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Abstract— Wireless signals not only carry the information of
data but also encode the information of propagation environ-
ments. The motion of an object can be sensed by analyzing the
variation of channel state information. Combining the function
of wireless sensing and communication will further enhance the
capability of smart phones. LTE signal, which is always on the
air and is seamlessly covered, is a perfect external illuminator for
wireless sensing. In this paper, we study the device-free moving
object detection via LTE signals. We build a prototype to receive
on-the-air LTE signal and extract the real-time channel response.
The existence of moving object is recognized by the amplitude
of the interfered multipath, and the moving speed is derived by
the phase of the dynamic reflection. The detection probability
and discovery region are investigated, and field experiments are
conducted to validate the analyses.

Index Terms— LTE, motion detection, multipath interference,
prototype, wireless sensing

I. INTRODUCTION

With the rapid development of wireless communications, the
carrier frequency and signal bandwidth are increasingly higher.
The radio-frequency (RF) signal can not only be modulated
to transfer information, it can also be used to perceive the
propagation environment. On the signal propagation path, the
variations of reflection, scattering, and diffraction will affect
the channel response. Through analyzing the captured channel
state information (CSI), we can find moving object, by which
the dynamic reflection will cause multipath interference. In the
system, the moving object only reflect the signal naturally, it
does not carry any specific device.

In recent years, contactless gesture recognition and motion
detection have aroused great interest. In [1], the Doppler shift
of the received signal is analyzed and nine body gestures can
be recognized therefrom. In [2], real-time fall detection is
implemented in natural living environment, through utilizing
the amplitude variation and phase difference between two
receive antennas. In [3] and [4], the moving human is detected
through eigenvalue analysis of the CSI amplitude and phase
correlation matrices. Through-the-wall detection is studied in
[5] and [6]. Since the line-of-sight (LOS) signal and static
reflected signal by the wall is much stronger, MIMO precoding
is used in [5] to eliminate the interference. While in [6],
the difference of the eigenvectors of CSI across different
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subcarriers are used as detection features. The interference
phenomenon between the dynamic and static reflection paths
is explained in [7], and the Fresnel zone is defined as the area
where the dynamic reflection path changes one wavelength. By
recognizing the interfered waveforms, the resolution of motion
detection increases to centimeter scale. All these researches
use Wi-Fi signals as external illuminators.

However, Wi-Fi signal only covers hot-spot area, and the
frame is burst in time. Since the interval of two consecutive
packets is random, it is hard to track the phase in between
the packets. Thus in literatures, the CSIs extracted from Wi-
Fi signals are assumed to have random phases. In addition,
the existed works mostly focus on patter recognition, there
lacks basic analysis on the relations between the detection
probability, discovery range, signal strength and reflection
features.

In this paper, we study the motion detection problem via
LTE signals. LTE signal is seamlessly covered and the frames
are continuous in time. Even when there is no user data,
the physical-layer broadcast channel (PBCH) and the cell-
specific reference signal (CRS) are always on the air. Using
LTE signals, we can ceaselessly monitor the environment at
anywhere we are interested.

The main contribution of this paper includes three aspects:
1) we study the motion detection via LTE signals and

propose a method where the motion state is estimated from the
amplitude variation in CSI and the moving speed is derived
from the phase difference in consecutive subframes;

2) we analyze the false alarm and missing alarm rates
according to the received SNR and the reflection features, and
derive the discovery region correspondingly;

3) we build a prototype system through software defined
radio, and conduct field experiments to validate the models,
methods and analyses.

II. SYSTEM MODEL

In wireless communication channels, except of LOS prop-
agation, there are multipaths caused by reflection, refraction,
diffraction, and scattering. When a moving object is present in
the propagation environment, the signal reflected or scattered
by this object will form a dynamic path and will be combined
with other static paths at the receiver, as shown in Fig. 1.
Denote the baseband transmit signal as s(t), the baseband
received signal is

r (t) =
L−1∑

l=1

ale
−j

2πdl
λ s (t− dl/c)

+ aL (t) e−j
2πdL(t)

λ s (t− dL(t)/c) + n(t),

(1)
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where the first L− 1 paths are static paths including the LOS
propagation, and the last path is dynamic path. The amplitude,
phase and propagation delay of the l-th path are respectively
al, 2πdl/λ, and dl/c, where dl is the propagation distance, λ
is the carrier wavelength, and c is the light speed. The noise
n(t) is assumed to be additive white Gaussian with zero mean
and variance σ2

n.

