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Abstract—Big data analytics makes predicting human behavior
possible, but it is unclear how to exploit the predictable informa-
tion for improving performance of wireless networks. In this pa-
per, we investigate the potential of predictive resource allocation
in supporting high throughput by exploiting excess resources. To
this end, we assume that the requests and trajectories of mobile
users and the average resource usage status of base stations can
be predicted within a window. To fully use resources within the
prediction window and reserve resources for the unpredictable
traffic arrived after the window, we optimize a resource allocation
plan to minimize the maximal transmission completion time. To
assist the base stations for user scheduling, we introduce a method
to make a transmission plan. These two plans determine where,
when and what to transmit to the users with how much resources.
Simulation results show that the predictive resource allocation
can provide substantial gain over non-predictive strategy in terms
of both network throughput and user experience.

I. INTRODUCTION

To support the explosively growing traffic demands, the
main trend techniques for the fifth generation (5G) cellular
networks are to update network architecture, improve spectral
efficiency (SE) by network densification, and explore more
spectrum [1]. While increasing SE is always beneficial, in
reality the resources are often under-utilized in many base
stations (BSs), owing to the time-varying traffic pattern.

More or less inspired by a recent report that human behavior
is highly predictable [2], optimizing wireless networks by
leveraging the prediction ability endowed by big data is
drawing research attention. With big data analytics, the map of
traffic load and the mobility pattern [3]–[5] can be predicted,
at least within a prediction window. From the traffic map, the
average network resource usage status can be estimated. From
the trajectory of a mobile station (MS), the average channel
gains can be obtained with the help of a radio map [6]. More-
over, the content popularity and even the preferred content of
an individual user, are possible to be known before the user(s)
truly initiates the request, say by using collaborative filtering
that has long been studied for recommendation problems [7],
which is a canonical application of big data. Undoubtedly,
predicting the behavior related information is challenging. This
naturally raises the following question: what performance of
cellular networks can be improved by exploiting such valuable
information, with how much gain, and how?

With predicted content popularity, caching at the wireless
edge can reduce the backhaul cost, offload the traffic in core
and access networks, improve user experience and energy
efficiency [8]–[10]. Yet how other information able to be

predicted could impact the wireless resource management is
largely unexplored. When a central processor (CP) connected
to BSs can predict or obtain the network resource usage
state, user trajectory, the content to be requested and the
request arrival time, then how these information can be ex-
ploited for improving the performance of wireless networks?
With these information, called network level, user level, and
application level context information in [11], a long-term
resource allocation plan can be made for each user before
transmission, including which BSs along the trajectory of a
MS should pre-download files to the user, in which duration,
and with how many resources. Such predictive or proactive
resource allocation has been proposed for reducing the outage
probability [12], saving the energy consumed at the BSs [6],
[13] or improve throughput [14]. In most existing works along
this line, future average or even instantaneous achievable rate
are assumed known [6], [12], [14], which implies that at least
the user and network level information are available.

In this paper, we attempt to show the potential of predictive
resource allocation in supporting high throughput by exploit-
ing excess resources. To this end, we assume that the three
levels of context information is known within a prediction
window, although the prediction is never perfect. To fully
use the excess resources within the prediction window, we
optimize the resource allocation planning for pre-downloading
the files to be requested to users with the help of these
information to minimize the maximal transmission completion
time. Such an optimization is very different from those in [14],
which were oriented for full-buffer traffic and less efficient
when the resource is under-utilized. To help the BSs schedule
users with the pre-assigned resources according to the plan, we
proceed to make a transmission plan. Simulation results show
that the proposed predictive resource allocation can support
higher traffic load for given user satisfaction rate and reduce
average waiting time of the users than the traditional non-
predictive resource allocation, both dramatically.

