path is too weak. In this case,
we will try to find the first arrived path, no matter its strength.
However, for the estimation of τ ′0, if the estimated first arrived
path is a static reflection path rather than the direct path, there
will be extra estimation error.

Once the propagation delay of the i-th reflection path is
estimated, the propagation distance of that path is known,
and we can determine an ellipse given the positions of trans-
mitter and receiver as two focal points. The sum distance
from the transmitter and receiver to the i-th moving object
just equals to the long axis of the ellipse. If we have two
pairs of transceivers, we can use two ellipses determining a
crossover point, which is the location of the moving object.
The localization model is shown in Fig. 2.
Usually there are multiple base stations available for an

LTE terminal to be listened to, although their signal strength
might be different. Passive localization of the moving tar-
get can be achieved for a terminal with only one antenna.
If one terminal is equipped with multiple distributed antennas
(e.g., for some specified equipment), or multiple terminals
can exchange their delay estimations, we can obtain more
precise localization results. In this paper, however, we mainly
study the delay estimation problem of one transceiver pair.
The problems of localization with multiple transceiver pairs
and tracking with consecutive delay estimations will be stud-
ied in future topics.

III. DELAY ESTIMATION ALGORITHM
To remove the impact of synchronization error and sam-
pling drift, we need simultaneously estimate the propaga-
tion delays of the dynamic path and the direct path. Each
dynamic path has independent fast changing phase, and the
channel responses of multiple dynamic paths are superim-
posed together. Thus the delay estimation of dynamic paths
belongs to the line spectra estimation problem, and we can
use classic super-resolution algorithm to estimate them. The
channel responses of static paths are also superimposed, they
are usually non-distinguishable due to the limited bandwidth,

and in a short duration the amplitudes and phases can be
seemed as fixed. Thus we use optimization-based algorithm
to solve this problem. Of course, some preprocessings on the
channel estimations are required for the first step. We will
compensate the frequency offset and separate the dynamic
and static channel responses.

A. PREPROCESSINGS
From (11), we know that the channel estimation values are
impacted by the frequency offset ωd and phase noise φ(t).
Actually, there is frequency synchronization along with the
frame synchronization. But there must be estimation error for
the frequency offset, thus we can regard ωd as the residual
frequency offset after the frequency synchronization.

A phase locked loop (PLL) is applied to track the phase.
From (11) we can see that, except the frequency offset and
phase noise, each path has a changing phase. We will first
transform the channel responses from the frequency domain
to time domain, and then track the strongest path in time
domain. The strongest path is either the direct path or a strong
reflection path, its phase term ωcτ

′
l (t) only changes with the

timing drift δ(t). This kind of changing is slow and can be
tracked. Meanwhile, the phase changes of the dynamic path
can be kept.

The PLL is a low-pass filter applied on the phase. The fre-
quency offset and the low-frequency components in the phase
noise can thus be compensated. However, the high-frequency
components in the phase noise are still left. We denote this
residual phase noise as φ′(t), with zero mean and variance σ 2

φ .
This residual phase noise is very small, and it usually does not
cause any harm to communication systems. However, through
practical experiments we find that its impact on the delay
estimation problem is serious and must be taken care of. The
channel response is thus expressed as

H ′′(ω, t) = ejφ
′(t)

{
L∑
l=1

ale−jωcτl e−jωτ
′
l (t)

+

K∑
i=1

ai(t)e−jωcτi(t)e−jωτ
′
i (t)

}
+ n(ω, t)

= ejφ
′(t)[H ′′s (ω, t)+ H

′′
d (ω, t)]+ n(ω, t). (14)

Note that the impact of 1 + δ(t) is removed from the phase
terms due to phase tracking, but it cannot be removed from
the delay.

After phase tracking, we need separate the channel
response into dynamic part and static part, and then estimate
the corresponding delays respectively. Compared with the
static reflections, the strength of dynamic reflections gener-
ated by the moving objects are usually much lower. The static
reflections are usually generated by buildings, walls or fur-
niture. But the moving object are usually human bodies,
arms, or even fingers. The RCSs of these objects are usually
small. Thus the SNR of the dynamic channel response is
much lower than the static channel response. If we estimate
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the delays of dynamic paths without separation, the static
paths will behave as strong interferences.

