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Abstract—Massive multiple-input multiple-output (MIMO)
systems hold the potential to achieve high spectral efficiencies
in future wireless systems. As the number of antennas of the
base station (BS) increases, downlink channel quantization for
frequency division duplex (FDD) based systems becomes difficult,
and most of the works on massive MIMO assume time division
duplexing (TDD) to sidestep these challenges by employing
channel reciprocity. In this paper, we propose to apply the higher-
order singular value decomposition (HOSVD) of the MIMO
channel matrix and design a new limited feedback and precoding
scheme, which aims at solving the problem of high dimensionality
led by large antenna array. The proposed scheme can reduce
the complexity of channel quantization, the number of bits
for feedback and the computational complexity of precoding
matrix. Simulation results demonstrate that the performance of
the proposed scheme is nearly the same with the singular value
decomposition (SVD) based scheme in single-user MIMO and
block diagonalization zero-forcing scheme in multi-user MIMO
when using quantized channel feedback.

Index Terms—CSI quantization, limited feedback, massive
MIMO, precoding, tensor decomposition.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
are promising to meet the ever-growing data demand in 5G
cellular networks [1]. In contrast to time division duplexing
(TDD), which can obtain downlink channel state information
(CSI) by channel estimation in uplink, frequency division
duplex (FDD) systems are challenging to implement with
massive MIMO because most previous solutions for channel
estimation and quantization become impractical as the number
of antennas increases. However, most current cellular networks
are based on FDD. Considering the backward compatibility, it
is important to solve the CSI estimation and feedback problem
for FDD-based massive MIMO systems.

In massive MIMO systems, with a large number of antennas
installed within a limited space at the base station (BS),
the channels are likely to be spatially correlated. The spatial
correlation can be exploited to reduce the feedback overhead
[2]. There are some existing works dedicated to the dimension
reduction in the limited feedback. The singular value decom-
position (SVD) is employed to alleviate the dimension problem
by focusing on the dominant eigenvectors of the spatial covari-
ance matrix [3]. Considering the limitation of physical size,
placing the massive antennas in two-dimensional (2D) grid is
an effective way for its commercialization, which is termed as
“three-dimensional (3D) MIMO” [4]. Inspired by 3D-MIMO
system with uniform planar array (UPA) antennas, some works

have considered to deal with horizontal and vertical directions
independently. [5] has revealed that the 3D correlation matrix
can be well approximated by a Kronecker production of
azimuth and elevation correlations. This approximation makes
the Kronecker-product codebook possible, which is an efficient
way of quantizing the channel with UPA antennas. [6] has
shown that the Kronecker-product codebook can quantize the
channel vector without any assumption on the decomposition
of the channel correlation matrix.

When we consider the scene where the transmitter is e-
quipped with a UPA and the receiver is also equipped with
multiple antennas, it’s natural for us to think of using a tensor
to describe the channel. Then we can introduce some exist-
ing operations of tensors, such as CANDECOMP/PARAFAC
decomposition and Tucker decomposition for dimensionality
reduction. We are used to using a vector or a matrix to describe
the channel. A vector and a matrix are actually a first-order
and a second-order tensor, respectively. Hence tensor is a more
general expression and the unfolding operations of tensors
make it easy to convert from tensors to matrices. In [7], Tucker
decomposition is applied in the rotation matrix required by the
rotated codebook to avoid the problem of high dimensionality
in 3D-MIMO systems.

However, most previous works have focused on multiple-
input single-output (MISO) only. In this paper, we consider
downlink MIMO systems where users are equipped with mul-
tiple antennas and can receive multiple data streams simulta-
neously. We propose to apply the Tucker decomposition of the
MIMO channel matrix and design a new limited feedback and
precoding scheme. We can compute the Tucker decomposition
through higher-order singular value decomposition (HOSVD),
hence we call the proposed algorithm “HOSVD-based limited
feedback and precoding”. The proposed scheme can reduce
the complexity of channel quantization, the number of bits
for feedback and the computational complexity of precoding
matrix.

The paper is organized as follows. We explain the system
model and some basic knowledge of tensor in Section II. In
Section III, we propose the HOSVD-based limited feedback
and precoding. Simulations are shown in Section IV, and
conclusions follow in Section V.

