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Abstract— Design of equalizers and spread-spectrum modes or
code allocation schemes is crucial for achieving good performance
multi-code multiple access systems. In this paper, a symbol-
level frequency domain equalizer and spread-spectrum mode
are jointly designed to maximize the diversity gain with low
complexity. Since the proposed transceiver scheme is independent
of the orthogonal codes, it can be applied to direct sequence
code division multiple access (DS-CDMA), multi-carrier CDMA
(MC-CDMA) and orthogonal frequency division multiple access
(OFDMA) systems. Simulation results are provided which vali-
date the theoretical analysis.

I. INTRODUCTION

Orthogonal multi-code multiple access systems are widely
applied in mobile and personal communication networks
thanks to their plentiful merits, such as high spectral efficiency,
high flexibility to tradeoff the diversity and multiplexing
gain, less multiple access interference (MAI) by using the
orthogonal codes, and so on.

A multi-code system with M orthogonal codes can support
M active users. When the system is not fully loaded, i.e., the
number of active users K < M , the system will have the
spreading gain N = M/K. When different codes are selected
for transmitting, different level of MAI will be introduced in
the received signal.

The system performance can be improved either by allocat-
ing the spreading codes in the transmitter [1–3] or by designing
multi-user detection algorithms in the receiver [4,5], which are
often referred to as equalizers in downlink systems [6–9].

In the transmission scheme design, [1] gives a code alloca-
tion searching procedure to minimize the maximal MAI, [2]
proposes a code allocation scheme for MC-CDMA systems
employing Walsh codes, and [3] selects codes with known
channel state information. These approaches need to calculate
the MAI or error probability. Moreover, their results are
obtained by exhausting search, which depend on the features of
orthogonal codes and the equalization algorithms. In contrast,
we optimize the code allocation scheme by investigating the
diversity gain provided by the spread-spectrum mode, which
can reflect the relationship between the channel power spectra
before and after de-spreading in this paper. As a result,
the designed scheme is independent of codes and easy to
implement.

In the receiver side, since linear chip-level equalizers equal-
ize multipath channel (or equivalently whiten the received
signal) directly, they will degrade the performance due to

neglecting the correlation existed among chips. Linear symbol-
level equalizers exploit this correlation by de-spreading before
whitening filtering thus can achieve more diversity gain and
outperform the chip-level equalizers [4]. These equalizers
can be implemented in time or frequency domain, which is
respectively referred to as time domain equalizers (TDEs) or
frequency domain equalizers (FDEs). Symbol-level TDEs are
available for both single-code systems (such as DSSS systems)
and multi-code systems, but their huge complexity is unaccept-
able with the increasing bandwidth and date rate [5]. FDEs
are well-known to be implemented with one-tap equalization
using Fourier transforming [6–9]. If a one-tap symbol-level
FDE is available, it can achieve good performance meanwhile
and meet the low-cost and low-power demands for mobile
terminals in downlink systems. However, existing symbol-
level FDEs can only be applied to single-code spread-spectrum
systems [6]. How to design a one-tap symbol-level FDE is still
unsolved for multi-code multiple access systems. This is why
many systems have to employ chip-level FDEs to trade-off
complexity with performance [8, 9].

The main contributions of this paper are presenting a linear
symbol-level FDE with weighted minimum mean square error
(WMMSE) and designing a spread-spectrum mode for orthog-
onal multi-code multiple access systems. The analysis and
simulation show that the proposed spread-spectrum mode can
provide the maximal diversity gain. With this spread-spectrum
mode, the presented symbol-level FDE can outperform the
chip-level FDE with the same complexity. By choosing a key
parameter in the WMMSE symbol-level equalizer, which is
the interference weighting factor ρ, the WMMSE-FDE with
the optimal ρ can achieve the maximal output weighted signal
to noise plus interference ratio (WSINR) under equal power
control, while the WMMSE-FDE with ρ → ∞ becomes a zero
forcing (ZF) FDE and can provide a good trade-off between
performance and complexity under unequal power control.

This paper is organized as follows. Section II describes the
signal models. Section III presents the designed symbol-level
FDE and the spread-spectrum mode. Section IV analyzes the
performance of the presented transceiver scheme. Simulation
results are shown in Section V, and conclusions are provided
in the last section.