We design a low pass filter to first separate the static
channel response, that is

Ĥs(ω, t) = FLP
{
H ′′(ω, t)

}
≈ H ′′s (ω, t), (15)

where FLP {·} is a low pass filter. It can be implemented by a
moving average window, and the window length will control
the cutoff frequency. Since the mean value of φ′(t) is 0 and
φ′(t) is very small, the mean value of ejφ

′(t) is 1.
The dynamic channel response can then be separated as

Ĥd (ω, t) = H ′′(ω, t)− Ĥs(ω, t)

= [ejφ
′(t)
− 1]H ′′s (ω, t)+ e

jφ′(t)H ′′d (ω, t)+ n(ω, t)

≈ jφ′(t)H ′′s (ω, t)+ H
′′
d (ω, t)+ n(ω, t), (16)

where the approximation is because that φ′(t) is very small.
Since the magnitude of H ′′s (ω, t) is possible to be much
larger than that ofH ′′d (ω, t), for example 1000 times, the term
jφ′(t)H ′′s (ω, t) is not neglectable.

B. DELAY ESTIMATION OF DYNAMIC PATHS
In this part, we first estimate the delays of the dynamic
paths, τ ′i (t). From (14), we know that the channel response
of dynamic paths is

H ′′d (ω, t) =
K∑
i=1

ai(t)e−jωcτi(t)e−jωτ
′
i (t)

=

K∑
i=1

gi(t)e−jωτ
′
i (t), (17)

where gi(t) denote the complex coefficient of the i-th dynamic
path. Since the carrier frequency ωc is much higher than the
baseband frequency ω, in a short duration (such as 100 ms),
the term ωcτ

′
i (t) is variant but the term ωτ ′i (t) can be seemed

as a constant (only depends on ω). We consider the real-
time estimation problem that outputting the delay estimation
results slot by slot, where in each slot the fixed parameter
assumption is satisfied.

At each time instance t , the channel responses at different
subcarrier form a vector

h′d (t)=


e−jω1τ

′

1 e−jω1τ
′

2 · · · e−jω1τ
′
K

e−jω2τ
′

1 e−jω2τ
′

2 · · · e−jω2τ
′
K

...
...

. . .
...

e−jωN τ
′

1 e−jωN τ
′

2 · · · e−jωN τ
′
K



g1(t)
g2(t)
...

gK (t)

 ,
(18)

where ω1 to ωN are the know baseband frequency, τ ′1 to
τ ′K are parameters to be estimated.

From (16) we know that, there are also two interference
terms in the separated dynamic channel responses, where
n(ω, t) is circularly symmtric white Gaussian noise, and
jφ′(t)H ′′s (ω, t) is the frequency-domain channel response
of the static paths multiplied by the residual phase noise.

The separated dynamic channel response can also be written
in vector form, i.e.,

ĥd (t) = h′d (t)+ n
′(t), (19)

where the covariance matrix of n′(t) is

0 = σ 2
φE{h

′
s(t)h

′H
s (t)} + σ 2I. (20)

The estimation of delay τ ′i , i = 1, . . . ,K , is a line
spectra estimation problem [28]. We will apply the classical
super-resolution estimation method, i.e., estimating signal
parameters via rotational invariance techniques (ESPRIT),
to solve it. The ESPRIT algorithm is oriented from array
signal processing. When the receiver is equipped with an
antenna array, we can separate the array into two equal-size
subarrays. The offsets of the corresponding antenna elements
in two subarrays are the same, that means, for a given incident
angle the differences of the propagation distances to the
elements of two subarrays are the same. The propagation
distance difference corresponds to a phase difference for the
received signal, and the phase difference is called a rotational
invariance factor. Through solving a generalized eigen-value
equation, the incident angle can be estimated.

For our delay estimation problem, the rotational factor
can be constructed from the multiple subcarriers structure.
We can form two subarrays with fixed subcarrier spacing, and
these two subarrays are related by a rotational factor matrix.
The delay information can be estimated from the rotational
factor matrix.

