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Preface 

Array processing has played an important role in many diverse application 
areas. Most modern radar and sonar systems rely on antenna arrays or 
hydrophone arrays as an essential component of the system. Many commu- 
nication systems utilize phased arrays or multiple beam antennas to achieve 
their performance objectives. Seismic arrays are widely used for oil explo- 
ration and detection of underground nuclear tests. Various medical diagnosis 
and treatment techniques exploit arrays. Radio astronomy utilizes very large 
antenna arrays to achieve resolution goals. It appears that the third genera- 
tion of wireless systems will utilize adaptive array processing to achieve the 
desired system capacity. We discuss various applications in Chapter 1. 

My interest in optimum array processing started in 1963 when I was 

an Assistant Professor at M.I.T. and consulting with Arthur D. Little on 
a sonar project for the U.S. Navy. I derived the optimum processor for 
detecting Gaussian plane-wave signals in Gaussian noise [VT66a], [VT66b]. 
It turned out that Bryn [Bry62] had published this result previously (see also 
Vanderkulk [Van63]). My work in array processing decreased as I spent more 

time in the general area of detection, estimation, and modulation theory. 
In 1968, Part I of Detection, Estimation, and Modulation Theory [VT681 

was published. It turned out to be a reasonably successful book that has been 
widely used by several generations of engineers. Parts II and III ([VT7la], 
[VT7lb]) were published in 1971 and focused on specific application areas 
such as analog modulation, Gaussian signals and noise, and the radar-sonar 
problem. Part II had a short life span due to the shift from analog modu- 

lation to digital modulation. Part III is still widely used as a reference and 
as a supplementary text. In a moment of youthful optimism, I indicated in 
the Preface to Part III and in Chapter III-14 that a short monograph on 
optimum array processing would be published in 1971. The bibliography 
lists it as a reference, (Optimum Array Processing, Wiley, 1971), which has 

been subsequently cited by several authors. Unpublished class notes [VT691 
contained much of the planned material. In a very loose sense, this text is 

xix 



xx Preface 

the extrapolation of that monograph. 
Throughout the text, there are references to Parts I and III of Detection, 

Estimation, and Modulation Theory. The referenced material is available in 
several other books, but I am most familiar with my own work. Wiley has 

republished Parts I and III [VTOla], [VTOlb] in paperback in conjunction 
with the publication of this book so the material will be readily available. 

A few comments on my career may help explain the thirty-year delay. In 
1972, M.I.T. loaned me to the Defense Communications Agency in Washing- 
ton, D.C., where I spent three years as the Chief Scientist and the Associate 
Director for Technology. At the end of this tour, I decided for personal 
reasons to stay in the Washington, D.C., area. I spent three years as an 

Assistant Vice-President at COMSAT where my group did the advanced 
planning for the INTELSAT satellites. In 1978, I became the Chief Scientist 
of the United States Air Force. In 1979, Dr.Gerald Dinneen, the former 
director of Lincoln Laboratories, was serving as Assistant Secretary of De- 
fense for C31. He asked me to become his Principal Deputy and I spent two 

years in that position. In 1981, I joined M/A-COM Linkabit. Linkabit is the 
company that Irwin Jacobs and Andrew Viterbi started in 1969 and sold to 
M/A-COM in 1979. I started an Eastern operations, which grew to about 
200 people in three years. After Irwin and Andy left M/A-COM and started 
Qualcomm, I was responsible for the government operations in San Diego 

as well as Washington, D.C. In 1988, M/A-COM sold the division. At that 
point I decided to return to the academic world. 

I joined George Mason University in September of 1988. One of my 
priorities was to finish the book on optimum array processing. However, I 
found that I needed to build up a research center in order to attract young 

research-oriented faculty and doctoral students. This process took about six 
years. The C31 Center of Excellence in Command, Control, Communica- 

tions, and Intelligence has been very successful and has generated over $30 
million in research funding during its existence. During this growth period, 
I spent some time on array processing, but a concentrated effort was not 

possible. 
The basic problem in writing a text on optimum array processing is that, 

in the past three decades, enormous progress had been made in the array pro- 
cessing area by a number of outstanding researchers. In addition, increased 

computational power had resulted in many practical applications of opti- 
mum algorithms. Professor Arthur Baggeroer of M.I.T. is one of the leading 
contributors to array processing in the sonar area. I convinced Arthur, who 

had done his doctoral thesis with me in 1969, to co-author the optimum 
array processing book with me. We jointly developed a comprehensive out- 
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line. After several years it became apparent that the geographical distance 
and Arthur’s significant other commitments would make a joint authorship 

difficult and we agreed that I would proceed by myself. Although the final 
outline has about a 0.25 correlation with the original outline, Arthur’s col- 

laboration in structuring the original outline and commenting on the results 
have played an important role in the process. 

In 1995, I took a sabbatical leave and spent the year writing the first 
draft. I taught a one-year graduate course using the first draft in the 1996- 
1997 academic year. A second draft was used in the 1997-1998 academic 
year. A third draft was used by Professor Kristine Bell in the 19984999 
academic year. Unlike the M.I.T. environment where I typically had 40- 

50 graduate students in my detection and estimation classes, our typical 
enrollment has been 8-10 students per class. However, many of these stu- 
dents were actively working in the array processing area and have offered 
constructive suggestions. 

The book is designed to provide a comprehensive introduction to opti- 
mum array processing for students and practicing engineers. It will prepare 
the students to do research in the array processing area or to implement 

actual array processing systems. The book should also be useful to people 
doing current research in the field. We assume a background in probability 
theory and random processes. We assume that the reader is familiar with 
Part I of Detection, Estimation, and Modulation Theory [VT68], [VTOla] 
and parts of Part III [VT7lb], [VTOlb]. The first use of [VT68], [VTOla] is 

in Chapter 5, so that a detection theory course could be taken at the same 
time. We also assume some background in matrix theory and linear alge- 
bra. The book emphasizes the ability to work problems, and competency in 
MATLAB @ is essential. 

The final product has grown from a short monograph to a lengthy text. 
Our experience is that, if the students have the correct background and 
motivation, we can cover the book in two fifteen-week semesters. 

In order to make the book more useful, Professor Kristine Bell has de- 
veloped a Web site: 

http://ite.gmu.edu/DetectionandEstimationTheory/ 

that contains material related to all four parts of the Detection, Estimation, 
and Modulation Theory series. 

The Optimum Array Processing portion of the site contains: 

(i) MATLAB@ scripts for most of the figures in the book. These scripts 

enable the reader to explore different signal and interference environ- 
ments and are helpful in solving the problems. The disadvantage is 
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that a student can use them without trying to solve the problem inde- 
pendently. We hope that serious students will resist this temptation. 

(ii) Several demos that allow the reader to see the effect of parameter 

changes on beam patterns and other algorithm outputs. Some of the 
demos for later chapters allow the reader to view the adaptive behavior 
of the system dynamically. The development of demos is an ongoing 

process. 

(iii) An erratum and supplementary comments regarding the text will be 

updated periodically on the Web site. Errors and comments can be 
sent to either hlv@gmu.edu or kbellegmuedu. 

(iv) Solutions, including MATLAB@ scripts where appropriate, to many of 

the problems and some of the exams we have used. This part is pass- 
word protected and is only available to instructors. To obtain a pass- 

word, send an e-mail request to either hlv@gmu.edu or kbell@gmu.edu. 

In order to teach the course, we created a separate LATEX file con- 
taining only the equations. By using Ghostview, viewgraphs containing the 
equations can be generated. A CD-rom with the file is available to instruc- 

tors who have adopted the text for a course by sending me an e-mail at 
hlvQgmu.edu. 

The book has relied heavily on the results of a number of researchers. 
We have tried to acknowledge their contributions. The end-of-chapter bibli- 

ographies contain over 2,000 references. Certainly the book would not have 
been possible without this sequence of excellent research results. 

A number of people have contributed in many ways and it is a pleasure to 

acknowledge them. Andrew Sage, founding dean of the School of Information 
Technology and Engineering at George Mason University, provided continual 
encouragement in my writing efforts and extensive support in developing the 
C”1 Center. The current dean, Lloyd Griffiths, has also been supportive of 
my work. 

A number of the students taking my course have offered constructive 
criticism and corrected errors in the various drafts. The following deserve 

explicit recognition: Amin Jazaeri, Hung Lai, Brian Flanagan, Joseph Her- 
man, John Uber, Richard Bliss, Mike Butler, Nirmal Warke, Robert Zar- 
nich, Xiaolan Xu, and Zhi Tian suffered through the first draft that con- 
tained what were euphemistically referred to as typos. Geoff Street, Stan 
Pawlukiewicz, Newell Stacey, Norman Evans, Terry Antler, and Xiaomin 

Lu encountered the second draft, which was significantly expanded. Roy 
Bethel, Paul Techau, Jamie Bergin, Hao Cheng, and Xin Zhang critiqued 
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the third draft. The final draft was used in my Optimum Array Processing 

course during the 2000-2001 academic year. John Hiemstra, Russ Jeffers, 
Simon Wood, Daniel Bray, Ben Shapo, and Michael Hunter offered useful 

comments and corrections. In spite of this evolution and revision, there are 
probably still errors. Please send corrections to me at hlv@gmu.edu and 

they will he posted on the Web site. 

Two Visiting Research Professors, Shulin Yang and Chen-yang Yang also 
listened to the course and offered comments. Drs. Shulin Yang, Chen-yang 

Yang, and Ms. Xin Zhang composed the book in LATEX and provided im- 
portant editorial advice. Aynur Abdurazik and Muhammad Abdulla did the 
final LATEX version. Their competence and patience have been extraordi- 
nary. Joshua Kennedy and Xiaomin Lu drew many of the figures. Four 
of my graduate research assistants, Miss Zhi Tian, Miss Xiaolan Xu, Mr. I 
Xiaomin Lu, and Miss Xin Zhang worked most of the examples in various 
chapters. Their help has been invaluable in improving the book. 

A separate acknowledgment is needed for Professor Kristine Bell. She 
did her doctoral dissertation in the array processing area for Professor Yariv 

Ephraim and me, and she has continued to work with me on the text for 
several years. She has offered numerous insights into the material and into 
new developments in many areas. She also taught the two-semester course 
in 1998--1999 and developed many aspects of the material. Her development 
of the Web site adds to the pedagogical value of the book. 

Several colleagues agreed to review the manuscript and offer criticisms. 
The group included many of the outstanding researchers in the array pro- 
cessing area. Dan Fuhrmann, Norman Owsley, Mats Viberg, and Mos Kaveh 

reviewed the entire book and offered numerous corrections and suggestions. 
In addition, they pointed out a number of useful references that I had missed. 
Petre Stoica provided excellent comments on Chapters 7-10, and two of his 
students, Erik Larsson and Richard Abrhamsson, provided additional com- 
ments. Louis Scharf, Ben Friedlander, Mati Wax, and John Buck provided 

constructive comments on various sections of the book. Don Tufts provided 
a large amount of historical material that was very useful. I appreciate 
the time that all of these colleagues took from their busy schedules. Their 
comments have improved the book. 

Harry L. Van Trees 

January 2002 
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Chapter 1 

Introduction 

In Parts I, II, and III of Detection, Estimation, and Modulation Theory 

(DEMT) [VT68], [VTOla], [VT7la], [VT7lb], [VTOlb], we provide a rea- 
sonably complete discussion of several areas: 

(i) Detection theory 

In this case, we were concerned with detecting signals in the presence 
of Gaussian noise. The class of signals included known signals, signals 
with unknown parameters, and signals that are sample functions from 
Gaussian random processes. This problem was covered in Chapter I-4 
and Chapters III-1 through 111-5. 

(ii) Estimation theory 

In this case, we were concerned with estimating the parameters of 
signals in the presence of Gaussian noise. This problem was covered 
in Chapter I-4 and Chapters III-6 and 111-7. 

(iii) Modulation theory 

In this case, we were concerned with estimating a continuous waveform 
(or the sampled version of it). If the signal has the waveform in it 
in a linear manner, then we have a linear estimation problem and 
obtain the Wiener filter or the Kalman-Bucy filter as the optimum 
estimator. This problem was covered in Chapter I-6. The case of 
nonlinear modulation is covered in Chapter I-5 and Volume II. 

All of the results in the first three volumes consider signals and noises 
that could be characterized in the time domain (or equivalently, the fre- 
quency domain). In this book, we consider the case in which the signals and 
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Chapter 2 

Arrays and Spatial Filters 

2.1 Introduction 

We assume that we have a signal or multiple signals that are located in some 
region of a space-time field. We also have noise and/or interference that is 
located in some region of a space-time field. In the applications of interest 
these regions have some overlap. 

An array is used to filter signals in a space-time field by exploiting their 
spatial characteristics. This filtering may be expressed in terms of a de- 
pendence upon angle or wavenumber. Viewed in the frequency domain this 
filtering is done by combining the outputs of the array sensors with complex 

gains that enhance or reject signals according to their spatial dependence. 
Usually, we want to spatially filter the field such that a signal from a partic- 

ular angle, or set of angles, is enhanced by a constructive combination and 
noise from other angles is rejected by destructive interference. 

The design of arrays to achieve certain performance criteria involves 
trade-offs among the array geometry, the number of sensors, signal-to-noise, 
and signal-to-interference ratios, as well as a number of other factors. 

There are two aspects of array design that determine their performance as 
spatial filters. First, their geometry establishes basic constraints upon their 
operation. Line arrays can resolve only one angular component. This leads 

to a cone of uncertainty and right/left ambiguities. Circular arrays have 
different patterns than crossed or planar arrays. Frequently the geometry 
is established by physical constraints and the designer may have limited 
freedom in specifying the array geometry. 

The second aspect is the design of the complex weightings of the dat,a at 
each sensor output. The choice of these weightings determines the spatial 

17 
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filtering characteristics of the array for a given geometry. 
In this chapter we introduce the basic definitions and relationships that 

are used to analyze and synthesize arrays. Our approach is to introduce the 

concepts for an arbitrary array geometry. We then specialize the result to . 
a uniform linear array and then further specialize the result to a uniform 
weighting. In Chapter 3, we return to linear arrays and provide a detailed 
discussion of the analysis and synthesis of linear arrays. In Chapter 4, we 

study the analysis and synthesis of planar and volume arrays. 
This chapter is organized in the following manner. In Section 2.2, we 

introduce the frequency-wavenumber response function and beam pattern 

of an array. We employ wavenumber variables with dimensions of inverse 
length for a number of reasons. First, array coordinates and wavenumbers 
are conjugate Fourier variables, so Fourier transform operations are much 
simpler. Second, all the powerful properties of harmonic analysis as extended 
to homogenous processes can be used directly and the concept of an array as 
a spatial filter is most applicable. Third, angle variables specify array filter 
responses over a very restricted region of wavenumber space. While it does 

describe the response over the region for all real, propagating signals, that 
is, those space-time processes that implicitly satisfy a wave equation when 
one assigns a propagation speed and direction, there are a lot of advantages 
to considering the entire wavenumber space. The so-called virtual space, or 
wavenumber realm where real 
analysis of array performance. 

signals cannot propagate is very useful in the 

In Section 2.3, we specialize these results to a uniform linear array and 
study the characteristics of the beam pattern. 
specialize these results to the case of a uni 

leads to a beam pattern that we refer to as 
formly weighted linear array. This 
the conventional beam pattern. It 

In Section 2.4, we further 

will play a fundamental role in many of our subsequent studies. In Section 
2.5, we discuss array steering and show how it affects the beam pattern 
in wavenumber space and in angle space. In Section 2.6, we define three 

irnportant performance measures: 

(i) Directivity 
(ii) Array gain 

(iii) Tolerance function 

These performance measures are utilized throughout our discussion. 
The discussion in the first six sections assumes that the sensors are 

isotropic (i.e., their response is independent of the direction of arrival of the 
signal). In Section 2.7, we introduce the concept of pattern multiplication 
to accommodate non-isotropic sensors. In Section 2.8, we consider the case 



of’ a linear 

are related 

aperture and show 
. In Sect i .on 2.9, we 

how 

give 

the performance of aper tures 

a brief summary of our devel 

and arrays 

.opment . 

In Table 2.1, we have summarized the structure of the chapter. The 
various terms are defined at appropriate points in the chapter.’ 

The material in this chapter can be termed classical array theory, 

and it has been discussed in a number of books and articles. References 
that we have utilized include Kraus [Kra88], Balanis [Ba182], Elliott [Ell81], 
Johnson [Joh93], Milligan [Mil85], Ziomek [Zio95], Skolnik [Sko80], Stutzman 

’ and Thiele [ST81], and Weeks [Wee68]. 

The coordinate system of interest is shown in Figure 2.1. The relation- 
ships between rectangular and spherical coordinates is shown in Figure 2.1. 

X - - T sin8 cos 4, 

Y = T sin8 sin@, 

x = T cod. (2 1) . 

The next set of figures shows various arrays and apertures placed in this 

coordinate system. 

Figure 2.2 shows a linear array with equally spaced e1ement.s. The polar 
angle 8 is the grazing angle with respect to the positive x-axis. In some cases 

the broadside angle 8 is a useful parameter 

- 
8 

7r - --- 
2 

8 . 

The position of the elements is denoted by pz,, 

Pz, = (n-y4 n=O,l;Qv-1, 

(2 2) . 

(2 3) . 

where d is the interelement spacing. 

Figure 2.3 shows a linear array with unequally spaced elements. In this 
case, 

P&t = G-l, (2 4) . 

where xn is the x-coordinate of the nth element. 

‘We have included a structure chart at the beginning of Chapters 2-9. Its primary 
purpose is to serve as a graphical a posteriori reference for the reader so that, after reading 
the chapter, one can easily find a particular topic. A secondary purpose is to aid an 
instructor in planning the coverage of the material. 
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Table 2.1 Structure of Chapter 2 

Spatial 
Filtering 

b 

Response and Beam Patterns 

2.5 Array Steering --------------- --a-- 

Conv. Beam pattern 
End-fire arrays 

2.6 Array Performance Measures __-__-------_-------________________c___--------------------------------------- 

Array Directivity, Directivity index 

Performance Array Gain 
White noise array gain 
Sensitivity, TO 

Other 
Topics 

2.7 Linear Apertures -___----------------. 

Array manifold function 
Aperture sampling 

2.8 Non-isotropic 
Element Patterns -------------------_- 

Pattern multiplication 

Figure 2.4 shows a continuous linear aperture along the x-axis. We would 
anticipate that if d is small and 

L=Nd, (2 5) . 

tlhe array and aperture would have very similar performance. We demon- 
strate this relationship later. We also discuss how we sample a continuous 
aperture to obtain an array. 

Figure 2.5 shows several examples of planar arrays that are of interest. 
Figure 2.6 shows the corresponding planar aperture. We define the coor- 
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x 

Figure 2.1 Spherical coordinate system. 
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T- I 
d 

N even 

(a> 

Figure 2.2 Linear array with equal spacing between elements: (a) N even; 
(b) N odd. 

Figure 2.3 Linear array with unequal spacing between elements. 
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Figure 2.4 Linear aperture. 

dinate system in detail in Chapter 4 where we analyze planar arrays and 
apertures. 

Figure 2.7 shows some volume arrays of interest. We will discuss volume 
arrays and apertures in Chapter 4. 

2.2 Frequency-wavenumber Response and Beam 
Patterns 

In this section, we analyze the response of an array to an external signal 

field. The array consists of a set of isotropic sensors located at positions pn, 
as shown in Figure 2.8. The sensors spatially sample the signal field at the 
locations pn : n = O,l, l *# , N - 1. This yields a set of signals that we denote 

by the vector f(t, p) 

f  (6 PO> 

f  (6 Pl> 
f(o)  = .  l 

_ f&-l) _ 

(2 6) 

.  

We process each sensor output by a linear, time-invariant filter with 
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0 e 

Figure 2.5 Planar arrays. 
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Figure 2.6 Planar apertures. 
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Figure 2.7 (a) Cylindrical array of identical, regularly spaced, omnidirec- 
tional point elements; (b) spherical array of identical, regularly spaced, om- 
nidirectional point elements. 
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PI 

PO . 
P3 

1 

P4 

x 

0 P2 

Figure 2.8 N-Element array. 

impulse response /L&) and sum the outputs to obtain the array output 
y(t). The procedure is shown in Figure 2.9. We assume that the observation 
interval is long enough that it may be considered infinite. The output y(t> 
can be written as a convolution integral, 

Y(t) = NC1 lrn h,(t - 7) frz(wh2) &-* 
n=o -00 

This result can be written in vector notation as 

y(t) = Jm hT(t - T) f(r, p) dr, 
-00 

(2 7) . 

(2 s> . 

where 

h( > 
hi(r) 

r = . (2 9) . . . 

hN--l(r) 

The result in (2.8) is a straightforward extension of familiar scalar results to 
the vector model. 
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Figure 2.9 Array with linear processing. 

Alternatively, we can write (2.8) in the transform domain as 

Y(w) = 
s 

* y(t)e-jwtdt 

= Egw)F(w), (2.10) 

where 

H(w) = /m h(t)e-jwtdt, (2.11) 
. -00 

and 

F(w, p) = lrn f(t, p)e-jwtdt. 
-00 

(2.12) 

In most cases, we suppress the p dependence on the left side of (2.12) and 
use F(w). 

To illustrate a simple beamforming operation, consider the case shown in 

Figure 2.10. The input is a plane wave propagating in the direction a with 
temporal (radian) frequency w. The time functions at the sensors due to 

this input can be written in two equivalent ways. The first way emphasizes 
the time delays corresponding to the time of arrival at the various sensors. 
If f(t) is the signal that would be received at the origin of the coordinate 
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/ 
\ Plane wave 

. P2 

Figure 2.10 Array with plane-wave input. 

system, then 

f(t, P> = 

f(t - 70) 
f@ - 71) 

T 
a Pn 

in = - 
c ’ 

29 

1 
(2.13) 

(2.14) 

and c is the velocity of propagation in the medium and a is a unit vector 
that can be expressed 

-sin8 co@ 
a= I 1 -sin8 sin4 . (2.15) 

- cos e 

The minus sign arises because of the direction of a. Then, Tn is given by 

Tn = -.L [sin8 cos@p,, + 
C 

sinOsin+~~g,+~osO~pz,]. (2.16) 

If we define direction cosines with respect to each axis as 

UX = sin 8 cos 4, (2.17) 
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uY = sin 0 sin 4, (2.18) 

uz = coso, (2.19) 

tor notation, 
u = -a. (2.20) 

) can be written as 

1 
rn = -; [u,p,, + uypyn + uzp,,l = -*. 

C 
(2.21) 

From (2.13), the nt,h component of F(w) is 

‘O” Fn(w) = 
J 

e-jwtf(t - rn)dt = e-jwrn F(w), (2.22) 
-00 

where 
WTn = “T 

;a Pn= 
w T 

-;U Pn- (2.23) 

For plane waves propagating in a locally homogeneous medium, we define 
the wavenumber k as 

k 
W 277- - - -a = -a, 
C x 

(2.24) 

where X is the wavelength corresponding to the frequency w. Equivalently, 

k 
27r - -- - 
x 

(2.25) 

The wave equation constrains the magnitude of the wavenumber, 

Ikl 
W 27r - - ---- 

x 
. (2.26) 

C 

Therefore, only the direction of k varies. Comparing (2.14) and (2.24), we 
observe that 

T WrrL=k pn. 

Defining 

vk(k) = 

2The wave equation is developed in a number of refer 

’ e-jkTpO 

e-jkT PI 

. 
. 
. 

, e-jk* PN-1 

(2.27) 

1 (2.28) 

rices (e.g., [Ba182]). 
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Figure 2.11 Delay-and-sum beamformer. 

we can write F(u) as 

F(w) = F(w)vk(k). (2.29) 

The vector vk(k) incorporates all of the spatial characteristics of the array 
and is referred to the array manifold vector. It plays a central role in 
our discussion. The subscript k denotes that the argument is in k-space. 
The subscript1 is to distinguish it from other variables we will use later as 

arguments to the array manifold vector. 

In this case, we shift the inputs frorn each sensor so that the signals are 
aligned in time and add them. This operation is shown in Figure 2.11, where 

we have included a normalization factor l/N so the output is j(t). In this 
case, 

hn(r) = $ac, + 7,) (2.30) 

and 

Y(t) = f(t)* (2.31) 

This processor is referred to as a delay-and-sum beamformer or the 

conventional beamformer. In practice we add a common delay in each 
channel so that the operations in Figure 2.11 are physically realizable. 
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Note tIllat we can write (2.30) compactly in a matrix form in the frequency 
domain. If k, is the wavenumber of the plane-wave signal of interest, then 

HT(u) = $f(k,), (2.32) 

where vk(k) was defined in (2.28). 
Returning to the general problem, we want to find the response of the 

array to an input field f(t, p). This can be done by the convolution and 
summing operation specified, but it is more useful to determine the response 
to a unit plane wave as a function of its temporal (radian) frequency w 

and wavenumber k. The systems theory approach of analyzing the response 
of a linear, time-invariant system in terms of the superposition of comr9ex 

I  

exponential basis functions can be extended to space-time signals. 
The basis functions are now plane waves of the form, 

or 

f7& Pn) =exp[j(wt-kTpn)], ~~=0,1,***,N-l, 

f(t, p) = ejwt vk(k), 

where vk(k) was defined in (2.28). 
The response of the array processor of (2.8) to a plane wave is 

y(t, k) = HT(w) vk(k) ejWt, 

where H(w) is the Fourier transform of h(T) in (2.9). 

(2.33) 

(2.34) 

(2.35) 

We emphasize the dependence of the output upon the input wavenumber 
k with the notation y(t, k). The temporal dependence is a complex expo- 

nential at the same frequency as the input plane wave. Equation (2.35) can 
be written in the frequency domain as 

Y(w, k) = H T (w) vk(k). (2.36) 

Note that w is a single frequency corresponding to the input frequency. 
The temporal spatial processing by the array is completely described by the 
terrn on the right side of (2.36). We define this term as 

/ y(‘+) n HT(W) Vk(k), 1 (2.37) 

which we term the frequency-wavenumber response function of the 
array. It describes the complex gain of an array to an input plane wave with 
wavenumber k and temporal frequency w, and has the same interpretation as 
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a transfer function for a linear time-invariant system (we introduce ‘Y’(w, k) 

because Y (w, k) will be used later to describe the output due to arbitrary 
inputs). Y (w, k) is defined over the entire k space. The second term in 
(2.37), vk(k), is the array manifold vector defined in (2.28). 

The frequency-wavenumber response function describes the response to 
an arbitrary plane wave. In most physical applications there is a coupling 
bet,ween the temporal frequency w and the spatial wavenumber k t,hrough the 
wave equation governing the propagation of the plane wave. Sometimes this 

can be a very simple relationship such as a plane wave in a homogeneous (and 
infinite) space; in other instances it can be quite complicated, such as the 
modal behavior in layered media that often occurs in underwater acoustics 
and seismology. 

The beam pattern for an array is defined in the context of plane 
waves propagating in a locally homogeneous medium where one has the 
wave equation constraint given in (2.26). This constrains the magnitude of 

the wavenumber k as given in (2.26). The beam pattern is the frequency- 
wavenumber response function evaluated versus the direction, or 

(2.38) 

where a(& 4) is a unit vector with spherical coordinate angles 0,$. We see 

that the beam pattern is the frequency-wavenumber function evaluated on 
a sphere of radius 2n/X. 

The beam pattern of an array is a key element in determining the ar- 
ray performance. In the next section, we develop the beam patterns for a 
uniformly weighted linear array. 

In the text, we emphasize the case in which the f(t,pJ are bandpass 
signals, 

j(t,pn) = &%{j+,p&jwct}, n=O,~*~,N-1, (2.39) 

where wC is the carrier frequency and fct, pn) is the complex envelope. We 
assume that the complex envelope is bandlimited to the region, 

IWLI L 2-rrB$, (2.40) 

where 

W&w-WC, (2.41) 

and z-B, is a const’ant specifying the maximum bandwidth of the complex 
envelope. 
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For the plane wave in (2.13), (2.39) becomes 

f (t, pn) = hRe (i(t - ~~)e~~~@-~~)) , n = 0, l l l , N - 1, (2.42) 

where rrL is given by (2.21). 
We now consider the travel time across the array. We define ATnm(u) 

as the travel time between the n and m elements for a plane wave whose 
directional cosine is u. Then, 

unax A - max 
n,?T~=0;-,N--1;u -vwm2(u>) 7 (2.43) 

is the maximum kavel time between any two elements in the array. For a 
linear array it would be the travel time between the two elements at the ends 
of the array for a signal arriving along the array axis (endfire). 