II. SIGNAL MODELS

Consider a downlink multi-code system using M orthogonal
codes X = [x0, · · · ,xM−1], each code is M -length. For
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transmitting the symbols for K users d = [d0, · · · , dK−1]T

in each symbol duration Ts, the transmit signal from the base
station is

s(t) =
M−1∑
i=0

sig(t − iTc) =
K−1∑
k=0

√
Ekdk

M−1∑
i=0

ci,kg(t − iTc),

(1)
where Tc = Ts/M is the chip duration, g(t) is the pulse
waveform. The chip vector s = [s0, · · · , sM−1]T can also be
represented as

s = CAd, (2)

where A = diag{√E0, · · · ,
√

EK−1} denotes the energy of
the symbols, and the M × K matrix C = [c0, · · · , cK−1]T

represents the employed ‘spreading codes’ in the transmitter.
We use an M × K matrix Q to describe the relationship
between C and X as C = XQ, i.e., ci =

∑M−1
j=0 Qijxj . The

nonzero element Qij indicates that code xj will be selected to
transmit symbol di, so Q is called the code allocation matrix.

For a desired user k, after a pulse waveform matched
filtering and chip-rate sampling in one symbol duration, the
received vector yk = [yk,0, · · · , yk,M−1]T can be obtained as

yk = Hks + nk = HkCAd + nk, (3)

where nk is the zero mean white Gaussian noise with variance
E{nknH

k } = σ2
nI, in which σ2

n = N0/2 is the two-sided power
spectrum density. Hk is the multipath channel matrix, and it is
well known that Hk becomes a circulant matrix by inserting a
cyclic prefix at the transmitter and removing it at the receiver,

Hk =




h0 0 hL· · ·h1

...
. . .

. . .
. . .

...
hL−1· · ·h0 0 hL

. . .
. . .

. . .
0 hL· · ·h0




M×M

,

where the number of resolvable paths is L + 1 and hl is the
channel coefficient of the lth path.

Hk can be decomposed as FHΛkF, where Λk =
diag{Λk,0, · · · ,Λk,M−1}, the element of its diagonals Λk,i =∑L

l=0 hle
−j2πil/M , i ∈ [0,M − 1], is the frequency do-

main channel response of the ith ‘subcarrier’. F is the
discrete Fourier transform matrix of size M and Fmn =
1/
√

Me−j2πmn/M ,m, n ∈ [0,M − 1], j =
√−1.

III. SYMBOL-LEVEL FDE AND SPREAD-SPECTRUM MODE

DESIGN

In this section, a symbol-level FDE and the corresponding
spread-spectrum mode for multi-code systems will be investi-
gated. To make the basic idea of the proposed scheme be easily
understood, conventional algorithms will be briefly reviewed.

A. Conventional Equalizers

For the kth user, the estimation of desired symbol dk

obtained by a linear equalization is d̂k = wHyk. By using

the notation of noise-suppression factor [10], the symbol-level
and chip-level TDEs with WMMSE can be obtained as

wH
S =

√
E−1

k vH
k

(
ΨS + σ2

n/ρA−2
)−1

CHHH
k (4)

and

wH
C =

√
E−1

k vH
k CH (ΨC + NβIK)−1 HH

k , (5)

where ΨC = HH
k Hk and ΨS = CHHH

k HkC are the
correlation matrices of the ‘multipath channel’ and the
‘equivalent channel’ after de-spreading, respectively. vk =
[v0, · · · , vK−1]T is a vector of length K and vi = δ(i−k), in
which δ(n) is a Dirac function. N = M/K is the spreading
gain, i.e., processing gain. ρ > 0 is the interference weighing
factor which can adjust the capability of suppressing MAI in
the equalizer. β = σ2

n/(Ekρ) is the reciprocal of the weighted
signal-to-noise ratio (SNR) of the received signals.

Substitute Hk = FHΛkF into (5), then we obtain a chip-
level FDE as

wH
C =

√
E−1

k vH
k CHFH (∆k + NβIM )−1 ΛH

k F, (6)

where ∆k = ΛH
k Λk = diag{∆k,0, · · · ,∆k,M−1}, and the

diagonal elements represent the power spectrum of channel
response.

It is shown by comparing (5) with (6) that the FDE avoids
the complicated matrix inversion operation by Fourier trans-
forming. The computational complexity can then be reduced
from o(M3) to o(MlogM).

By utilizing eigen-decomposition ΨC = FH∆kF, the chip-
level FDE becomes a one-tap equalizer by Fourier trans-
forming. However, due to the influence of codes C on the
de-spreading, eigen-decomposition for ΨS = CHHH

k HkC
is difficult except for single-code systems where ΨS keeps
circulant [6]. Therefore, the key issue to develop a one-tap
symbol-level FDE for multi-code systems is to find a simple
way to decompose ΨS .