Notations: Scalars are denoted by lowercase letters, vectors
by lowercase boldface letters, matrices by uppercase boldface
letters, and higher-order tensors by calligraphic letters. (·)T ,
(·)H and (·)∗ are respectively the transpose, Hermitian and



conjugate operation. The Kronecker, outer, and n-mode prod-
ucts are denoted by the symbols ⊗, ◦, and ×n, respectively.
The Frobenius norm, statistical expectation are denoted by ‖·‖
and E [·], respectively.

II. SYSTEM MODEL AND TENSOR PREREQUISITES

A. System model

We consider a massive MIMO downlink system where a BS
services K users. The BS is equipped with Nt antennas and
the user k is equipped with Nr,k antennas. The total number of
antennas at all users is Nr =

∑K
k=1Nr,k. The transmit signal

of user k is denoted by sk ∈ CLk , where Lk is the number of
streams. Pk ∈ CNt×Lk denotes the precoding matrix of user
k. The channel matrix from the BS to the user k is denoted by
Hk ∈ CNr,k×Nt . The received signal of user k can be written
as

yk =

K∑
i=1

HkPisi + nk (1)

where nk ∈ CNr,k is the additive complex Gaussian noise.

B. Channel model

Consider a clustered channel model [8]. The channel matrix
is defined as

H =

√
NtNr
NclNray

Ncl∑
i=1

Nray∑
l=1

αilar (φril, θ
r
il) at

(
φtil, θ

t
il

)H
(2)

where Ncl and Nray denote the number of clusters and the
number of rays in each cluster, and αil denotes the gain of the
lth ray in the ith cluster. We assume that αil is independent
and identically distributed (i.i.d) and follows the distribution
CN

(
0, σ2

α,i

)
and σ2

α,i is the average power of the ith cluster.
ar (φril, θ

r
il) and at (φtil, θ

t
il) represent the receive and transmit

array response vectors respectively, where φtil and θtil denote
azimuth and elevation angles of departure (AODs), φril and θril
denote azimuth and elevation angles of arrival (AOAs). We
assume that the antenna arrays in the transmitter and receiver
are uniform linear array (ULA) or UPA. The antenna spacing
is denoted by d. Nt = Ntv × Nth is the number of transmit
antennas and Nr = Nrv × Nrh is the number of receive
antennas, where Nxv and Nxh are the number of rows and
columns, respectively, x ∈ {t, r}. If Nxv = 1 or Nxh = 1, the
antenna array is ULA. Otherwise, the antenna array is UPA.
Therefore, the ith element of array response vector can be
written as

ax (φ, θ)i =
1√
Nx

exp{j 2π

λ
d (psinφxsinθx + qcosθx)} (3)

where λ is the signal wavelength, 0 ≤ p < Nxh and 0 ≤ q <
Nxv are the antenna indices.

C. Tensor prerequisites

A tensor is a multidimensional array. The order of a
tensor is the number of dimensions. For instance, X ∈
CI1×I2×···×IN is an N th order tensor whose elements are
denoted by xi1i2···iN = [X ]i1i2···iN where in ∈ {1, . . . , In},
n = 1, 2, . . . , N . Fibers are the higher order analogue of
matrix rows and columns. A fiber is defined by fixing every
index but one. The mode-n unfolding of X is denoted by
Xn and arranges the mode-n fibers to be the columns of the
matrix.

The n-mode product of X with a matrix U ∈ CJ×In is
denoted by X ×n U and is of size I1 × · · · × In−1 × J ×
In+1 × · · · × IN , whose element is

(X ×n U)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNujin (4)

The tucker decomposition is a form of higher-order principal
component analysis. It decomposes a tensor into a core tensor
multiplied by a matrix along each mode, which is

X = G ×1 A(1) ×2 A(2) · · · ×N A(N) (5)

=

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
iN=1

gi1i2···iN a
(1)
i1
◦ · · · ◦ a

(N)
iN

(6)

where A(n) ∈ CIn×In , n ∈ {1, 2, · · · , N}, are the factor
matrices and can be thought of as the principal components
in each mode. a

(n)
in

is the inth column in the A(n). The
tensor G ∈ CI1×I2×···×IN is the core tensor and the entry
gi1i2···iN shows the level of interaction between the different
components a

(1)
i1
, · · · ,a(N)

iN
[9].

III. HOSVD-BASED LIMITED FEEDBACK AND
PRECODING

In this section, we first introduce a SVD-based precoder,
which is used for comparison. Then we introduce the HOSVD-
based limited feedback and precoding and employ it for
multiuser MIMO (MU-MIMO).