We assume that the origin is located at the center of gravity of the array, 

N-l 

c Pn= ; 0 

n=O 
(2.44) 

then all of the Tn in (2.13) satisfy 

Tn<ATmaz, n=O,~gg,N-l. - (2.45) 

In many cases of interest, the bandwidth of the complex envelope is small 
enough that 

f(t - 7-yJNf(t), n=O,l,**m,N-1. (2.46) 

In order for this approximation to be valid, we require 

B, l AT,,, << 1. (2.47) 

We define bandpass signals whose complex envelopes satisfy (2.47) as nar- 
rowband signals. Later we will revisit this definition in the context of 
optimum processors and provide a better quantitative discussion. For the 
present, we use (2.47). Then (2.42) reduces to 

f (t, pn) = J2Re { f(t)e--jWc7ne’wct} . (2.48) 

We see that, in the narrowband case, the delay is approximated by a phase 
shift. Therefore the delay-and-sum beamformer can be implemented by a 
set of phase shifts instead of delay lines. The resulting beamformer is shown 
in Figure 2.12. This implementation is commonly referred to as a phased 
array and is widely used in practice. 
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Phase shifter 

Figure 2.12 Narrowband beamformer implemented using phase shifters. 

We will find that, in many applications, we want to adjust the gain and 
phase at the output of each sensor to achieve a desirable beam pattern. This 
leads to the narrowband model shown in Figure 2.13(a). The w;l;. are complex 
weights that are implemented as a cascade of a gain and phase shifter, as 
shown in Figure 2.13(b). 

An alternative implementation is shown in Figure 2.13(c). In some cases, 

we implement the beamformer by performing a quadrature demodulation 
and applying the complex weights at baseband. We actually apply Re[wk] to 
one quadrature component and Im[wz] to the other quadrature component. 
The results are identical. We discuss these cases later in the text. 

Defining the complex weight vector as 

vvH - - [ wz w; . . . wl;r-1 ;” 1 - (2.49) 

(2.35) becomes 

Y (t7 k) = vvHvk(k)ejWt , (2.50) 

and 

q4 k) = wHvk(k). (2.51) 

The definition in (2.49) is equivalent to 

wH = HT(wc). (2.52) 

The majority of the text focuses on the narrowband model. In Chapter 

5, we show that one approach to processing broadband signals is to de- 
compose them into narrower frequency bins by a discrete Fourier transform 
(DFT). Within each bin, the narrowband condition is satisfied and all of our 
narrowband results can be used directly. 
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Figure 2.13 General narrowband beamformer. 
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’ Polar angle 
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Figure 2.14 Linear array along x-axis. 

2.3 Uniform Linear Arrays 

The linear array of interest is shown in Figure 2.14. There are N elements 
located on the x-axis with uniform spacing equal to d. We refer to this type 
of array as a uniform linear array (ULA). We have placed the center of 
the array at the origin of the coordinate system. This centering will lead to 
computational advantages and will be used throughout the text. 

The locations of the elements are 

Pz, = (n-y)d, n=O,l;-,N-1, (2.53) 

and 

Pxn = Pyn = 0 . (2.54) 

To find the array manifold vector vk(k), we substitute (2.53) and (2.54) 
into (2.28) to obtain 

vk(lc,) = ej(v)kzd i ej(v-l)kzd ; . . . ; e-j(v 
T 

I 
, (2.55) 

. 

with 

k 
27r 

.z= -- 
x 

cod = -kOcosO, (2.56) 
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(2.57) 

is the magnitlude of the wavenumber. Note that the linear array has no 
resolution capability in the +-direction. Using (2.49) and (2.55) in (2.51) 
gives 

WJ, kz) = WH Vk(kz) 
N-l 

- - 
IE 

W;e--j(n-~)kzde 

n=O 

We will also find it useful to define 

+ 
27-r - -- kd - 

27r 
x = x 

cod l d = -uzd, 
x 

(2.58) 

(2.59) 

where u, is the directional cosine with respect to the x-axis, 

ux = coso. (2.60) 

Using (2.59) in (2.58) gives 

(2.61) 

We refer to TQ (+) as the frequency-wavenumber function in Q-space. Both 
Y (w , k,> and ‘I$ (Q) are defined from -oo to 00, but they only represent 
propagating signals in the region where 0 < 8 < K (or -1 < uz < 1). This - - - - 
restriction implies -y < + < y or --F < k, < 9. We refer to this as 
the visible region. 

WC observe that, if we define 

j@ z=e , 

n=O 

then (2.63) can be written as 

(2.62) 

(2.63) 

(2.64) 
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The term 
N-l 

w(x) = ‘T;7 w&cn 

n=O 

is familiar as the x-t ransform3 and 
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(2.65) 

(2.66) 

is the frequency-wavenumber function in $-space. We exploit this relation- 
ship later in the text. 

Although it may appear that we have introduced extra notation by writ- 
ing the frequency-wavenumber function in three different ways ((2.58), (2.61) 
and (2.66)) we will find the different forms useful in different cases. 

It is also useful t!o define the array manifold vector in 0 and u space, 

[W@>]n = e 
j(n-J%$)~cosO n-~ .,. - 7 1 J-1, (2.67) 

and 
[V&-L)]n = ,j@-?)+, n = 0, l l l ,  N -  1. (2.68) 

We can also write the beam pattern in three forms. The key difference 
between the frequency-wavenumber function and the beam pattern is that 
the argument in the beam pattern is restricted to correspond to a physical 
angle 8. Thus, 

n=O 
(2.69) 

N-l 

Bu (4 
= WHVu(U) = e-j(N;l)+ x w; ejnYu, -1 < u < 1, _ - (2.70) 

N-l 

B&b) = wHvi($) = e-j(*;‘)+ c w;e’ni, 
2rd 

-x 5 $J 5 x. 2rd (2.71) 
n=U 

We suppress the subscript on B(e) when the variable is clear. 
For uniform linear arrays, we normally write the array manifold vector 

in terrns of $J, 

[vli,(Q)ln = e j(n-V)+ n-0 1 N- 1 - 7 1 Y*Y 7 (2.72 

“The x-transform is discussed in a number of texts (e.g., Chapter 4 of [OS89]). 
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Iv+(q) = [ e-j(v)+ ,-j(y)i . . .--,j(% ej(?)+ IT . (2.73) 

We see that the array manifold vector for a uniform linear array exhibits 
a conjugate symmetry. For N even, if we define a N/2-dimensional vector 
vQI (/{I) corresponding to the first N/2 elements of v@(q), then we can write WI (+I v~(~~) = [ 1 ---- ---- - ---- , J $1 (+J (2.74) 

where J is the exchange matrix defined in (A.125). For N odd, v+,($) 
consists of the first (N - 1)/2 elements and 

w(N = 

- vd~> -------_-___ 

(2.75) 

This conjugate symmetry will lead to computational savings and perfor- 
mance improvements in many applications. For example, if w  is also conju- 
gate symmetric, we can write, for N even, 

Y ------__ 
W= i 1 . 

Jw; 

The beam pattern in Q-space is, 

- - 

(2.76) 

(2.77) 

so the beam pattern is a real function. Note that if we have real symmet- 
ric weightings, then (2.76) is also satisfied. A similar result follows for N 



odd. Later, we will find that many other array geometries exhibit conjugate 
symmetry. 

The form in (2.73) emphasizes the conjugate symmetry in v&+0). We 

can also write v@(q) as 

(2.78) 

This form emphasizes the Vandermonde structure (A.163) of V&/J). I 

In Chapter 3, we develop techniques for choosing w in order to achieve a 
beam pattern with desirable properties. This is the most common approach. 
However, we will also develop techniques for synthesizing a desirable B+ ($) 
without finding w in the process. Thus, our last step is to find the w that 
corresponds to a particular B&$). 

We start with the relation in (2.71), 

We assume that B$ (T/J) L k ic; nown and we want to find the w that generated 
it. Since WI-’ is a 1 x N vector, we would anticipate that, if we know the 
value of B+ (@) at N values of Q, we can find w. 

We sample the beam pattern at N values of &, i = 1, l l l , N. The & 
must be distinct but do not have to be spaced equally. We denote the beam 
pattern at the sample points as B(&). From (2.79), 

WHV(‘$i) = B(+i), i= l,**a,N. (2.80) 

We define an N x N array manifold matrix, 

and a 1 x N beam pattern matrix, 

Then, (2.80) can be written as 

wHV(+> =B, (2.83) 

or 

(2.81) 

(2.82) 

(2.84) 

Since VH(~) is full rank, 

(2.85) 
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which is the desired result. Although the r+!+ are arbitrary, if they are too 
close, the array manifold vectors will approach linear dependence and there 
may be numerical problems with the inverse in (2.85). If we use uniform 
spacing of 27r/N, we will derive an algorithm in Section 3.3 that is compu- 

tat ionallv more efficient. 
A particular of interest is the case in which we have specified the beam 

pattern with N - 1 zeros. If we assume the array is steered to broadside, we 

let 

$1 = 0, (2.86) 

and $2, &, l l l , $N correspond to the zero locations. Assuming a normalized 
beam pattern, 

B = 1 0 l ”  

C Ol 
T = el . (2.87) 

Then, (2.85) reduces to 

[I. (2.88) 

We will find these algorithms to be very useful in subsequent sections. 
There are two points with the results in (2.85) and (2.88) that should be 

emDhasized: A 

0 i 

( > ii 

We have assumed that B+ ($) was defined by (2.79). In other words, 
it was generated by a complex N x 1 vector w. If we start with an 
arbitrary function Bq(q!~) and use (2.85), we will generate a pattern 
that matches B(q&),i = 1, -0 , N but will not necessarily match the 
function B+(Q). We discuss this issue further in Section 3.3. 

We introduced this result in the context of a uniform linear array. How- 
ever, the derivation is valid for an N-element array with an arbitrary 
geometry. 

We have developed the basic relationships between the array manifold 

vector, the weight vector, and the beam pattern. In the next section, we 
consider the special case of uniform weighting. 

2.4 Uniformly Weighted Linear Arrays 

We now restrict our attention to the uniform weighting case, 

1 
wy-),= -, n= ) )“‘, 

N 
01 N-l. (2.89) 
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We can also write (2.89) as 
1 

w=-1, 
N 

(2.90) 

where 1 is the N x 1 unity vector defined in Section A.3.1. 

Thus, the frequency-wavenumber function can be written in q-space as4 

- - 

1 N-l 

-1 N 
,j(n-y)?l, 

n=O 

1 N-l 
,-j(y)+ x ,jn+ 

N n=O 

1 
- ,-j(y)* 1 - ,jrv+ 
- 

N [ 1 
l-&b ’ 

(2.91) 

01 

1 sin Nz 
( > 

V@>= N $) 7 -m<q<oo. 
sin 2 

(2.92) 

We observe that YC&$) is p eriodic with period 27r for N odd. If N is 

even, the lobes at f27r, k67r are negative and period is 4~. The period of 

I%W~l 2 f is 7r or any value of N. T&/J) is plotted versus $J in Figure 2.15 
for N = 11. In Figure 2.16, we plot &&$)I in dB, where 

h3(1D) = 1Ol%lO lTW12* (2.93) 

For arbitrary w, ‘Y’Q($J) is complex, so the phase should also be plotted; 

however, the symmetry of this particular array leads to a purely real quantity. 
We can also write the frequency-wavenumber response in terms of kz, 

1 sin Nk,$ 
Y(w : k,) = N ( > 

( > 

. 
sin k& 

(2.94) 

‘Y(w : kz) is periodic with period 27r/d. 
Note that the response function depends only upon the wavenumber 

component k, and is periodic with respect to k, at intervals of 27r/d. The 
dependence solely upon k, is a consequence of the linear array being one- 
dimensional so it can only resolve wavenumber components which have a 
projection in this direction. 

4 
c 

N-l l-LEN 
n=o 

,g = - 
1-z ’ 
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The beam pattern is given by 

/ / \ I’\ 
/ \ H--N / \ 

/ \/ / -. A/ \ 
/ /\ I /’ \ 

\ 
60 / / 

/ \ I / 
\ 

\ 60 \ 

180 

Figure 2.17 Polar plot of &(8). 

1 sin($ l F cos8 . d) 
Be(O) = - oa<n 

N sin&F cos&d) - - 

The beam pattern in u-space can be written as 

1 sin(y u) 
B,(u) = f 

sin(?$u) ’ 
-l<u<l 

- - ’ 

. (2.95) 

(2.96) 

The beam pattern is only defined over the region (-1 < u < l), the visible - - 
region. The beam pattern in +-space is 

1 sin@+) 
%W = E 

2rd 2rd 

sin( $) 
1 -x<?)<x. - - (2.97) 

The functions B,(u) and B+(q) are sometimes referred to as the array 

factor. We will see the significance of this term when we look at non- 
isotropic sensors. 

In Figure 2.17, we show a polar plot in dB of B&Y). If we plotted the 
beam pattern in three dimensions, the plot in Figure 2.17 would correspond 
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Figure 2.18 IY&$)l for a linear array with d = x/2 and N = 10. 

to a pattern cut along any value of 4, the azimuth angle. In Figure 2.18, we 
show the magnitude of the beam pattern versus different variables. 

Although this is a simple example, we can use it to illustrate several 
important characteristics of linear arrays. The first set of characteristics 
describe the parameters of the beam pattern. 

2.4.1 Beam Pattern Parameters 

(i) 3-dB beamwidth (the half-power beamwidth, HPBW) 

(ii) Distance to first null (twice this distance is SVV~~N) 

(iii) Distance to first sidelobe 

(iv) Height of first sidelobe 

(v) Location of remaining nulls 

(vi) Rate of decrease of sidelobes 

(vii) Grating lobes 
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= HPBW 

I I 

A u2 = BWNN 

Figure 2.19 Main lobe of beam pattern. 

To illustrate the first two points, consider the beam pattern near the 
origin as shown in Figure 2.19. 

The 3-dB beamwidth is a measure of the width of the beam. It is defined 
to be the point where I&(u)~~ = 0.5 or IB,(u)I = l/a. We can find 

the half-power point in u-space by setting B&L) in (2.96) equal to l/d. 
Calculating this value as N increases, we find that, for N > 10, a good - 
approximation is obtained by solving the equation, 

(see Problem 2.4.7). Then, 

rNd 
-u = 1.4 

x 
(2.98) 

Au1 
14 

x - - - 
2 l nNd 

or 

Au1 
x 

= 0.891Nd. 

(2.99) 

(2.100) 

We refer to this interval as the half-power beamwidth (HPBW). As N 

increases, the coefficient in (2.100) reduces slightly. For N > 30, 0.886X/Nd 
is a better approximation. 
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The HPBWs in terms of the various spaces are listed in Table 2.2. 

Table 2.2 HPBWs in Various Spaces 
I Space Arbitrary d d = X/2 

U 

8 

small 
8 

ti 
k x 

0.891& 1.?82+ 

2sin-’ (0.446&) 2sin-’ (0.8916) 
N 0.891% radians 

x 
N 1.782& radians 

N 51.05;is, degrees N 102.1s degrees 
r 

0.891 $f 0.891% 
c 

0.891 g 1.782% 

We define 8 = 7r/2 - 8 as the angle measured from broadside (see Figure 2.2). 

The nulls of the pattern occur when the numerator of B&J) is zero and 

the denominator is non-zero: 

rNd 
sin(--u) = 0, 

x 

when 
TNd 
-U 

x 
= m7r, m = 1,2,... . 

Thus the nulls occur when both 

x 
U = m-, 

Nd 
m = 1,2,9**, 

and 
x 

ufm-, m=1,2,0g9. 
d 

Thus, the first null occurs at A/Nd and 

AU 
x 

2=2-. 
Nd 

(2.101) 

(2.102) 

(2.103) 

(2.104) 

(2.105) 

We refer to Au2 as the null-to-null beamwidth and denote it by BUQVN. 

One-half of the BVCr NN is the distance to the first null (0.5BwjvN). This 

quantity provides a measure of the ability of the array to resolve two different 
plane waves. It is referred to as the Rayleigh resolution limit. Two plane 
waves are considered resolvable if the peak of the second beam pattern lies 

at or outside of the null of the first beam pattern (separation > Tuzla>. 
Later, we look at statistical measures of an array’s resolution capability. 
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Note that the linear array has no resolution capability in the azimuthal 
direction (@) because it has no extent in either the x or y directions. We 
will discuss the resolution problem in detail in later sections. 

The BI~$vN in terms of the various spaces is listed in Table 2.3. 

Table 2.3 BONN in Various Spaces 

Space 
U 

Arbitrary d 
2& 

d = X/2 
4 - 
N 

0 2sin-l (A) 2sin-l ($) 
small 8 

* 
f 

Fz 

2 2& radians N * radians 
47r 47r 

47r 87r 
dN AN 

2.4.1.1 Location of sidelobes and the rate of decrease 

The location of the maxima of the sidelobes occurs approximately when the 
numerator of (2.96) is a maximum: 

I NV sin - = 1. ( > 2 
(2.106) 

Thus, 

y = f(2m+ l);, m = 1,2,**~ (2.107) 

or 
2m+l 

@=&77T (2.108) 

and 
2m+l X 

~=jy------ 
N 2d’ 

The peak of the first sidelobe occurs at 

(2.109) 

+*g . (2.110) 

Since the numerator in (2.97) is approximately one at the maximum, the 
value at the maximum is given by 

1 

Nsin($$ 
(2.111) 
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For large N, this can be further approximated by 

(2.112) 

or - 13.5 dB. This implies that a signal 13.5 dB higher at these sidelobe loca- 
tions would produce the same response as one at kz = 0. The major sidelobes 
appear at k, = f(2m + 1)~/Nd and the levels diminish as 1/(2~~2 + 1). For 
example, the next highest sidelobes are -17.9 dB. In practice this level of 
discrimination is generally not acceptable, so uniformly weighted arrays are 
seldom used. The issue of sidelobe control is especially important in both 
deterministic and adaptive array designs. We discuss the deterministic case 
in Chapter 3 and the adaptive case in Chapter 7. 

2.4.1.2 Grating lobes 

In Figure 2.20, we plot IY’,(u)I f or various values of d/A. It illustrates the 

important concept of “grating lobe,” which is a lobe of the same height as the 
main lobe. Grating lobes occur when both the numerator and denominator 
of (2.97) equals one. These appear at intervals, 

@ -- 
2 

-m+ (2.113) 

$J =m-2~, (2.114) 

x U=m--. 
d 

(2.115) 

If the array spacing is greater than A, then the peak of the grating lobe 
occurs within the region of propagating signals, that is, when 1~1 < 1. Here - 
one has an ambiguity in terms of the peak response and only a priori infor- 
mation about the direction of the signal can resolve it. 

In the next section, we discuss array steering. We find that steering 
causes the frequency-wavenumber function in u-space, ‘Y’,(U), to shift in u- 

space. This shift causes grating lobes to move into the visible region. We 
find that, if the array is required to steer 0’ < 0 < 180”, then we require, - - 

d 1 
- < -, 
x 

- 2 (2.116) 

x 
d< -. - 2 

(2.117) 
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Figure 2.20 Effect of element spacing on beam pattern: (a) d = X/4; (b) 
d = X/2; (c) d = X. 

Normally, we consider arrays where d < X/2 and assume that steering - 
over the entire sphere is required. We refer to a uniform linear array with 
d = X/2 as a standard linear array. 

The problem of grating lobes is identical to the problem of aliasing in 
time series analysis, which occurs when we undersample the time domain 
waveform. 

2.5 Array Steering 

The discussions in Sections 2.2, 2.3, and 2.4 have considered arrays whose 
maximum response axis was at broadside, or kz = 0. In most applica- 
tions we want to be able to position, or steer, the response to an arbitrary 
wavenumber, or direction. There are two ways to accomplish this. The 
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Figure 2.21 Array steering with delays. 

direct approach is to change the location of the sensors so that the axis is 

perpendicular to the desired steering direction. This is termed mechanical 
steering, and this is what is being done when an antenna is physically ro- 
tated such as a parabolic aperture in a radar system. Often mechanical 
steering is not possible because of either the large physical dimensions of an 
array when operating with long wavelength signals or the need to recalibrate 
sensors when they are moved. 

An ahernative approach is to introduce time delays (or in the narrow- 
band case, phase shifts) to steer the main response axis (MRA) of an 
array. This is termed electronic steering. With the advances in very high 
speed signal processors, electronic steering is being used much more exten- 
sively in array processing, not only because of the restrictions of mechanical 

steering but also because of its flexibility and its ability to change the re- 
sponse function rapidly. In some arrays we use mechanical steering in one 
direction and electronic steering in the other direction. 

We first consider an arbitrary array and then specialize our results to a 
uniformly weighted array. 

Our simple example at the beginning of Section 2.2 illustrated the idea of 
steering the array in a specific direction. The effect of steering in wavenumber 

space is straightforward. Consider the processor in Figure 2.2L5 The basis 
function input to the steering section is 

f (t, p) = ejwt vk(k). (2.118) 

We would like the output to be aligned when 

k = kT, (2.119) 

the “target” wavenumber. We refer to kT as the steering direction or 
main response axis in k-space. We accomplish this with an N x N diagonal 

‘The convention in our figures is that the vector or 
input. 

in a box pre-multiplies the 
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steering matrix,6 

I&T) ’ 

The resulting output is 

0 
7 

. . . 0 

0 ejkFpz . . . 0 
. . (2.120) 

0 . . . . . 0 
0 . . . 0 ej$bN , 

fs(t, p> = ejwt vk(k - kT), (2.121) 

and the overall frequency wavenumber response is 

T(w, klkT) = ‘r(w, k - kT). (2.122) 

The array response function is simply displaced to be positioned about 
kT. This is one of the useful aspects of using wavenumber space in in- 
terpreting array response functions. If we consider the beam patterns in 
wavenumber space, we also get a simple displacement. 

When we use uniform amplitude weighting, the two-step process in Fig- 
ure 2.21 is unnecessary. We let 

1 
W= zvk(kT) (2.123) 

and 

B,(k : kT) = 
1 

j$(kT) vk(k). (2.124) 

We refer to B,( k : k T as the conventional beam pattern. we will find ) 
that this conventional beam pattern plays a fundamental role in many of the 
optimum processing schemes that we will develop in the sequel. 

For a linear array, the conventional beam pattern can be written as 

Bqdti : +T) = j$($T)vp(lll) (2.125) 

in Q-space and 

B&u : UT) = 
1 

j+(uT) h(u) (2.126) 

‘Note that for the wideband case, we accomplish (2.120) with delays. Only in the 
narrowband case can the delays be replaced with phase shifts. 
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in (u-space. For a uniform linear array, 

1 sin(NT) 
B,(d) 1 @T) = N 

sin(v) l 

(2.127) 

The steering direction in q-space corresponds to an interelement phase shift 

of $T. In u-space, 

1 sin[y(u - UT)] 
Bu(u : UT> = N 

sin[$$, -  UT)] l 

(2.128) 

Thus if we look at the expressions in (2.127), or (2.128), they all corre- 
spond to shifts in the pattern, but its shape is not changed. This property of 
shifting without distortion is one of many advantages of working in $-space 
or u-space. 

As we steer the array so that the main response axis is aimed at 60, where 

60 is the angle measured from broadside, the beam pattern shifts so that the 
center peak is at uo = sin&-o. This shift causes the grating lobes to move. 

In Figure 2.22, we show the effect of steering on the beam pattern. In 

Figure 2.22(a), we show the beam pattern for d = 2X/3 and 8 = 30’. We 

see that, at this steering angle, the grating lobe is at the edge of the visible 
region. 

In Figure 2.22(b), we show the beam pattern for d = X/2 and B = 90’. 

The grating lobe is at the edge of the visible region. 
In general, we require 

d 1 
-< 
x 

- 
1+ ) sin8,,,)’ 

(2.129) 

where &Lu2 is the maximum angle to which the array will be required to 

steer, in order to avoid a grating lobe from moving into the visible region. 
This result follows from calculating the location of the first grating lobe as 
a function of d/X with & = 8,,,. Thus, if the array is required to steer 

-90’ < 8 < 90”, we require - - 

d< 
x - . - 
2 

(2.130) 

The behavior in $-space and u-space is useful. However, it is important 
to remember that the signals originate in a (8,+) space, and we need to 
understanhhe behavior in that space. 

In O-space (i.e., angle space), 

1 sin[y (cod - costiT)] B&(e : eT) = E 
sin[F (cod -  cose~)] l 

(2.131) 
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Figure 2.22 Effect of steering on the grating lobes: N = 10 (a) d = 2X/3,8 = 
30”; (b) d = x/2,e= 90’. 

When we plot Be@ : 0 T in e-space, the shape of the pattern changes due ) 
to the cos0 dependence. In Figure 2.23, we show the beam pattern for the 
case 6$ = 30’ and d = X/2. Comparing this pattern with the pattern in 
Figure 2.17, we see that the beamwidth of the main lobe has increased. 

To investigate the behavior of the HPBW in &space, we use (2.131) and 
(2.100). The right half-power point in u-space is 

x 
UR = UT + 0.450 Nd’ 

and the left half-power point in u-space is 

(2.132) 

x 
UL = UT - 0.450 Ed, (2.133) 
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Figure 2.23 Beam pattern for lo-element uniform array (d = X/2) scanned 

to 30’ (60” from broadside). 

or, in O-space (0~ corresponds to UL and 0~ corresponds to UR), 

x 
COSOR = cos& - 0.450-, 

Nd 
(2.134) 

cos eL 
x 

= cos OT + 0.450m. (2.135) 

Thus, the half-power beamwidth in o-space is 

OH = t& - OL = 
x 

cos -1 COSOT - 0.450jg + 1 
cos-l x cosoy- + 0.450m ) 

I 
(2.136) 

for 0 < 0 < 7r, &, 0~ > 0. Except for the case when 0~ = 0 or x (endfire), 0~ - - - 
is defined to be the half-power point closest to 0 = 0. As the beam is steered 
from broadside (0~ = 7r/2) toward the positive z-axis (endfire, 0~ = 0), the 
beam broadens. At some point, 0~ as given by (2.135) equals 0. Beyond 
that point there is no half-power point on that side of the beam. Elliott 
[El1811 refers to this point as the scan limit. 

The beamwidths given by (2.136) and (2.138) were plotted by Elliott [El1811 
and are shown in Figure 2.24. 
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Figure 2.24 HPBW versus steering angle: standard linear array with uniform 
weighting. 

When the beam is steered in the vicinity of broadside (0~ is small) and 
Nd >> A, 61~ will be small and we use a small angle expansion to obtain 

OH 
x 

N 0.89ljy-j csc&. (2.137) 

The behavior in (2.137) is apparent from Figure 2.25. The effective array 

length is reduced by cos &. 

For Nd > 5X, the result in (2.137) is in error by less than 0.2% near - 
broadside and by less than 4% at the scan limit. 

When 0~ = 0 or 7r, the maximum response axis is pointed along the 

array axis and is referred to as an endfire array. The beam pattern for a 
standard lo-element endfire array is shown in Figure 2.26. In this case, 

OH = 2cos-l 1 - 0.450m , 
[ 

x 1 0~ = Oor 7r. 

We can rewrite (2.138) as 

1 - cos($) = 0.450& 

(2.138) 

(2.139) 
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Figure 2.25 Effective array length reduced by co&. 

180 

Figure 2.26 Beam pattern of a standard lo-element linear array with uniform 
amplitude weighting at endfire. 
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OH 
sin( -4-) = 

i 

0.450 x 
- l - 

2 Nd 
. 

For Nd > X, 0~ is small and (2.140) becomes 

(2.140) 

OH = 2 
x 

0.890Nd. 

For Nd > 5X, (2.141) - is in error by less than 1%. 

Similarly, the first null in the pattern is at 

(2.141) 

0 
d 

2 
x 

null = -- Nd 
(2.142) 

Thus, the resolution of a linear array at endfire varies as the reciprocal 

of the square root of Nd/A as contrasted to the linear dependence in the 
broadside case. 

One can decrease the beamwidth of an endfire array by using a procedure 
proposed by Hansen and Woodyard [HW38]. This technique is described 
in Section 6.3.4 of [Ba182] and Section 4.7 of [Kra88]. We summarize the 
procedure in Problem 2.5.4. 

2.6 Array Performance Measures 

There are a number of performance measures by which one assesses the 
capabilities of an array. Each of the various measures attempts to quantify an 
important aspect of either the response of an array to the signal environment 

or of the sensitivity to an array design. We have already noted both the 
distance to the first nulls as a measure of the beamwidth or resolution of 
the frequency wavenumber response and the cardinal sidelobe levels of a 
uniformly weighted linear array. In this section we discuss three of the 

commonly used array performance measures: 

(i) Directivity 

(ii) Array gain versus spatially white noise (A,) 

(iii) Sensitivity and the tolerance factor 
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2.6.1 Directivity 

A common measure of performance of an array or aperture is the directiv- 

ity. We will define it for the general case and then specialize it to a linear 
array. 

We define the power pattern, P(0, +), to be the squared magnitude of 
the beam pattern B(w : S,$) 

P(6 4) = IB(w : 8, +)I27 (2.143) 

where the frequency dependence of P(O,@ is suppressed in the notation. 
Then the directivity D is defined as 

(2.144) 

where (&, 4~) is the steering direction or main response axis (MRA). 
In a transmitting array or aperture, D represents the maximum radia- 

tion intensity (power per unit solid angle) divided by the average radiation 

intensity (averaged over the sphere). 
In a receiving antenna, we find in Chapter 5 that the denominator repre- 

sents the noise power at the array (or aperture) output due to isotropic noise 
(noise distributed uniformly over a sphere). The numerator will represent 
the power due to a signal arriving from (&, 4~). Thus, D can be interpreted 

as the array gain against isotropic noise. 
If we assume that the weights are normalized so that P@T, 4~) = 1, 

then (2.144) can be written as 

D= {~~~dH.lo2~dpsinDgP(R,i)jl. (2.145) 

For a linear array 

B(Q, 4) = B(B), (2.146) 

so (2.145) becomes 

D - - IB(0)12 sinOdO}-l. 