Fig. 1. Typical scenario of multipath propagation.

We only consider one moving object in this paper. This is
a typical scenario in small cell or indoor environment, where
usually few objects simultaneously move around the receiver.
For the signal coming from a macro-cell base station (BS),
although there might be many moving objects outside, their
reflections will be too weak to penetrate the wall. The scenario
that includes multiple moving objects will be studied in future
works.

For LTE signal, we can use CRS to do channel estimation. In
each subframe that with 1 ms duration, there are four OFDM
symbols that contains CRS, and for 20 MHz bandwidth config-
uration, in each symbol there are 200 subcarriers occupied by
CRS. According to (1), the channel response can be separated
into static part and dynamic part, i.e.,

H (f, t) = Hs (f) + Hd (f, t) + n(f, t)

= Hs (f) + aL(t)e−j2π
dL(t)

λ + n(f, t), (2)

where Hs stands for the static part and Hd stands for the
dynamic part, f denotes the baseband frequency. The channel
response is represented in frequency domain, and it can be
transformed to time domain as well. In frequency-flat channel,
we can drop the variable f from (2) since the multiple
reflection paths are inseparable.

The amplitude of the reflection path aL(t) depends on the
large-scale path loss and the reflective features of the moving
object. If the surface of the object is large and smooth relative
to the wavelength, and the positions of Tx, Rx and the moving
object agree with the reflection law, the specular reflection
effect will be dominant in the received power [8], i.e.,

PR (dBm) = PT + 20 log
Γλ

4π (dT + dR)
, (3)

where PT denotes transmit power, and Γ is the reflective
coefficient that depends on the incident angle θi and the
relative permittivity of the material εr. From (3), we can see
that in this situation the large-scale path loss depends on the
sum of dT and dR.

Otherwise, the scattering effect is dominant. The received
power will be determined by the radar cross section (RCS) of
the object [8], i.e.,

PR (dBm) = PT + 20 log
λ

dT dR
+ RCS − 30 log (4π) , (4)

where RCS is in units of dB·m2 and can be approximated
by the surface area of the scattering object. Note that in this
situation the large-scale path loss depends on the product of
dT and dR.

In both cases, aL(t) can be calculated as

aL(t) = 10
PR−PT

20 . (5)

III. MOTION DETECTION METHOD AND ANALYSIS

A. Motion Detection Method

We will use channel estimation results H(f, t) to do motion
detection. Since the oscillators in transmitter and receiver are
not synchronized, there is frequency-offset and phase noise in
the raw CSIs. The frequency-offset estimation and compensa-
tion are implemented along with the frame synchronization.
Then a phase tracking loop is applied on the strongest path
to remove the phase noise. Actually, the dynamic reflection
path might also be superimposed on the strongest static path
and cause phase ripples. We must carefully design the phase-
locked loop (PLL) to eliminate the impact of phase noise and
keep the ripples caused by the moving object.

In small cell or indoor environments, the multipath delay
spread is usually less than 1 µs. It is better to transform
H(f, t) to time-domain h(τ, t), so that the SNR of the channel
estimation can be improved. For typical 20 MHz bandwidth
configuration, in time domain the separable multipath delay
is 50 ns and the corresponding difference of propagation
distances is 15 m. That means, with high probability the
dynamic path is combined in the first several delay bins.