A. SVD-based precoder

The SVD of the channel matrix is defined as

H = UΣVH (7)

where U is the left singular matrix, Σ is the diagonal matrix
consists of the singular values in a decreasing order, and V is
the right singular matrix. If the number of streams is L, the
SVD-based precoder is the leading L columns of V, weighted
by water-filling on the corresponding singular values.

B. HOSVD-based scheme

1) Tucker decomposition of channel matrix: For conve-
nience, we consider a single user first. The channel matrix is
denoted by H ∈ CNr×Nt . We can define a (M + 1)th order
tensor H ∈ CNr×

∏M
m=1Nt,m and H is the mode-1 unfolding



of H, i.e., H = H(1), where Nt =
∏M
m=1Nt,m. The Tucker

decomposition of H can be written as

H = G ×1 B×2 A(1) ×3 A(2) · · · ×M+1 A(M) (8)

=

Nr∑
i=1

Nt,1∑
j1=1

· · ·
Nt,M∑
jM=1

gij1···jM bi ◦ a
(1)
j1
◦ · · · ◦ a

(M)
jM

(9)

where G ∈ CNr×
∏M

m=1Nt,m is the core tensor, B ∈ CNr×Nr

and A(m) ∈ CNt,m×Nt,m , m ∈ {1, 2, · · · ,M}, are all unitary
matrices. bi denotes the ith column of B and a

(m)
jm

denotes
the jmth column of A(m). The mode-1 unfolding of H can
be written as

H = BG(1)

(
A(M) ⊗A(M−1) ⊗ · · ·A(1)

)T
(10)

=

Nr∑
i=1

Nt,1∑
j1=1

· · ·
Nt,M∑
jM=1

gij1···jM bi

(
a
(M)
jM
⊗ · · · ⊗ a

(1)
j1

)T
(11)

where G(1) is the mode-1 unfolding of G.
We can compute the Tucker decompositon of H through

HOSVD, in which we set B as the left singular matrix of
H(1) and A(m) as the left singular matrix of H(m+1), m ∈
{1, 2, · · · ,M}. Additionally, we can compute G by

G = H×1 BH ×2

(
A(1)

)H
×3

(
A(2)

)H
· · · ×M+1

(
A(M)

)H
(12)

Here, we need to compute A(m), m ∈ {1, 2, · · · ,M}.
This needs M SVD operations. The computational com-
plexity of SVD of A(m) is O (NrNtNt,m). Hence the
computational complexity of the M SVD operations is
about O

(
NrNt

∑M
m=1Nt,m

)
. In the SVD-based algorithm,

the computational complexity of SVD of H ∈ CNr×Nt

is O
(
N2
rNt

)
. Hence the computational complexity of the

HOSVD operation is comparable with the SVD-based algo-
rithm.

2) CSI quantization: As is mentioned in Section II-C, the
Tucker decomposition is a form of higher-order principal
component analysis. B and A(m), m ∈ {1, 2, · · · ,M}, are
the factor matrices and can be thought of as the principal
components in each mode. Hence most of the channel power is
contained in some of the columns of the factor matrices. Con-
sidering (10), if the number of streams is L, we plan to choose
the L leading columns of

(
A(M) ⊗A(M−1) ⊗ · · · ⊗A(1)

)∗
to

quantize and feedback as CSI. If we denote one of the columns
as
(
a
(M)
tM ⊗ · · · ⊗ a

(1)
t1

)∗
and use it as the precoding vector,

then we can obtain the equivalent channel

H
(
a
(M)
tM ⊗ · · · ⊗ a

(1)
t1

)∗
=
Nr∑
i=1

Nt,1∑
j1=1

· · ·
Nt,M∑
jM=1

gij1···jMbi

(
a
(M)
jM
⊗· · ·⊗a

(1)
j1

)T(
a
(M)
tM ⊗· · ·⊗a

(1)
t1

)∗
(13)

=
Nr∑
i=1

Nt,1∑
j1=1

· · ·
Nt,M∑
jM=1

gij1···jMbi

{[(
a
(M)
jM

)T(
a
(M)
tM

)∗]
⊗· · ·⊗

[(
a
(1)
j1

)T(
a
(1)
t1

)∗]}
(14)

=

Nr∑
i

git1···tM bi (15)