This can be expressed in u-space as 

(2.147) 

(2.148) 
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In general, this expression must be evaluated numerically. 
Using (2.70), the expression in (2.148) can be written in terms of the 

array weights as 

D - - (2.149) 

where ‘UT is the steering direction in u-space. Rearranging terms and per- 
forming the integration gives 

N-l 

D - - 
lx 
n=O 

N-l -1 

c 
,wmw* ej(~)(m-n)21T 

n . (2.150) 
m=O 

We define several matrices to obtain a compact expression. The n, m 
element of the sine matrix is 

[SillC]nm A sinc( F (n - m)). (2.151) 

The steering matrix in u-space is (2.120) 

I su 
= diag(l,ej~UT,ej~2UT,. . . , ejy(N-lJuT), (2.152) 

Then, 
D = IsuwH [sinc]wIz. (2.153) 

Normally, we include the steering in the weight vector,7 

WS = wIfu. (2.154) 

Then 

D = w,H[sinc]w,. (2.155) 

The standard linear array is a special case of interest. If d = A/2, (2.150) 

reduces to 

N-l N-l 

D = C x Wm~~ejK’m-n’uT sine (r(n - m)) A. (2.156) 
n=Om=O 

The sine function equals one when m = n and zero when m # n, so (2.156) 
reduces to 

D = -’ = (w~w)-~ = { 11 w li”>l , (2.157) 

71n most cases, the “s” subscript is dropped because we assume that w includes steering. 
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where 
11 w  II= (w”w$, (2.158) 

is the 2-norm of the vector w  (A.36). 
Thus: the directivity of a standard linear array is the reciprocal of the 

magnitude squared of the weight vector. The directivity does not depend 
on the steering direction. As the steering direction moves away from array 
broadside, the beam broadens but the circumference in the $ integration 
decreases. 

For d # x/2, we use the expression in (2.150) and the directivity will 
depend on the steering direction. 

For a uniformly weighted standard linear array, wn = l/N, so 

N-l 

c IwJ2 = j$ 
n=O 

(2.159) 

so that 
D = N. (2.160) 

Uniform weighting maximizes the directivity of the standard linear array. 
To show tlhis, we constrain 

N-l 

1 Wn= 7 1 (2.161) 
n=O 

which guarantees that the beam pattern equals one for UT = 0, and maximize 
CrYol lu1n(2. To perform the maximization, we write 

N-l 

F = x lwn12 + X 
n=O 

‘N-l 

x U-b-h- 1 1 (2.162) 
,n=O 

where X is a Lagrange multiplier. 8 Differentiating with respect to wn and 
setting the result to zero gives 

w; = ---A (2.163) 

or 
x * Wn=- . 

SubstituCng (2.164) into (2.161) gives X* = -l/N, so 

(2.164) 

1 
Wn = -, 

N 
(2.165) 

‘See Appendix A (Section A.7.4) for a discussion of complex gradients and the differ- 
entiation of a non-analytic function. 
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which is the desired result. 
In Chapter 3, we discuss non-uniform weightings. The directivity always 

decreases. It is a function of the length of array measured in half wavelengths 
plus a term due to the non-uniform weighting. 

The directivity of a standard uniformly weighted linear array can be 

related to the HPBW or the beamwidth between the first nulls. From Table 
2.3, we have 

D 
4 - -- 

mNN’ 
(2.166) 

where the ~IVNN is expressed in u-space. Note that (2.166) applies to a 
uniformly weighted array. For other weightings (2.166) may not hold. 

Frequently, we express the directivity in dB and refer to it as the direc- 

tivity index, 

DI = 10 logI D. (2.167) 

We can write the DI as 

DI = 10 logI N + 10 loglo(g(w)). (2.168) 

The second term is a function of the weights. For any non-uniform weighting 
(wn # N-l), the DI will be reduced. 

2.6.2 Array Gain vs. Spatially White Noise (A,) 

One of the purposes of an array is to improve the signal-to-noise ratio 
(SNR) by adding signals coherently and noise incoherently. The improve- 
ment is measured by the array gain. It is an important measure of array 
performance that we discuss extensively in later chapters. The general def- 
inition must be deferred until we introduce the spectral covariance matrix, 

which describes the statistical concepts for describing the spatial properties 
of the noise processes; however, we can formulate a restricted definition here. 

We assume that the input at each sensor consists of a plane wave arriving 

along the ma.in response axis plus a noise process that is uncorrelated among 
the sensors (spatially white noise). Thus, 

xn(t)= f(t-rJ+n&), n=O;e+J-1. (2.169) 

At each sensor, the signal spectrum-to-noise spectrum ratio at frequency w 

n SfW sN&l(w) = q-q (2.170) 
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where the subscript “in” denotes input and the noise spectrum at each sensor 
is assumed to be identical. 

In order to find the output due to the signal and noise, we need an 
expression for the output spectrum in terms of the beamformer weights and 
the input spectral matrix. From (2.8), 

y(t) = lm hT(T) x(t - T) d7. 
-00 

(2.171) 

We assume that x(t) is zero-mean and wide-sense stationary. The correlation 
function of the output y(t) is 

Ry(4 = E[y(t)Y*(t - 7)1* (2.172) 

The spectrum of y(t) is 

Sy(w) = /m e-jwr R&j dr. 
-ccl 

(2.173) 

Using (2.171) in (2.172) and the result in (2.173) gives 

s 00 * O” Sg(w) = @q~ hT(a)dcv E[x(t - a)xH(t - r - P)]h*(P)d,O. 
-00 s -03 s -00 

(2.174) 
This can be rewritten as 

Sy(w) = lrn da hT(a)e-j”” /a dx e-jwZR,(z) lrn dpe-jwPh*(/?), 
-00 -00 -00 

(2.175) 
which reduces to 

SJw) = HT(u) S,(w)H*(w). (2.176) 

Using (2.52) in (2.176) gives the desired results, 

% (4 = WH &(w)w, (2.177) 

for the narrowband beamformer. 
To calculate the output due to the signal, we impose the constraint on 

w  that, 
wHvk(ks) = 1. (2.178) 

The constraint in (2.178) implies that any signal arriving along k, will pass 
through the beamformer undistorted. We refer to the constraint in (2.178) 
as a distortionless constraint. It is used frequently in subsequent discus- 
sions. 
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We can write the input signal spectrum as 

sf(u) = Vk(ks) sf (w) $(ks)- 

Using (2.179) in (2.176) the output signal spectrum is 

%s (4 w 
H H 

= vk(ks) sf (w) Vk (k,) ‘w 

= S,(w). 

The spectral output due to noise is 

65 

(2.179) 

(2.180) 

%-l (4 = wI-I&(w)w, (2.181) 

where S,(w) is the spectral matrix of the input noise process. For the special 
case of spatial white noise and identical noise spectra at each sensor, 

and 

S&J) = Sn(w> I, (2.182) 

N-l 

s&4 =I1 w II2 &l(w) = x IWn12 &L(w)* (2.183) 
n=O 

Thus, 

SNR,(w) = ’ Sf (4 

xf.rY.r-jl Iwn.12 sno’ 
(2.184) 

where the subscript “0” denotes output. 
The array gain A, reflects the improvement in SNR obtained by using 

the array. It is defined to be the ratio of the SNR at the output of the array 
to the SNR at an input sensor. The subscript “w” denotes the spatially 

uncorrelated noise input. The noise temporal frequency spectrum is not 

necessarily flat. Using (2.170) and (2.184), 

A 
S-%(w) 1 

w = SNRin(w) = CFii 1wn12’ 

A w = y ,wn,2 
( 1 

--I = 
n=O 

I I  w 1r2 l 

(2.186) 

Three observations with respect to (2.186) are useful: 

(i) The result is valid for an arbitrary array geometry, as long as 

(2.185) 

(2.187) IwHvk(k,)12 = 1. 
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l Nominal array 
0 Actual array 

Figure 2.27 Array with position errors. 

(ii) For a standard linear array (spacing d = x/a>, the white noise array gain 
is identical to the array directivity (2.157). After we discuss isotropic 
noise fields in Chapter 5, the reason for this will be clear. 

(iii) For a uniform linear array with d # x/2, D will 
find the noise spectral matrix for an isotropic 
(2.151) so that D is the array gain Aiso for an 

For a uniformly weighted array, 

1 
wn= -, n= 

N 
0 ,-., N-l 

not equal A,. We will 
noise input is given by 
isotropic noise input. 

(2.188) 

and A, = N (or 10 log N in dB). A direct application of the Schwarz inequal- 
ity shows that A, < N. Therefore, if we are trying to maximize the array 
gain in the presence of spatially uncorrelated noise, a uniformly weighted 
array is optimum. 

In Chapter 3, we will develop non-uniform weighting in order to improve 
sidelobe behavior. In these cases, we will be doing a trade-off between the loss 
in directivity and white noise array gain against improved sidelobe behavior. 

2.6.3 Sensitivity and the Tolerance Factor 

In later chapters, we analyze the sensitivity of optimum processors to gain 
and phase errors and imprecise positioning of the sensors. Here we sum- 
marize a tlypical result for the array shown in Figure 2.27. We design the 
processor so that, in the absence of array perturbations, 

vv”. IF(w) = F(w), (2.189) 

so that a signal from broadside passes through the array processing without 
distortion. 
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We consider the effect of filter perturbations and array location pertur- 

bations. 

2.6.3.1 Filter perturbations 

In this case we assume that the nominal matrix filter is Wn. Denoting 
the ith component of wn as w:, we can write the nominal weight as 

(wy)* = g;e-W (2.190) 

and the actual weight as 

w; = gie -j4i 

= gy(l + Agi),-jM~+Wi), (2.191) 

where the Agi and A& are random variables. 

2.6.3.2 Array location perturbations 

In this case we assume that the nominal array locations are pP and that 

Pi = pr + npi. (2.192) 

Thus, we have the three variations from the nominal model:’ 

gi = g,r”(l + &Ii>, (2.193) 

$i = 4; + wi, (2.194) 

Pi = p; + api. (2.195) 

The first two variations could result from changes in the gain and phase 
of the array sensors or from imperfect gain and phase in the processor fil- 
ters. The last variation is caused by imperfect knowledge of the location 
of the array elements. We assume that the Agi(i = O,l,**m,N- l), the 
A@i (i = 0, 1, l l l , N - l), and the Apxi, Ap,i, APzi (i = O,l, 9 l l , N - 1) are 

statistically independent, zero-mean, Gaussian random variables. We ana- 
lyze the behavior of the beam pattern in the presence of these variations. 

The nominal beam pattern is 

B@)(k) = (w”)~ v(k) 
N-l 

- - x gyexp (j$r - jkTp$ . (2.196) 
i=O 

‘This case is from Gilbert and Morgan [GM551 
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The actual beam pattern is a random 
nitude squared can be written as 

function. The expectation of its mag- 

- - E 
\ i=O I=0 

. 

9 exp (-jd? + #pi) } (2.197) 

l exp -jkT (py + Api - pr - 
[ APd]} . (2.198) 

Now define 

w = E { (1 + Agi>(l + Agl) exp[j(A& - A&)]} (2.199) 

h(k) = E (“Xp[-jQ(APi - Ap,)]} . (2.200) 

Using the independent Gaussian random variable assumption, 

Cl!il = 
i 

exp -0; , if1 
( ) 

1fag2, i=l 
(2.201) 

and 

h(k) = 

{ 

exP (-+/“) = exP (- [ql”> A exp (-0;)) i # l, 

1, i = 1, 
(2.202) 

(2.203) 

In the expression for @il (k) , we have assumed that the variance of each 
component of Api is equal to ap. 2 The term a: is the scaled variance mea- 
sured in wavelengths. Then, 

N-l N-l 

jl3oj” = 
i=O l=O 

i#l 
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N-l 

l exp [- (0: +oi)] + C (I+ 0:) (gr)' l 

i=o 
(2.204) 

Adding (gr)2 exp[-(a$ + 0$], i = 0, 1, l . l , N - 1 in the first term and sub- 

tracting the appropriate quantity from the second term gives 

IB(k)12 = IB(n)(k)12 exp[-(0; + &] 

N--l 

+ x (gy)2 { (1 + 0;) - exp [-(0; + (q} 7 (2.205) 
i=o 

2 2 2 where a+, aX, and o9 denote the variance of the corresponding random vari- 
ables. 

The random variation has two effects. The first term attenuates the 
beam pattern uniformly in k. This uniformity is due to our assumption that 

the variations are not dependent on k. It means that the beam pattern has 
a statistical bias. The expected value of the pattern along the MRA is less 
than unity. The second term is more critical. Define 

N-l 
T,, = x lw;12 = y (9pJ2 (2.206) 

i=o i=o 

as the sensitivity function. Then the second term becomes 

Im412 = TSe(l + a,2 - exp[-(c7$ + ml (2.207) 

which for small variances reduces to, 

IB2(k)12 = T,,(ag2 + 0; + oi}* (2.208) 

Note that! T,, is the inverse of the array gain for white noise, (see (2.185)) 

r r se= w [A 1 -I =I1 w II2 . (2.209) 

Thus as the white noise array gain increases, the sensitivity decreases. For 

an N-element array, the maximum white noise gain is N and corresponds to 
uniform weighting. Thus, any array with non-uniform weighting will be more 
sensitive to parameter variations than the uniformly weighted array. The 
effect of the second term is to raise the expected value in the sidelobe region 

uniformly. This constant value across k-space can have a major impact. In 
many array designs, we would like to put a perfect null (]B(k)12 = 0) in the 
direction of an interfering signal. We look at techniques for doing this in 
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Section X7. The implication of the term in (2.208) or (2.207) is that, if any 
of the variances ($, ai, 0:) are non-zero, then we can not obtain a perfect 
null. 

The level of the floor in the expected value of the power pattern will 
depend on the sensitivity function, Tse, and the variance of the perturbations. 
The effect is to limit the depth of the nulls in the pattern.” 

As an example, suppose 

(2.210) 

Then, A,, must be greater than or equal to 100 in order to get -40~dB nulls 
in the pattern. This requires that a uniformly weighted array must contain 
at least 100 elements. An array with non-uniform weighting would require 
even more elements. 

Later in the text, when we design optimum arrays, we often impose a 
sensitivity constraint, 

Tse =(I w 112< TO, (2.211) 

where ?‘, is a design constant to make the performance more robust to per- 
turbations. The constraint in (2.211) is often referred to as a white noise 
gain constraint, 

A w = (11 w 112)-1 2 T;? (2.212) 

In many of the design problems that we consider later, we find that the 
constraint in (2.211) plays an important role. 

2.6.4 Summary 

In this section, we have developed three important array performance rnea- 
sures. We observe that the norm of the weight vector w  has appeared in all 
three measures: 

(i) For a standard linear array, the directivity is 

D =)I w ll-2< N. 

(ii) For any array geometry, the white noise array gain is 

A, =I1 w l/-2 . 

loIn mathematical terms, a null in the beam pattern means R(k) = 0. However, in 
practice, the actual pattern has some non-zero value. The ratio of this value to the value 
at B(kT) is referred to as the null depth. 
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Figure 2.28 Linear aperture. 

(iii) For any array geometry, the sensitivity function is 

T se = Ai1 =I1 w (I2 . 

Later we will see that II w  II2 will play a central role in many of our discus- 
sions. 

2.7 Linear Apertures 

2.7.1 Frequency-wavenumber Response 

Consider the linear aperture shown in Figure 2.28. We assume that it is 
steered to broadside and has an aperture weighting function w;(z), where 
“a” denotes “aperture.” 

The frequency-wavenumber response function is given by 

.I 
L/2 qw, b> = dx w;(,z)e-jkzz. 

-L/2 
(2.213) 

The exponential term, exp(-jk,x), is the array manifold function and is 
analogous to the array manifold vector in an array. Observing that 

(2.214) 
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we have 
Y(w, k,) = S_q303 w~(z)e-jkzz dx, (2.215) 

which is familiar as the Fourier transform. The inverse transform is 

(w:(z) = & JFa ‘Y(w, k,)ejzkz dk,. ( (2.216) 

We see that the aperture weighting function and the frequency-wavenumber 
response are a Fourier transform pair in the x - k, variables. Thus all the 
Fourier transform properties can be applied to the aperture problem. For a 
linear aperture with uniform weighting, 

wJ,kz) = s L/2 1 
-e 

-L/2 L 

-jk&& 

- sin($kJ 
- 

Lk ’ 
-oo<k,<oo 

z x 
(2.217) 

0P 

w4 k,> 
L 

= sinc(TkJ, -CQ < kz < 00, (2.218) 

and, since k, = -(27r/x>u, 

&L(U) 
XL 

= sinc(T u), -l<u<l . - - (2.219) 

The function is plotted in Figure 2.29. 

It is useful to compare the result in (2.219) with the array result in (2.96). 
To find the equivalent length of aperture corresponding to an array of N 
elements, we equate the arguments of the sine functions in the numerators 
of (2.219) and (2.96), 

7TL nNd 
-u= 
x 

- u. 
x 

(2.220) 

This equality provides the same main lobe width and null spacing. Thus, 

L = Nd. (2.221) 

This relationship is shown in Figure 2.30. The equivalent length aperture 
extends d/2 beyond the actual array length in each direction. 

I1 We define sincx as (sinx)/x. Some sources (e.g., MATLAB@ ) define sincx as 
(sir+rx))/(7rx). 
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Figure 2.29 Beam pattern of uniformly weighted linear aperture. 

One Fourier transform property of immediate use is the shifting property. 
The array in (2.213) is steered to broadside. To steer to kzT, we have 

T(w, k, : kzT) = r(w, k, - k,T). (2.222) 

Substituting into (2.216) gives 

1 
w;(z : kzT) = -g 

s 
O” T(w, k, - kzT)ejzkz dk, 

-00 
1 - - - 

2x- s 
O” r(W &+jZ(nlc+lczT) d@k) I 

-00 
- - ejZkzT w;(x). (2.223) 

Thus, as we have seen with arrays, steering the beam in wavenumber space 
corresponds to a progressive phase shift in the weighting function. 

In many cases, we want to start the analysis with the linear aperture and 
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Figure 2.30 Equivalent apertures and arrays. 

then implement its frequency wavenumber response by using an array. This 

leads us to the aperture sampling problem. 

2.7.2 Aperture Sampling 

Consider the continuous aperture shown in Figure 2.30. We want to replace 
it with the equivalent uniformly spaced array in Figure 2.30. The element 
spacing is d and we assume N is odd. 

We can represent the array weighting function as a continuous aperture 
weighting function using a sum of impulse functions, 

U&Z) = y wLb(x - (n - F)d), (2.224) 
n=O 

where Nd = L. Then, using (2.215), 

T(w, kz) = WC@ - (n - 
N-l 

2 
(2.225) 

Integrating, we obtain 

N-l 

(2.226) 
n=O 

which is identical to (2.58). 

If the continuous aperture weighting function is w;(z), then using a stan- 
dard linear array (d = A/2) with element weightings 

w; =w~(x~), n=O,l,**+T-I, (2.227) 

will not, in general, produce an identical beam pattern. Usually, the sampled 

pattern will have very similar main-lobe behavior, but its sidelobe behavior 
will be different. We see examples of this behavior in Chapter 3. 

If our goal is to duplicate the beam pattern of continuous aperture, we 
can use smaller interelement spacing. 
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2.8 Non-isotropic Element Patterns 

Our discussion up to this point has assumed that each element had an 
isotropic response. In many cases, each element will have a beam pattern. 
In other cases, groups of sensors may be combined into a subarray with a 
beam pattern. The subarrays are treated as elements in the overall array. 
It is straightforward to incorporate these element beam patterns through 

pattern multiplication. 
We assume each element is a linear aperture and has an identical weight- 

ing, denoted by w$(z). These elements are configured into a linear array at 
location xn, n = 0, 1, l l . , N - 1. Note that the spacing does not have to be 
uniform. The array weightings are wk. The total weighting function is, 

N-l 

w;(z) = x w; l W;& -  z , ) .  (2.228) 
n=O 

The resulting frequency-wa,venumber function is 

- - (2.229) 

The first term is familiar as the beam pattern of the array with isotropic 

elements. It is now convenient to denote it as the array factor 

N-l 

AF(lc,) 5 C WC 9 e-jkrZn, (2.230) 

which is analogous to the expression in (2.58). 
The second term is the element frequency-wavenumber function. Thus, 

T(cJ, kz) = AF(k:)L(u, k,). (2.231) 

In terms of beam patterns 

B,(u) = AF(u)&e(u), (2.232) 

where 

k 
27r 27r 

z= -- 
x 

coso = --u. 
x 

(2.233) 
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Figure 2.31 Array of colinear apertures. 

Thus, the total beam pattern is the product of the array factor and the 
element beam pattern. This behavior is referred to as pattern multiplication. 

The derivation for three dimensions follows easily: 

Y(w, k) = AF(k)T,(w, k). (2.234) 

Three representative cases are shown in figures 2.31, 2.32, and 2.33. 
In the first case, the element is colinear with the linear array axis, and 

the resulting pattern can be represented in &space. 
In the second case, the element is perpendicular, so that the resulting 

pattern rnust be represented in k-space (see Problem 2.8.3). 
In the third case, the array is a rectangular planar array. If we consider 

the sensors in the s-direction to be elements of a linear array along the x-axis 
and each column has identical weightings, then the total array factor is the 
product of the two array factors, 

AF(k) = AF,(k) l AF,(k). (2.235) 

In addition to non-isotropic beam patterns, there are other sensor char- 

acteristics that should be considered in a particular physical problem. In 
some situations, there may be mutual coupling between the sensors. Several 
references (e.g., Balanis [Ba182], Yeh et al. [YLU89], Friedlander and Weiss 
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Figure 2.33 Planar array. 
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[FW91], and Svantesson [Sva99]). At several points in the text we will point 
out the effect of mutual coupling but will not pursue it in detail. 

2.9 Summary 

In this chapter, we have introduced many of the key concepts that will be I 
used throughout the text. 

In Section 2.2, we introduced the idea that the sensor array followed 
by a linear processor acts as spatial-temporal filter in (w, k)-space whose 
characteristics are described by a frequency-wavenumber function Y’(w, k), 
(2.37). In the visible region, the frequency-wavenumber function corresponds 
to the beam pattern, (2.38). The shape of these functions are determined 
by array geometry and the element weightings. The effect of array geometry 
iS described by the array manifold vector, vk(k), (2.28). For narrowband 
processors, the element weightings are complex gains, (2.49). 

In Section 2.3, we considered a narrowband, uniform linear array and de- 
rived its array manifold vector, (2.73). We observed that the array manifold 
vector was conjugate symmetric, (2.74), (2.75). This symmetry will lead to 
computational simplifactions in several situations. 

In Section 2.4, we considered a uniformly weighted uniform linear ar- 
ray that often referred to as the conventional beamformer. The frequency- 
wavenumber function wa,s given by (2.92), and the beam pattern was given 
by (2.95)-(2.97). We defined various beam pattern parameters; HPI3W, 
BIVNN, SLL, and grating lobes. These parameters provide a good general 
description of the beam pattern. 

In Section 2.5, we discussed array steering. Steering causes a translation 
of the beam pattern in k,, $J, or u-space, but causes pattern distortion in 
Q-space. 

In Section 2.6, we introduced three important concepts: directivity, white 
noise array gain, and the sensitivity function. For a given array geometry, 
the directivity is maximized by a uniform weighting. In Chapter 3, we 
will study different array weightings and find that the design problern is 
to find a suitable trade-off between improving sidelobe behavior and the 
null placement and reducing the directivity. We found that the sensitivity 
function is the inverse of the white noise gain and equals the norm of the 
weight vector w, (2.209). 

In Section 2.7, we discussed linear apertures and found that the frequency- 
wavenurnber function for a uniformly weighted linear aperture was a sine 
function, (2.218), (2.219). W e introduced aperture sampling in order to 
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approximate the aperture behavior with a uniform array. 

79 

In Section 2.8, we considered the case in which the sensor beam patterns 

are non-isotropic. We derived the pattern multiplication result. 
This completes our discussion of uniformly weighted linear arrays. In 

Chapter 3 we discuss different weightings to improve the sidelobe perfor- 
maliice of linear arrays. 

2.10 Problems 

The problerns are divided corresponding to major sections in the chapter. 

P2.3 Uniform Linear Arrays 

P roblem 2 .3.1 
Assume that N is even. Use the relationships 

B&f!)) = me [WY v$q (ti)] (2.236) 

from (2.77) to derive the beam pattern of a uniformly weighted uniform linear array. 

Problem 2.3.2 
When N is odd, we can partition the array manifold vector of a uniform linear array 

into three parts, 

VdN = (2.237) 

Repeat Problem 2.3.1 for this case. 

Problem 2.3.3 
Show that, if w is real and symmetric, then B+($) f  or a uniform linear array is a real 

symmetric function. Consider both N even and N odd. 

Problem 2.3.4 

Assume that N is even. In some applications, we want to obtain an asymmetric beam 
pattern. Show that, if V&/J) is conjugate symmetric and w is real asymmetric, that is, 

Wl w= [ 1 4w; ’ 
where wr is real, then B&/J) will be an imaginary function. 

(2.238) 

Problem 2.3.5 

Repeat Problem 2.3.4 for N odd. 
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P2.4 Uniformly Weighted Linear Arrays 

Problem 2.4.1 

(a) ConAruct a polar plot in dB of B@) f  or a standard 21-element linear array with 
uniform weighting for 0~ (the steering direction) equal to O”, 15”, 30”, 60”, and 
90”. 

(b) Find the HPBW for each of these 0~. 

Problem 2.4.2 

Assume N is even and 
1 -- 

wn = N n = O, l ,  l ” ) + - 1, 
1 N 
N n= 2”“’ N-l. 

(2.239) 

(a) Find tjhe resulting beam pattern and plot the magnitude in dB and phase versus $J 
for the case when d = X/2. 

(b) Find t,he slope of the beam pattern at $J = 0. 

Problem 2.4.3 
Consider a standard lo-element linear array with uniform weighting. Assume that the 

tnth sensor fails. Plot the resulting beam pattern for several values of n. 

Problem 2.4.4 

Assume that each of the 10 sensors in Problem 2.4.3 are equally likely to fail with 
probability, pn(F) = $ (1 - (I), where G! is a reliability parameter whose value is in the 
range [0, I]. Assume that, at most, one failure occurs. 

(a) Calculate the expected value of the beam pattern. 

(b) Plot the result for a = 0 and QI = 0.9. 

(c) Does the expected value of the beam pattern provide a useful indication of the array 
behavior or do we have to consider the behavior on separate trials (as in Problem 
2.4.3)‘~ 

Problem 2.4.5 

Consider a standard lo-element linear array with uniform weighting. Assume that 
two sensors fail. Plot the resulting beam pattern for several values of n1 and n2. 

Problem 2.4.6 
Consider the non-uniform 4-element linear array whose sensor separations are d, 3d, 

2d where d = X/2. The sensor outputs are weighted uniformly. 

(a) Compute the beam pattern and BLVNN. 

(b) Compare the results in (a) with a uniform 7-element array with spacing where 
d = X/2. Discuss the behavior of the main lobe and the sidelobes. 

Problem 2.4.7 
In order to find the exact HPBW, we must solve 

p,(u)12 = 0.5, 

where II,(u) is given by (2.96). 
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(a) One approach to finding an approximate expression for the HPBW is to expand 
pU(7L)12 in a second-order Taylor series around u = 0. Use the expression for 
L&&1.) given in (2.126) to simplify the derivatives. Compare your result to the 
result, in (2.98). 

(b) 1Jse (2.96) to find the exact result as a function of N and compare the result with 
(2.98). 

Problem 2.4.8 
The second central moment of an array weighting function is defined as 

N-- 1 

c 
2 

N-1 m2wm 

m=- 2 
N-l 9 

c ,,I NT1 u)m 

where the origin is at the center of gravity, 

N-l 

N odd, (2.240) 

z 

c 
?TlWm = 0. (2.241) 

N-l m=- 
2 

The second-moment beamwidth is defined as 

x 
Au4 = 4a. (2.242) 

A 

(a) Find Au4 for a uniformly weighted linear array. 

(bj Compare to the HPBW. 

Problem 2.4.9 
Consider an &element linear array with d = 5X/8 and uniform weighting. Plot B,(u). 

Compare the resulting beam pattern to the beam pattern of a standard lo-element linear 
array. 

P2.5 Array Steering 

Problem 2.5.1 
The conventional beam pattern for an array is given by 

f&5($ 1 h-j = VH(+T)V(!@ (2.243) 

(a) Show that B&,b : +T) is real if v(q) is conjugate symmetric. 

(b) Give two examples of conjugate symmetric array manifolds in addition to the uni- 
form linear array. 

Problem 2.5.2 
Verify the result in (2.141) and plot the percentage error versus N for various X. 