Concretely, after we get the estimation of the dynamic
channel response ĥd (t), two vectors x1(t) and x2(t) can be
constructed by extracting the elements in even and odd sub-
carriers, respectively, i.e.,

x1(t) =


e−jω1τ

′

1 · · · e−jω1τ
′
K

e−jω3τ
′

1 · · · e−jω3τ
′
K

...
. . .

...

e−jωN−1τ
′

1 · · · e−jωN−1τ
′
K


g1(t)...
gK (t)

+ n′1(t)
= Ag(t)+ n′1(t), (21)

x2(t) = A

e
−j1ωτ ′1 · · · 0
...

. . .
...

0 · · · e−j1ωτ
′
K

 g(t)+ n′2(t)
= A8g(t)+ n′2(t), (22)

where x2(t) is obtained from x1(t) through a rotation, and the
diagonal matrix 8 is the rotational invariance factor. We can
see that the delay information of all dynamic reflection paths
are involved in8. Constructing equations to solve8, we can
obtain the estimations of delays.

Concatenating x1(t) and x2(t), we obtain a new vector

y(t) =
[
x1(t)
x2(t)

]
=

[
Ag(t)+ n′1(t)
A8g(t)+ n′2(t)

]
=

[
A
A8

]
g(t)+

[
n′1(t)
n′2(t)

]
= Ag(t)+ z(t), (23)
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where the covariance matrix of z(t) is 0z. Note that z(t) is a
rearranged version of n′(t), so that 0z is not equal to 0.
Then we can obtain the covariance matrix of y(t),

R = E
{
y(t)yH (t)

}
= E

{
Ag(t)gH (t)A

H
+ z(t)zH (t)

}
= AE

{
g(t)gH (t)

}
A
H
+ E

{
z(t)zH (t)

}
= ARsA

H
+ 0z. (24)

Calculate the generalized eigendecomposition of the
matrix pair (R,0z),

RU = 0zU3, (25)

whereU is the generalized eigen space,3=diag{λ1, . . . , λN }
are generalized eigenvalues. Since there areK dynamic paths,
the first K eigenvalues should be significantly larger than the
latter N − K eigenvalues.

The eigen space U can thus be separated into signal sub-
space Us and null space Un, i.e.,

U = [Us,Un], (26)

where Us is the former K columns of U , and Un is the latter
N −K columns of U . The subspace spanned by 0zUs should
be consisted with the subspace spanned byA. Thus there must
exist one non-singular matrix T , so that

U ′s = 0zUs = AT . (27)

Separating U ′s into upper and lower half matrices, we can
get

U ′s =
[
U1
U2

]
=

[
A
A8

]
T . (28)

Thereafter, we can derive that

U2 = A8T = U1T−18T = U19, (29)

where 9 = T−18T . The eigenvalues of 9 must be equal
to the diagonal elements of 8, and the columns of T are the
eigenvectors of 9. Through solving 9, we can get rotational
factor 8, and then get the delay estimation.

The standard least-squares (LS) solution of 9 is

9 = (UH
1 U1)−1UH

1 U2. (30)

However, in practical systems the covariance matrix R is
obtained from a finite number of noisy measurements, and
thus there are errors in the estimation of R and its eigen-
vectors. With probability one, the spanned space of U ′s is
not exactly overlapped with the spanned space of A. In other
words, both U1 and U2 are noisy. In this situation, the total
least-squares (TLS) criterion is preferred to calculate 9.

Calculate the eigenvalue decomposition,[
UH

1
UH

2

] [
U1U2

]
= E3EEH , (31)

and partition E into K × K submatrices,

E =
[
E11 E12
E21 E22

]
. (32)

The TLS solution of 9 is

9 = −E12E−122 . (33)

C. DELAY ESTIMATION OF STATIC PATHS
In this part, we try to estimate the delay of the direct path.
Although in many situations, like in indoor or urban envi-
ronments, densely scattering is present, we are focusing on
the direct path and specular reflections. In a short duration,
the amplitudes and phases of static paths are all keep fixed.
These static paths contribute to the static channel response.
Thus unlike the estimation of dynamic paths, the frequency-
domain channel response vector of static paths will span
a one-dimensional subspace, no matter how many static
reflection existed. The subspace-based super-resolution algo-
rithms are no longer applicable here. To solve this prob-
lem, we consider two optimization based methods. With the
known frequency-domain channel response of the given delay
(i.e., pulse waveform in time-domain), we are looking for
the amplitude, phase and delay of each path to fit the overall
superimposed channel response.