We can obtain (13) by replacing H with (11). If
A,B,C,D are square matrices such that the product-
s AC and BD exist, then (A⊗B) (C⊗D) exists and
(A⊗B) (C⊗D) = AC ⊗ BD. For this reason, we can
obtain (14) from (13). We choose the L leading columns of(
A(M) ⊗A(M−1) ⊗ · · · ⊗A(1)

)∗
according to the power of

each column corresponding equivalent channel. From (15), we
can obtain

‖H
(
a
(M)
tM ⊗ · · · ⊗ a

(1)
t1

)∗
‖2 =

Nr∑
i=1

|git1···tM |2 (16)

Therefore, ‖H
(
a
(M)
tM ⊗ · · · ⊗ a

(1)
t1

)∗
‖ equals to the norm of

the
(
t1 +

∑M
u (tu − 1)

∏u−1
v=1 Nt,v

)
th column of G(1).

Hence, we need to compute the norm of each column of
G(1) then sort them in decreasing order. The largest L norms
are denoted by {λ1, λ2, · · · , λL}, and {cl, l = 1, · · · , L} are
the corresponding column indexes. Additionally, cl is corre-
sponding to the tlmth column of A(m), m ∈ {1, 2, · · · ,M}
and they meet the following equation:

cl = tl1 +

M∑
u=2

(
tlu − 1

) u−1∏
v=1

Nt,v (17)

To know which columns of A(m) need to be quantized, we
compute tlm from (17) as

tl1 =
(
cl − 1

)
%Nt,1 + 1 (18)

tlm =

(
cl − tl1 −

m−1∑
u=2

(
tlu − 1

) u−1∏
v=1

Nt,v

)
%

m∏
v=1

Nt,v

m−1∏
v=1

Nt,v

+ 1

(19)

where m ∈ {2, · · · ,M} and % is the modulo operator.
We use codebooks to quantize a

(m)

tlm
, where m ∈

{1, 2, · · · ,M} and l ∈ {1, 2, · · · , L}. For instance, we can
adopt DFT codebooks. For a

(m)

tlm
, the length of codeword we

need equals to Nt,m. For the SVD-based algorithm, the length
of codeword is Nt. As is mentioned above, Nt =

∏M
m=1Nt,m,

hence Nt,m < Nt for m ∈ {1, 2, · · · ,M} and the codeword
length needed reduces.

3) Feedback: As is mentioned above, we use codebooks to
quantize {a(1)

t11
, · · · ,a(M)

t1M
}, · · · , {a(1)

tL1
, · · · ,a(M)

tLM
} then get the

index groups
(

CI
(1)

t11
, · · · ,CI

(M)

t1M

)
, · · · ,

(
CI

(1)

tL1
, · · · ,CI

(M)

tLM

)
,

in which CI(m) denotes the codebook adopted by A(m), CI
(m)

tlm

denotes the codeword index corresponding to a
(m)

tlm
. The user

sends the index groups to the BS in the feedback link as CSI.
To explain why the feedback bits reduce, we consider a

simple example, where M = 2 and L = 4. Here we need
to quantize {a(1)

t11
,a

(2)

t12
}, {a(1)

t21
,a

(2)

t22
}, {a(1)

t31
,a

(2)

t32
}, {a(1)

t41
,a

(2)

t42
}.



If a
(1)
1 and a

(1)
2 are the leading two left singular vectors of

A(1), a
(2)
1 and a

(2)
2 are the leading two left singular vec-

tors of A(2), the four columns chosen from
(
A(2) ⊗A(1)

)∗
are usually composed of

(
a
(2)
1 ⊗ a

(1)
1

)∗
,
(
a
(2)
1 ⊗ a

(1)
2

)∗
,(

a
(2)
2 ⊗ a

(1)
1

)∗
and

(
a
(2)
2 ⊗ a

(1)
2

)∗
. Hence we just need to

quantize a
(1)
1 ,a

(1)
2 ,a

(2)
1 and a

(2)
2 . This means that there are

some overlaps in {t11, t21, t31, t41} and {t12, t22, t32, t42}. By taking
advantage of this, the proposed scheme can reduce the feed-
back bits.

4) Precoding in SU-MIMO: The codewords corresponding
to the feedback codeword index groups can be denoted by(
cw

(1)

t11
, · · · , cw

(M)

t1M

)
, · · · ,

(
cw

(1)

tL1
, · · · , cw

(M)

tLM

)
. Therefore,

the precoding matrix can be written as

P = [p1 p2 · · · pL]
∗ (20)

where

pl = cw
(M)

tlM
⊗ · · · ⊗ cw

(1)

tl1
(21)

If we use the water-filling to allocate power among data
streams, the precoding matrix becomes

P = [p1 p2 · · · pL]
∗

Λ
1
2 (22)

where Λ is a diagnal matrix, the optimal power loading coeffi-
cients in Λ are found using water-filling on {λ1, λ2, · · · , λL}.