II. SYSTEM MODEL

Consider a Nb-cell network, where each BS is equipped
with Nt antennas. The BSs serve two classes of traffic: real-
time (RT) service (e.g, phone call) and content delivery (e.g.,
file downloading), both requests arrive randomly. Due to the
high priority of RT service, the contents can only be delivered
by using the residual resources (i.e., bandwidth and transmit
power) at each BS, which are stochastic processes in practice.



In this work, we are concerned with predictive resource
allocation for the mobile users demanding content delivery,
each requesting one file with size of B bits. We refer to these
users as the MSs in the rest of the paper.

A. Context Information and Predictive Resource Allocation

Assume that all the BSs are connected to a CP. Endowed
by big data analytics, the CP can predict or can obtain the
prediction of three levels of information within a prediction
window as follows. (i) The request arrival time and the file to
be requested of every MS, i.e., the application level context
information. (ii) The trajectory of every MS, i.e., the user
level context information. (iii) The average residual resources
remained at each BS after serving the RT traffic, i.e., the
network level context information.

With the predicted context information, the CP can make a
plan of resource allocation and transmission for conveying the
files that the MSs will request, which essentially determines
where, when, what, and with how much resources to transmit
how many bits. After informed by the CP, the BSs along the
trajectory of each MS can pre-download the file to the MS
before it initiates the request, and continue to transmit the
remaining file (if the file has not been conveyed completely)
after the MS’s request arrives, according to the plan. Such
a predictive resource allocation is sharply different from the
traditional transmission mechanism, where the MSs are served
with best effort after their requests arrive.

B. Channel Model and Achievable Rate

Time is discretized into time slots. The length of the
prediction window is Tf frames, where each frame includes
Ts time slots. To reflect the variation of the path-loss and
shadowing due to user mobility, we assume that the large scale
channel gains remain constant within each frame and may vary
among frames. The small scale channel gains remain constant
within each time slot and vary among time slots independently.

Assume that only the closest BS to a MS may pre-download
(or transmit) the file to be requested (or having been requested)
to the MS. According to a plan made by the CP, a BS may
need to pre-download files to multiple MSs. To avoid multi-
user interference, the BS transmits to the MSs in different time
slots, then maximum ratio transmission (MRT) is optimal, and
the achievable rate of the kth MS (denoted as MSk) in the tth
time slot of the jth frame is

Rtj,k = W t
j,k log2(1 + gtj,kp

t
max,j,k), (1)

where W t
j,k and ptmax,j,k are respectively the residual band-

width and transmit power available for the MS at the closest
BS after serving RT traffic, gtj,k , αjk‖htj,k‖2/σ2 is the
equivalent channel gain, htj,k ∈ CNt×1 is the channel vector,
αjk is the large scale channel gain, σ2 is the noise variance,
and ‖ · ‖ denotes Euclidean norm.

III. OPTIMIZING PREDICTIVE RESOURCE ALLOCATION

In order to exploit the information in the prediction window,
we first formulate a resource allocation planning problem to

minimize the maximal file delivery time, and find the optimal
solution. Then, we make a transmission plan, and provide a
transmission strategy according to the plan.

A. Making the Resource Allocation Plan
Assume that the prediction window starts at the 1st time

slot of the 1st frame, and ends at the Tsth time slot of the
Tf th frame, as shown in Fig. 1, where K MSs will initiate
requests within the window, and MSk will send its request at
the tk,ath time slot of the Tk,ath frame. Denote the request
arrival time of MSk as Jk,a , ((Tk,a − 1)Ts + tk,a)/Ts.

By transmission according to the plan, the file is completely
delivered to MSk in the tkth time slots of the Tkth frame,
called completion time, denoted as Jk , ((Tk−1)Ts+tk)/Ts.
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Fig. 1. Illustration of time model: the CP makes the plan for the MSs at the
1st time slot of the 1st frame with context information in the window.