Problem 2.5.3 
In an ordinary endfire the beam pattern is obtained by letting 

* 
2nd -- - 

x 
cod - @T, (2.244) 



82 2.10 Problems 

2crrd 
*T=X* (2.245) 

If  d = A/2, there are two identical endfire lobes, as shown in Figure 2.26. One way to 
reduce the back lobe is to reduce the wavelength. The visible region is 2(27rd/X) wide in 
$-space. The first null in the back lobe is at 2n/N in G-space. Therefore if we reduce the 
visible region from the d = X/2 value of 27r by 27r/N, the back lobe should be significantly 
decreased. Thus, 

or 

( > a 

04 

r  

2(2nd/X) < 271. - $ - (2.246) 

d 5 ;(l- $). (2.247) 

Plot the beam pattern in u-space and B-space for N = 10. In this case, d = 0.45X 
and +T = 0.97r. Find the HPBW. 

Consider the case where only part of the back lobe is moved out of the visible region. 
Let 

x 1 
d = 2(1- w). (2.248) 

Plot, the beam pattern in u-space and B-space for N = 10. Find the HPBW. 

Problem 2.5.4 (Hansen-Woodyard) 
In order to make the main beam narrower, Hansen and Woodyard [HW38) proposed 

moving part. of the main lobe out of the visible region by increasing the interelement phase 
shift $T, 

$T=(y+a,. (2.249) 

However, the back lobe may move into the visible region unless d is decreased. To prevent 
the back lobe from becoming larger than the main lobe, we require +T < x. Thus, 

(2.250) 

x 1 
d<=2(1-N). (2.251) 

(a) Consider a lo-element linear array. Let d = 0.45X. Plot the beam pattern in u-space 
and o-space. Find the IIPBW. 

(b) Repeat for d = 0.3X, d = 0.35X, and d = 0.4X. 

(c) Show that the nulls occur at 

&=2sin-l [*/s]. 

(d) Show t,hat, for long arrays, 

(2.252) 

00 (2 m - 1). 

and t,he first zero occurs at 

001 

(2.253) 

(2.254) 



Thus the null-null beamwidth is 0.707 times the width of an ordinary endfire array. 

Problem 2.5.5 

(a) Consider a lo-element linear array pointed at endfire with d = 3X/8. The progres- 
sive phase shift tin is given by +T = 37r/4. Plot Be(O). 

(b) Repeat part (a) with ?+!!)T I= 7r [i + +] . 

P2.6 Array Performance Measures 

P2.6.1 Directivity 

Problem 2.6.1 

Consider a uniform N-element linear array with isotropic elements pointed at broad- 
side with uniform weighting. 

(a) Plot the directivity versus d/X over the range 0 < d/A < 2.0 for various N. - - 

(b) An approximate expression for D at broadside is 

D=2?, _ 0 5 d/X -C 1. (2.255) 

Superimpose this expression on the plot in part (a). Plot the error between the 
approximate expression and the exact value over the interval 0 5 d/X < 1. Note 
that the expression is exact for d = X/2 and that D = N. 

Problem 2.6.2 (continuation)12 

( > a 

(b) 

Calculate the directivity of the array in Problem 2.4.6. 

Consider the general case pointed at broadside of a non-uniform linear array whose 
element locations are located on a grid whose points are separated by d = X/2. 
Show that 

/N--l \ -’ 

D= ( ~Iwn12) > (2.256) 

\ n=O 

where 
N-l 

Iz Wn = 1. (2.257) 

n=O 

Therefore D = N when t,he weighting is uniform. 

Problem 2.6.3 

Consider a standard ll-element linear array with triangular weighting, 

Wn l- 2'n-$v'), n=(),l,.-.,N-l, (2.258) 

r2Contim lat’ion means that t he problem assumes that ei ther the previo 
specifically referenced problem has been read (or, in some cases, solved). 

Ius problem or a 
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where 

(2.259) 

(a) Compute the directivity when the array is steered to broadside. 

(b) Generalize to an N-element array (N odd). 

Problem 2.6.4 

Consider a standard 5-element linear array pointed at broadside. We want to cornpare 
the following unnormalized weightings: 

(4 1, 1: 1, 1, 1 

(b) 1, 2, 3, 2, 1 

(4 1, 4, 6, 4 1 
(d) 1, 1.61, 1.94, 1.61, 1 

(e) 1, 2.41, 3.14, 2.41, 1 

Normalize the weightings. Plot the beam patterns in u-space and O-space on separate 
plots. Compute D; the HPBW in u-space and O-space; the ANN in u-space and &space; 
and the height of the first sidelobe in dB. Discuss your results. 

Problem 2.6.5 
Repeat Problem 2.6.4 for an inverse triangular weighting, 

3, 2, 1, 2, 3. 

Discuss your result. 

Problem 2.6.6 

In order to find the directivity of a uniformly weighted linear array tlhat is pointed at 
$T, it is convenient to rewrite the beam pattern. 

(a) Show that 

N odd, (2.260) 

and 

N-l 
cos(m - - 

2 M , N even, (2.261) 

+ 
2rd 2nd 2nd - - 

x 
cod - ?,bT = -cod - - cos&‘. 

x A 

(b) We then write 

(2.262) 

N - m) cosm$. 
77-l= 1 

(2.263) 

Verify this expression for N=2, 3, 4, and 5. c 
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(c) Show thzt 

L>=< sin mkod cos m?,bT 7 (2.264) 

where y’,~ is the progressive phase factor. Thus, 

2clrd 
7) = kodcos8 - ‘$T = -Cost? - qT, 

x 
(2.265) 

The above result is for a set of N isotropic sources with an element spacing of d 
and an interelement phase shift $T ( e.g., p.142 of [STU]). 

(d) Plot the d irectivity versus 0~ (in degrees) for a 5-element linear array. Consider 
d = 0.3X, 0.4X, 0.5X, and 0.6X. 

(e) Etepeat part d for N = 10. 

Problem 2.6.7 

Show that the directivity of an ordinary endfire array (qT = 2rd/X) is approximately 

Problem 2.6.8 

D N 4Nd/X. (2.266) 

Show that the directivity of an Hansen-Woodyard endfire array is approximately 

D N 7.28 Nd/X. (2.267) 

Problem 2.6.9 

Consider a uniform lo-element linear array with uniform weighting pointed at endfire. 
Plot the directivity for the ordinary endfire array and the Hansen-Woodyard endfire array 
versus d/X for the range 0.1 < L!/X < 0.6. - - 

When D > N, we refer to the array as superdirective. This problem shows a case of 
a practical superdirective array. 

Problem 2.6.10 
Consider the case of linear array whose element positions along the x-axis are xn. The 

element phasings are linear with distance. Denote the phase of wn as a,. Then 

27r 
an = - -,& cos 8T. 

x 
(2.268) 

(a) Show that the beam pattern can be written as 

(2.269) 

(b) Assume the weights are normalized so that 

- 

2, I Wn = 1, (2.270) 

n=O 
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then 

i2A n 27r - 
s 0 

Use t,he result) in part (a) to show that 

and 

(2.271) 

(2.272) 

-1 

(2.273) 

P2.6.3 Sensitivity and the Tolerance Factor 

Problem 2.6.11 

Consider the special case of the perturbation model in Section 2.6.3 in which only the 
locations of the array elements are perturbed. Thus, (2.192) and the subsequent model 
applies. Assume that we have a standard N-element linear array along the z-axis and the 
only perturbations are in the z-direction. 

(a) Find the expected value of the beam pattern as a function of wp and a$ 

(b) Plot the result for a lo-element array and uniform weighting for various a:. 

Problem 2.6.12 
Repeat1 Problem 2.6.11 for the case in which the only position perturbations are in the 

y-direction. 
In part (b), plot the expected value of the beam pattern versus uz = cos 8 for several 

values of 4. 

Problem 2.6.13 (continuation Problem 2.6.4) 
Calculate the sensitivity function for the five weightings in Problem 2.6.4. 

Problem 2.6.14 (continuation) 

(a) Repeat Problem 2.6.11 for the case of phase-only errors. Therefore, (2.194) applies. 

(b) Compare your results with the results in Problem 2.6.11. Give an intuitive expla- 
nation of the comparison. 

Problem 2.6.15 

Consider a standard linear array designed for frequency fc. We want to analyze the 
behavior for mismatched frequency. Assume the frequency of the incoming plane wave is 
f,  where 

f  = a&. (2.274) 

(a) Plot the broadside beam pattern for a =0.80, 0.90, 1.10, 1.20. 

(b) Plot the directivity versus Q! over the range 0.5 < Q! < 2.0 for various scan directions: 
z& = o”, 15”, 30”, 45”. 
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P2.7 Linear Apertures 

Problem 2.7.1 

Consider a linear aperture with L = 5X. Assume that the weighting function is 
triangular. 

(a) Find an expression for the beam pattern and plot it. 

(b) How is the beam pattern in part (a) related to the beam pattern for uniform weight- 
ing? 

(c) Compare the result in part (a) to an equivalent linear array with d = X/4 and 
d = A/2. 

Problem 2.7.2 

The second cent,ral moment of the aperture weighting is defined as 

*2 s, z2w(z)dz 
w = s’w(x)dz ’ 

(2.275) 

where the origin is at the center of gravity. The second-moment beamwidth is defined as 

x 
Aua = -. 

40, 
(2.276) 

Find Au4 for a rectangular weighting. 

P2.8 Non-isotropic Element Patterns 

Problem 2.8.1 
The beam pattern for a short dipole (L < X) aligned with the x-axis is 

Hop = sink (2.277) 

(a) Find the beam pattern for the array in Figure 2.31. 

(b) Plot your result for N = 10. 

Problem 2.8.2 

The beam pattern for a short dipole (L < X) aligned with the z-axis is 

cos 
BDP(@,+) = 

[(t) sinBcosqS] 

1 - sin2 8 cos2 qb 
(2.278) 

(e.g., pp.138-139 of [STU]). 

(a) Find the beam pattern for standard linear array along the x-axis with uniform 
weighting. 

(b) Plot the beam pattern in the xx-plane and the yx-plane. 

Problem 2.8.3 [ST811 
The directivity expression for a linear array with uniform weighting and non-isotropic 

elements is 
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II= 
I 

9 + +T cz::: s (al sin mIc& + u2 cos 77-&d) cos rn$,~ 
(2.279) 

where UO, nr , and a2 are given in the table for various element patterns: 

Element IBe(Q7 4)I” a0 al a2 

Isotropic 1 1 1 0 

Collinear short dipoles sin28 2 (nzk20d~2 -2 
3 mkod 

Parallel to z-axis short dipoles 1 - sin20cos2 4 $ 1 - (mkidJZ - 1 
mkod 

(a) Calculate the directivity for a lo-element linear array pointed at broadside with 
collinear short dipoles. 

(b) Repeat for parallel short dipoles. 

Problem 2.8.4 

Consider the planar array in Figure 2.32 and assume the elements are isotropic. As- 
sume that NC = 10, Nz = 10, d, = X/2. Find the beam pattern BQ@,+) when the array 
is pointed at broadside. 

Plot the beam pattern versus cos8 for several values of $. 

Problem 2.8.5 
Consider a uniformly spaced planar array in the q-plane with isotropic element’s, 

(a) Find an expression for the beam pattern &(8,4) when the array in pointed at 
broadside. 

(b) Plot the beam pattern for NC = NY = 10 and d, = d, = X/2. Plot Be &?,+) versus > 
cos 8 for various values of 4. 

(c) Repeat part (b) for the case in which the elements are short dipoles parallel to the 
x-axis. 
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Chapter 3 

Synthesis of Linear Arrays 
and Apertures 

In this chapter we develop techniques for choosing the weighting of each 
sensor output in order to obtain a frequency-wavenumber response and beam 
pattern with desirable properties. The weighting process is also referred to as 
shading or tapering in the literature. In this chapter we restrict our attention 
to linear arrays. In Chapter 4, we consider planar array configurations. 

The frequency-wavenumber response Y(w, k) is the Fourier transform of 
the weights w,, so there is a large body of mathematical results available. 
For linear arrays with equal spacing, ‘Y’(w : k) has exactly the form of the 
discrete Fourier transform (DFT) so the techniques from equivalent temporal 
problems such as finite impulse response (FIR) filters and spectral estimation 
windows can be used directly. For planar arrays with equal spacing, the 
corresponding 2-D techniques can be used. For linear arrays whose sensors 
are located at arbitrary points on a line, the design problem is more difficult 
because we are no longer sampling on a uniform lattice. 

Although there is a mathematical duality with the time domain problem, 
there are important differences between array processing and time domain 
processing that shape our conclusions: 

0 i The spatial dimension of the array normally has an absolute constraint 
due to the structure supporting it (e.g., a radio tower, a mast on a 
ship, the fuselage of an airplane, a satellite bus, a towed array). Even 
if it is possible to extend the array, it will be much more expensive 
than obtaining more time samples. 

(ii) The cost per sensor is significant in many cases because of the sensor 
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itself and associated electronics. Therefore, even if space is available, 
we choose to increase the processing complexity in order to reduce the 

number of sensors. There is a large incentive to optimize processing 
performance. 

(iii) In some cases, it is difficult to maintain amplitude and phase calibra- 
tion of the sensors for a number of reasons (e.g., mutual coupling, 
environmental changes) and overall array calibration due to changes 

in sensor location. In Section 2.6, we saw how these changes placed a 
limit on the null depth in the beam pattern. We find many other cases 
in which calibration errors are the limiting factor in array performance. 
In cont,rast, time samples are very uniform in most applications. 

(iv) In the time domain, for a given signal and noise model, one can vary 
the number of samples to change performance. However, in the array 
problem, we have two dimensions: N, the number of sensors, and K, 
the number of samples that can be varied to changed performance. 

Therefore, although duality is an important factor that we will exploit, 
the array processing problem must be studied in its own context. 

In this chapter, we examine a number of different techniques for design 

of linear, equally spaced arrays. Linear arrays are the traditional focus of 
text,s on classical array processing. The design of weighting for linear arrays 
reveal many of the important concepts in array processing. Many of the 
ideas extend to more general geornetries, although the mathematics becomes 
more involved (in some cases, the mathematics does not extend to higher 
dimensions). 

Recall from our discussion in Chapter 1 that our ultimate goal is to design 
array processors that adapt their configuration to match the incoming data 
and are optimized in a statistical sense. However, it is important to have 
a thorough understanding of classical (or deterministic) beamformer design 

for several reasons: 

(i) The classical array design provides a basis for comparison for any pro- 
posed a.daptive design. If we derive some “optimum array processor,” 
we should show its improvement over the classical array processor. 

(ii) In many cases, we will find that the “optimum array processor” has one 
of the beamformers that we design using deterministic techniques as a 

basic building block in its implementation. 

(iii) In some cases, understanding the deterministic design points out areas 
where statistical techniques may be useful. 
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We consider several approaches to the selection of weighting functions 
for linear apertures and linear arrays: 

(i) Spectral Weightings (3.1) 

This approach exploits the Fourier transform relationships be- 

tween the frequency-wavenumber response function and the weight- 
ing function and the parallelism with windows and talpers used 

in the spectral analysis of time series. 

(ii) Array Polynomials and the x-Transform (3.2) 

This approach, which originated with Schelkunoff [Sch43], devel- 

ops a polynomial representation of a linear array and leads to 
a z-transform relationship. We can then analyze and synthesize 
patterns by positioning the zeros of the array polynomial. 

(iii) Pattern Sampling in Wavenumber Space (3.3) 

This approach specifies the desired values of the pattern on a 
grid in wavenumber space. For apertures, it utilizes the sampling 

theorem. For arrays, it leads to a DFT relationship. 

(iv) Minimum Beamwidth for Specified Sidelobe Level (3.4) 

This approach attempts to find an array weighting function that 

minimizes the beamwidth for a given maximum sidelobe level. It 
leads us to the Dolph-Chebychev and Taylor weightings, which 

are widely used in practice. 

(v) Least Squares Error Pattern Synthesis (3.5) 

This approach specifies a desired pat tern in frequency-wavenumber 
space and attempts to find a weighting function to achieve it. 
The approach uses the Fourier transform for apertures or the 
Fourier series for arrays to obtain a minimum mean-square error 

approximation to the desired pattern. 

(vi) Minimax Design (3.6) 

This approach utilizes a technique that was developed to design 
finite impulse response (FIR) filters. It specifies a maximum 
allowable variation in the height of the main lobe (e.g., 1 - &, < 
BQ (111> < 1+ & and a maximum allowable height in the sidelobe - 
region, 6,, and finds a solution to meet these criteria. 
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(vii) Null Steering (3.7) 

This approach assumes that there are certain points in wavenum- 
ber space where there are interfering signals (e.g., jammers). We 
design weightings so that the frequency-wavenumber response is 
zero in these directions. 

(viii) Asymmetric Beams (3.8) 

All of the beams discussed up to this point assume that the de- 
sired target direction is known. If we are required to estimate 
the target direction, then beam patterns with different charac- 
teristics, specifically a significant non-zero slope in the pointing 
direction, are useful. We develop this type of beam in Section 

3.8 and discuss its properties. 

(ix) Spatially Non-uniform Linear Arrays (3.9) 

In this section, we discuss linear arrays with non-uniform ele- 
ment spacing. We develop several synthesis techniques. We also 
introduce the idea of minimally redundant linear arrays. 

(x) Beamspace Processing (3.10) 

In later chapters of the text, we find that, in many applications, 

it is useful to preprocess the array data to form a set of beams 
that span the space of interest and then do further processing in 
these output beams. We introduce this idea in Section 3.10 and 

develop it in detail in later chapters. 

(xi) Broadband Arrays(3.11) 

In this section, we develop linear array spacings that are useful 
when the signals of interest are broadband. 

The structure of the chapter is shown in Table 3.1. 
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2, $-ray poly. &z- -- - - ---- 

z-Transform 
Zero plots 
Visible region 
Property of zeros 

Weighting: 
Directivity vs. 
Sidelobes 

Uniform Cosine-m 
Hann Hamming 
Blackman-Harris 
DPSS Kaiser 

Weightings: 
Desired beam 
Pattern 

3.5 Least Squares ------------------------ 

Fourier series 
Windows 
Indexing 

Weightings: 
Special beam 
Pattern 

Other topics 

3.7 Nul I Steering _ _ _ _ _ _ --------------- 

Null constraints 
MMSE synthesis with nulls 

3.9 Non-uniform arrays ----------------- 

Minimum redundancy 
Co-arrays 
Beam pattern design 

_ _ _ 3.3 Pattern Sampling ------------ -- ----- 

Discrete Fourier Trans.(DFT) 
IDFT 
Pattern synthesis 

3.4 Min BW for Specifi --me --------------- 

Dolph-Chebychev 
Riblet-Chebychev 
Taylor 
Villeneuve 

3.6 Minimax ------------------------ 

Parks-McClellan- 
Rabiner Algorithm 

3.8 Difference Beams ----------------------------- 

Asymmetric beams 
Bayliss difference beams 

3.10 Beamspace .-_--------------_ 

DFT 
WDFT 
DPSS 
Taylor series 

Table 3.1 Structure of Chapter 3. 

3.11 Broadband Arrays ----------------. 

Nested arrays 

The techniques are drawn from the classical antenna literature and the 
digital filter design literature. Representative texts in the antenna area 
are Elliot [E11811y Kraus [Kra88], Balanis [Ba182], Milligan [Mi185], John- 

son [Joh93], Steinberg [Ste76], Ziomek [Zio95], Ma [Ma74], Mailloux [Mai94], 
Weeks [Wee68], Stutzman and Thiele [ST81], and the four volume handbook 
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edited by Lo and Lee [LL93a], [LL93b], [LL93c], [LL93d]. 
Represernative texts in the digital filter area are Oppenheim and Schae- 

fer [OS89], P roakis et al. [F’RLN92], Rabiner and Gold [RG75], and Mi- 
tra and Kaiser [MK93]. W e use examples from these references and other 
sources. 

3.1 Spectral Weighting 

There are several classes of array weightings that are equivalent to various 
windows or tapers used in the spectral analysis of time series. Their design 
depends explicitly upon the Fourier transform relationship for the weighting 
and the frequency-wavenumber response for a linear array with a sensor 
spacing less than or equal to X/2; consequently, grating lobes and spatial 
aliasing become unimportant and Fourier transform theory for continuous 
functions can be used directly. 

The startling point is the Fourier transform pair in (2.215) and (2.216), 

00 T(w,k) = s w;(z) e-jkz dx 
-00 

and 
1 w;(z) = G 

.I 
O” T(LJ, k)ejkz dk, 

-00 

(3 1) . 

(3 > 
3 .L 

where we have suppressed the x subscript on k,. 
As a result of this transform relationship there is a very large body of 

literature for weight design, or pattern synthesis, for arrays of this construc- 
tion. Some of the more important considerations are the following: 

l The Fourier uncertainty principle specifies a lower limit on the prod- 
uct of the mean-square aperture extent and the mean-square response 
width. ’ Specifically, we have 

JSJZ > l/2, (3 3) . 

where Al2 and Ak2 are respectively the normalized mean-square widths 
of the weighting and the response and are given by 

~ 
‘The proof of the Fourier uncertainty pri 

weighting and of the response. The discussion 
nciple requires zero-mean position of the 
refers to distributions about these means. 
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(3 5) . 

This uncertainty principle implies that a narrow, or a high-resolution, 
frequency-wavenumber response (e.g., small llk2) requires a large mean- 
square weighting extent AL2 that is bounded by L2/4 for an array of 
finite extent. Consequently, there is a fundamental trade-off between 
the resolution of the response function and the extent of the aperture. 

l Parseval’s (or Plancherel’s) theorem states 

I ‘O” 
-00 

(Y(w, k)12 E = /; (w,(z)12 dx. (3 6) . 

This implies that high amplitude response functions such as those often 
generated for null placements or for sidelobe reduction lead to large 
values for the sum of the magnitude squared of the weighting. We have 
seen earlier that this decreases the white noise gain, A,, and increases 
the sensitivity function, T(w). 

l The sidelobes decay asymptotically according to the order of the dis- 
contlinuity in the aperture weighting. Uniform weighting leads to side- 

lobes that decay as O(k). Smooth weighting patterns lead to fast 
sidelobe decay. It is important to note that this is an asymptotic re- 
sult and is not a statement about the maximum sidelobe level; there 
are several very useful weightings, such as Hamming and Taylor, that 
have step or derivative discontinuities. These weightings achieve low 

maximum sidelobes by using these discontinuities to cancel the high 
sidelobes near the main beam. 

The value of this work extends beyond linear arrays. First, there are 
a number of important arrays that consist of sets of linear arrays; second, 
weightings for planar arrays are often pursued in terms of a product of linear 

array weightings in each dimension; finally, the design principles are often 
applicable to higher dimensions. 

Our development in this section will focus on linear arrays. The analo- 
gous results for linear apertures follow directly. In Section 3.1, the problem 

of interest1 is to reduce the sidelobes while minimizing the increase in the 
main-lobe width (and the loss in directivity). 

Our approach in this section is heuristic. We will try different weight 
vectors and analyze their performance. In Section 3.4, we will develop an 

analytic technique. We use the uniform weighting as a reference. We derived 

its beam pattern in Section 2.4 and repeat it for reference purposes. 
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3.1.1.1 Uniform weighting 

Frorn (2.77) tl: re uniform weig 

The resulting 1: learn pattern in u-space is 

1 sin(yu) 
B,(u) = N sin(Fu) ’ 

We focus our attention on a standard linear array, so (3.8) reduces to, 

BU(u) = $- 
sin( 9) 

sin(y) ’ 

9r 

(3 7) . 

(3 8) . 

(3 9) . 

From (2.140) the directivity is 

D = N. (3.10) 

All of the weightings that we are going to consider in this section are real 
and symmetric, so it is convenient to use the position of the nth element as 
the index, 

N-l 
fi=n--- 2 1 n=O,l,*~~,N-1, 

N-l N-l 
fi=-- 1 . . . 7 - . 

2 2 
(3.11) 

We first consider various weightings constructed from cosine functions. 

3.1.1.2 Cosine weighting 

We consider the case when N is odd. The cosine weighting is 

‘u) (4 - = sin(&)cos(7+, (3.12) 

where the sin(&) t erm is a constant such that B,(O) = 1. Writing the 

cosine in exponential form gives 
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Figure 3.1 Beam pattern for uniform and cosine weighting: IV=1 1. 

Using the form of the array manifold vector in (2.70), the beam pattern is 

N-l 

The first term corresponds to a conventional beam pattern steered to us = 
l/N, and the second term corresponds to a conventional beam pattern 

steered to ujS = -l/N. Therefore, 

B&L) = Jj sin(&) 
sin y(u - +)) 

( 

sin 
( 

l 

1 + 
;(u- N 

,> 

(3 15) 

We will find this superposition of shifted conventional beams to be a common 
characteristic of many of the patterns that we develop. We show the beam 
pattern for an 11-element array using the cosine weighting in Figure 3.1. 

We show the conventional beam pattern as a reference. The sidelobes have 
been reduced but the main lobe is wider. The parameters for the two beam 
patterns are:2 

2The parameter DN is the normalized directivity of the array. It is normalized with 
respect to the directivity of a uniformly weighted array. For the standard linear array it 
is also the normalized white noise gain. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

u 

Figure 3.2 Beam pattern for raised cosine weighting: N=ll. 

t 
Weighting HPBW MANN First Sidelobe HT DN 
Uniform 0.89$ 2.01 

Y 
-13.0 dB 1 

Cosine l.lS$ 3.0F -23.5 dB 0.816 

3.1.1.3 Raised cosine 

We can combine the rectangular uniform and the cosine weighting to ob- 
tain some of desireable features of each weighting. The corresponding array 
weighting is 

w(Z) = c(p) 
N-l Iv-1 

, ii= -2,...,2, (3.16) 

where 

C(P) 
P +(1-P) -- - 
N 2 

(3.17) 

is a constant so that B,(O) = 1. 
The beam patterns for the raised cosine weighting for p = 0.31,0.17, and 

0 are shown in Figure 3.2. As p decreases, the height of the first sidelobe 
decreases and the width of the mainlobe increases. The beam patterns have 
the following parameters: 
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P HPBW BWNN First Sidelobe HT DN 
0.31 1.031 

‘ 

1.09- Y 
2.501 
2.70- Y 

-20.0 dB 0.928 
0.17 

1.18, Y 3.00,, Y 
--22.0 dB 0.886 

0 -23.5 dB 0.816 

Thus, we have been able to narrow the HPBW and keep the first sidelobe 
much lower than the uniform distribution. 

3.1.1.4 CosineTrL weighting 

We next consider a family of cosine weightings of the form cos”( x6/N). The 
array weights are 

1 
c2 cos2 (y) , m = 2, 

w-n(n) = c3 cos3 (7) , m = 3, 

c4 cos4 (y) , m = 4, 

(3.18) 

where ~2, ~3, and c4 are normalization constants. 
The weighting for m = 2 is sometimes called the Hann weighting.3 Once 

again, the beam pattern is computed using the exponential form of cosine 
function. 

The beam patterns are shown in Figure 3.3. As m increases, the sidelobes 

decrease but the main lobe widens. The parameters for the beam patterns 
are: 

e 
m  HPBW BWNN First Sidelobe HT. DN , 6 
2 1.444 4L -31.4 dB 0.667 

3 1.66- Y  5- Y  -39.4 dB 0.576 

4 1.85T Y  6x Y  -46.7 dB 0.514 

3.1.1.5 Raised cosine-squared weighting 

The raised cosine-squared family of weightings is given by 

- - + { (1 +p) + (1 -p)cos (F)}) 

N-l N-l fi=-- . . . 
2 I 1------ 2 

7 (3.19) 

3The weighting is due to an Austrian meteorologist, von Hann. It is sometimes referred 
to as the Hanning weighting. We call it the Hann weighting. 
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Figure 3.3 Beam patterns: cosinem weighting, N=ll. 

where Q(P) is the normalization constant. We consider the general case in 

the problems. In the text, we consider a specific weighting known as the 
Hamming weighting. 

3.1.1.6 Hamming weighting 

The Hamming weighting exploits the characteristics of the rectangular pat- 
tern and the cosine-squared pattern tlo place a null at the peak of the first 
sidelobe. The weighting function is 

w(ii) =g()+g1cos 

N-l N-l 
)  fi= - -  l -’ -  

2 > 7 . 
2 

(3.20) 

The coefficients go and 91 are chosen to place a null at u = 3/N and normalize 

the response at broadside to unity. The result is 

w(n> 
N-l 

- = 0.54 + 0.46~0s , fi = -2 < n -C &$. - - (3.21) 

This corresponds to p = 0.08 in (3.19). The beam pattern is the sum of 
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Figure 3.4 Beam patterns for Harm, Hamming, and Blackman-Harris weight- 
ings: N=ll. 

three conventional beam patterns: 

sir@++)) +sin(F(u+$-)) 

sin (5 (2~ - $)) 1 sin(?j(u++)) ’ 

(3.22) 

The Harnming weighting is shown in Figure 3.4. We also show the beam 
patterns for the Hann weighting (3.18) and the Blackman-Harris weighting, 
which we will derive next. 