For brevity, consider the dynamic path is in the the first
delay bin, we drop the variable τ from h(τ, t), i.e.,

h(t) = hs + hd(t) + z(t), (6)

where z(t) has variance σ2
z . When N subcarriers are occupied

by CRS, σ2
z = σ2

n/N .
We can separate the dynamic path from the superimposed

static paths by using a low pass filter FLP[·], i.e.,

ĥs(t) = FLP [h(t)] , (7)

ĥd(t) = h(t)− ĥs(t). (8)

The normalized standard variation of ĥd(t) is calculated as
the decision statistic,

ν =

√√√√ 1
T

t0+T∑
t=t0

|ĥd(t)|2
/
|ĥs(t0)|, (9)

where T is the observation window. The statistic ν is a metric
of amplitude fluctuation. When it is larger than a threshold ρ,
we can recognize there exist moving object.

Then we can extract the phase φ(t) = ∠ĥd(t) to decide the
motion orientation and speed. When φ(t) is increasing, the
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target is moving close to the Tx-Rx LoS link, and when φ(t)
is decreasing, the target is moving away. The moving speed
depends on the slop of phase variation, i.e., dφ(t)/dt, and the
geometry relationship with the transmitter and receiver. If we
want to know accurate position of the target and the absolute
moving speed, we need more observations from multiple Tx-
Rx pairs.

Occasionally, if the target is moving along the ellipse of
the Fresnel zone, the phase of the dynamic reflection path is
fixed, and there is no amplitude variation in the CSI. However,
this case is rarely appeared in applications such as intruder
detection, where the target is moving from outside to inside
the surveillance zone. Furthermore, if we have multiple Tx-Rx
pairs, they can be complementary to avoid this failure mode.

B. Detection Probability
We use false alarm rate and missing alarm rate to measure

the detection performance. When there is no moving target,
channel estimation errors might cause ν exceeding the thresh-
old, which is called false alarm. On the contrast, when the
moving target is indeed present, but ν has not trigger the
threshold, which is called missing alarm.

The detection threshold is determined by a constant false
alarm rate (CFAR). When the channel is static, the estimation
ĥd(t) only comprises complex Gaussian noise. Thus the statis-
tic

∑t0+T
t=t0

|ĥd(t)|2 is a chi-square distribution with degrees of
freedom 2T . Suppose ĥs(t0) is equal to hs, the cumulative
distribution function (CDF) of ν can be easily obtained by
numerical calculations. Given the false alarm rate pFA, the
detection threshold ρ can be determined by

Pr(ν > ρ) = Pr

(
t0+T∑
t=t0

|z(t)|2 > T |hs|2ρ2

)
= pFA, (10)

where ρ|hs|/σz is a fixed value given pFA and T .
When the channel is dynamic, ĥd(t) comprises hd(t) and

noise. Since |hd(t)| = aL(t), and it is almost invariant in
a observation window, the statistic

∑t0+T
t=t0

|ĥd(t)|2 can be
approximated by a non-central chi-square distribution. The
missing alarm rate pMA is thus

Pr(ν < ρ) = Pr

(
t0+T∑
t=t0

|aLejφ(t) + z(t)|2 < T |hs|2ρ2

)
.

(11)
The normalized mean value aL/σz can be derived from pMA
and ρ|hs|/σz .

Fig. 2 shows the values of aL/σz and ρ|hs|/σz when pFA =
pMA and T = 100. Actually, |hs|2/σ2

z stands for the SNR of
static channels, which is N times higher than the SNR of the
received signal |hs|2/σ2

n. The value a2
L/σ2

z stands for the SNR
of the dynamic reflection path.

C. Discovery Region
Given the required detection performance pFA and pMA,

we can determine the required aL according to aL/σz and
|hs|/σz . Define the relative reflective strength

γ =
aL

|hs| =
aL/σz

|hs|/σz
. (12)
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Fig. 2. The calculated values of aL/σz and ρ|hs|/σz .

The required channel gain of the dynamic path is aL = γ|hs|.
The channel gain of static paths is

|hs| = λ

4πdLOS
, (13)

when there is only LOS propagation. Otherwise, |hs| should
be a measured result.