B. One-tap Symbol-level FDE

The correlation matrix of the ‘equivalent channel’ after de-
spreading can be represented as ΨS = GH∆kG, where G =
FC stands for the employed orthogonal codes in frequency
domain. Since each M × K matrix G can be decomposed
as G = PU, where U is a K × K unitary matrix and P
is an arbitrary M × K matrix, the correlation matrix of the
‘equivalent channel’ becomes

ΨS = UHPH∆kPU. (7)

If Πk = PH∆kP is a diagonal matrix, Πk and U will be
the eigenvalue and eigenvector matrices of ΨS . As a result, a
low-complexity symbol-level FDE can be obtained as

wH
S =

√
E−1

k vH
k UH (Πk + βIK)−1 PHΛH

k F. (8)

The element on ith row and jth column of Πk is
Πk,ij =

∑M−1
m=0 PmiPmj∆k,m = pT b,

where pij = [P0iP0j , P1iP1j , · · · , PM−1iPM−1j ]T and b =
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[∆k,0,∆k,1, · · · ,∆k,M−1]T . Keeping Πk diagonal for each
b is equivalent to ensuring pij = 0,∀i �= j, i, j ∈ [0,K −
1]. Therefore, Πk will become diagonal if ηi, the number of
nonzero elements in the ith row of P, satisfies

ηi ≤ 1, i ∈ [0,M − 1]. (9)

It is very difficult to decompose G into a unitary matrix
U and a matrix P satisfying (9). However, we can implement
such a decomposition by designing the code allocation matrix
as Q = ΓHPU, where the M × M matrix Γ = FX denotes
the available codes in frequency domain. When we select
U = ΓB as a K × K subset of orthogonal codes Γ, the
code allocation matrix becomes Q = ΓHPΓB . This means
that the one-tap symbol-level FDE can be obtained by a joint
design of the transmitter and receiver.

By utilizing G = PΓB , the correlation matrix of the ‘equiv-
alent channel’ is decomposed as ΨS = ΓH

B PH∆kPΓB ,
where ΓB represents the code set after de-spreading and Πk =
PH∆kP is the power spectrum of the ‘equivalent channel’
after de-spreading. Since P reflects the relationship between
the channel power spectra before and after de-spreading, it
is called the spread-spectrum mode matrix. Moreover, since
Q = ΓHPΓB , we can see that allocating codes is equivalent
to selecting the spread-spectrum mode.

It’s shown by comparing (8) with (6) that the complexity of
symbol-level FDE is the same as that of the chip-level FDE. By
exploiting the correlation between chips, the symbol-level FDE
combines the power spectrum of the frequency selective fading
channel directly, while the chip-level FDE combines that of
the ‘equivalent channel’ after the whitening filter. Therefore,
the symbol-level FDE can obtain more diversity gain and
outperform the chip-level FDE.

C. Spread-Spectrum Mode Design

In the previous subsection, we have designed a spread-
spectrum mode P to reduce the complexity of the symbol-level
equalization. Now we will study how to improve the system
performance through optimizing the mode P.

According to (8), we know that the spread-spectrum system
with the orthogonal codes G = PΓB and channel power
spectrum ∆k is equivalent to the nonspread-spectrum system
with the orthogonal codes ΓB and channel power spectrum
Πk = PH∆kP. Since Πk is independent of ΓB , it can
reflect the provided diversity gain of each spread-spectrum
mode sufficiently. Thus, we can design the optimal mode by
analyzing and comparing Πk, and determine the correspond-
ing code allocation scheme by Q = ΓHPΓB in the next step.

To simplify the analysis and description, several typical
modes are compared in the case that spreading gain N =
M/K is an integer. They can be expressed as follows,

Ξ = IK

⊗{[1, 0, · · · , 0]T }N×1,
Σ = {

√
N−1[1, 1, · · · , 1]T }N×1

⊗
IK ,

Ξ′ = {[1, 0, · · · , 0]T }N×1

⊗
IK

and
Σ′ = IK

⊗{
√

N−1[1, 1, · · · , 1]T }N×1,
where the operator

⊗
denotes the Kronecker tensor product.

Fig. 1. Several typical spread-spectrum Modes (N = 4, K = 3).

Fig. 2. The process of de-spreading (N = 4, K = 3).