The first zero occurs at u = 4/N and the height of the first non-zero 
sidelobe is -39.5 dB. There is a step discontinuity in the weighting that leads 
to an asymptotic falloff of the sidelobes of O(i); however, the first sidelobe is 
cancelled exactly and the remaining ones are low absolutely in spite of their 
relatively slow falloff. The directivity of the Hamming weighting is relatively 
high. In addition, we note that the beamwidth of the Hamming window is 
less than the beamwidth of the Hann weighting and its first sidelobe is lower. 
This is an exception to the general trend. 
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3.1.1.7 Blackman-Harris weighting 

The Blackman-Harris weighting simply extends the procedure to higher or- 

der harmonics to provide nulls at the’peaks of the first two sidelobes. The 
weighting function is 

N-l N-l 
u)(4 - = 0.42 + 0.5~0s ,?i= -- ,.. - 

2 
7 > 

(3.23) 2 

The beam patt#ern is a sum of conventional beam patterns, 

NTU 

&L(u) = 

sin 2 
( > 

o’42 sin (7) 

+025 

’ 
[ 

sin(~(u+)) +sin(F(u+&)) 

sin (5 (u - 5)) sin@ (u+ $)) 

+oo4 sin@ (u- 5)) + sin@ (u+ 6)) 
. 

i 
sin (?J (u - 6)) 1 sin(?j(u+$)) ’ 

and is shown in Figure 3.4. The parameters for the beam patterns are: 

Weighting HPBW BONN First Sidelobe HT. DN 
‘ 

Hann 1.44$ 
‘ 

1.31% 
4.06 -31.4 dB 0.664 

Hamming 4.0$ -39.5 dB 0.730 
Blackman-Harris 1.65% 6.0% -56.6 dB 0.577 

(3.24; 

The weightings up to this point have been based on various sinusoidal 
functions. We now look at other types of array weightings in an attempt to 
improve the beamwidt h-sidelobe trade-off. 

3.1.1.8 Prolate spheroidal functions 4 

The problem of interest is to develop a weighting that will maximize the 

percentage of the t’otal power that is concentrated in a given angular region. 
Thus, we want to maximize the ratio, 

(3.25) 

*Discrete prolate sequences have been applied to the FIR design problem by Tufts and 
Francis [TF70], Papoulis and Bertran [PB72], and Tufts [Tuf75]. They were applied to the 
aperture problem by Rhodes [Rho63]. Our discussion follows Prasad [Pra82]. 
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where 621 is a region around the mainbeam. For a linear array, this can be 

where $J = ~&OS& From (2.51), we have 

The numerator can be written as 

CtN = s ” -40 

WH v$(@) Vr(?+b) w* dq 

= wHAw, (3.28) 

where 

@O A 
n - - 

s -40 
-fdti) +I) d$* 

The (m, n) element of A is 

s 

+0 
$mti e-- 

2sin((m - T~)$o) 

40 ’ 
jnti d$ = 

( m- 4 
= 2$qpinc((m - ~>T+!J~) 

Similarly, the denominator is 

- - wHBw, 

where 

B - - 
.I 

r v+($) v;(G) d$ = 2x1. 
-7r 

Thus, 
wHAw 

a!= 
27TWH w l 

(3.26) 

(3.27) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

To maximize cq we find the eigenvalues and eigenvectors of the matrix 

27rXw = Aw, (3.34) 
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and choose the eigenvector corresponding to the largest eigenvalue Xmaz.5 

Using (3.30) in (3.34) and dropping the factor of 2, we have 

iv sin ((m - 72)+0) c ( 4 
Wn =dw,, m- 1,2,~~~,N. (3.35) 

r1=1 m- 

The weightings (or sequences) obtained by solving (3.35) are called discrete 
prolate spheroidal sequences (DPSS) and the corresponding beam pat- 

terns are called discrete prolate spheroidal functions. They are dis- 
cussed in detail by Slepian [Sle78]. The discrete prolate spheroidal sequences 

are also referred to as Slepian sequences. The sequence corresponding to 

the largest eigenvalue is referred to as the first Slepian sequence. They are 
the discrete analog to the continuous case discussed by Slepian, Landau, and 
Pollack in a series of Bell System Technical Journal articles [SP61], [Sle64], 

[Sle65], [SS65], [LP61], and [LP62]. For our present application, we do not 

need most of their properties. We discuss the DPSS functions in more detail 
in Chapter 5. 

We now consider a simple example to illustrate the results. 

Example 3.1.16 

We consider an 11-element array and solve (3.35) for various values of $0. In each 
case, the optimum weight vector wo corresponds to the eigenvector corresponding to largest 
eigenvalue. The results are shown in Table 3.2. We show the first six normalized weights; 
the other five weights follow from symmetry. To simplify the plot we have normalized the 
weights so that 2& = 1. The actual weights are normalized so that B,(O) = 1. 

Table 3.2 Normalized Weights Corresponding to Maximum Eigenvalues 

Wl w2 w3 w4 w5 w6 

0.975 0.984 0.991 0.996 0.999 1.000 
0.865 0.912 0.950 0.978 0.994 1.000 
0.678 0.785 0.875 0,943 0.986 1.000 
0.274 0.466 0.665 0.839 0.958 1.000 
0.043 0.168 0.391 0.670 0.907 1.000 

In Figure 3.5, we show some representative discrete prolate spheroidal sequences for 

$0 = 0.1x, 0.27r, and 0.47~ 
The corresponding beam patterns are shown in Figure 3.6. As $0 approaches zero, wo 

approaches uniform weighting because we are maximizing the directivity. For @O = 0.27r, 
most of the energy is concentrated in the main beam with a slightly larger beamwidth and 
sidelobes of -20 dB and lower. For $0 = 0.4-/r, the sidelobes are -53 dB, but the beam is 
much broader. 

5The symbol X denotes the eigenvalue. We also use X for the wavelength but the 
meaning should be clear from the context. 

‘This example is similar to the result in Prasad [Pra82]. 
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Figure 3.5 Discrete prolate spheroidal sequences: $0 = O.h, 0.2n, and 0.47~ 
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Figure 3.6 Beam patterns as a function of $0: DPSS weighting, N=ll. 
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The beam pattern parameters for the DPSS weightings are: 

HPBW BWNN First Sidelobe DN 
HT. 

$0 = 0.1~ 0.02/N 1.407rlN -15.6 dB 0.981 
DPSS Y,L~ = 0.27r 2.20/N 1.797r/N -24.7 dB 0.869 

q. = 0.47r 2.86/N 2.97n/N -52.2 dB 0.665 

3.1.1.9 Kaiser weightings 

Kaiser [Kai74] proposed a relatively simple approximation to the prolate 
spheroidal sequences using Bessel functions. The weighting has found wide- 
spread usage in spectral analysis, FIR filter design, and other fields. 

The Kaiser weights are 

(3.36) 

where 10(z) is the modified Bessel function of zero-order [AS65]. The pa- 
rameter ,8 specifies a beam pattern trade-off between the peak height of the 
sidelobes and the beamwidth of the main lobe. 

We now consider two examples to illustrate the behavior. 

Example 3.1.2 
Consider a standard H-element linear array. The normalized (zug = 1) weights for 

P = 3 and 6 are shown in Figure 3.7(a). The resulting beam patterns are shown in 
Figure 3.7(b). For p = 3, the HPBW is 2.52/N, the BWNN is l.l27r/N, and the highest 
sidelobe is -26 dB. For 10 = 6, the HPBW is 2.86/N, the BWNN is 1.6&/N, and the 
highest sidelobe is -47 dB. Note that as ,L? decreases, the weighting function approaches 
the uniform weighting. 

Example 3.1.3 
In this case, we fix p at 3 and investigate the behavior for N = 11, 21, and 41. The 

beam patterns are shown in Figure 3.8. All three cases have the same maximum sidelobe. 
Changing N changes the value of u where this maximum occurs. 

The bearn pattern parameters for the Kaiser weightings for N = 11 are: 

HPBW BWNN First Sidelobe DN 
HT. 

Kaiser ,8 = 3 2.18/N 1.757r/N -23.7 dB 0.882 
p = 6 2.80/N 2.76x/N -44.4 dB 0.683 

This completes our initial discussion of array weight vectors that are 
designed to allow trade-off between the beamwidth of the main lobe and the 

height of sidelobes. 
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Figure 3.7 Kaiser weighting: (a) weighting for p = 3 and 6; (b) beam patterns 
for ,8 = 3 and 6: N=ll. 
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Other weight vectors are described in the comprehensive paper by Har- 
ris [Har78] on tirne-domain windows. 

3.2 Array Polynomials and the x-Transform 

For linear equally spaced arrays the beam pattern can be represented in 
terms of an array polynomial. In 1943, Schelkunoff [Sch43] utilized this 
representation to develop a theory of linear arrays. We utilize his work and 
introduce the x-transform representation. 

3.2.1 x-Transform 

From (2.71), the beam pattern can be written in $-space as 

(3.37) 

Defining 

x = ,j+, (3.38) 

we can write 8 
N-l 

B&z) = c w,x-~, (3.39) 
n=O 

which is familiar as the x-transform. It maps the real variable $J into a 
complex variable x with unit magnitude. 

The transformation is shown in Figure 3.9. The variable q!~ is the phase 
of the complex variable x. The beam pattern can be written as 

(3.40) 

Most discussions in the classical antenna literature focus on the case of 

real ‘Wn. When we discuss optimum array design from a statistical standpoint 
in Chapter 6, we will usually have complex wn. In Section 3.2.2, we restrict 

our attention to real weightings. 7 In Section 3.2.3, we discuss some properties 

of the beam pattern in the vicinity of the zeros of B,(z). 

71n Section 3.7, we consider a design problem that leads to complex weights. 
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Figure 3.9 x-Transform. 

3.2.2 Real Array Weights 

In this section, we assume the wn are real and symmetrical.’ In the text, we 
analyze the case of symmetric weightings and N odd. We analyze the case 
of symmetric weightings and N even in the problems. 

For symmetric weightings, 

u/ (4 =w(N-l-n), O<n<N-1. - - (3.41) 

The x-transform is 
N-l 

B,(z) = x w,z-~. 
n=O 

Because of the symmetry we can define 

(3.42) 

ikl 
N-l - -- 

2 
1 (3.43) 

and write 

B&z) = cM {w(M) + w(M - 1) [z + z-l] 

+w(M - 2) [z”  + z-21 + ”  l + w(0) [z” + TM]}. (3.44) 

8Mar~y of the classical array weight vectors satisfy this assumption. 
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e-j”+ {w(M) + 2w(M - 1) cos$ 

+2w(M-2)cos2++*=* + w(0) cos(M?j!J)} . (3.45) 

Using (3.40) the beam pattern is 

M-l 

B&$J) = /w(M) + 2 C w(m) cos(M - m)+. (3.46) 
W-L=1 

We can also write (3.46) as 

M 

-Q$$) = x Cb-d~s~~~ (3.47) 
n=O 

where 

Cl!n = w(Ml, n = 0, 
2w(M - n), n # 0, for N odd. 

(3.48) 

We now explore the behavior of the zeros of B, (x) . To find the zeros of 
BZ(z), we observe that 

B&T-~) = z2M B,(x), (3.49) 

because of the symmetry of the coefficients. Therefore B,(x) and B.&Z-~) 
have identical zeros. Since B,(x) has real coefficients, the zeros occur in 
complex conjugate pairs. 

Thus, we can write B,(z) in factored form as9 

B,(z) = w(o) h(z) B2(4 B3(4, (3.50) 

where 

(3.51) 

contains zeros in reciprocal pairs on the real axis. If B1 (z) contains a zero at 
x =+lorx= - 1, then it will appear in pairs since B1 (z) is of even order. 

N2 

B2(z) = n [1 - (2~0~0~) x + z”] 
i=l 

(3.52) 

‘We drop the x subscript on the right side for simplicity. 
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contains zeros occurring in complex conjugate pairs on the unit circle at 
z = ,f$4 . 

B3(4 = %Q{l- [2(7.i++oi] x 
- 

(3.53) 

contains zeros that occur in fours: complex conjugate pairs and reciprocal 
(with respect to the unit circle) pairs. 

There are a total of 2&C = N - 1 zeros: 

2M=2Nl+2N2+4N3. (3.54) 

The zeros on the unit circle correspond to nulls in the beam pattern if 
they are in the visible region. 

For N even, 

and (3.5Oj becomes 

M 
N - --- 1 
2 

7 (3.55) 

B,(z) = w(o)(l + z)Bl(+2(@3(Z)e (3.56) 

The (1 + x> corresponds to a zero at x = -1 and there are 2M additional 
zeros from B&z), B&z), and B&z). There are always a total of N - 1 zeros. 

The magnitude of B(z) is 

2M 

lB(Z>I = Iwv-11 n 12 - G-J l 

(3.57) 
n=l 

This magnitude can be expressed as the product of the distances from a 
point x on the unit circle to the roots. Since the point (1, 0) represents the 
MRA, the pattern is normalized by dividing by the product of the distances 
from (1, 0) to the roots. Thus, 

(3.58) 

and 
arg B(x) = c arg(z - Zn) - x a%(1 - G-z)* (3.59) 
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Figure 3.10 Zero plot for an U-element array. 

As z moves around the unit circle from (1, 0) in a counterclockwise direction, 
$ is moving 0 to +kd. When d = X/2, @ is moving from 0 to 7r, u is moving 
from 0 to 1, and 0 is moving from 90’ to 0’. 

Example 3.2.1 
Consider a standard H-element array with uniform weighting. From (Z.lOl), the zeros 

are located at 

or 

n X N-l 
Un =fz-;i, n = 1,2, l l l )  -  

2 ’ 

(3.60) 

Un = f2n -1 II’ n- 9” l ,5. (3.61) 

The resulting z-plane plot is shown in Figure 3.10. Remember that the location of the first 
zero determines the beamwidth of the main lobe. Thus, we can develop techniques that 
constrain the first zero to be at a specified point and adjust the other zeros to obtain a 
desired pattern shape. Many of the commonly used patterns are developed in this manner. 

In the next series of figures (Figures 3.11-3.13), we show the x-plane 
plots for some of the array weightings we derived in Section 3.1. They are 
grouped in the following sets: 

l Figure 3.11: Cosine, cosine-squared 

l Figure 3.12: Hamming, Blackman-Harris 

l Figure 3.13: DPSS (O.br,O.4~) 
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Figure 3.11 Zero plots for cosine and cosine-squared weightings. 

In Figure 3.14, we show the effect of d on the x-plane plot for various 
values of d. The visible region represents the part of the circle corresponding 
to physically observable values of 0. The remainder of the circle corresponds 
to the virtual (or invisible) region that we have discussed previously. 

For d < X/2, the visible region does not cover the entire circle. For 
d = A/2, the visible region corresponds exactly to the circle. For d > X/2, 
the pattern overlaps and has grating lobes. 

3.2.3 Properties of the Beam Pattern Near a Zero 

In this section we discuss the behavior of the beam pattern in the vicinity 
of a zero. lo Consider a linear aperture with uniform weighting. The beam 
pattern is 

B&J) = =, (3.62) 
CXU 

where ti = nL/X. The pattern in the vicinity the nth zero, un, is shown 
in Figure 3.15. It appears to be linear at the zero crossing. We want to 
recenter the pattern at un. Define 

UO = u - un, (3.63) 

“This discussion follows pages 105-110 of Steinberg [Ste76]. 
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Figure 3.13 Zero plots for DPSS (O.lqO.4~) weightings. 

‘lNote that the two inner zeros are both double zeros. 
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Figure 3.14 Visible region (VR) and invisible region (IR) boundaries for 
complex variable Z. 

Figure 3.15 The beam pattern near a non-multiple zero. 
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and assume 
x 

?Ln >> -9 
L 

(3.64) 

Then, 

Bu, (uo) = Bu(uo + u,> = sin a(~0 + un> 
Q(UO + 217-h) 

sin WUg COS CtUn + COS WUo sin Q!Un - - 
Q(UO + Un) 

. (3.65) 

Since sin 052, = 0 and cos sun = rtl, we have 

BuO(uO) = 31 sinauo 
Q(UO + Un) l 

(3.66) 

In the region near the zero, 

sin ~39.40 g cmo, (3.67) 

and 
‘UO < Un, (3.68) 

so that (3.66) becomes 

BuO(uO) N fUO. 
Un 

(3.69) 

Thus the pattern is linear near the zero and the slope is inversely proportional 
to the coordinate of the zero in u-space. 

To investigate the behavior near multiple zeros, we use the approximate 

radiation pattern of a triangularly weighted aperture 

The behavior in the neighborhood of Un 1s quadratic 

(3.70) 

(3.71) 

Similar results follow for higher order zeros. The magnitude of ] B,, (~0) 1 is 
sketched in Figure 3.16. 

Several comments are in order: 

(i) A single zero creates a sharp null. If we are trying to null out an in- 
terfering source (perhaps a jammer), the performance will be sensitive 
to the exact location of the interfering source and its frequency. 
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0 

Figure 3.16 Beam pattern near first and higher order zeros. 

(ii) However, if we are trying to estimate the location of a source, it will 
be useful to work in the vicinity of a null. We see later (in Section 3.8) 
that a difference beam does exactly that. 

(iii) A double zero creates a wider null and is more robust to model vari- 
ations or changes in the interferer’s location. However, it utilizes 2 
degrees of freedom per zero and limits the total number of nulls possi- 
ble . 

3.3 Pattern Sampling in Wavenumber Space 

Woodward [Woo461 developed an antenna pattern synthesis technique based 
on the sampling theorem. We discuss it first for the case of continuous aper- 
ture and then for discrete arrays. For the discrete array case, it corresponds 
to a DFT relationship. 

3.3.1 Continuous Aperture 

Woodward’s approach is based on the Fourier transform relationship between 
the wavenumber response and the aperture weighting. Rewriting (3.1) and 
(3.2) in u-space gives 

s 
L/2 

w*(q) ej2TuzA dxA 
-L/2 

and w*(zx) = s O” 
-00 

i T,(u) e-j2nuzA du, 

(3.72) 

(3.73) 
* 
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Figure 3.17 Pattern sampling. 

where we have suppressed c3 and xx = x/A is the normalized x-distance. 
Since xx is limited to the range %&, then we can specify the aperture 

illumination function by sampling the antenna pattern in wavenumber space 
at intervals of12 

x 
Au, = -. 

L 
(3.74) 

For example, if the desired pattern is the rectangular pattern shown in Figure 
3.17, we would sample at A/L intervals and obtain a set of samples, 

B&u,,), m = O,l,*~~, Ns - 1, (3.75) 

where urn = (mAu, - l),m = O,l,*a*,N, - 1, and Ns = int12L/Aj (intlzj 
denotes the largest integer less than x). In Figure 3.17, L = 5X, so Au, = 0.2 
(see (2.214)). T o reconstruct Bu(u), we use a sum of shifted sine functions, 

N,--1 

B,(u) = ‘T;7 B,(um)sinc 
m=O 

(3.76) 

In this case, we have chosen the initial sample at u = -1.0. In this example, 
we could choose the initial sample to be anywhere in the interval - 1.0 < 

12This is identical to the Nyquist sampling criterion in the time-frequency context. I f  
the signal is bandlimited [-W _< f  < W], then the sampling interval T = 1/2W. 
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u < -0.8. The resulting synthesized pattern will be different. Note that the - 
sampling is uniform in u-space (wavenumber space), not B-space, and that 
the samples range over the entire visible u-space (-1 < u < 1). The nulls of - - 
the sinc((u, - u,,) functions occur at Au, so the coefficient of the sine function 
is the value of the desired array response corresponding to the peak of the 
corresponding sine function. 

Each of the terms in (3.76) corresponds to a rectangular amplitude dis- 
tribution multiplied by an exponential term to steer the beam. Thus, 

w*(x) = 
L L 

F<-* 
- - 6 2 

(3.77) 

We consider a simple example to illustrate the procedure. 

Example 3.3.1 

The desired Bdo (0) is uniform in the range: 60” < 8 5 120”, as shown in Figure 3.17. 
Let L = 5X. Therefore the sampling interval in u-space is 

Au, = ; = 0.2, (3.78) 

and there will be ten samples. The sample values are 

0, m = O,l, 2, 
B,(u,) = 1, m = 3,-,7, (3.79) 

0, m = 8,9. 

Note that the value at m = 10 is determined by the value at m = 0 by the periodicity. 
The resulting synthesized pattern is shown in Figure 3.18. 

3.3.2 Linear Arrays 

The Woodward approach can also be used for linear arrays. We discuss the 
approach from two viewpoints. In this section, we use a straightforward 
modification of the continuous aperture case. In Section 3.3.3, we introduce 
the DFT as an intermediate step. 

We first consider the case of a standard N-element linear array (d = X/2). 
To relate to the continuous aperture, 

Nd=L. (3.80) 

The sampling interval in u-space is 2/N. As in the aperture case, we can 
choose the initial sample point. For purposes of discussion in the text, we 
will assume the samples are taken symmetrically about u = 0. Other initial 
sampling points can also be used. Thus, 

> 
) m = O,l, 9 l l , N - 1. (3.81) 
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Figure 3.18 Desired and synthesized patterns using the Woodward synthesis 
procedure. 

Because d = A/2, the number of pattern samples in the visible region (1~1 5 
1) is equal to the number of elements. We consider the case when d < A/2 
in the next section. 

Using (3.76), the component beam pattern can be written as 

sin $,(u - Urn) 
BUm(U) = Bdu(Um) N sin [;cu _ m 

I 

u )I 7 m = O,l, 9. e, N - 1, (3.82) 

and the total beam pattern is 

N-l sin $T(U - Urn> 1 B”(u) = ,C, BduONsin [;(u _ urn)] ’ (3.83) 
= 

In order to find the weight vector, we use (2.91) and (2.92) to rewrite 
(3.83) as 

&L(u) = y Bdu(Um) . k y e~(k-~b+~u,) 
m=O k=O 

N-l 
- - 

c 
,j(k-v)vru 

k=O 

y Bdu(um) . ,~-j(k-“)nu-)m (3.84) 
m=O 
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The term in parentheses is w*(k). Thus, 

UJ; Ix - i y Bdu(um)e-j(n-~)nu~~, n = 0,. . . , N _ 1. (3.85) 
m=O 

If B&u) is a real symmetric beam pattern, then the weights will be real if 

Um = urn--l-m, (3.86) 

which corresponds to symmetric spacing. Two comments are necessary: 

(i) The case in which 

Bd(u) = 0, -l<u< 2 - - -7 
N 

is an exception to (3.86) an an initial sampling point gives symmetric d y 
weights. 

(ii) In many applications, the desired beam pattern is not symmetric, so 
we will have complex weights. 

We also want) to interpret these results in the context of the discrete 

Fourier transform. 

3.3.3 Discrete Fourier Transform 

In Section 3.2, we represented the beam pattern as the x-tra,nsform of the 
array weighting function. Frorn (3.40), 

B&t4 = (3.87) 

and 
N-l 

B,(Z) = x WnXen, (3.88) 
n=O 

Bz(X)Izxej+ = B,$($),-‘y’. (3.89) 

We sample at 
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This corresponds to N samples symmetric about the origin and V,LJ ranges 
from -7r < $ < 7r. - - 

- - 

- - 

- - 

N-l 

1 
n=O 

N-l 

c 
n=O 

N-l 

x 
n=O 

-n 
WL~k 

(3.91) 

where 

(3.92) 

Now define, 

(3.93) 

and 

B(k) = B$($)&++k(~). (3.94) 

Then, 

lB(k)=EFI/bne-jkn$, k=O,l,**m,N-l,I (3.95) 

which is called the discrete Fourier transform. 
The relation in (3.91) is a linear transformation from the N-dimensional 

vector b to the N-dimensional vector B, 

/Bl (3.96) 

where F is an N x N matrix, whose k1 element is 

PI (F > kl 
kl= N (3.97) 

where 
n ’ 27r 

FN = e-UT, (3.98) 

To obtain the inverse, we multiply B(k) by ejkmg, sum on k, and divide 

bY N, 

(3.99) 
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The sum in parentheses is N, if m = n, and 0 if m # n. Thus, 

(3.100) 

which is the inverse discrete Fourier transform (IDFT), and 

b e--jnr( 9) 
U-h= n . (3.101) 

In order to write (3.100) in vector notation, we first observe that 

FH 
1 - - -- 
N 

F 1 . (3.102) 

Thus, 

pE$q (3.103) 

We observe from (3.103) that, if we know B, which is the vector of sam- 
ples B(k), k = 0, 1, ..* , N - 1, then we can find b and w. However, knowing 
w enables us to find the complete beam pattern B+(q). Therefore the pat- 
tern samples at 27r/N intervals completely determine the beam pattern. 

We use this result in two different ways. In the first case, we have a 

beam patt)ern that we know was generated by a standard linear array. We 
encounter this case frequently in subsequent sections so we denote it as 
the IDFT Weight Vector Determination algorithm. The steps in the 
algorithm are: 

(i) Sample the beam pattern at 

+ ( 
k- k- 

N-l 2n 
- -, k=O,l,me*,N-1 

2 > N 

to obtain B+($k). 

(ii) Use (3.94) to find B(k). 

(iii) Find b as the IDFT of B(k) using (3.100). 

(iv) Use (3.101) to find w. 

In this case, the result will not depend on the initial sample point. 

In the second case, we have a desired beam pattern that is not necessarily 
realizable by a standard linear array. We repeat steps (i)-(iv). We then use 
(2.65) to find the resulting beam pattern. 

We consider two simple examples to illustrate the procedure. 
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Figure 3.19 Array and aperture beam patterns using wavenumber sampling 
technique, symmetric sampling: L = 5.0X, d = X/2, N = 10. 

Example 3.3.2 (continuation) 
The array corresponding to the aperture in the previous example contains ten elements 

with spacing d = X/2. The samples are taken symmetrically about u = 0. At the 
discontinuity (u=O.5) we use the value at the mid-point. The resulting pattern is shown 
in Figure 3.19. We see that the aperture and the array give essentially the same beam 
pattern. 

Example 3.3.3 (continuation) 
Consider the case when N = 11 and d = X/2. The samples are taken symmetrically. 

The result is shown in Figure 3.20. The different sample separation causes a difference in 
the two beam patterns. 

The discussion up to this point assumed a standard linear array so that 

d = x/2. For the case when d < X/2 a similar procedure can be utilized but 
there are some important changes. To illustrate the technique, we consider 
the case where 

d 
x - -- 
4’ 

(3.104) 

The DFT relations in (3.91) and (3.1OO) are still valid and we still sample 

at 27r/N intervals in +-space. However, we need to sample over a complete 

period of Y’,(u), which in this case corresponds to -2 < u 5 2 (recall Figure 
2.20(a)). Thus, if we use a 2/N sampling interval, we use pattern samples 
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Figure 3.20 Array and aperture beam patterns using wavenumber sampling 

technique, symmetric sampling: L = 5.0X, d = X/2, N = 11. 

outside the visible region to determine the weight vector and to find B&/J). 

Example 3.3.4 (continuation) 
Consider the same desired pattern with an array where d = X/4 and N = 20. The 

result using symmetric sampling is shown in Figure 3.21. 

3.3.4 Norms 

In Section 2.6.4, we indicated the importance of the norm of the weight 

vector, llwli2. W e want to relate the weight vector norm to the norm of the 
vector of beam pattern samples. From (3.96), 

BHB - bHFHFb - . (3.105) 

Using (3.102), we obtain 
1 

EB”B = bHb. (3.106) 

Both B and b contain exponential factors that are not necessary in the norm 

relationship. From (3.93), 
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Figure 3.21 Array and apert,ure beam patterns using wavenumber sampling 
technique, symmetric samples from -2.0 < u < 2.0: L = 5.OX,d = X/4,N = - - 
20 . 

Thus, 
bHb = wHw. (3.108) 

Now define 

Pd k=B&$k), k=O,l,*~~,N-1, (3.109) 

where +k is given by (3.92). Then, from (3.94), 

B = diag e-@tGW > BG . (3.110) 

Thus, 
B”B - BTB H 

- ++ 
= B+ B+. (3.111) 

Using (3.108) and (3.111) in (3.106) gives 

/I (3.112) 

which is the desired result. Therefore, to find the directivity D, the white 
noise array gain A,, or the sensitivity function Tse, we sample the beam 
pattern at the ?,!& given by (3.92), sum the magnitudes squared, and divide 
by N. 
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3.3.5 Summary 

In this section, we introduced the Woodward sampling technique as a method 
to approximate a desired beam pattern. For linear arrays this leads us to 
the DFT and the inverse DFT. The examples focused on the approximation 
technique. The other usage of the IDFT that is described in the paragraphs 
following I( 3.103) is equally important. In this case we know th.at the desired 
beam pattern can be generated by a standard linear array and we use the 
IDFT to find the weights. We give further examples of these techniques in 
subsequent sections. 

The relationships between the beam pattern, the weight vector, and the 
x-transform are summarized in Table 3.3. 

Table 3.3 Relationships 

2 B+(Q) = [z-v B;(z)] r--e-l~ (3.87) ,’ - 

DFT IDFT 

3 6,= n w peia (3.93) bn = $- -gJ; B(k)ejkn% (3.100) 

B(k) = xr:-,’ bne-jkng (3.95) Wn= ntZ b -j”“W)(3.101) 

3.4 Minimum Beamwidth for Specified Sidelobe 
Level 

3.4.1 Introduction 

In this section, we consider the problem of minimizing the beamwidth for a 
given maximum sidelobe level. 