In order not to compromise user experience, the file request-
ed by each MS should be conveyed before an expected time
instant after it sends the request, called deadline. When the
completion time of MSk is before the deadline, the MS is
satisfied. To control the user satisfaction rate, we impose an
constraint on the completion time: the file requested by each
MS should be conveyed before Tw frames after it sends the
request, i.e., Jk ≤ Jk,a+Tw, where Jk,a+Tw is called maximal
waiting time. To fully use the excess network resources within
the window, the completion time should also satisfy Jk ≤ Tf
since the CP can only make the plan for future Tf frames.
Therefore, the completion time should satisfy

Jk ≤ Jk,mw , min(Jk,a + Tw, Tf ). (2)

In order to reserve resources for the unpredictable requests
arrived after the prediction window, we minimize the maximal
completion time of all the MSs arrived in the window.

For easy exposition, we first formulate a problem with all
instantaneous information known in the future TfTs time slots,
including the instantaneous residual resources and small scale
channel gains. Denote mt

j,k ∈ {1, 0} as an indicator. When
mt
j,k = 1 or 0, the file to be requested by MSk will or will

not be pre-downloaded by its closest BS in the tth time slot
of the jth frame. The optimization problem is as follows,

min
M1,...,MK

max
k

Jk (3a)

s.t.

Tf∑
j=1

Ts∑
t=1

mt
j,kR

t
j,k∆t = B, (3b)

Jk ≤ Jk,mw, k = 1, . . . ,K, (3c)
mt
j,k = 0,∀j > Tk,m

t
Tk,k

= 0,∀t > tk, (3d)∑
k∈Kj,i

mt
j,k ≤ 1, i = 1, . . . , Nb, (3e)



where Mk = [m1,k, . . . ,mTf ,k], mj,k = [m1
j,k, . . . ,m

Ts

j,k]H ,
(3b) means that B bits should be conveyed to each MS within
the prediction window, (3c) is from (2), (3d) indicates that a
MS will not be served after the completion time, (3e) indicates
that each BS only transmits to a single MS in each time slot,
Kj,i is the set of MSs that enter the coverage of the ith BS in
the jth frame, and ∆t is the duration of each time slot.

It is worthy to note that problem (3) is not viable in practice,
because the required instantaneous information in the future
is hard to predict if not impossible. To make a resource
allocation plan only with the statistical channel and network
status information, we assume that the small scale channel
gains and residual resources are ergodic, and Ts → ∞ (such
an assumption has been justified in [15], which is valid when
Ts = 100). Then, the left hand side of (3b) approaches

lim
Ts→∞

∑Tf

j=1

∑Ts

t=1m
t
j,kR

t
j,k∆t

(a)
=

∑Tf

j=1

∑Ts

t=1m
t
j,kR̄j,k∆t

(b)
=

∑Tk

j=1 sj,kR̄j,kTs∆t,

where R̄j,k , E{Rtj,k} is the average achievable rate in
each time slot in the jth frame, (a) holds because time
average equals ensemble average, (b) comes from defining
sj,k ,

∑Ts

t=1m
t
j,k/Ts ∈ [0, 1], which is the fraction of

time resource allocated to MSk in the jth frame, and E{·}
represents expectation.

Constraint (3c) indicates that no data is transmitted to the
MS in the time slots after the completion time. This can
be relaxed to a constraint on the fraction of time resources
employed in each frame, which is

sj,k = 0,∀j > dJk,mwe, sdJk,mwe ≤ Jk,mw−dJk,mwe+1, (4)

where d·e is ceiling function.
Similarly, constraint (3d) can be relaxed as

sj,k = 0,∀j > dJe, sdJe,k ≤ J − dJe+ 1, (5)

where J , maxk Jk, which is the maximal completion time
among all the K MSs whose requests arrive in the window.

Then, the resource allocation plan, i.e., how much time
resource should be allocated to these MSs, can be made by
finding the solution from the following problem that only
needs the statistical information,

min
J,s1,...,sK

J (6a)

s.t.