After de-spreading, the power spectra of the corresponding
‘equivalent channel’ become

ΠΞ = diag
{
∆k,0,∆k,N , · · · ,∆k,N(K−1)

}
,

ΠΣ = diag
{

1
N

∑N−1
i=0 ∆k,iK , · · · , 1

N

∑N−1
i=0 ∆k,iK+K−1

}
,

ΠΞ′ = diag {∆k,0,∆k,1, · · · ,∆k,K−1}
and
ΠΣ′ = diag

{
1
N

∑N−1
i=0 ∆k,i, · · · , 1

N

∑N−1
i=0 ∆k,(K−1)N+i

}
,

respectively.
Figure 1 displays the value of these matrices with N =

4,K = 3. Figure 2 illustrates the relationship between the
channel power spectra before and after de-spreading with these
modes. As shown in Fig. 2, the modes P = Ξ and P = Ξ′

only directly extract the 1/N of the spectrum of ∆k, hence
there is no diversity gain. However, the modes P = Σ and
P = Σ′ combine the whole spectrum of ∆k by N times
‘overlapping’, thus they can provide more diversity gain than
the two former modes. The mode P = Σ′ combines the
adjacent ‘subcarriers’, while the mode P = Σ combines the
‘subcarriers’ with the maximal distance. Due to the correlation
of adjacent ‘subcarriers’, the mode P = Σ provide more
diversity gain than the mode P = Σ′. The mode ‘P = Σ’
utilizes the whole bandwidth and maximizes the distance
between the combined ‘subcarriers’, so it can provide the
maximal diversity gain.

Base on Q = ΓHPΓB and P = Σ, we can design the
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TABLE I

CODE ALLOCATION MATRICES Q FOR DIFFERENT ORTHOGONAL CODES X

Codes X/Γ Sub-codes ΓB P = Σ Examples
M × M K × K M × K

X = I, Γ = F ΓB = ΣHΓΞ Q = Ξ DSSS [9]
X = FHT, Γ = T ΓB = ΣHΓΞ Q = Ξ MC-CDMA [2]
X = T, Γ = FT ΓB = ΣHΓΣ Q = Σ DS-CDMA [4]
X = FH , Γ = I ΓB = ΣHΓΣ Q = Σ OFDMA

code allocation scheme with maximal diversity gain easily. In
Table I, we take several typical orthogonal codes as examples
and list the corresponding code allocation schemes, where T
denotes the ‘Paley-order’ Walsh code.

IV. PERFORMANCE ANALYSIS

In this section, we will analyze the performance of the
presented transceiver scheme with the metric of WSINR.
Since the impact of interference and noise on performance
is different, by introducing a weighting factor ρ∗ on the
interference, the WSINR can reflect the system performance
more accurately than SINR.

Rewrite the linear estimation of the desired signal as
d̂k = zHd + wHnk,

where zH = wHHkCA. The ith element of z and w, zi

and wi can reflect the influence of di and ni on dk. Hence
the power of signal, interference and noise of user k are
Ps,k = |zk|2, PI,k =

∑K−1
i=0,i�=k |zi|2 = zHz − |zk|2 and

Pn,k = σ2
nwHw, respectively. Then the output WSINR after

equalization is

γk =
Ps,k

ρ∗PI,k + Pn,k
=

|zk|2
ρ∗(zHz − |zk|2) + σ2

nwHw
. (10)

The performance of systems with various orthogonal codes
X, spread-spectrum modes P and equalizers w can be eval-
uated and compared with (10). We can show after some
manipulations that the symbol-level TDE with ρ = ρ∗ can
achieve the maximal WSINR. We omit the proof due to the
lack of space.

Under equal power control, it is shown from (8) that the
symbol-level FDE is equivalent to the symbol-level WMMSE-
TDE and also can achieve the maximal WSINR by choosing
ρ = ρ∗. The maximal WSINR is

γk =
Ek

σ2
n

vH
k ΓH

B

(
PH∆kP + β∗IK

)−1
PH∆kPΓBvk

vH
k ΓH

B (PH∆kP + β∗IK)−1 ΓBvk

,

(11)
where β∗ = σ2

n/(Ekρ∗).
Under unequal power control, the symbol-level FDE can

not achieve the maximal WSINR any more. With ρ → ∞, the
WMMSE-FDE becomes a ZF-FDE and its WSINR is