The rnajor focus of the section is on the Dolph-Chebychev weighting. It 
results in constant sidelobes and a beamwidth that is the minimum possible 
for the given sidelobe level. We first describe the classical Dolph-Chebychev 
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synthesis technique and then show how it can be simplified by using the 
IDFT. 

In many cases, a constant, sidelobe behavior is not desirable. We develop 
a weighting due to Taylor that gives decreasing sidelobes. 

We consider the case of linear uniformly spaced array pointed at broad- 
side. The desired beam pattern is a real symmetric function, so the weights 
will be real and symmetric. 

In this case it is useful to index the weights in a symmetric manner. For 
N odd, we define the weights as 

am = ‘r’ll, I n=m+y 7 rn = -(N - 1)/2, l l l , (N - l>/a. (3.113) 

The assumption that B(G) is a real symmetric function results in real sym- 
metric weights, 

’ am = CL,, 

and we can write B($J) in a trigonometric form, 

N-l 

B(Q) = a0 + 2x,” 1 am co+--@), = N odd. (3.115) 

Similarly, for N even, we define 

N 
am = wll n=m-l++ m = 1,2,. l l , -, 

2 

and 
N 

a-m = am, m = 1,2,*09,--. 
2 

Then, 

which can be written as 

N even, 

B(q) = 2 Cz=l am COS ((m - i) $) 7 N even. 

(3.114) 

(3.116) 

(3.117) 

(3.118) 

(3.119) 

The indexing for the cases of N odd and N even are shown in Figure 3.22. 
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( > a 

Figure 3.22 Linear broadside arrays of n isotropic sources with uniform spac- 
ing: (a) N odd; (b) N even. 

3.4.2 Dolph-Chebychev Arrays 

The spectral weightings control sidelobes by exploiting Fourier transform 
properties. However, they do not explicitly control the height of the side- 
lobes. For linear, equally spaced arrays there are methods to design weights 

that control sidelobes and beamwidths explicitly. The method that is dis- 
cussed in this section was introduced by Dolph [Do146], [Rib471 and is based 

upon the properties of Chebychev13 polynomials. Our development follows 
that in Section 4.11 of Kraus [Kra88]. 

Consider the linear arrays shown in Figure 3.22. First, assume that there 

are an odd number of elements as shown in Figure 3.22(b), and that the main 
response axis is broadside. The weights are symmetric about the origin. In 
addition, we can use real weights because we want to design a real symmetric 
pattern. 

Because the weights are real, the beam pattern can be written as (from 

(3.115)) 

B(lii) = a()+q cos?j!J+cQ cos2+ 

13There are various spellings of Chebychev in the literature (e.g., Tchebyscheff). 



+ l l l + o!N--1 cos 
2 

[(y) $1 , Nodd, (3.120) 

where 

and on is defined as, 

2rd c -- * - 
x 

cos 8, (3.121;) 

(3.122) 

We have deleted the $J subscript on I?+ ($J). Th is is the Fourier series expan- 

sion of the beam pattern. We can rewrite (3.120) as 

- 

B(q) = Ni ak cos (29 , N odd. (3.123) 
k=O 

If N is even, the array is shown in Figure 3.22(a). Now, from (3.119), 

(3.124) 

where 
N 

an = 2a 7x7 n = 1, l l . , -, N even. 
2 

(3.125) 

Then, (3.124) can be written as 

cos [(y) $1, N even. (3.126) 

In this section, we want to derive an amplitude distribution that will 
produce a beam pattern with the minimum null-to-null beamwidth for a 
specified sidelobe level. The amplitude distribution is called the Dolph- 

Chebychev distribution.14 
The first, step is to show that B(ljl) can be represented as a polynomial of 

order N - 1. We represent the cos m 2 
( ) 

k terms as a sum of cosm f terms. 
( > 

We write 

exp [jm$] = cos (m$) +jsin (m$) 

= [cos (f) +jsin ($)lm. (3.127) 

14The relationships in (3.123) and (3.126) were first given by Wolf [Wo137]. 
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Expanding in a binomial series and taking the real part gives 

+ + cosm- = COP- - 
m(m - 1) 

2 
cos m-2@ 

2 2’ 
- sin2 f 
2 

+ 
m(m-~)(m’-2)(m-3) m-4$ - . . . 

4’ 
cos 

. 
- sin4 f 
2 

13 128) . 

Putting sin2(+/2) = 1 - cos2($/2), and substituting particular values of 

m ,  l 

l5 (3 128) reduces to the following: 

m=O, cosmg = 1 

m = 1, cosm$ = cos$ 

m = 2 
m=3: 

cos rnk 
3 

= 2cos2k - 

cosmz 4 
1 . (3.129) 

= 4cos37 -3cos; 

m = 4, cosm$ = 8cos4$ - 8cos2$ + 1 

Define 
+ 

X = cos -, 
2 

(3.130) 

then (3.128) becomes 

cosm 3i 4 = 1, when m = 0 

cosrn- = x, 
4 

(3.131) 

cosm2 =2x2 - 1, when m = 2 

The polynomials of (3.131) are Chebychev polynomials, which may be des- 
ignated in general by 

+ ’ 
(3.132) 

cos Yj =Ix: ( > 

For particular values of ‘m, the first eight Chebychev polynomials are 

To(x) = 1 
Tl(x) = x 
T2(x)=2x 2 -1 

T3(x) = 4x 3 - 3x 
T4(z) = 8x4 - 8x2 + 1 
T5(x) = 16x 5 - 20x3 + 5x 
T6(x) = 32x 6 - 48x4 + 18x2 - 1 

T7(x) = 64x 7 - 112x5 + 56x3 - 7x 

(3.133) 

15rn will equal 2/c or 2k + 1 depending on whether N is odd or even. 
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We note that t,he degree of the polynomial in (3.133) is the same as the value * 
of rn,. 

The mth-degree Chebychev polynomial is defined as 

1x1 L 1, 

Kr?/(x) = x > 1, (3.134) 

(-QnL cash (mcosh-lx), x < -1. 

The Chebychev polynomials are a set of functions that are orthogonal over 
the interval -1 < x < 1 with 
l/d= (e.g., bS65]), 

respect to the weighting function w(x) = 

.i 

1 1 

-1 &T? 
T,(x) T-n(x) dx = 

J 

7r 
T,(COS e) Tn(COS e) de = ~~6,~. 

0 

The orthogonality constant cm is 

cm = 
i 

7r, m = 0, 
ZL 2’ m#O* 

(3.135) 

(3.136) 

The polynomials can be extended beyond the region 1x1 < 1 as defined in 
(3.134). The Chebychev polynomials of order m = 2 through m = 4 are 
shown in Figure 3.23. The following properties of Chebychev polynomials 
are useful for our development. 

1. For m > 2, - 

T,(x) = 2xTn-l(z) - TX-a(x), (3.137) 

where TO(X) and Tl(x) are given in (3.133). 

2. T,(x) has m real roots in the interval 1x1 < 1. The roots of the 
polynomials occur when cos (m(+/2)) = 0 or when 

m- : = (2p- l)$ p= l;**,rn. (3.138) 

Thus, they are evenly spaced in q-space. The roots of x, designated 
xp, are 

xP 
I 

. (3.139) 
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Figure 3.23 Chebychev polynomials: (a) m = 2; (b) m = 3; (c) m = 4. 

3. ?m(x) has alternating maxima and minima in the interval -1 < x < 1 
that occur at 

xk k= 1,2,*e*,m- 1. (3.140) 

The magnitude of every maxima and minima is unity, 

ITi-n(xk)l = 10 (3.141) 

Thus, the polynomials have an equal ripple characteristic in the interval 
-1 <x < 1. 

4. All of the polynomials pass through the point (1, 1) and at x = 
fl, ITm(U)l = 1. For x > 1, 

prn(x>1 > 1. (3.142) 

From (3.129), the beam pattern, B($), for a symmetric, equally spaced 
array aimed at broadside (isotropic sources) is a polynomial of degree N - 1 
in the variable cos($/2). 

If we set this array polynomial equal to the Chebychev polynomial of 
the same degree N - 1 and equate the array coefficients to the Chebychev 
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Figure 3.24 ‘Y+Jz> with coordinate axes. 

polynomial coefficients, then the beam pattern of the array will correspond 
to a Chebychev polynomial of degree N - 1. 

Dolph [Do1461 d evelopecl a procedure to utilize the properties of the 
Chebychev polynomials to develop an optimum pattern. 

In the Dolph-Chebychev method the magnitude of the main lobe cor- 
responds to the value of T,,(xo) where x0 > 1 and the magnitude of the 
sidelobes is unity. We define the ratio of the main-lobe maximum to the 

sidelobe level as R, 

R 
main-lobe maximum - - 

sidelobe level ’ 
(3.143) 

To illustrate this, consider the TV curve in Figure 3.24. The point (x0, R) 
on the TV polynomial curve corresponds to the main-lobe maximum. 
From (3.134) 

TN-1 (x0) = cash (N - l)cosh-‘x0 = R, 
( > 

1x01 > 1, (3.144) 

or 

= cash 
( 

1 
X0 - 

N-l 
cash-rR , 

> 
1x01 > 1. (3.145) 

For example, if R = 20, the sidelobes will be 26 dB below the main-lobe 

maximum. The value R = 31.62 would lead to -30-dB sidelobes. 

The synthesis procedure consists of five steps: 
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1. For an N-element array, select the Chebychev polynomial T,(x) of the 

same degree as the array polynomial. Thus, 

m=N-1. (3.146) 

2. Choose R and solve for x0. Since R > 1, x0 > 1. However, to use 
(3.130) we require 1x1 < 1. 

3. Change the scale by defining a new abcissa w, 

X 
w = -, 

X0 

+ 
W = cos - , 0 2 

(3.147) 

(3.148) 

and 
+ 

X = x()cos($. (3.149) 

4. The pattern is 

B(ti) = ;TN-l(zo cos($)). (3.150) 

The l/R factor normalizes the beam pattern so that B(0) = 1. 

5. The last step is to find the array weights to produce the beam pattern 
in (3.150). 

The easiest way to find the weight vector is to find the zeros of the beam 

pattern and then use (2.88). The original zeros are given by (3.138), 

po (2P - l)n -- - 
2 

(N-1)2’ p=l,**-,N-l, 

or in x-space, 

(3.151) 

xp=cos(~;$), p=l,* 

Changing the scale into w-space gives 

wp=-$os(~;~~;;); p=l 

. . ,N-1. (3.152) 

l ,N - 1. (3.153) 
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Using (3.148) gives the zeros in +-space, 

I* P = 2 cos-l (;cos(yy;;)), p=l,***,N-1. (3.154) 

We then construct a N x N array manifold matrix, V(Q), (2.81), 

(3.155) 

and use (2.88) 

w = [vHw]-l e1, (3.156) 

which specifies the weight vector. We can translate from wn to a,, if desired, 
but it is not necessary? 

The results in (3.151)-(3.153) complete the Dolph-Chebychev synthesis 
process. 

We now consider a typical example and then discuss the optimality of 

the result. 

Example 3.4.117 
Consider an array of eight isotropic sources spaced at d = X/2. Design a Dolph- 

Chebychev weighting with the sidelobes at -26 dB. 
In this case, R = 20, so we set 

T-7(24 = 20. (3.157) 

From (3.145), 

Then, 

PO)) = 1.142. (3.158) 

B(T)) = $7 (x0 cos $) * (3.159) 

We use (3.156) to find the weights 

wo = a4 = 0.0633 
201 = a3 = 0.1035 
w2 = a2 = 0.1517 l 

(3.160) 

w3 = al = 0.1815 

A plot of T!(X) and the mapping in (3.159) is shown in Figure 3.25. As $J moves from 
0 to 7r, B($J) moves from R through three zero crossings to 0 at 1c) = YL Since the beam 
pattern is symmetric, this gives us a complete description. 

The movement described in Figure 3.25 is summarized in Table 3.4. 

‘“Stegen [Ste53] d eveloped a procedure for finding an explicit formula for the coefficients. 
It corresponds to the IDFT approach in Section 3.3.3. We discuss this approach in Problem 
3.4.18. 

17This example is contained in [Kra88], but we use a simpler technique. 
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Figure 3.25 Chebychev polynomial of the seventh degree. 

Table 3.4 Beam Pattern Movement 

]I 

We see that we have mapped the visible region in O-space (0, X) into a 
region in x-space (0, zo>. We have not utilized the Chebychev polynomial in 
the region (-1,O). This is because we used an expression in q/2 and that 
the array spacing is d = X/2. 

For other values of d, the mapping is shown in Table 3.5. 

Table 3.5 Mapping as a Function of d 

8 0 E 2 T , 
I !b - - Fd cost? 

‘ 
Fd 0 27r -v ,d 

X= xocos (Y) x(-j xocos (F) 
L 

For some representative values of d, the ranges on the x-axis are: 

(i) d=$ _ 0.707q) < x 5 x0, 
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Figure 3.26 Beam patterns, Dolph-Chebychev weights: N = 8 (-20-, -3O-, 
- 40-dB sidelo bes) . 

(iii) d = y, -0.707x() < :% < x0. _ _ 

The maximum d that we can use corresponds to the point where the left 
end of the range is - 1: 

d = 
x 
-cos -1 (3.161) 
7-r 

In Figure 3.26, we show the beam patterns for an 8-element standard 
linear array for various sidelobe levels. As expected, the beamwidth increases 
as the sidelobe level decreases. In Figure 3.27, we show a z-plane plot of the 
zeros of the Dolph-Chebychev weighting for -20-dB, -30-dB, and -40-dB 
sidelobes. 

In his original work, Dolph [Do1461 h s owed the optimality of the Dolph- 
Chebychev polynomials. In this case, the optimum beam pattern is defined 
to be the beam pattern with the smallest null-null beamwidth for a given 
sidelobe level. We discuss it in the context of TV in Figure 3.24.18 Con- 
sider another polynomial P(x) of degree 5 that passes through (x0, R) and 

“This discussion follows p.170 of [Kra88] 
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Figure 3.27 Zero plots of the Dolph-Chebychev weighting: (a) -20-dB side- 
lobes, (b) -30-dB sidelobes, (c) -40-dB sidelobes. 

xl (the largest root) and, for x < xi, it lies between +1 and -1. The null- 

null beamwidth is determined by xi. We want to try and find a P(x) whose 
values lies between (1 - E) and -( 1 - E) for some positive E. However, since 
P(x) lies between *I in the range [-xi, xl], it must intersect YYs(x) in at least 
m+l= 6 points, including (x0, R). But two polynomials of the same degree 
that intersect at m,+ 1 points must be the same polynomial, so P(x) = Ts(x). 
Thus, the Chebychev polynomial is optimum. Riblet [Rib471 subsequently 
showed that the procedure was only optimum for d > A/2 and proposed an 
improved procedure for d < X/2. The non-optimality for d < X/2 is because 
of the mapping in Table 3.5. For d < X/2, the range on the x-axis is not 
adequate to constrain the beam pattern everywhere in the visible region. 

We describe the Riblet-Chebychev technique briefly. For d = X/2, the 
two techniques give the same result. 

Riblet-Chebychev weighting 

In this case we use an expansion of cos $J rather than cos(Q/2). Assuming N 

is odd, we then match the array polynomial to a Chebychev polynomial of 
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order (N - 1)/2. In addition, we choose a mapping such that 8 moves from 
0 to A-, so we use the entire range (-1, zo> of the Chebychev polynomial. 

Thus, the mapping is 

X =c1 cosq+c2, (3.162) 

where 

+ 
27r - - -pose, (3.163) 

and, from (3.134), 
2 

X0 = cash -cash-lR . 
N-l > 

(3.164) 

The required rnapping is shown in Table 3.6. 

Table 3.6 Mapping Requirement 

0 0 E n- 

, ti 
- - yd COSB i&j 0 w&d 

4 
I X =c~cos?/J+c:! 1 -1 1 q) 1 -1 I 

To find the constants, we require 

Cl + c:! = x0, (3.165) 

27r 
Cl cos ( > -p +c2=-1. (3.166) 

Solving for cl and c2 and substituting into (3.162), we have 

1 
X- 

1 - cos Fd 
( > 

(x0 + l)cos$ - [l+xocos (Fd)]}. (3.167) 

For d = A/2, (3.167) reduces to 

J:z ; ((x0 + 1) cos$J + (x0 - 1)) l (3.168) 

One can show that the two approaches lead to identical arrays for d = X/2. 
For d < X/2, Riblet’s approach leads to arrays with smaller beamwidth for 
a given sidelobe level. We consider an example to illustrate the behavior. 

Example 3.4.2 
Consider a 21-element linear array. We require -30-dB sidelobes and design the array 

using both the Dolph-Chebychev and Riblet-Chebychev procedures. We consider element 
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Figure 3.28 Beam patterns for Dolph-Chebychev and Riblet weighting: N = 
21, -30-dB sidelobes: (a) d = X/2, (b) d = X/4. 
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spacings of d = .X/2 and X/4. The results are shown in Figure 3.28. We see that there is 
significant difference in the main-lobe width. 

Riblets’ procedure is only applicable to the case when N is odd and 
N > 7. 

Subsequent, to Dolph’s original work in 1946 [Do1461 and Riblet’s dis- 
cussion in 1947 [Rib47], work has been done to simplify the synthesis pro- 
cedure and derive the beamwidth and directivity characteristics of Dolph 
-Chebychev arrays. 

The Dolph-Chebychev weighting is used in a number of array applications 
because of its constant sidelobe behavior. In many applications, we would 
prefer that the sidelobes decay rather than remain constant. The motivation 
for decaying sidelobes is to reduce the effect of interferers that are located at 
angles that are significantly different from the MRA. In the next section, we 

discuss a weighting developed by Taylor [Tay53] to achieve t lis behavior. 

3.4.3 Taylor Distribution 

In [Tay53] and [Tay55], Taylor developed a technique that 
maximum sidelobe height and gives decaying outer sidelobez 

constrains the 
The develop- 

1 1’ ment is for a linear aperture. It can be applied to linear arrays try sampling 
the aperture weighting or by root-matching.lg We can also solve for the 
array weighting directly (see Section 3.4.4). 

Taylor sta’rts with the uniform aperture weighting that we used in Section 
2.7. The resulting beam pattern was derived and plotted in Figure 2.29. We 
define 

L 
‘u = -IL, 

x 
(3.169) 

so that 

B,(v) = sin(nw) = sinc(7rv). (3.170) 
TV 

With this change of variables, all of the zeros of the pattern are located on 
the integers, 

V = fl, f2, l l l . (3.171) 

Taylor approaches the synthesis problem by moving the “inner” zeros to 
new locations on the unit circle in order to lower the inner sidelobes and 
leaving the outer zeros in the same location as the uniform distribution in 
order to maintain the IwI-1 decay. 

lgThis discussion follows Elliott [ElMI. 
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We first write (3.170) as an infinite product, 

V2 B,(w) = fj l- -$ . 
n=l ( ) 

We then define a new pattern, 

BT(V) = 
sin(7rw) 

n-1 n ( 1 V2 

n=l -7 n > 

7W n-1 n ( 1 v2 l 

n=l -2 > 

(3.172) 

(3.173) 

The denominator removes the first fi - 1 pairs of zeros and the numerator 
replaces them with fi - lnewpairsofzeroslocatedatw,,n=1,2,~~~,fi-1. 

Taylor showed that the new zeros should be located at 

Vn ’ 
(3.174) 

where 
cosh(nA) = R, (3.175) 

and R is the same as in the Dolph-Chebychev derivation. Thus, the maxi- 
mum sidelobe height is -20 log& 

To find the corresponding aperture weighting, we recall from (2.215) that 

L 

BT(v) = 
s 

z 
L w*(x) e+‘dz. 

-- 
(3.176) 

Since the weighting will be symmetric we can expand w*(x) in a 
cosine series: 

w*(z) = E cm cos 
m=O ( 

2mxz 

L 

where cm is a real constant. Using (3.177) in (3.176) gives, 

BT(v> = /;goCmCOS (F) COS (F) dx. 
= 

Fourier 

(3.177) 

(3.178) 

We now choose integer values of the pattern w  = 0, 1,2,. l 0. Then, the 
integral will be zero unless v = m. Therefore, 

LBT(O) = CO, (3.179) 



;u > T vi, = Cm7 m<n-1, - 

and, from (3.173), BT(m) = 0 for m 2 fi. Thus, 

(3.180) 

&(O)f2 ‘<&(m)cos( 
m=l 

which is the desired result. 
To find the corresponding weighting for an array, we can either sample 

2m7rx 

L 
(3.181) 

w*(z) in (3.181) or we can match the zeros in (3.174). 
To carry out the latter procedure, we define the zeros in u-space as, 

(3.182) 

The weight vector for a standard linear array is obtained by using (2.88) 

(3.183) 

We now consider a simple example to illustrate the result. 

Example 3.4.3 
Consider a linear aperture of length L = 10.5X and a corresponding linear array with 

d= X/2 so that N = 21. We require -30-dB sidelobes and utilize fi = 6. In Figure 
3.29(a), we show the beam pattern for the aperture obtained from (3.173) and the beam 
pattern for the array obtained by sampling w*(z) given in (3.181). In Figure 3.29(b), we 
show the Dolph-Chebychev pattern from Figure 3.28(a) and the Taylor pattern. 

The Taylor distribution is widely used in practice. After the desired 
sidelobe level is chosen, fi has to be selected. If n is too large, the aperture 
weighting function will increase as x approaches L. Usually, I-i?, is chosen to 
have the largest value that does not cause W*(Z) to increase as x increases 
(e.g., [Han98]). 

There are several modifications to the Taylor pattern that are discussed 
in the antenna literature. For example, Elliott ([E1175], [EllSl]) has devel- 
oped techniques for designing modified Taylor patterns in which sidelobe 
heights can be individually specified. In Section 3.9, we develop techniques 
for controlling the sidelobe heights in specified regions. 

The technique of assuming a continuous aperture and then finding a 
discretized weighting works well for large N. We can also solve the array 
problem directly using a technique invented by Villeneuve that is described I 
in the next section. 
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Figure 3.29 Beam pattern for Taylor weighting: lV = 21,n = 6, SLL = -30 
dB (a) aperture and array; (b) array with Taylor weighting and Dolph- 
Chebychev weighting. 
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3.4.4 Villeneuve fi Distribution 

The Chebychev distribution for an array with N = 2M + 1 elements can be 
written as, 

TZM (x,cos~) = cB(ejQ) =&z - zp), (3.184) 
- 

where 
(3.185) 

(3.186) 

a*nd c is a normalizing constant. We consider N odd in the text; the deriva- 
tion for N even is similar. 

The roots are given by (3.154) 

y’, P = 2cos-l , p= 1,2,**a,2M. (3.187) 

The beam pattern can be written as 

B&$) = ejMqdM &in (q) sin (p) ) (3.188) 

which is the Chebychev pattern for N = 2M + 1 elements. 
Villeneuve [Vi1841 (e.g., [Kum92]) developed a technique for discrete ar- 

rays. He combines the better features of the uniform and Chebychev weight- 
ings. We start with the beam pattern for uniform weighting and replace the 
first fi - 1 roots with modified Dolr>h-Chebvchev roots. The resulting beam 
pattern is 

qbbfq = 
N sin 7j-f$ ( > 

I . (3.189) 

The term in brackets modifies the beam pattern of the uniform weighting. 
In the nurnerator are the modified Chebychev roots corresponding to the 
first fi - 1 interior sidelobes. In the denominator are the corresponding roots 
of the uniform weighting, , 

$J 
27rn 

un = 
N 

7 n= 1,2,*+F- 1. (3.190) 
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Roots in z-plane, A/=21, fl=6 
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Figure 3.30 Roots of the three beam patterns. The three unit circles are 
shown with different radii. Only upper half-plane roots are shown. 

The Chebychev roots are modified so there is not a jump at n = fi. This 
modification is accomplished by a progressive shift such that the fith root of 
uniform weighting is unchanged. 

The Chebychev zeros are given in (3.187). Each Chebychev zero is mul- 
t i plied by 

277-n 
(J-E- 

N+ 
7 (3.191) 

n 

where I+!J~ is the fith Chebychev root. Therefore, 

o= 
Ncos-1 ($-, co:;[2n - l)-&]) ’ 

(3.192) 

Then, 

The remaining roots are uniform, 

$ 
27r N-l 

un = -72, 
N 

n = 72, l l 9, - 
2 

. (3.194) 

The resulting root patterns are shown in Figure 3.30 for N = 21. For clarity, 
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we have shown three unit circles. We only show the roots in the upper half. 
The remaining roots are complex conjugates. The inner six (plus their six 

complex conjugates) Chebychev roots are moved outward. The amount of 
movement increases until, at fi = 6, the Villenueve root corresponds to the 
uniform root. The remaining roots are the uniform roots. The shift in roots 
is reasonably small, but it results in a significant pattern change. A beam 
pattern for a 21-element and 41-element array with -20-dB sidelobes are 
shown in Figure 3.31. It is essentially the same as the discretized Taylor 
beam pattern. For N < 11, there is some difference in the beam patterns - 
and the Villeneuve technique is preferable. 

The weight vector is obtained by using (3.193), (3.194) and their sym- 
metrical values in either(2.88) or (3.188). 

Villeneuve [Vi1841 also derives the results for N even and provides further 
comparisons with the Taylor distribution. Hansen ([Han85], [Han92]) has 
studied the properties of the distribution. [Han981 has tables with detailed 
comparisons of Taylor and Villeneuve fi beam patterns. 

3.5 Least Squares Error Pattern Synthesis 

In this section, we develop techniques for finding the least squares error 
approximation to a desired beam pattern. The technique is valid for an 
arbitrary array geometry. For notational simplicity, the 1-D case is discussed 
in the text. 

The desired beam pattern is B&$). The square error is defined as 

t = IT 1 Bd(‘+) - wHv(Q) / 2 d$. 
-7r 

(3.195) 

A more general error expression includes a weighting function inside the 
integral. The expression in (3.195) is adequate for the present discussion. 
Taking the complex gradient with respect to wH and setting the result equal 

to zero gives2* 

(3.196) 

Defining 

A - - 
J 7r v(~)VHWW, (3.197) 

-7r 

20See Appendix A (Section A.7.4) for a discussion of complex gradients. 
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Figure 3.31 Beam pattern with Villeneuve weighting: fi = 6, SLL=-20 dB; 
(a) N = 21; (b) N = 41. 
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(3.196) can be written as 

- 
w, = A1 

.I 
7r vh!M(@) dti* (3.198) 

-7r 

The result in (3.198) is an explicit expression for the least squares approxi- 
mation to B&G) and can be evaluated for a specific array manifold vector. 

For the special case of a standard linear array, the array manifold vector 
is given by (2.70) and the nk element of A is 

[Aln,k = /yr exp { [j(- F) -j(k - y)] +} d+ 
7T - - exp [j+-k - k)+]d+ = 27&&= (3.199) 

Using (2.70) and (3.199) in (3.198) gives 

The weight vector is wH, whose components are 

1 7r 
w* =- 

no 27I- s c 
exp -j (n - 

-?r 
7) q} m74 d@* 

(3.200) 

(3.201) 

For the special case of a real symmetric B&b), it is convenient to use the 

symmetric indexing. For N odd, 

1 
am0 = - 1” B&,b)e-jm+d+. 

27I- -7r 
(3.202) 

For N even, 

am0 = & /mr B&,b)e-j(m-~)~d~. (3.203) 
7T 

In both cases, 

a-m0 = Limo. (3.204) 

The results in (3.202) and (3.203) are familiar as the Fourier series expansion 

of the desired beam pattern. The resulting beam pattern is 

(3.205) 

for N odd and a similar expression for N even. 
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In some cases the desired pattern B&J) is constant from -$JO 5 $J < $0 
and zero elsewhere in *$-space. In this case, 

1 
am = - 

2r s 

@O sin rn+o 
e -im@ d$ = N odd, 

-@O rnx ’ 
(3.206) 

and 1 
CL,, = - s @O 

e-i(m- i >@’ d$ - - 
sin((m - #o), 

1 

N even 
. 

27r 
-+0 K rn - &ho) 

(3.207) 

We consider a simple example to illustrate the technique. 

Example 3.5.1 

The desired B&I/J) is shown in Figure 3.32. It is uniform from 60” 5 8 5 120” or, 
since + = 7r cos 8, 

-0.57r < $J < 0.5n. - - (3.208) 

The results for N = 10 and 20 are shown in Figure 3.32. We also show the beam pattern 
using Woodward sampling. 

We observe that the pattern has oscillatory overshoots at the disconti- 
nuities. This behavior is known as Gibbs phenomenon and is familiar from 
Fourier theory. We can use windows to decrease the overshoots. 