1) DELAY ESTIMATION BASED ON SPARSE OPTIMIZATION
We consider time delay estimation problem of the static
paths in frequency domain. The frequency-domain channel
response is the summation of channel responses of the L static
paths,

Ĥs(ω) =
L∑
l=1

ale−jωcτl e−jωτ
′
l + ns(ω), (34)

and the channel responses in different baseband frequency
can form a vector

ĥs =
[
Ĥs(ω1) Ĥs(ω2) · · · Ĥs(ωN )

]T
. (35)

The delay estimation problem can be modeled as a sparse
optimization problem, which is to find the position of those
distinct paths.

Define a dictionary D ∈ CN×F , in which different atoms
correspond the channel responses with different delays. Then
the delay estimation problem can be formulated as a sparse
optimization problem, i.e.,

α = argmin
α

{
1
2
‖ĥs − Dα‖22 + ‖α‖1

}
, (36)

where the element of α is the weight of the channel response
with different delay. The first term of the right side is to min-
imize the fitting error, i.e., to fit the static channel response
with weighted sum of the channel responses with different
delay. The second term is to minimize the L1 norm of the
weighting vector α. Optimizing the L1 norm is an approxi-
mation of the optimizing of L0 norm, which is to minimize
the number of non-zero elements in α. To minimize the sum
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TABLE 1. OMP based delay estimation.

of these two terms can achieve a balance between the fitting
error and the sparsity of the estimated reflection paths.

The optimization result is a sparse vector α with few non-
zero elements, where the positions of these non-zero elements
represent the delay estimations of the static reflection paths,
and the weights represent the amplitudes and phases of them.
Although we only require the delay of the first arrived path,
we can not get this parameter alone without joint estimation
of other information.

The problem (36) is a convex optimization problem, which
can be solved by some standard optimization program, such
as CVX. But the computational burden is high, and it is not
appropriate for realtime processing.

2) DELAY ESTIMATION BASED ON ORTHOGONAL
MATCHING PURSUIT
To reduce the computational burden, we consider a simpler
delay estimation algorithm based on orthogonal matching
pursuit (OMP). OMP is an sparse representation algorithm by
orthogonal decomposition. It uses sparse combinations from
a complete dictionary, and to synthesize the original signal
iteratively through fitting the residual error. The OMP algo-
rithm will orthogonalize the atoms at every decomposition
step, this will greatly increase the convergence speed.

The basic procedure is as follows. First, we construct the
dictionary of channel response vectors, where each vector
corresponds to a possible delay. Then we look for the dic-
tionary atom which has the highest correlation with the over-
all static channel response, and calculate the weight of the
selected atom according to the LS criterion. Next, we calcu-
late the residual error, look for the dictionary atom which has
the highest correlation with the residual error, and update the
sparse matrix with the combination of previous determined
atoms and this new atom. Recalculate the weight vector and
update the residual error. The iteration stopswhen the residual
error is less than a threshold.

The detailed implementation steps of the OMP algorithm
are summarized in Table 1.

IV. SIMULATION AND PERFORMANCE ANALYSIS
In this section, we will first derive the Cramer-Rao lower
bound (CRLB) of the delay estimation problem, and analyze
the relationship between the estimation error and various
parameters, e.g., SNR, signal bandwidth, delay differences.
Then we will simulate the performance of the delay
estimation methods under various configurations and com-
pare with CRLB.

A. CRAMER-RAO LOWER BOUND
According to (17)-(20), if there are K dynamic reflection
paths, the frequency-domain channel response vector at time t
is expressed as

ĥd (t)= h′d (t)+ n
′(t)

=

K∑
i=1

αie−jϕi(t)
[
e−jω1τ

′
i , · · · , e−jωM τ

′
i

]T
+n′(t), (37)

where n′(t) is the noise and interference vector at time t , and
the covariance matrix of n′(t) is 0.