γk =
Ek

σ2
n

1

vH
k ΓH

B (PH∆kP)−1 ΓBvk

, (12)

so it is obvious that the symbol-level ZF-FDE mitigates the
influence of noise enhancement by de-spreading and elim-
inates MAI thoroughly. Furthermore, it doesn’t require the

8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

B
E

R

w
S
/w

C
,N=1 WMMSE

w
S
,N=2 WMMSE

w
C

,N=2 WMMSE

w
S
,N=2 ZF

w
S
,N=4 WMMSE

w
C

,N=4 WMMSE

w
S
,N=4 ZF

WMMSE w
S

WMMSE w
C

MFB

ZF w
S

Fig. 3. BER versus Eb/N0 (Eb = Ek/2).

power estimation of other users. The symbol-level ZF-FDE
can achieve a good performance and complexity trade-off in
this case. Consequently, it can be widely applied, especially
in the systems with different requirement for the quality of
service.

V. SIMULATION RESULTS

In the simulations, we consider M = 32, equal power
control, quadrature phase-shift keying (QPSK) modulation and
independent and identically-distributed (i.i.d.) 8-path Rayleigh
fading channels with the flat power delay profile. The results
are obtained with 10000 Monte Carlo tests.

Figure 3 shows the bit error rate (BER) versus Eb/N0 with
the codes X = FHT and the mode P = Σ. Under equal
power control, the FDE is equivalent to the TDE and the
optimal value of interference weighting factor ρ = ρ∗ = 1.2,
which is obtained by simulations. The matched filter bound
(MFB), which is the performance of RAKE receiver without
interference, is also provided as reference.

As Fig. 3 shown, all the performance can be improved by
increasing the spreading gain N . When N > 1, the symbol-
level WMMSE-FDE can outperform the chip-level WMMSE-
FDE under the same N due to obtaining more diversity gain.
Though the symbol-level ZF-FDE couldn’t perform as well as
the symbol-level WMMSE-FDE with the optimal factor, the
performance gap between them decreases significantly when
N increases.

Figure 4 compares the required Eb/N0 to achieve
BER=10−3 when using different spread-spectrum modes and
orthogonal codes. The curve with the legend of ‘Flat Fading’
represents the performance obtained in the flat Rayleigh fading
channel.

The performance gap between different codes with the same
spread-spectrum mode reflects the diversity gain provided by
the orthogonal codes X, which can be evaluated from the
spectra of the ‘spreading signals’ with these codes (shown
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in Fig . 5). Each ‘spreading signal’ of systems with the codes
X = FH is a single subcarrier, so there is no diversity gain.
However, in systems employing the codes X = I/FHT,
each ‘spreading signal’ covers the whole bandwidth. Hence
the larger the bandwidth is, the larger diversity gain will be.
Even if there is no spreading gain, the diversity gain can still
be obtained by multi-code de-spreading for the orthogonal
codes [11]. As for systems with the codes X = T, each
‘spreading signal’ covers only part of the signal bandwidth, so
the diversity gain is between those of the two former codes.

The performance difference between the modes P = Σ
and P = Ξ with the same code illustrates the diversity gain
of spectrum-spread modes. The mode P = Σ provides the
maximal diversity gain, so the performance with each kind of
codes can be improved by increasing N = 32/K. However,
the mode P = Ξ itself can not provide any gain. It will even
reduce the diversity gain provided by codes. Consequently,
when N = 32/K increase, the performance will degrade
gradually and approach to that obtained in the flat fading
channel.

VI. CONCLUSION

This paper presents a spread-spectrum mode to provide the
maximal diversity gain and a one-tap symbol-level FDE for
downlink orthogonal multi-code spread-spectrum systems.

It’s shown that the spread-spectrum mode design is very
crucial for spread-spectrum systems. A good mode can im-
prove their performance, while a bad mode will even result in
a worse performance than the nonspread-spectrum systems.

With the designed spread-spectrum mode, the proposed
symbol-level FDE can outperform the chip-level FDE with
the same complexity and approach to the matched filter bound
with the increasing of spreading gain. Under the equal power
control, the symbol-level WMMSE-FDE can achieve the max-
imal WSINR with proper interference weighting factor. With
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Fig. 5. Spectra of the ‘spreading signals’ with several typical orthogonal
codes (M = 8).

unequal power control, the suboptimal symbol-level ZF-FDE
can trade off performance with complexity very well.

The designed transceiver scheme is independent of the or-
thogonal codes, so it can be applied to all kinds of orthogonal
multiple access systems, such as DS-CDMA, MC-CDMA and
OFDMA.
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