To introduce the concept of windows, we write (3.205) as 

B&b) = 2 am0 R[m] eimi, 
m=-00 

(3.209) 

where R[m] is a discrete rectangular window. We denote its Fourier trans- 

form by B&/J) d an normalize it so &(O) equals one. For N odd, 

1 N-l N, m= -2’o-, 0 N-l 

R[ 1 
,--, 

m= 
2 

0 7 elsewhere. 
(3.210) 

From Fourier transform properties, (3.209) corresponds to convolving Bd ( $J) 

and B&,/J) in q-space, 

Bd(+) = Bd($‘) * BR(‘+), (3.211) 

BR(+) = 
1 

N 
m 

N-l 
2 

lx 
N-l ,=- 

2 

,imti - 1 
-- 

N 

N sin g!~ 
( ) 

+ * sin 3 
( > 

(3.212) 

(3.213) 
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Figure 3.32 Desired beam pattern and synthesized patterns for linear array 
of 10 and 20 elements using the Fourier series method and the Woodward 
sampling technique: (a) N=lO; (b) N=20. 
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This amplitude of BR ($) was plotted in Figure 2.15. The convolution pro- 
cess consists of sliding BR(@) by B&b). Th e integral will oscillate as each 
sidelobe moves past the discontinuity. 

We can alleviate the oscillation problem by tapering the weighting of 
R[fm] so as to decrease the area of the sidelobes. This is similar to the problem 
that we solved in Section 3.1 (in Section 3.1, we were concerned about the 
height of the sidelobes). Thus, all of the weightings that we developed there 

can be used as “windows” to truncate our Fourier series. We recall that as 
we shape the weighting, the width of the main lobe increases. Thus, the cost 
of using a shaped window will be a wider transition region. 

We consider the same desired B&$) as in Example 3.5.1 and look at the 
effect of different windows. 

Example 3.5.2 (continuation) 
The desired beam pattern B&b) is shown in Figure 3.32. It is uniform in u-space 

from -0.5 < u < 0.5. The uVLO - - are calculated using (3.202). The synthesized &(+) is 
given by 

00 

k(e) = x am0 R, (m> ejrnlcI, 
m=-00 

(3.214) 

where R&m) is the window corresponding to one of the weightings in Section 3.1. We 
consider the standard 11-element linear array used in Example 3.5.1. 

We consider three windows from Section 3.1: Hann, Hamming, and Kaiser. For the 
Hann window the beam pattern is obtained by using R,(m) from Section 3.1 and am0 
from (3.202) to obtain, 

N-l 

BHANN($) = Cl 
sin(0.5mn) 

m7r 
0.5 + 0.5cos 2,; ( )I ejrnll) 7 (3.215) 

N-l 

BHAMIWG($) = C2 
sin(0.5m7r) 

m7r 

B KAISER w> = c3 

N-l 
m=- 2 

N-l 

sin(0.5mn) 
m7r 1 N-l L 7?,=- 

2 

ejm+ 7 (3.216) 

[lo (p/m)] ejm’@, (3.217) 

where the constant normalizes the window. For the Kaiser window, we use ,0 = 3.88 to 
match the Hann overshoot and p = 4.96 to match the Hamming overshoot. 

The resulting patterns are plotted in Figure 3.33(a). In Figure 3.33(b), we show an 
expanded view of the plateau of the beam pattern. The effect of the windows is to reduce 
the overshoot and to widen the main lobe (which causes the transition region to widen). 

If we use the Kaiser window, we must choose a suitable value of p. 
Kaiser [KK66], [Kai74] d eveloped a procedure to design FIR filters that can 
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Figure 3.33 Beam patterns for various windows: N = 11. 
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be applied directly to the array problem.21 c. 

and 

A = -20 log 6, (3.219) 

where S is the overshoot shown in Figure 3.34 in Section 3.6 with &, = S,. 
Kaiser determined empirically that the required ,0 is given by 

O.l102(A - 8.7), A > 50, 

P - - 0.5842(A - 21)‘~~ + O.O7886(A - 21), 21 < A < 50, (3.220) 
00 . 7 A ;21,- 

where A = 21 correspond s to a rectangular window. The number of elements 

to achieve the desired A and w is 

N-l= 
A-8 

2.285 A$ ’ 
(3.221) 

If N is fixed, the required value of S will determine the transition region 
A+. We used (3.220) and (3.221) to determine the p used in Figure 3.33(a). 
Other examples are developed in the problems. 

In this section, we introduced least squares error approximations to a 
desired beam pattern. For standard linear arrays, this approach led to a 

Fourier series representation. When the desired beam pattern has discon- 
tinuities, there are overshoots that can be reduced by using the weighting 
functions developed in Section 3.2 as windows. The use of windows reduced 
the overshoot at the expense of widening the transition region between the 
main lobe and the sidelobes. 

3.6 Minimax Design 

In this section we consider the problem shown in Figure 3.34. In the main- 

lobe region, we would like the pattern to be unity. Thus, we use a design 
constraint that, B(ej@) must lie bebween 1 - & and I+ & in the range [0, $J 
and between +6, and -6, in the range [&, ~1. This problem is the spatial 
filter analog to optimum minimax error design problems for FIR filters. 

There are tutorial discussions of the optimum techniques in Section 7.6 
of Oppenheim [OS89], Chapter 8 of Proakis [PRLN92], Chapter 3 of Rabiner 

210~r discussion follows pp. 452-455 of [OS89] 
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B(ejW) 

Figure 3.34 Tolerance scheme. [Adapted from [OS89]] 

and Gold [RG75], and Chapter 4 of [MK93]. These discussions are based 

on the work of Parks and McClellan [PM72a], [PM72b] with subsequent 
contributions (e.g., McClellan et al. [MPR73], [MP73], [MR79], [RMP75]). 
Our discussion is similar to the above presentations. 

At the same time that Parks and McClellan published [PM72a] and 

[PM72b], Hersey et al. [HTL72] published a paper on minimax design of 
digital filters that was more general because arbitrary upper and lower con- 
straining functions can be used. The results were applied to linear arrays 
by Mucci et al. [MTL75]. D iscussion of the history of these techniques is 
contained in Rabiner et al. [RMP75] and Tufts [Tuf75] (see also Farden and 

Scharf [FS74]). 

We define a weighted error as 

qlm($) = W&n(~) [B&j@) -  qej”‘)] l 

(3.222) 

We assume that Bd(eJ’@) is a real symmetric function. The functions epm($), 
Wpm (Q), and Bd( ej+) are defined only over closed sub-intervals of 0 < 1c) < X. 

For the N-odd case, they are defined over [0, +,I and [&, ~1. WLassume 

N, +pr and & are fixed design parameters. Then, for the model in Figure 
3.34, 

Bd(ej’@) = 
1 : 
0 ? 

(3.223) 
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Figure 3.35 (a) Possible beam pattern meeting the specifications of Figure 
3.34; (b) weighted error for the approximation in (a). [Adapted from [OSSS]] 

and the weighting function is 

(3.224) 

where K = Q’S, and is a fixed parameter. The value of & (or 6,) is variable. 
A possible B(ejQ) that meets the desired criteria is shown in Figure 3.35(a). 
The corresponding error function is shown in Figure 3.35(b). We see that 
the maximum weighted approximation error is 6, in both bands. 

The criterion of interest is the minimax (or Chebychev) criterion. We 
seek a beam pattern that minimizes the maximum weighted approximation 
error. 

min 
{w&-L=O,l,-~ 

(3.225) 
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where F is closed subset of 0 < $ < X: - - 

Parks and McClellan [PM72a] formulate the problem as a polynomial 
approximation problem. Recall from Section 3.4.2, that we can write22 

cos(nqq = T,(cos T/!J), (3.227) 

where Y’,(x) is the nth order Chebychev polynomial, and t’herefore 

B(ej@) = C c~(cow$)~, 
k=O 

(3.228) 

where the CI, are constants related to the original weights ~1~ and 
L = (N - 1)/2. Letting 

x = cos$J, (3.229) 

we have 

B(@) = p(x) Iz=cos1c,, (3.230) 

where 
L 

P(x) = x ck xk. (3.231) 
k=O 

There are several useful theorems [Che66] available to solve the approx- 
imation problem. 23 Parks and McClellan utilized the following theorem. 

3.6.1 Alternation Theorem 

Alternation Theorem24 Let Fp denote the closed subset consisting of 
the disjoint union of closed subsets of the real axis x. P(x) denotes an 
Lth-order polynomial 

L 

P(x) = x ck xk. (3.232) 
k=O 

Also, Q(x) denotes a given desired function of x that is continuous on Fp; 
Wpm(x) is a positive function, continuous on Fp, and epm(x) denotes the 
weighted error 

epm(x) = WPdx) LDp(z> - p(x)l l 

(3.233) 

22Note that we are using a polynomial in cos+ instead of cos q/2. 
230ther discussions of the approximation problem are contained in Rice [Ric64], Taylor 

[Tay69], and Taylor and Winter [TW70]. 
24This version of the alternation theorem follows [OS89] but is due to [PM72a]. 
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1+6, 

l-6, 

Figure 3.36 Typical example of a beam pattern approximation that is optimal 

according to the alternation theorem for L = 7. [Adapted from [OSSS]] 

The maximum error (1 E]] is defined as 

IPII = r-Mix I%&4 l 

XEF, 
(3.234) 

A necessary and sufficient condition that P(x) is the unique Lth-order poly- 
nomial that minimizes ]]E]] is that epm(x) exhibit at least (L + 2) alterna- 

tions, that is, there must exist at least (L + 2) values xi in I$ such that 
x1 < x2 < l - -  < x,5+2 and such that epm(xi) = -epm(xi+l) = *l]Ell for 
i = 1,2, l l l ) (L + 2). 

We now apply the alternation theorem to the array design. We let 

X = cos $J and plot the polynomial versus +!I. A function that satisfies the 
Alternation Theorem for L = 7 is shown in Figure 3.36. We see that there 

are nine alternations of the error, occurring at $1, $2, . l . , $8 and K. 
There are other possible functions that satisfy the Alternation Theorem 

(e.g., p. 472 of [OS89]). 

3.6.2 Parks-McClellan-Rabiner Algorithm 

From the alternation theorem, the optimum pattern B,(ej@) will satisfy the 
following set of equations, 

Wpm($i) [Bd(eiqJi) - B*(e”i,] = (-l)ifl S, i = 1,2, l l l , L + 2, (3.235) 
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where 6 is the optimum error and B,(ej$) is given by (3.228). 
These equations lead to an iterative algorithm called the Remex Multiple 

Exchange Algorithm for finding the B,(ej@). 

Step 1: Select an initial set of y&, i = 1,2,. l l , L+2. I,& and & are included 
in the set. 

Step 2: The set of equations (3.235) could be solved for ck and 6. How- 

ever, Parks and McClellan found a more efficient approach using a 
polynomial approximation. 

(a) For a given set of Y,!J~, 6 is given by 

6 zi:f b&j ( ejQk) - - 
EL+2 bl,(-qk+l ' 

k=l wpn($k) 

where 
L+2 

bl, = rI 
1 

i=l 
xk - xi ’ 

ifk 

(3.236) 

(3.237) 

and 

xi = cos?j!$ (3.238) 

(b) Since B,(ej$) is an Lth-order trigonmetric polynomial, 
we can interpolate it through L+ 1 of the known L+2 values. 
Parks and McClellan used a Lagrange interpolation formula 

to obtain 

B,(ej’@) = P(cos$) = 
xi:,’ [&] fk 

x;‘,’ [*I ’ 
(3.239) 

where x = COS ?,!) and xk = COS +k, 

and 
L+l 

dl, = rI 
1 bk - - - 

i=l 
XI, - xi xk - x,5+2 ’ 

i#k 

(3.240) 

(3.241) 
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Figure 3.37 Illustration of the Parks-McClellan algorithm for equiripple ap- 
proximation. [Adapted from [OS89]] 

where we use $1, $2,. l l , $~+r to find the polynomial, the 
value at $~+2 will be correct because B,(ej’@) in (3.239) sat- 

isfies (3.235). A typical result is shown in Figure 3.37 after 
the first iteration. 

Step 3: The original set $1, $2, l l 9 , $~+r is exchanged for a completely new 

set ~*;,&**-?&+, (lJ& and & are still included). The new Q+ are 
defined by the (L + 2) largest peaks of the plotted curve. There are at 

most L-1 local minima and maxima in the open intervals (0 < @ < $+J 
and (& < + < K) . If there are L - 1, then the remaining point can be 

either 0 or R-; one chooses the largest error point for the next iteration. 

Step 4: The iteration is continued in this manner until the change in S 
between iterations falls below some small pre-selected amount. The 
result is B, (ej$) . 

Notice that the array weightings were not computed as part of the design 

process. The calculation of the weightings is straightforward using the IDFT 
developed in Section 3.3. 

We consider an example to illustrate the technique. 
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Example 3.6.1 
Consider a standard H-element linear array. The desired beam pattern is shown in Fig- 

ure 3.17. In Figure 3.38, we show the resulting beam patterns using the Parks-McClellan, 
Woodward, and Fourier algorithms. We see that the Parks-McClellan algorithrn gives 
uniform ripples with a slight increase in the transition region. 

3.6.3 Summary 

In this section, we have given a brief discussion of the Parks-McClellan (PM) 
algorithrn for minimax optimization. The references at the beginning of the 
section give more comprehensive discussions and should be utilized if the 
algorithm is going to be used in practice. Lewis et al. [LMT76] developed 
a technique that mixes least squares and minimax techniques that may be 
useful in some applications. 

In sections 3.1 through 3.6, we developed three major topics: 

(i) Synthesis of single MRA arrays 

(ii) Synthesis of desired beam patterns 

(iii) Relationships between beam patterns, weight vectors, and zeros of the 
array polynomial 

In the single MRA problem, we assume that the signal of interest is a 

plane wave arriving from a specific direction (expressed in either angle space 
or wavenumber space). We want to design a beam pattern with good direc- 
tivity (corresponding to a narrow main lobe) and low sidelobes. Our design 

procedures trades-off main-lobe width and sidelobe level. In Section 3.1, we 
used a cosine building block and developed several useful weight vectors. 
The Hamming weighting provided a good compromise between main-lobe 
expansion and sidelobe height. We then considered the case in which there 
was a region of interest around the main lobe. The DPSS and Kaiser weight- 
ings were effective for this application. In Section 3.4, we developed Dolph- 

Chebychev and Riblet-Chebychev weightings to provide uniform-height side- 
lobes and a main lobe whose width was the minimum possible for the given 
sidelobe height. We also developed Taylor and Villenueve weightings that 
had decreasing sidelobes. This collection of weightings is the most widely 
used for the deterministic synthesis of uniform linear arrays. 

In Sections 3.3, 3.5, and 3.6, we studied the problem of synthesizing 

a desired beam pattern. We developed three approaches; the Woodward 
sampling approach, the least squares error approach, and the minimax algo- 
rithm. Each approach has advantages and disadvantages, and the appropri- 
ate technique will depend on the specific desired beam pattern. We revisit 
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Figure 3.38 Comparison of various beam pattern synthesis techniques. 
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the synthesis problem in Sections 3.7 and 3.9.3. In Section 3.7, we general- 
ize the least squares error solution to include linear constraints. In Section 

3.9.3, we solve the minimax problem for arbitrary arrays. 
In the course of the discussion we introduced various tools, such as the 

array polynomial and its zeros, the DFT, and the IDFT. All of these tools 
are used in many subsequent discussions. 

All of the discussion up to this point did not assume any detailed knowl- 
edge of the interference environment. Using a beam pattern with constant 
sidelobe levels tacitly assumes that the interference is equally likely to arrive 
anywhere in the sidelobe region. In the next section we consider a model in 
which we have some knowledge of the location of the interference. 

3.7 Null Steering 

In our discussion of array design, we have seen the importance of pattern 

nulls. In many applications, we want to guarantee that the pattern will 
have a null in a given direction. In radar or communications applications, 

a jamming signal may be located at a specific wavenumber and we want to 
eliminate its effect. 

3.7.1 Null Constraints 

For an arbitrary array, to put a null at a given wavenumber kJ, we require 

B(kJ) = w%k(k~) = 0, (3.242) 

where 

vk(kJ) = . (3.243) 

For a uniformly spaced linear array with iV odd, this reduces to 
N-l 

0 

Symmetric indexing is more 
weights as wn,n = ---y,** 

We can then choose the 

2 

convenient for this 
N-l 

-7 2 l 

wi to synthesize a desired pattern subject to 

(3.244) 

problem. We denote these 

the constraint in (3.244). W e now consider several ways to implement null 
constraints. 
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3.7.2 Least Squares Error Pattern Synthesis with Nulls 

In this section we consider the problem of finding the best least squares error 
approximation to a desired pattern subject to a set of null constraints.25 We 
develop the solution for an arbitrary array geometry and then consider some . 
examples of linear arrays. 

We assume that there is some desired beam pattern that can be synthe- 
sized by a discrete array. 

Bd(k) = wf vk(k). (3.245) 

We approx imate it by a second patter 
imposed on it. This pattern i s denoted by 

n that has a set of constraints 

B(k) = wN vk(k). (3.246) 

We minimize the squared 
the constrained pattern, 

error between the desired pattern Bd(k) and 

&= IBd(k) - B(k)12 dk. (3.247) 

Substituting (3.245) and (3.246) into (3.247) and performing the inte- 
gration gives, 

&= 2 
/Iwd-wll l 

(3.248) 

The restriction that Bd(k) be synthesizable by a discrete array is for 
convenience. If the actual desired pattern is not synthesizable in this form, 
we let Bd(k) be the least squares error approximation to it. For a linear 
equally spaced array, Bd( k) would be obtained by the Fourier series approach 
of Section 3.4. 

We consider constraints on the beam pattern and its derivatives at var- 
ious values of k. Normally we would include a constraint on the array re- 
sponse along the MRA. If the array is pointed at kT, then the constraint 

wHvk(kT) = 1 (3.249) 

is referred to as a distortionless constraint. Any plane-wave signal arriving 
along kT will pass through the array processing undistorted. We use this 

25This general formulation appeared in the adaptive array context in Applebaum [AC76]. 
The specific approach used here was done by Steyskal [Ste82] for linear arrays. The 
generalization to arbitrary arrays is straightforward. This problem is a special case of the 
problem of finding a weighted least squares error approximation to a desired beam pattern 
subject to a set of constraints (not necessarily zero). A solution to this problem is given 
in Mucci et al. [MTL76]. 
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constraint extensively starting in Chapter 6. In this section, we focus on 
null constraints. If we only consider null constraints in the sidelobe region, 
we can omit (3.249) and get a slightly simpler derivation. 

The first type of constraint is a null constraint. From (3.246) 

wHvk(ki)=O, i =1,2,-e,A&. (3.250) 

We refer to this as a zero-order constraint (or zero-order null) and define an 
N x MO constraint matrix, CO 

co = i vk(k2) -0. j vk(k&] . (3.251) 

The second type of constraint is the first derivative of the beam pattern 

with respect to k. For a linear array, this corresponds to 

dlcB(IC) k=ki d i =WH [$vk(k.)]kxki ‘wHd~(k)ikzki’ i E stl, (3.252) 

where 01 is a subset of the MO locations where we want the derivative to 
equal zero and contains lL4r points.26 

We assume that some of the nulls have derivatives set to zero while others 
do not. Thus, for a linear array, we define an N x Ml constraint matrix, Cl: 

Cl = 
[ 
dl(kl) i dl(k2) i l .0 i , wkd] l 

(3.253) 

If we have a 2-D array, there will be a derivative with respect to two com- 
ponents of the wavenumber so Cr will be 2Mr-dimensional. 

The nth type of constraint is the nth derivative of the beam pattern with 
respect to k. For a linear array, this corresponds to 

where the set St, is a subset of 0,-r and contains i& points. For n = 2, 

c2 = 
[ 
d2(kl) i d2(k2) i l .- i , ddk4 9 (3.255) 

For a 2-D array, C2 will be 3M2-dimensional. In practice, constraints beyond 
C2 are seldom used. 

“A derivative with respect to a scalar waven 
derivative with respect to T/J or u will be used. 

umber k is indicated. In many cases, a 
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Then, the total C matrix is an N x MC matrix, 

c = [ co i Cl i c2 ] ) (3.256) 

where A& is the total number of constraints and MC < N. We assume that 
the columns of C are linearly independent. The solution to the optimization 

problem requires the inversion of C”C. If the columns of C are linearly 
independent, then C*C will not be singular. If the Mn are not selected 
carefully, there is no guarantee that the columns will be independent. In 
some cases, the columns may be independent, but several columns may be 
highly correlated, which will cause CnC to have a poor condition number. 

One approach to alleviate this problem is to use a singular value decomposi- 
tion on the right-hand side of (3.256) and retain only the dominant singular 
value terms to form C. This guarantees that CHC is not singular.27 

Before solving the optimization problem, we develop the explicit form 
of the constraint matrices for a standard linear array with N elements (N 

odd) . 
The array manifold vector is 

1 
e-j( %+u 1 

h(u) = Vk(k)tk-nzl = 

- 

(3.257) 

Thus, 

B,(u) = wi ejnnu = wH vu(u), 
n=-+i 

and 

(3.258) 

- - 

= WH iin( (3.259) 

where dn(u+) is a N x 1 matrix whose mth element is 

dn(U>jm = (jmr)n ejmnu. (3.260) 

Note that v,(u) and the even-numbered derivatives are conjugate symmetric 
and the odd-numbered derivatives are conjugate asymmetric. 

We now solve the optimization problem. 

27N. Owsley (private communication). 
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Optimization 

We want to optimize the squared weighting error subject to the constraint 

that 
wHC=O, (3.261) 

where C is the constraint matrix in (3.256). We require the columns of C 
to be linearly independent. Using Lagrange multipliers we want to minimize 
G, where”’ 

where X is a 

respect to w 

+wHCX+XHCHw, (3.262) 

,iplier vector. Taking the gradient with M x 1 Lagrange mu1 

gives 
H 

-w& +wo H+XHCH=O, (3.263) 

or 
WH 

0 
H-XHCH. = wd (3.264) 

We solve for the Lagrange multiplier vector by using the constraint, 

w,Hc=o. (3.265) 

Thus, 

wyc-XHCHC=O. (3.266) 

The matrix CHC is not singular due to the assumption of linearly indepen- 
dent columns. Then, we can write 

AH [ 1 
-1 

=w,Hc CHC . (3.267) 

Although the inverse of [CHC] exists, the condition number of the matrix 
may be poor if the columns of C approach dependency (e.g., null directions 

too close to each other). 

The optimum weighting is 

The matrix 

w;=w: (IN-C [C”Cl1CH). 

Pc=C [CHC]-l CH 

(3.268) 

(3.269) 

28See Appendix A (Section A.74 for a discussion of complex gradients. 



170 3.7 Null Steering 

is the projection matrix onto the constraint subspace. Thus w: is the com- 
ponent of wf: in the subspace orthogonal to the constraint subspace. Thus 
(3.268) can be written as 

WIi 0 
q&Ppl d CT (3.270) 

and 

WH e = wf - w;I = WY PC. (3.271) 

The orthogonal behavior of w,H is familiar from other optimization problems. 
A second interpretation of (3.270) is also of interest. We can write (3.268) 

as 

WH 0 = wr- (WFC [cHc]-y CH 

H - H - wd -ac , (3.272) 

where a is a 1 x lkl weighting vector. Thus, the optimum weight vector 
consists of the desired weight vector minus a weighted sum of the constraint 
vectors. The resulting beam pattern is 

B,(u) = 
[ 
w? - aCH v(u) 1 

= B&u) - acHv(u). (3.273) 

For the zero-order constraints (i.e., null-only), the second term in (3.273) 
is a sum of conventional beam patterns steered at the wavenumber of the 
interferer. Thus, 

MO 
Be(u) = B&u) - c a, B, (u - urn). 

m=l 

(3.274) 

Note that, since Bo(uk) = 0 and B, (u - uk) = 1, 

MO 

Bd(Uk)= xamB,Juk-um), k=l,***,M~. (3.275) 

For the linear array, 

B( 
sin N7rw] 

[ c u-?&J = 
sin 7r2 1 

(u-%n> l 1 
(3.276) 
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Similarly, for an nth-order derivative constraint, the cancellation beam pat- 
terns are derivatives of the conventional beam pattern, 

B( ‘( 
dn sin [NT-] 

C 
n u-u,)=- 

dun sin [TV] l 

(3.277) 

Thus the beam pattern of the optimum processor is just the desired beam 
pattern Bd(u) minus a weighted sum of conventional beam patterns and 
derivatives of conventional beam patterns centered at the null locations. 

We observe that the same result holds for arbitrary arrays. For example, 

for zero-order nulls, from (3.251), 

co = [ vk(kl) i vk(k2) i 0.. i , -&fo) ] 8 (3.278) 

and (3.246) and (3.272) becomes 

B,(k) = w;vk(k) 

= Bd(k) - acf Vk(k) 

MO 

= Bd(k) - x a,&(k-km), 
m=l 

(3.279) 

where am is the mth element of the 1 x MO matrix, 

a= w:co [c:co]? (3.280) 

Note that the discussion in (3.270)-(3.280) is useful in interpreting the 
result. We use (3.268) to find wf. 

The resulting patt,ern error is 

&O 
H 

=We We7 (3.281) 

where we was defined in (3.271). Using (3.271) in (3.281) and recalling that 

pcpc = PC, we obtain 

[ 1 
-1 

&O = w,Hc cH c cHwd = w$?,wd. (3.282) 

We now consider several examples to illustrate the application of these 

results. 

Example 3.7.12’ 
We consider a 21-element linear array spaced at X/2. The desired pattern corresponds 

to uniform weighting (wn = l/N). We put a zero-order, first-order, and second-order null 
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(b) Zero-order null 
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Figure 3.39 (a) Initial smc-pattern; (b) pattern with a null of zero order 
imposed at u = 0.22; (c) with null of first order; (d) with null of second 
order. 
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at u = 0.22. The only important aspect of this location is that it is outside the main lobe. 
The results are shown in Figure 3.39. 

Example 3.7.2 (continuation) 

We consider the same array as in the preceding example. We now place three zero- 
order nulls at u1 = 0.21,212 = 0.22, and u3 = 0.23. Note that the nulls in the conventional 
pattern are spaced at 2/21 = 0.095 so that the constraint vectors are not orthogonal. 

The resulting pattern is shown in Figure 3.40. We have reduced the highest sidelobe 
in the sector 0.18 5 u 5 0.26 to -63 dB. 

Example 3.7.3 
In this example, we consider a 41-element linear array spaced at X/2. In these first 

two cases, the desired pattern is a Chebychev pattern with -40-dB sidelobes. 

2gThis sequence of examples (3.7.1-3.7.3) is due to Steyskal [Ste82]. 
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Figure 3.40 Sine-pattern with three nulls equispaced over the sector 
(0.18,0.26). 

In case 1, we place four zero-order nulls at 0.22,0.24,0.26, and 0.28. The resulting 
pattern is shown in Figure 3.41. 

In case 2, we place eight zero-order nulls spaced at Au = 0.02 in the sector (0.22,0.36). 
The result is shown in Figure 3.42. 

We revisit the problem of constrained optimization several times in the 
text. In Chapter 6, we derive similar results for different constraints. In 
Chapter 7, we study adaptive arrays to achieve constrained optimization. 

3.8 Asymmetric Beams 

In many array applications, we want to measure the direction of arrival of an 
incoming plane wave. One method for doing this is to utilize an asymmetric 
beam that has a slope at the steering angle that can be used in a closed loop 
system to point the steering angle in the direction of the plane wave. This 
technique is the basis of many monopulse radars (e.g., [Sko80]). The beam 
pattern design problem consists of finding the maximum (or acceptable) 
slope of the beam pattern at the origin subject to a suitable constraint on 
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Figure 3.41 Initial 40-dB Chebychev pattern with four nulls equispaced over 
the sector (0.22,0.28). 
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Figure 3.42 Initial 40-dB Chebychev pattern with eight nulls equispaced over 
the sector (0.22,0.36). 
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the sidelobes. We define an asymmetric3’ array weighting as one in which 

w(-n) = 
-w(n), n=-~,~~~,--l,l,~~~,~: Nodd, 
0 

7 n=O: N odd (3-283) 
1 

and 

w(-n) = -ur (n) ,  

N N 
n = -2’ l -  ,  -l,l, l . -,T : N even, (3.284) 

where we have used a symmetric indexing and assume that the weights are 
real. 

In this section, we look at several examples of difference beams. The 
beam pattern is 

9-l 

B&+0) = x wn ,j@+i)+, 

for N even. Using (3.284) in (3.285) gives 

N N 
2 

m=l m=l 
N 
2 1 - - 2j x Wm sin(m - $$LJ. 

m=l 

(3.285) 

(3.286) 

The simplest case is uniform asymmetric weighting 

1 
Wn = - 

N 
1 n > 1. - (3.287) 

Then (3.286) becomes 

4 

B,(q) = $ 

N 
2 

x 
m=l 

dk $ 
e3 2 ,jmQ - - 
N x 

,-jm+ . 
m=l 

(3.288) 

The beam pattern in (3.288) is the difference between two shifted conven- 
tional beams so we refer to it as a difference beam. The corresponding beam 

with a plus sign is referred to a sum beam. For uniform weighting, the sum 

30The dictionary definition of asymmetric is “non-symmetric.” Our definition is in 
(3.283) and (3.284). 
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Figure 3.43 Beam pattern versus $J: Difference beam with uniform weighting, 
N = 10. 

beam is the familiar conventional beam pattern. The expression in (3.288 
can be written as 

for N even. Proceeding in a similar manner, we obtain 

sin(v+)sin(J$Q) 
Ba($) = g 

+ 
( > 

7 
sin 2 

(3.290) 

for N odd. 
The beam pattern of the difference beam is a purely imaginary function. 