The CRLB is given by the inverse of the Fisher information
matrix (FIM), i.e.,

Pcr = FIM−1, (38)

where the element of FIM is

FIM k,p = 2
N∑
t=1

Re

{(
∂h′d (t)
∂τ ′k

)H
0−1

(
∂h′d (t)
∂τ ′p

)}
. (39)

If there is only circular symmetric white Gaussian noise
in n′(t), 0 = σ 2I . When k = p,

FIM k,k =
2
σ 2

N∑
t=1

Re

{(
∂h′d (t)
∂τ ′k

)H (
∂h′d (t)
∂τ ′k

)}

=
2N
σ 2 α

2
k

M∑
i=1

ω2
i . (40)

When k 6= p,

FIM k,p=
2
σ 2

N∑
t=1

Re

{(
∂h′d (t)
∂τ ′k

)H (
∂h′d (t)
∂τ ′p

)}

=
2
σ 2

N∑
t=1

Re

{
αkαpe−j[ϕk (t)−ϕp(t)]

M∑
i=1

ω2
i e
−jωi(τ ′k−τ

′
p)

}
.

(41)

Discussion: From (40) and (41) we can see that, FIM k,k is
proportional to the integration time N and the SNR of the
reflection path α2k/σ

2. With larger bandwidth, FIM k,k will
also increase with ωM . If there is only one path, the CRLB of
the delay estimation τk is the inverse of FIM k,k . Thus larger
FIM k,k implies lower estimation error.
If there are multiple paths, the difference of the delays

will affect the value of FIM k,p, and then affect the value
of Pcr . For example, if τ ′k − τ

′
p = 2π/ωM , the summation

term
∑M

i=1 ω
2
i e
−jωi(τ ′k−τ

′
p) will be close to zero, thus FIM k,p

is close to zero. On the contrary, if the delays of two paths
are very close, i.e., τ ′k − τ

′
p ≈ 0, the value of FIM k,p will

further depends on ϕk (t) − ϕp(t). If the phase difference
ϕk (t) − ϕp(t) keeps changing, the summation items inside
the brace will cancel each other out. The worst case is that
ϕk (t) − ϕp(t) keeps unchanged for t = 1 to N , then FIM k,p
is close to FIM k,k , this will decrease the determinant of FIM
and increase the CRLB.
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TABLE 2. Simulation parameters.

If there is also interference caused by the residual phase
noise in n′(t), as shown in (19) and (20), the correlation
between h′d (t) and h

′
s(t) will also affect the values of FIM.

If their correlation is high, the determinant of FIM will be
small and this will also increase the CRLB.

The CRLB of the estimation error of the static paths can
be similarly derived. Since the SNR of the static path is much
higher than that of the dynamic paths, the CRLB of the delay
estimation of the static paths should be much lower.

B. SIMULATION RESULTS
We first consider the situation that only one moving object
exists. The root mean square error (RMSE) of the delay
estimation of the dynamic path is simulated, and the corre-
sponding CRLB is calculated. The simulation parameters are
listed in Table 2. We assume the LTE signal is transmitted
at 2.3 GHz center frequency. The frequency interval between
CRS subcarriers is 90 KHz, and totally 200 CRS subcarriers
are used, which is the typical configuration in 20MHz band-
width LTE signals.

The position of the transmitter is at (0, 0) m, and the
position of the receiver is at (10, 0) m. The start position of the
moving target is at (5, 10) m, and its moving speed is (1, 1.5)
m/s.Wefix the ratio of the direct path power and the reflection
path power as 10 dB, and change the SNR of the reflection
path power to the white Gaussian noise. The CSI is obtained
from the physical layer every 1 ms, and the integration time
of the covariance matrix for each estimation is 100 ms. The
delay estimation performance of the ESPRIT algorithm and
the CRLB are shown in Fig. 3. For the convenience of readers,
the RMSE of delay estimation is multiplied by the light speed,
so that the unit of measurement error is transformed to meter.