Tf∑
j=1

sj,kR̄j,kTs∆t = B, (6b)∑
k∈Kj,i

sj,k ≤ 1, i = 1, . . . , Nb, (6c)

(4), (5),

where sk = [s1,k, . . . , sTf ,k]H is the time resource allocated
to MSk, (6b) guarantees that B bits can be delivered to each
user within the prediction window, and (6c) is relaxed from
(3e), which ensures the transmission time of each BS in each
frame not exceeding one frame duration.

Since for a given J , problem (6) is a linear programming,
the optimal solution of sk, k = 1, . . . ,K can be obtained if J
is feasible. Therefore, problem (6) can be equivalently decou-
pled into two subproblems. The inner subproblem is a linear
programming problem with given J . The outer subproblem
is to find the minimal J that makes the inner subproblem
feasible, which can be solved with binary search since the
number of feasible solutions increases with J .

B. Making the Transmission Plan

With the optimal resource allocation plan s∗k, the CP decides
how much time resources are allocated to MSk in each frame.
To assist each BS for scheduling users in each time slot such
that the maximal number of MSs will be satisfied, the CP
also needs to decide how many bits should be transmitted to
each MS at some critical time instance (called time-stamps)
in the prediction window, i.e., to make a transmission plan.
Since such a decision should be made without knowing future
instantaneous information, it is more reasonable to determine
the data amount ought to be accumulatively conveyed at the
time-stamps, called transmission progress.

Since (4) and (5) are the relaxed constraints of the comple-
tion time, to serve more MSs before their maximal completion
time, the time-stamps denoted as a set J = {J̃1, . . . , J̃Tf+K}
includes the ends of the frames and the maximal waiting time
of the K MSs, i.e., {1, . . . , Tf , J1,mw, . . . , JK,mw}, but with
an ascending order.

According to the resource allocation plan, the transmission
progress for MSk at the time-stamp J̃n, which is the overall
number of bits ought to be transmitted before J̃n, should be

ΛB(k, J̃n) =
∑dJ̃ne−1
j=1 s∗j,kR̄j,kTs∆t

+(J̃n−dJ̃ne+1)s∗dJ̃ne,kR̄dJ̃ne,kTs∆t. (7)

After the resource allocation and transmission plans are
made for every MS in the first time slot of the first frame,
the CP can inform the plans and trajectories of the K MSs in
the prediction window to the BSs who may pre-download or
transmit to these users, simply by broadcasting.

C. Transmission Strategy

When a MS enters the coverage of a BS who is planned
to pre-download the file to the MS, the BS starts to estimate
the instantaneous channel information of the MS, and selects
the user for transmitting in each time slot if the BS needs to
pre-download files to multiple MSs according to the resource
allocation plan. To maximize the number of satisfied MSs (i.e.,
the users whose files are completely conveyed before their
expected deadline), the BS schedules the MSs according to
their transmission plans by exploiting all its residual resources.

In the tth time slot in the jth frame when J̃n−1 < ((j −
1)Ts + t)/Ts < J̃n, the set of MSs whose files are planned
to be downloaded by the ith BS but have not caught up
the transmission progress can be expressed as K̃j,i , {k ∈
Kj,i|ΛB(k, J̃n) − (

∑j−1
l=1

∑Ts

τ=1R
τ
l,k +

∑t−1
τ=1R

τ
j,k)∆t > 0}.



Then, the ith BS selects the MS with the maximal instanta-
neous achievable rate from this MS set, i.e., according to the
following rule

k∗ = arg maxk{Rtj,k|s∗j,k > 0 and k ∈ K̃j,i}. (8)

Then, the ith BS transmits the file to the k∗th MS with MRT
using the instantaneous residual transmit power and residual
bandwidth W t

j,k and ptmax,j,k.