5) Precoding in MU-MIMO: Now, we employ the
HOSVD-based precoder in MU-MIMO. The data rate of user
k can be written as

Rk = log2|I +
Es,kHkPkP

H
k HH

k

N0I +
∑
j 6=k Es,jHkPjPH

j HH
k

| (23)

where Hk and Pk denote the channel matrix and precoding
matrix of user k respectively, Es,k = E{sksHk }, and N0 is the
power of noise. In order to increase Rk, we need to reduce
the inter-user interference, i.e.,

∑
j 6=k Es,jHkPjP

H
j HH

k .
We assume that each user in the MU-MIMO system adopts

the HOSVD-based scheme. Since most of the channel power is
contained in the directions of the precoding matrix’s columns,
we can choose users whose precoding matrices are approxi-
mately orthogonal to reduce the inter-user interference.

If the users apply DFT codebooks in a limited feedback sys-
tem, the BS will receive the codeword index groups sent from
different users. The index groups sent from user k are denot-

ed by
(

CI
k,(1)

t11
, · · · ,CI

k,(M)

t1M

)
, · · · ,

(
CI

k,(1)

t
Lk
1

, · · · ,CI
k,(M)

t
Lk
M

)
.

Then choosing users whose precoding matrices are approx-
imately orthogonal means that choosing users whose index
groups do not overlap. More specifically, the index groups
of user k1 and k2 do not overlap means that each of the
Lk2 index groups of user k2 is different from all of the
Lk1 index groups of user k1. The ath index group of user
k1 and the bth index group of user k2 are different means
that the corresponding elements in

(
CI

k1,(1)
ta1

, · · · ,CI
k1,(M)
taM

)
and

(
CI

k2,(1)

tb1
, · · · ,CI

k2,(M)

tbM

)
are different at least in one

Fig. 1. The percentage of the channel power contained in the directions of
the column vectors of the precoding matrices generated by SVD and HOSVD
based algorithms as a function of the number of streams L.

element. This guarantees that a
k1,(M)
taM

⊗ · · · ⊗ a
k1,(1)
ta1

and

a
k2,(M)

tbM
⊗ · · · ⊗ a

k2,(1)

tb1
are orthogonal.

The precoding matrix used by the BS can be written as

P = [P1, · · · ,PK ]Λ
1
2 (24)

where Pk is the precoding matrix of user k and the diagnal
elements of Λ are the power loading coefficients.

Block diagonalization zero-forcing (BD-ZF) [10] is a gen-
eralization of channel inversion techniques when there are
multiple antennas at each receiver. If we apply BD-ZF at
BS, it will need two SVD operations for each user. The
first SVD operation is to find the null space of the matrix
formed by stacking all the other users’ channel matrices
together. The second SVD operation is to find the solution
that maximizes sum capacity for the system under the zero-
interference constraint. The proposed HOSVD-based scheme
does not need any SVD operation and only need some simple
matrix multiplication operations. Hence the computational
complexity at BS will reduce.

Remarks: We describe the channel using a (M + 1)th order
tensor above. M is a variable parameter. When we choose
the value of M , we need to consider multiple factors such as
the form and size of the transmit antenna array, the length of
codewords available, the performance expected, the degree of
spatially correlation of the channel and so on. For example,
the transmitter is equipped with a 8×8 UPA and the length of
codewords is 8, hence we can set M = 2 and Nt,1 = Nt,2 = 8.
If a higher sum rate is required, we can choose a smaller M .
If a fewer feedback bits is required or the degree of spatially
correlation of the channel is high, we can choose a larger M .

IV. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
scheme. We assume that the BS is equipped with a UPA with
8×8 antenna elements. Each user is equipped with a 2×2 UPA.
The antenna spacing is equal to half of the signal wavelength.
The channel parameters are given by Ncl = 8, Nray = 10
and σ2

α,i = 1. The azimuth and elevation AoDs and AoAs



Fig. 2. The data rate achieved by SVD and HOSVD based schemes for a
single user as a function of the number of streams using unquantized and
DFT codebooks.