From Fig. 3 we can see that, in logarithm scale the CRLB
is inversely proportional to the SNR. It is well known that the
ESPRIT algorithm has threshold effect, its performance gets
bad seriously when the SNR is lower than a threshold.We can
clearly see this point in Fig. 3. For the estimation algorithm
with full paths (using all paths in time domain), when the
SNR is lower than−15 dB, the performancewill dramatically
degrade. We also tested the performance of an estimation
algorithm using extracted paths, where the frequency domain
channel response is first transformed into time domain, and
then a 7 samples long window is applied on the channel
response to extract the main paths and set the values of other
paths as zeros. We hope this method can suppress noise,
and we do observe the performance improvement in lower

FIGURE 3. RMSE of the distance estimation of one target with
different SNRs.

FIGURE 4. RMSE of the distance estimations of two targets with different
distance intervals.

SNR region. But in high SNR region, the performance of this
method degrades, and it has an error floor. This phenomenon
is because the pulse shape of the transmitted signal is not
an ideal impulse, it actually has many side lobes. When we
extract the main paths, the information hidden in side lobes
will be lost. This will certainly cause extra estimation error.

Next, we consider the situation where there are twomoving
objects simultaneously existed in the environment. From the
derivation of CRLB, we know that the delay difference of
two paths will affect the performance of the delay estimation.
Thus in this simulation, we change the distance difference
of these two reflection paths, and the other parameters are
keeping fixed. The SNRs of the direct path, the first reflection
path, and the second reflection path is 20 dB, 10 dB, and 3 dB,
respectively. The estimation errors and CRLBs of these two
paths are shown in Fig. 4.
From Fig. 4 we can see that, for target 2 the estimation

error decreases monotonically along with the increasing of
the distance difference of the two reflection paths. However,
for target 1 the estimation error increases first and only turns
down to decrease after the distance difference grows larger
than 7.5 m. Since the first reflection path is stronger than
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FIGURE 5. RMSE of the distance estimation with the impact of phase
noise.

the second reflection path, when these two paths are too
close, the ESPRIT algorithm cannot distinguish two paths,
and only the delay of the stronger path is estimated. Thus in
this situation the estimation error of the first path is small, but
the estimation error of the second path is very large. When
the two paths separate a while, the ESPRIT algorithm can
distinguish two paths, but they will cause interference to each
other, thus the estimation errors of both paths are large. Until
after their separation is larger than half of the pulse width,
both estimation errors begin to decrease simultaneously.

In practical system, the residual phase noise will cause
interference due to the residual static channel response. Fig. 5
shows its impact on the estimation error with two situations.
One is that the variance of residual phase noise is larger than
the variance of the Gaussian noise, i.e., σ 2

φ = 10σ 2. The other
is opposite, σ 2

φ = 0.1σ 2. Since the residual static channel
response will cause interference to the estimation of the
delay of the dynamic path, the delay difference between the
dynamic path and the static path will affect the performance.
In this simulation, there is only one moving target, and the
SNRs of the direct path and the reflection path are 20 dB
and 10 dB, respectively.

For both of the high phase noise (high PN) and low phase
noise (low PN) situations, we have tried two estimation meth-
ods. The first one (Method 1) only considers the variance of
Gaussian noise in the covariance matrix of n′(t), as in (20),
even that the residual phase noise is actually existed. The sec-
ond one (Method 2) considers both the impact of Gaussian
noise and the residual phase noise. We can see from Fig. 5
that when the residual phase noise is small, the estimation
error is mainly affected by the Gaussian noise, both methods
have similar performance and we cannot see any variation
when the delay between the dynamic path and static path
changes. However, when the residual phase noise is large,
it will cause obvious influence. The RMSE of the delay esti-
mation changes with the distance difference of the dynamic
and direct paths. Moreover, the variation of the first method
is much larger than that of the second method, means that the
estimation performancewill be greatly impacted if we neglect
the effect of the residual phase noise.

FIGURE 6. RMSE of the distance estimation of the direct path.