IV. SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
predictive resource allocation by simulations.

Consider a Nb-cell system with cell radius D = 250 m,
where Nb = 13 BSs each equipped with Nt = 6 antennas are
located along a straight line. The MSs move along three roads
of straight lines with minimum distance from the BSs as 50 m,
100 m and 150 m, respectively. Each MS requests a file with
B = 30 Mbytes. The prediction window contains Tf = 300
frames. Each frame is with duration of one second, and each
time slot is with duration ∆t = 10 ms, i.e., each frame
contains Ts = 100 time slots. To reflect the fluctuation of
traffic load, the content delivery requests of the MSs randomly
arrive only between the 101th frame and 200th frame in
the prediction window. To characterize the different resource
usage status of the BSs by serving the RT traffic in a under-
utilized network, we consider two types of BSs: busy BS with
average residual bandwidth W = 1 MHz and idle BS with
W = 10 MHz, which are alternately located along the line
as idle, idle, busy, busy, idle, idle, and so on. The maximal
transmit power of each BS is 40 W and cell-edge SNR is
set as 5 dB, where the intercell interference is implicitly
reflected. The path loss model is 36.8+36.7 log10(d), where d
is the distance between the BS and user in meter. The results
are obtained from 500 Monte Carlo trails. In each trail, the
trajectories change randomly with speed uniformly distributed
in (2.5, 12.5) m/s, the requests of the MSs arrive after the
100th frame according to Poisson process with given average
arrival rate, the small-scale channel in each time slot changes
independently according to Rayleigh fading, and the residual
bandwidth at each BS in each time slot uniformly varies with
mean value of W .

Since context information is not predicted for free, a nature
question is whether only one level of information can obtain
most of the performance gain. Since user and network level
context information should be employed jointly to predict
average data rate, the following three stratgies are simulated.
• “All Context”: The proposed predictive resource alloca-

tion with three levels of context information.
• “A Context”: The CP only knows the application level

information at the start time of the prediction window.
The CP informs the BSs who are closest to the MSs to
download the files to the MSs no matter if their requests
actually arrive with best efforts, i.e., each BS employs
all its instantaneous residual bandwidth and transmit
power to transmit to the MS who can achieve highest
instantaneous data rate in each time slot.

• “No Context”: This is the traditional non-predictive re-
source allocation, where the transmission begins right
after the requests truly arrive, again with best efforts.

To show the performance in terms of throughput and reflect
the impact of the pre-determined deadline, in Fig. 2(a) we
evaluate the maximal carrying traffic load, defined as the
maximal request arrival rate given the user satisfaction rate
(which is the number of satisfied MSs divided by the overall
number of MSs in the prediction window). We consider two
cases where 95% or 99% MSs’s files can be completely
conveyed before the deadline.

To reflect the performance in terms of user experience under
different average request arrival rates, in Fig. 2(b) we evaluate
the average waiting time, which is the average duration from
the MSs initiating requests to the actual completion time.

The results demonstrate remarkable gain of “All Context”
in supporting high traffic load and in improving the user
experience by exploiting the predicted information over “No
Context”. The maximal carrying traffic loads supported by
both “All Context” and “No Context” increase almost linearly
with the expected waiting time, i.e., the deadline subtracting
the request arrival time. When the user satisfaction rate is high
(say 99%) and the expected waiting time is 120 s, the gain
in terms of maximal carrying traffic load of “All Context”
is 120% over “A Context” and 728% over the traditional
transmission. The results in other system settings are similar,
which are not shown due to space-limitation.
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Fig. 2. Maximal carrying traffic load and average waiting time

V. CONCLUSIONS

In this paper, we investigated the predictive resource al-
location by using three level context information within a
prediction window, with which the excess resources in the
window can be exploited to boose throughput. We formulated
and solved a resource allocation planning problem to minimize
the maximal transmission completion time, and introduced a
method for making the transmission plan to help user schedul-
ing. Simulation results demonstrated that the gain of predictive
resource allocation in supporting high arrival rate and reducing
average waiting time is dramatic over non-predictive resource
allocation, and is evident over that only exploiting application
level information when the user satisfaction rate is high.
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