Fig. 3. The average feedback bits of SVD and HOSVD based schemes using
DFT codebooks.

follow the Laplacian distribution with uniformly distributed
mean angles. Specifically, the central AODs of each cluster
in azimuth and elevation follow the uniform distribution, the
range of which is u degrees. The central AOAs of each
cluster in azimuth and elevation follow the uniform distribution
varying from 0◦ to 360◦. The angular spread of rays in each
cluster is s degrees. The parameters in HOSVD-based scheme
are given by M = 2, Nt,1 = Nt,2 = 8.

First, we simulate a single user case. We consider perfect
CSI and use the SVD-based scheme as a comparison. Fig 1
shows the percentage of the channel power contained in the
directions of the precoding matrices’ column vectors, i.e., p =∑L

l=1 λ
2
l

tr{HHH} , as a function of the number of streams L. A larger
p means that more channel power is utilized. It also means
that the potential interference that a user may cause to others
is smaller in a MU-MIMO system. We can see that when u
and s are small, the value of p achieved by HOSVD is close
to SVD. When u and s increase, the gap between the two
algorithms widens.

Fig 2 compares the data rate R as a function of L using
unquantized and quantized codebooks, respectively. The SNR
is 30dB, u = 30, s = 7.5. We choose the power loading
coefficients by water-filling. For quantized codebooks, we use

Fig. 4. The sum rate as a function of the number of users in a MU-MIMO
system with L = 4.

Fig. 5. The sum rate as a function of the number of users in a MU-MIMO
system with L = 2.

6 bits DFT codebook for SVD precoder and 3 bits DFT code-
book for HOSVD precoder. We can see that for unquantized
codebooks, the perfomance of HOSVD is worse than SVD.
However, when using DFT codebooks, the performance gap
narrows, even nearly disappers. Fig 3 compares the average
feedback bits of the two schemes using DFT codebooks.
When transmitting multiple streams, the average feedback
bits of HOSVD is less than SVD. When using quantized
codebooks, the codeword length needed by SVD is limited
by the number of transmit antennas, while for HOSVD, we
can change the codeword length by adjusting M and Nt,m,
m ∈ {1, 2, · · · ,M}.

Fig 4 and Fig 5 compare the sum rate R as a function of
the number of users K in a MU-MIMO system. We simulate
the proposed HOSVD-based scheme and BD-ZF scheme.
“BD-ZF1” and “BD-ZF2” refer to the BD-ZF scheme using
reconstructed channel with exact and quantized CSI feedback,
respectively. The reconstructed channel matrix of a single user
can be written as

H̃ = Σ[h̃1, · · · , h̃L]T (25)

h̃l = a
(M)

tlM
⊗ · · · ⊗ a

(1)

tl1
(26)



where Σ is a diagonal matrix whose diagonal elements are
{λ1, λ2, · · · , λL}. For quantized CSI feedback, a

(m)

tlm
is re-

placed by cw
(m)

tlm
. We choose K users from 100 users located

randomly using the scheduling method described in Section
III-B5. The reconstructed channel matrix of the K users can
be written as

H̃ = [H̃1, · · · , H̃K ]T (27)

where H̃k is the reconstructed channel matrix of user k.
“HOSVD1” and “HOSVD2” refer to the HOSVD-based
scheme using exact and quantized CSI feedback. We assume
the numbers of each user’s streams are identical and equal
to L. L equals to 4 and 2 for Fig 4 and Fig 5 respectively.
We set parameters as u = 30, s = 7.5, the cell radius
is 250m, the SNR of users in cell edge is 5dB. We use
DFT codebooks to quantize CSI, and use the power loading
coefficients by waterfilling among all streams of the chosen
users. We can see that the performance of the proposed scheme
with quantized CSI, i.e., “HOSVD2”, and the BD-ZF scheme
using reconstructed channel with quantized CSI, i.e., “BD-
ZF2”, are nearly the same.

V. CONCLUSIONS

We have designed a novel limited feedback and precoding
scheme for massive MIMO systems by introducing HOSVD.
The scheme can be employed in MU-MIMO easily through
a simple user scheduling method. The proposed scheme can
reduce the length of codewords hence is able to reduce the
complexity of channel quantization and the number of bits for
feedback. It can also reduce the computational complexity of
precoding matrix at BS. Simulation results demonstrated that
the performance of the proposed scheme is nearly the same
with the SVD-based scheme in SU-MIMO and BD-ZF scheme
in MU-MIMO using quantized CSI feedback.
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