At last, let us see the delay estimation performance of the
static paths.We consider that there are three static paths in the
channel, including one direct path and two reflection paths.
The delays of them are randomly set in (0, 100) ns, and the
first arrived path is always the direct path. The amplitude
ratios of these three paths are set as 1 : 0.1 : 0.02. The RMSE
of the delay estimation and the corresponding CRLB are
shown in Fig. 6, where the shown SNR is defined as the SNR
of the direct path. We can see that the RMSE decreases with
the increasing of SNR. The CRLB is quite low when SNR is
greater than 25 dB, say less than 0.01 m. But the performance
of the sparse optimization and the OMP algorithm are not as
good as the bound. It seems that there is an error floor, which
cannot be further reduced even if we reduce the interval of
the atoms in the dictionary. Since the OMP algorithm has
lower computational complexity than the sparse optimization
algorithm, and their performance are similar, we will use the
OMP algorithm to estimation the delay of the static paths in
the following experiments.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENT
RESULTS
A. PROTOTYPE AND MEASUREMENT ENVIRONMENTS
We designed a prototype system to receive LTE signals.
The RF part is implemented on AD-FMCOMMS2, which
is an evaluation board of the RF transceiver chip AD9361.
AD9361 is a popular RF chip used in 4G base stations,
it has adjustable carrier frequency from 70 MHz to 6 GHz.
The baseband processing is on ZedBoard, an evaluation
board of the Xilinx all programmable SoC chip Zynq-7020.
Zynq-7020 involves dual-core ARM processors and pro-
grammable logics, so we can implement our own baseband
processing algorithms on chip. To reduce the implementation
complexity and get real-time results, for each subframe of
LTE signal we only extract one time of channel estimation.
This is equivalent to 1 ms sampling interval to the channel
response.

We use another prototype to transmit LTE signal, so that
the measurement environment is under control. The transmit
power is 10 dBmW and the carrier frequency is 2.3 GHz.
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FIGURE 7. The experiment environment.

As a comparison, the transmit power of a real macro-BS is
about 46 dBmW, and that of a micro-BS is about 30 dBmW.
We implement the experiments in the hall of a building,
as shown in Fig. 7, where there are plenty of static reflections
by thewalls and facilities.We use a transmitter with one trans-
mit antenna, and a receiver with two receiving antennas. The
receiver can simultaneously processes two incoming signals
from two antennas, thus for the convenience of description
we just call that there are two receivers. The positions of
the transmitter and receivers are as shown in Fig. 8, two
receivers are located on both sides of the right triangle while
the transmitter is at the origin of the coordinate. There is
LOS propagation between the transmitter and receiver, and
their distance is set as 4 m. If we use power amplifier on
the transmitter side, the distance of the measurement envi-
ronment can be correspondingly enlarged. But as we have
clarified, the error of delay estimation depends on the SNR
instead of the propagation distance. This configuration is
just an example to show the performance of the proposed
schemes. In practical situations, we can use one receiver to
receive the signals from multiple surrounding base stations.
This will fully use the opportunity provided by the signals
over the air.

A walking human is tested as the moving object, whose
RCS is about 0.5 m2, and the relative permittivity of the
clothes is about 5. We tested two traces to see the delay esti-
mation and localization results. As shown in Fig. 8, the first
trace is along the diagonal line of the triangle, from (7, 7) m to
(1.4, 1.4) m, the total moving distance is 8 m. The other trace
is on the arc with radius 8 m, the coverage angle is about π/3
and the total moving distance is also 8 m. The walking speed
is about 1.6 m/s.

B. SIGNAL WAVEFORMS AND THE EIGENVALUES
Let us first see the channel response when the human is
moving on trace 1. To see the time-variant effect clearly,
we transformed the channel response from frequency domain
to time domain, and only see the 7 samples around the main
path. From Fig. 9, we can see that when the human is far away
from the transmitter and receiver, the reflection path is weak,

FIGURE 8. The geometric configuration of test scenes.

FIGURE 9. The time-domain channel response.

and the ripples caused by the interference between the direct
path and the reflection path is not obvious. On the contrary,
when the human moves close, the reflection path becomes
strong and the ripples becomes significant.