Then the discovery region can be derived from equations
(3)-(5). Assuming that (13) is satisfied, for the reflective
model, the discovery region is defined by an ellipse, i.e.,

dT + dR ≤ Γλ

4πaL
=

Γ
γ

dLOS. (14)

For the scattering model, the discovery region is defined by a
Cassini oval, i.e.,

dT dR ≤ λ

aL
· 10

RCS−30 log(4π)
20 =

dLOS√
4πγ

· 10
RCS
20 . (15)

IV. EXPERIMENT RESULTS

We designed a prototype system to receive LTE signals.
The RF part is implemented on AD-FMCOMMS2, which is
an evaluation board of AD9361. The baseband processing
is on ZedBoard, an evaluation board of Xilinx Zynq-7020.
To reduce the implementation complexity and get real-time
results, for each subframe of LTE signal we only extract one
time of channel estimation. This is equivalent to 1 ms sampling
interval to the channel response.

We use another prototype to transmit LTE signal, so that
the measurement environment is under control. The transmit
power is 1 mW and the carrier frequency is 2.3 GHz. There
is LOS propagation between the transmitter and receiver, and
their distance is set as 5 m. The measured SNR of the static
channel response is 37 dB, and this corresponds to 14 dB for
the SNR of the received signal. A walking human is tested as
the moving object, whose RCS is assumed to be 0.5 m2, and
the relative permittivity of the clothes is 5.

A snapshot of the observed channel response is shown
in Fig. 3, where the person is moving back-and-forth along
the perpendicular line of the Tx-Rx connection. Both the
amplitude of the overall channel response and the phase of
the dynamic reflection path are presented. In one second, the
distance of the dynamic reflection path reduces about 3λ and
then recovers again. From Fig. 3, we can see 6 periods of
amplitude fluctuation, and the phase of the dynamic path first
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Fig. 3. A snapshot of the observed channel response in motion state.

increases 6π and then decreases 6π. These observations are
consistent with the assumptions in system model.

The next experiment is to validate the reflection strength
model. In Section II, we have introduced reflective model and
scattering model, which have different power degradations. We
still let the person moving on the perpendicular line and record
the power of the dynamic reflection path. The SNRs of the
dynamic reflection path are shown in Fig. 4. We can see that
the measured result is more close to the scattering model.
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Fig. 4. The measured SNR of the dynamic reflection path.

The detection probability is tested in the same environment.
The observation window is set as 100 ms, and the detection
threshold is set when the false alarm rate is 10%. The missing
alarm rate is measured when the person moves along the
perpendicular line. We sampled 40 groups of CSI, and for
each group there is 1000 decision statistics in 1 m distance
interval. From Fig 5, we can see that the missing alarm rate
increase dramatically when dH exceeds 7 meters, where from
Fig. 4 we know that the SNR of the dynamic path a2

L/σ2
z starts

below 0 dB.
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Fig. 5. Missing alarm rates at different locations.

On the contrast of moving on the perpendicular line, we
test the discovery region that let the object moving in various
directions. The target will be discovered when a2

L/σ2
z ≥ 0

dB. The boundary of the discovery region is drawn in Fig. 6,
where the theoretical values are calculated by (15). The larger
region is caused by the walking human and the smaller region
is caused by the moving hand. The lines and markers represent
the theoretical and measured results, respectively. We can see
that the discovery region changes with different RCSs and the
Cassini oval has different shape with different parameters.
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Fig. 6. Discovery regions with different RCSs.

We also tested the system by receiving on-the air LTE
signals, either from small-cell BS or from macro-cell BS. No
matter with or without LOS propagation, the properties that
we have shown above are the same. If the received SNR is
higher or dLOS is larger, the discovery region can be expanded
correspondingly.

V. CONCLUSION

In this paper, we studied the motion detection via LTE
signals. We first formulate the channel model depending on
the reflective features of moving objects. Then we propose
a detection method using amplitude fluctuation and phase
variation of the extracted CSI. The false alarm and missing
alarm rates are analyzed, and the discovery region is derived.
The models, methods and analyses are validated by field
experiments on a prototype system. It was shown that motion
detection with LTE signals is feasible and promising.
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