The overall channel response is the superposition of the
static paths and the dynamic paths. If we separate the dynamic
paths from the static paths, the variation of the channel
response will be clearer. Fig. 10 shows the real and imaginary
parts of the separated dynamic channel response, where only
the main path in time domain is demonstrated. We can see
that when the reflection path is weak, the noise variance in
the imaginary part is larger than that in the real part. This is
actually the impact of the residual phase noise. As we have
derived in (16), the residual phase noise mainly affect the
imaginary part of the dynamic channel response.

With the dynamic channel response, we can form the
covariance matrix R as in (24). Fig. 11 shows the eigenvalues
of R, and Fig. 12 shows the generalized eigenvalues of matrix
pair (R,0z), where the y-axis is in logarithm values. The first
and second largest eigenvalues are shown. In this experiment,
the human moving actually starts at 1.5 second and stops
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FIGURE 10. The real and imaginary parts of the dynamic channel
response.

FIGURE 11. The first and second largest eigenvalues of R.

at 7.5 second. We can see that the eigenvalues change with
the moving states and the reflective strength. In Fig. 11, when
the human is not moving (before 1.5s and after 7.5s), the first
largest eigenvalue is coming from 0z, i.e., the interference
caused by static paths and the residual phase noise, and
the second largest eigenvalue is coming from the Gaussian
noise. When the human is moving, depending on the strength
of the reflection path, the first largest eigenvalue might be
caused by the interference or by the dynamic path. Thus if
we only use the eigenvalues of R, there might be mistake
to choose the expected signal subspace corresponds to the
dynamic path. On the contrary, in Fig. 12 we can see that
the largest generalized eigenvalue only corresponds to the
dynamic path. We can always choose the correct subspace
based on the largest eigenvalue.

C. DELAY ESTIMATION AND LOCALIZATION RESULTS
The root mean square error (RMSE) of delay estimation
results are given in Fig. 13, where the human is moving
on trace 1. For the convenience of comparing, the delay
estimation results are multiplied with the light speed, i.e., the

FIGURE 12. The first and second largest generalized eigenvalues
of (R, 0z ).

FIGURE 13. The RMSE of delay estimations on trace 1.

values we actually demonstrated are the estimation error
of propagation distances. For each trace, we have repeated
the experiment for 20 times, and then the statistical results
are calculated. Fig. 14 shows the RMSE of the localization
results by using the delay estimations from Rx1 and Rx2.
We can see that when the human is at the far end of the trace,
the delay estimation error is large and thus the localization
error is large. While when the human moves close to the near
end, the delay estimation error reduces and correspondingly
the localization performance improves. The reflection path
is weaker when the propagation distance is longer, and the
performance of delay estimation is greatly affected by the
SNR of the reflection path.

The performance of delay estimation and localization on
trace 2 are shown in Fig. 15 and 16. We can see that the
estimation error is larger in this case. The main reason is that,
on trace 2 the variation of carrier phase is much slower. It is
only about 1/5 of the variation speed on trace 1. Although
the moving speed of the human is the same, the propagation
distance of the reflection path changes with different rates
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FIGURE 14. The RMSE of localization results on trace 1.

FIGURE 15. The RMSE of delay estimations on trace 2.

FIGURE 16. The RMSE of localization results on trace 2.

given different geometry configurations. The slower chang-
ing carrier phase will affect the covariance estimation of the
dynamic channel vector, and then affect the estimation error
of the ESPRIT algorithm.

VI. CONCLUSION
In this paper, a passive localization method using the oppor-
tunistic on-the-air LTE signal is studied. We built a channel
model that incorporate the transceiver imperfections, and
the impacts of timing drift and phase noise are specially
emphasized. Then we designed the preprocessing method
to separate the dynamic and static channel responses, and
proposed corresponding delay estimation methods for the
dynamic and static paths. The CRLB of the delay estima-
tion problem is derived, and simulations are executed to
analyze the impacting factors. A prototype is implemented
and passive localization experiments are carried out in real
environments. The experiment results show the preliminary
feasibility of passive localization via on-the-air LTE signals,
and the performance is mainly restricted by weak reflection
and slow movement.
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