We write 

(3.291) 

and plot BaI($) in Figure 3.43 for a standard linear array with N = 10. The 
corresponding sum beam pattern is also plotted. 

Several observations are useful: 

(a) The sum and difference beams are orthogonal (this follows from the 
Fourier transform relationship). 
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(b) The difference beam is a weighted sum of two shifted conventional beams 

(see (3.288)). 

(c) The first zero of the difference beam is at 

4n - N odd, N+l’ 

+ 
- - 

47r 
NY N even. 

(3.292) 

(d) The first sidelobe of the difference beam is 10 dB below the main lobe. 

(e) The slope at the origin is 

(3.293) 

The usage of difference beams for angle estimation (and tracking) is 
common. They are implemented in monopulse radars and phased array 
radars (e.g., [Sko80], [SkoSO], [Bro88], [Bar89]). 

Many useful difference beam patterns can be constructed as linear com- 
binations of shifted conventional beam patterns. We can also use linear 
combinations of shifted beams designed using the techniques developed in 
sections 3.1 and 3.5. 

In the sum beam case we discussed design procedures due to Dolph and 
Taylor that allowed us to control the sidelobe behavior while maintaining the 
beamwidth of the main lobe. Zolotarev, a student of Chebychev, developed 
a class of odd polynomials that give an equal-ripple approximation over a 
given interval. 31 McNamara [McN93] used these polynomials to produce 

difference patterns with constant sidelobes. A discrete fi difference pattern 
analogous to the discrete fi Villenueve sum pattern was also developed by 
McNamara [McN94]. The Taylor distribution for sum beams was developed 
for a continuous aperture. Analogous procedures have been developed for 
difference beams by Bayliss [Bay68], in which he controls the sidelobe height. 
Discussions of his technique are available in Elliott [El1811 and Mailloux 

[Mai94]. The reader is referred to these references. 

Other properties of difference beams and their applications are discussed 
in the problems and at various points in the text. 

31This discussion follows Hansen [Han98]. 
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3.9.1 Introduction 

The discussion of arrays up to this point has focused on linear arrays with 
uniform 
uniform 

spacing. In many applications, the arrays are linear but have non- 
spacmg. 

One application in which we encounter non-uniform arrays is tlhe thinned 
or sparse array problem. In this case, we start with an N-element uniform 
linear array or linear aperture of length L that has a desired weighting and 
associated beam pattern. We then construct a linear array with fewer ele- 
ments that retains the desirable features of the beam pattern. In some cases, 
we allow the elements to be in any location on the line. In other cases, we 

restrict their positions to a uniform grid. The motivation is to reduce the 
cost and complexity of the array by having fewer sensors. There are a large 
number of references in this area (e.g., [LL59], [KPTGO], [SanGO], [UnzGO], 
[Maf62], [Ish62], [Wi162], [Sko69], [IC65], [Har61], [Lo63], and [Ste76]). 

A second application is the case in which the array locations are random 

along a segment of the axis (or, more generally, in an area in a plane or 
a volume in three dimensions). In this case, there are two categories. In 
the first category, the nominal locations are deterministic but the actual 
locations vary in a random manner. This is a generalization of our discussion 
of sensitivity and tolerance factors in Section 2.3.3. An example of this 
model is the dropping of sonobouys in the ocean to locate submarines. It 

also includes such problems as random removal or failure of elements. There 
is a large amount of literature in this area (e.g., [A1161], [MC63], [Ruz52] and 
[GM55]). 

In the second category there are arrays in which the elements are placed 
at random over some segment of the axis according to some probability 

density as part of the design procedure. This is known as statistical density 
tapering. There is a large amount of literature in this area (e.g., [Lo64a], 
[Lo64b], [Lo68], [PL69], [AL69], [Ste72] and [Ste76]). 

There are a number of other references that discuss various issues con- 
cerning non-uniform arrays. We will limit our discussion to two topics that 
we will use later in the text. 

In Section 3.9.2, we discuss a class of non-uniform linear arrays called 
minimum redundancy arrays. The reason for the name will be clear when 
we discuss these arrays. 

In Section 3.9.3, we assume that the element locations are given and 
derive an algorithm for designing a desired beam pattern. In essence, this 

178 3.9 Spatially Non-uniform Linear Arrays 
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Figure 3.44 “Ideal” MRLA. 

algorithm generalizes the minimax algorithms of Section 3.6 to the arbitrary 
array case. 

3.9.2 Minimum Redundancy Arrays 

In this section, we consider a class of non-uniformly spaced linear arrays 
referred to as minimum redundancy linear arrays (MRLA). We restrict our 
attention to the case in which the arrays are constructed on an underlying 
grid structure with grid spacing d. 

MRLAs are designed so that the number of sensor pairs that have the 
same spatial correlation lag is made as small as possible. An example of 
an “ideal” MRLA is shown in Figure 3.44. This is a 4-element array whose 
aperture length is equivalent to a 7-element standard linear array. 

We see that this configuration allows us to estimate 

E [x(t, id)x*(t, jd)] k RX ((i - j)d) (3.294) 

for at least one (i - j) combination from 0 to 6. For example, 

SENSOR LOCATIONS LAG 
o-1 d 
4-6 2d 
l-4 3d 
o-4 4d 
1-6 5d 
O-6 6d 

For the moment, we will assume that our estimate of R, ((i - j)d) is 

correct. 32 If we denote the sensor outputs of the 7-element standard linear 
array by the 7 x 1 vector x(t), then the correlation matrix is a 7 x 7 matrix, 

R?c = E [xoxH@)] 7 (3.295) 

320~r discussion at this point is heuristic because we have not 
statistical model. We revisit the i ssue in Chapter 5. 

developed the appropriate 
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Figure 3.45 Co-array for the array in Figure 3.44. 

whose elements are all of the form 

R, ((i - j)d) , i = 0,. . . ,6;j = 0,.  l l ,6. (3.296) 

Thus, the 4-element array allows us to measure all of the elements in the 
correlation matrix of a *I-element standard array. We find that many of our 

optimum processing algorithms are based on R,. Thus, there is a possibility 
that the 4-element MRLA might have similar performance to a 7-element 
standard linear array. 

We explore the statistical significance of this conjecture in Chapters 5 

and 7. In our present discussion, we consider the beam pattern behavior. 
We denote the aperture length as N, and it is measured in terms of 

number of grid intervals. For example, in Figure 3.44, N, = 6 and N = 4. 
In order to compute the number of times each spatial correlation lag is 

contained in an array, we assume the elements are uniformly weighted and 

compute the correlation of w with itself. 

eY) n - Ix wmw;. (3.297) 
IUZ-?ll=~ 

The resulting function is called the co-array (e.g., [Hau68], [Kre71], or 
[Bag76]) and is a symmetric function. The co-array for the array in Figure 
3.44 is shown in Figure 3.45. 

In Chapter 5, we argue that, from the standpoint of efficient spatial 
sampling, we would like the co-array to equal one except at the origin. If we 
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could find an array witlh this property then 
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N 
N(N - 1) 

a= . 
2 

(3.298) 

This is the number of different off-diagonal elements in the N x N correlation 
matrix R,. Unfortunately, such arrays (sometimes called perfect arrays) do 
not exist for N > 4. For larger arrays, we consider two options. In the first 
option, we construct the array so that c(y) is either zero or one except at 
the origin. These are called non-redundant arrays and a representative set 
is shown in Table 3.7.33 

Table 3.7 Non-redundant Arrays 

N 

2 
3 
4 
5 
6 
7 
8 
9 

I 10 

Sensor Separation ) D 

1 
1 

1.10 
1.13 
1.19 
1.21 
1.22 
1.22 

The corresponding co-arrays for N > 4 have “gaps” or “holes” in their 

values. The number D is the ratio of the aperture length Na to aperture 
length of a hypothetical perfect array (N(N - 1)/a). We look at the signif- 
icance of these “gaps” later. 

In this second option, we construct arrays that have no gaps and have 
t.he largest possible aperture. These are referred to as minimum redundancy 

arrays. We choose the sensor positions to make Na as large as possible 

without having any gaps. We can write Na as 

N 
N(N - 1) 

a= 
2 

-NR-+-NH, (3.299) 

where NR is the number of redundancies and NH is the number of holes. 
We require Nf{ = 0 in a minimum redundant array. 

There has been a significant amount of research on element spacing to 
achieve as low a redundancy as possible. For N 5 17, minimum redun- 

33From [JD93]. 
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dancy arrays have been found through exhaustive search routines. These 
configurations are shown in Table 3.8.“” 

Table 3.8 Minimum Redundancy Linear Arrays 

N NR N, 
2 

$- N(N-1) 
---sEy Array(s) 11 

3 0 3 3.0 1.0 
4 0 6 2.67 1.0 
5 1 9 2.78 1.11 
6 2 13 2.77 1.15 
7 4 17 2.88 1.24 

8 5 23 2.78 1.22 
9 7 29 2.79 1.24 
10 9 36 2.78 1.25 
11 12 43 2.81 1.28 
12 16 50 2.88 1.32 
13 20 58 2.91 1.34 

14 23 68 2.88 1.34 
15 26 79 2.85 1.33 
16 30 90 2.84 1.33 

12 
132 
1332 & 3411 
13162 & 15322 & 11443 
136232& 114443& 111554 
116423 & 173222 
1366232 & 1194332 
136”232&, 12377441& 11(12)43332 
12373441 
12374441 
12375441 & 111(20)54”33 
111(24)54533& 11671(10)33423 
143499995122 
11671(10)43423& 11355(11)366611 
11355(11)466611 
11355(11)566611 

17 35 101 2.86 1.35 11355(11)666611 
Notation nm means m repetitions of the spacing n. 

Several authors have developed techniques for generating low redundancy 
arrays. Pearson et al. [PPLSO] d evelop an efficient constructive procedure 
for near-optimal placement of sensors. Ruf [Ruf93] uses simulated annealing 
to obtain low redundancy arrays and gives results for N 5 30 (N, 5 287). 
Linebarger et al. [LST93] provide algorithms for constructing sparse arrays 
and develop bounds. Linebarger [Lin92] presents a fast method for comput- 
ing co-arrays. (See also Abramovich et al. [AGGS98], [ASG99a], [ASG99b] .) 

We consider two examples to illustrate the behavior of the beam patterns. 

Example 3.9.1 

Consider the MRLA in Figure 3.44 with d = X/2. The beam pattern for uniform 
weighting is shown in Figure 3.46. The HPBW is 0.666 and the BWNT is 1.385 in 
+-space. Note t,hat the beam pattern does not have a perfect null so we use BW notch- 
notch. This compares to 1.429 and 3.1416, respectively, for a standard 4-element array 
and to 0.801 and 1.795, respectively, for a standard 7-element linear array. Thus, in terms 
of main-lobe characteristics, the MRLA offers improvement over the standard 4-element 
array. 

34This table was taken from Linebarger et al. [LST93], but the result is due to a sequence 
of earlier papers. 
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- MRLA(132), N=4 
_ _ Conventional, N,=7 

Figure 3.46 Beam pattern for 4-element MRLA with uniform weighting. 

The problem with the MRLA is that the sidelobes are significantly higher than the 
uniform array. 

Example 3.9.2 (continuation) 
Consider the two 5-element minimum redundancy arrays from Table 3.8. In these 

cases, N, = 9. The beam patterns are shown in Figure 3.47. For the case 1 (1,3,3,2), 
the HPBW is 0.464 and the BMr Nm is 0.98. For the case 2 (3,4,1,1), the HPBW is 0.473 
and the BWN~ is 0.94. This compares to 0.559 and 1.25, respectively, for a standard 
lo-element linear array. 

Just as in the uniform linear case, we can improve the sidelobe behavior 
by using a non-uniform weighting. 

We revisit minimum redundancy arrays at several points in the text and 

see how their performance compares to standard arrays. 

3.9.3 Beam Pattern Design Algorithm 

In this section, we derive an algorithm that provides a simple iterative tech- 
nique for designing desired beam patterns for arbitrary arrays.35 The algo- 
rithm is due to Bell et al. [BVGOO] an is ased on the techniques developed d b 
previously by Olen and Compton [OC90] and Zhou and Ingram [ZI98], [ZI99]. 
Earlier work using this type of algorithm is contained in Sureau and Keeping 

[SK821 and Dufort [Duf89]. An alternative approach that uses least squares 
constraints on sidelobe levels is given in Er [Er92]. Tseng and Griffiths 
[TG92] also developed an alternative approach to designing beam patterns. 

35This section is due to Professor Kristine Bell (private communication). 
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Figure 3.47 Beam pattern for 5-element MRLAs. 
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The objective is to find weights that maximize the directivity of the 
array subject to a set of constraints on the beam pattern, which limit the 

sidelobe levels. We develop the algorithm in the context of linear arrays of 
isotropic elements, although it applies to arrays of arbitrary geometry, and 
with non-isotropic elements. 

We assume a linear array of isotropic elements on the z-axis with N x 1 . 
array response vector v(u). When the pattern response at the main response 
axis or pointing direction is equal to one, the directivity is given by (2.148), 

D - - {; .I_‘, IR(u)12~u}-1 

> 

-1 

(3.300) 

where 

PI mn = sine 
( 

27/- 
- 
x IP PI) rrl - n , (3.302 

where pn is the position of the nth element. 
Let VT = v(uT) be the array response vector for the steering direction. 

The basic problem is to maximize the directivity (or equivalently minimize 

the inverse of the directivity), subject to the unity response constraint at 
the main response axis, that is, 

min w H Aw s.t. w H VT = 1. 

(3.303) 

The solution is 

W= A-$- v~A%T 
( > 

-1 
. (3.304) 

In the special case of a uniform linear array, A = I, and the maximum 
directivity weight vector is the uniform weight vector steered to the desired 
direction, w = $vT. For both uniformly and non-uniformly spaced arrays, 

we wish to obtain lower sidelobes by sacrificing some directivity. This can 
be done by partitioning u-space into T sectors, Q, . . . ,0, and defining a 
desired (although not necessarily realizable) beam pattern in each sector, 
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Figure 3.48 Desired three-sector beam pa(ttern. 

then limiting deviations between the synthesized and desired beam pattern. 
A typical desired beam pattern defined in three sectors is shown in Figure 
3.48, in which the main beam sector has a beam pattern with some desired 

main beam shape, and the sidelobe sectors are ideally zero. We assume there 
is a weight vector w+ that generates the desired beam pattern in the ith 
sector. Let B&U) = w~~v(u) be the corresponding beam pattern. The 
square error between the beam pattern generated by the synthesized weight 
vector w and the desired beam pattern over the region f& is given by 

f2 - j - .I fh 
- - s fli 

- - 
( W 

where 

B(u) - Bd,i(U)12 du 

WHV(U) - wd’fp(u) j2 du 

- w,JHQi(w - wd,i), (3.305) 

(3.306) Qi = .I, v(u)v(u)Hdu. 
i 
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Let 0, be the region (ui - &, ui + &). The entries in Qi are: 

(3.307) 

Now we can maximize directivity subject to constraints on the pattern 
error as follows: 

min vv H Aw s.t. w H VT = 1 (3.308) 

s.t. (w -wd,i)HQi(W-wd,i) 5 Li i= l...~. 

We define 

F - - wHAw+Xo(w”vT - l)+x;E(v,Hw- 1) (3.309) 

W - Wd,i)HQi(W - Wd,i). 

Differentiating with respect to wH and setting the result equal to zero gives 

AW + XoVF + 2 Xi[Qi(w - W&i)] = 0. (3.310) 
i=l 

Defining 

AQ=AfCXiQir 
i=l 

WQ = x XiQiWd,i 7 
i=l 

we can write (3.310) as 

W= -hAQ -IVT + A$wQ. 

(3.311) 

(3.312) 

(3.313) 

Solving for X0 and substituting the result into 3.313 gives: 

-1 
W- AG’ VT (vFA$vT) 

+ Ao’ - AQ~vT (vTHAQ’vT) -’ H -1 
vTA~ wQa 1 (3.314) 

We can obtain tight sidelobe control by defining a set of small sectors in 
the sidelobe region, as shown in Figure 3.49, and setting the desired beam 
pattern to zero in these regions. The desired weight vector in each sector 
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Figure 3.49 Sidelobe sectors. 

is just the all-zero vector. In the limit of infinitesimally small sectors, the 

pattern error constraints become constraints on the magnitude squared of 
the beam patt’ern at every point in the sidelobe region. The allowed deviation 
can be set to the maximum allowable sidelobe level, and the sidelobe levels 

can be controlled directly. By choosing wider but relatively small sectors, we 
can still control sidelobe levels fairly accurately. Furthermore, if we choose 
to constrain pattern “error” only in the sidelobe region and not in the main 
beam, the desired weight vector in each constrained sector will be zero, and 
the second term in (3.314) drops out, so the weight vector becomes 

-1 

( 

H -1 -1 
w=AQvT vTAQvT 

> 
. (3.315) 

In this expression, a weighted sum of loading matrices Qi, i = 1. . . r are 

added to A. The loading factors balance the maximum directivity pattern 
with the desired low sidelobe level pattern. There is generally a set of opti- 
mum loading levels Xi, i = 1. . . r that satisfy the constraints; however, there 
is no closed-form solution for the loading levels, even when r = 1. It can 

be shown that the mean-square pattern error decreases with increasing xi, 
but at the expense of decreased directivity. An iterative procedure can be 
used to adjust the loading levels to achieve the sidelobe level constraints. At 
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each iteration, t,he pattern errors are computed and checked against the con- 
straints. If a constraint is exceeded, the loading for that sector is increased, 
and the weights are updated. 

One way to achieve fast convergence is to let the loading increment at 

the pth iteration, 6, @I, be a fraction of the of the current loading value, that 
(P> is, di (PI 

= a!& . This requires that the initial loading level be non-zero. 

One possibility is to initialize all of the loading levels to some small value, 
(0) such as, Xi = Xo,i = l...r. If the initial loading is small enough, the 

initial weight vector is essentially the maximum directivity weight vector. 
The update procedure is: 

if W(P-l)ffQiWb-l) > L. 

2’ then s (P> 
i 

= cyxr”-11)) 

else s (PI - 0 i -* 
\ 

x 
(P, 
i 

= xj”) + (jjp), 

(P) A& = A$-‘) + 2 b,(p)Qis 

i=l 

(3.316) 

(3.317) 

(3.318) 

W (14 = (A$+ {v; (A$))-'vT}-'. (3.319) 

The iteration is repeated until a convergence criterion is satisfied. 
It is usually necessary to adjust the sectors included in the sidelobe region 

at each iteration. As the sidelobes are pushed down, the main beam widens, 
and some sectors previously in the sidelobe region fall in the main beam. 
The constraints on these sectors must then be dropped. 

Example 3.9.3 
Consider a standard lo-element linear array. The desired look direction is UT = 0 and 

the desired sidelobe level is -30 dB. Initially, 80 sidelobe regions are defined as sectors of 
width 2Ai = 0.02 in the regions 0 < u < -0.2 and 0.2 < u < 1. The constraint levels - - - - 
are all set to the sidelobe level times the width of each sector Li = 2 x 10V5. The initial 
loading level is set to X0 = 1, and a = 0.3. In Figure 3.50, we show the beam pattern and 
sidelobe region evolution. The final beam pattern is obtained after 14 iterations. The final 
beam pattern is essentially the same as the Dolph Chebychev pattern in Section 3.4.2. 

Example 3.9.4 
In this example, 10 elements were located along the x-axis. The elements were spaced 

at a distance of X/2 with a random perturbation between &X/4. Specifically, 

(3.320) 

where di is a uniform random variable [0, l]. The desired look direction is broadside. An 
equal-ripple beam pattern was designed with -25 dB sidelobes. 
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( > a 

Figure 3.50 Beam pattern evolution for lo-element uniform linear array and 
-30-dB sidelobes. (a) First iteration; (b) fifth iteration; (c) 10th iteration; 
(d) 14th iteration. 

Table 3.9 Element Locations Used for the Isotropic Linear Random Array 
Element No. Relative Posit ion 

0 -2.2509x 
1 -1.6501X 
2 -1.1696)\ 
3 -0.7138X 
4 -0.1705x 
5 0.2901x 
6 0.7105x 
7 1.1974)\ 
8 1.7103x 
9 2.2585)\ 
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Figure 3.51 Beam pattern evolution for lo-element non-uniform linear ar- 
ray and -25-dB sidelobes. (a) First iteration; (b) fifth iteration; (c) 10th 
iteration. 

The element locations for a particular trial are shown in Table 3.9. The beam pattern 
evolution is shown in Figure 3.51. Figure 3.51(a) is the initial pattern, Figure 3.51(b) is 
the fifth iteration, and Figure 3.51(c) is the t$enth iteration. 

The extension to non-uniform sidelobe control follows easily. We can also 

force nulls at specific locations. Both of our examples in this section con- 
sidered linear arrays, but the technique also applies to arbitrary array ge- 
ometries and non-isotropic sensors. In Chapter 7, we develop an adaptive 
version of the algorithm. 
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3.10 Beamspace Processing 

All of the processing that we have discussed up to this point can be referred 
to as “element-space processing.” We weight (or filter in the wideband case) 
the signals arriving at each of the elements and sum the results to obtain an 
output signal. 

In many cases, the number of elements, N, is very large and we find it 
useful to create a set of beams as a preliminary step to further processing. 
We then process the resulting bearns. This procedure is referred to as beam- 
space processing and we will encounter it at various points in the text. 

In this section, we consider three types of beamspace processing. 

3.10.1 Full-dimension Beamspace 

In this case we process the outputs of an N-element standard linear array 
to produce N orthogonal beams. The center beam is a conventional beam 
pointed at broadside (‘1~ = 0). We denote the weight vector as 

’ T WH(0)=$ . (3.321) 

We form beams on either side of the center beam whose main response axes 

(MRAs) are shifted by 2/N in u-space. 

For N even, 

Bm(u) = isin [ 
TN 2m 
-&IL-- 

)I N N 

1 )I ’ m = -- + . . -. 
sin gu- 2m 

1,. 

7 2 2 
(3.322) 

There are N beams. The beam corresponding to m = N/2 is an endfire 

beam (it could also have been indexed as m = -N/2). In Figure 3.52(a), 
we show the beams in u-space. In Figure 3.52(b), we show the main lobe of 
the beams in &space. 

For N odd, 

Bm(u) = ; sin 

sin 

N-l rn=-- . . . 
3 ’ 

N-l 

2 
. (3.323) 

In this case, there is no endfire beam. In Figure 3.53, we show the beams in 
u-space and the main lobes in o-space for N = 11. 
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The MRA for tlhe mth beam occurs at 2m/N. All of the other beams have 
nulls at that point. This occurs because the weight vectors are orthogonal 

wH(m)w(l) = $i,r. (3.324) 

The corresponding beams are also orthogonal: 

&-l(u) = wH(m>v(u), (3.325) 

s 1 

‘I B,(u)B;(u)du = w”(m) 
-1 (J 

v(u)vH(u) du 
-1 > 

w(l) 

= wH(m)Iw(l) = ks,i. (3.326) 

The result in (3.324) implies that a signal arriving along the MRA of a 
particular beam will have no output in any other beam. However, a signal 
that is not along the MRA will appear in the sidelobes of the other beams. 

We form an N x N matrix, BE whose mth row is WH(m). Then 

X5S =B,H,x. (3.327) 

This operation is shown in Figure 3.54. 

The matrix, BE, is commonly referred to as Butler matrix [BL61] and is 
an invertible matrix. From (3.95), we observe that BE is the DFT matrix. 

Thus, 
H -1 

x= bs [B 1 xbs, (3.328) 

so we have not lost any information by the transformation. In the statis- 
tical literature, (3.327) is referred to as the DFT beamformer. Often this 
transformation makes the implementation of the resulting processing easier. 
In later chapters, we will develop beamspace adaptive arrays [AC761 and 
beamspace direction-of-arrival estimators. 

In most applications, we work with a reduced-dimension beamspace. We 
discuss this approach in the next section. 

3.10.2 Reduced-dimension Beamspace 

Consider the application shown in Figure 3.55. All of the signals of interest 
are contained in a region $JB. We can significantly reduce our subsequent 
processing if we form a set of beams that span the space. 
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Figure 3.52 Beam patterns: N=lO; (a) u-space; (b) &space. 
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Figure 3.55 Reduced area of interest. 
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In practice, we normally are scanning the beams over some region in u- 
space. We form a beam fan consisting of Nbs beams and move the MRA of 

the center beam through u-space in 2/N increments. In Figure 3.56, we show 
several representative positions in u-space for a 7-beam fan and a 32-element 
standard linear array. 

In most applications, we would like to use as few beams as possible with- 
out degrading the performance of the system. Later in the text we introduce 

appropriate statistical measures to quantify the degradation. In construct- 
ing the reduced-dimension beamspace we will consider different beamforming 
matrices in order to maximize performance. Several techniques are logical: 

(i) The conventional beamformer (or DFT) set as shown in Figure 3.56 is 
appropriate. 

(ii) In order to reduce out-of-sector interference, we can use low sidelobe 
beams such as Dolph-Chebychev or Taylor as the component beams. 

We would normally space the centers of the beams at equal intervals 
in q-space. The columns in the beamspace matrix are not orthogonal. 
In many applications, we need orthogonal columns. If we denote the 
original beamspace matrix as B,, where the subscript “no” denotes 
that the columns are not orthogonal, then if we define the beamspace 
matrix as, 

Bbs = B720 [B,“,B,,]-” J (3.329) 

. . . ( ) 111 

the columns will be orthogonal. The transformation in (3.329) will 
increase the sidelobe level of the component beams by several dB. 

Another choice of component beams that have lower sidelobes than 
conventional beams are the weightings from Section 3.1 that gener- 
ated beam patterns corresponding to weighted sums of shifted sine 

functions. Specifically: 

(a) cosm(7r1Z/N) (3.18) 

(b) cos2(+N) (3.18) 

(c) Hamming (3.21) 

(d) Blackman-Harris (3.23) 

These weightings have the property that the out-of-sector zeros of each 
beam in the beam fan are the same. This property will be useful when 

we study parameter estimation in Chapters 8 and 9. 
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Figure 3.56 Scanning u-space with beam fans: N = 32, Nbs = 7; (a) center 
beam at u = 0; (b) center beam at u = 6/N. 
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(iv) The first M discrete prolate spheroidal sequences developed in Sec- 

tion 3.1 ((3.25)-(3.35)) are logical candidates because of their power 
maximization characteristic. 

(v) We can develop a set of component beams by using the array manifold 
vector v(q) and its derivatives with respect to +, C(q), i;(q) evaluated 
at tic, the location of the center of the beam fan. 

Other choices appear in later discussions. The best choice depends on 
the environment and the specific objective of our array processor. 

The final step is to process ?@s, the output of the beamspace matrix to 
produce the array output y. We show the processing in Figure 3.54. 

We define the beamspace array manifold vector as 

vbs(‘$) = @&,h(d+ (3.330) 

If we use a 7 x 32 beamspace matrix whose rows correspond to shifted con- 
ventional beams, and the center beam is steered to $+, then 

[ 1 bH 
1 

bs,m = 
e-j(n-~)(+c-(m-4)~) 

n -JN [ 1 7 n = 0 . . . ,N _ 1 7 7 
m = l,-,7, (3.331) 

and 

[vq&%)]n = e jb-?)+ 7 n=O . . ..N-1 I . (3.332) 

Using (3.331) and (3.332) in (3.330) and, letting qC = 0, gives 

- sin(T($+3$) - 

sin (@+qg) & (?I + 3%) 
. . 

Vbs(“h) = fi 
sin( $ (f+-;m-4) $f)) 

sin( $ (@--(m-4) g )) 
=JN B,(i-(L-4)$) 

. . 

sin($$--3%)) 

sin $ ( ($ 
27r 

B, (q 13%) 
- N 3 0 

L 

(3.333) 
Note that the beamspace array manifold vector is real. This result allows us 
to use real computation in many of our subsequent algorithms. 

We process the output of the beamspace matrix, Xbs, with a 1 x Nbs 
. 

matrix, wbs , H to obtain a scalar output, ZJ. The resulting beam pattern is 

(3.334) 
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In Chapters 6 through 9, we develop optimum beamspace processors for 
various applications and show the advantages of operating in a reduced- 

dimension beamspace. 

3.10.3 Multiple Beam Antennas 

In this case, the physical implementation of the antenna provides a set of 
multiple beams that span the wavenumber region of interest. Important ex- 
amples of this case are the transmit and receive antennas on various military 
satellites (e.g., Mayhan [May761 or Ricardi [Ric76]). In those cases, we start 
the problem in beamspace. 

3.10.4 Summary 

We have introduced beamspace processing in this section. It is widely used 
in practical applications. One advantage is that the complexity of the sub- 
sequent processing is reduced significantly. By choosing a suitable beam fan 
we can usually minimize any loss in performance. We investigate those issues 
in later sections. 

3.11 Broadband Arrays 

In many applications, the array is required to process signals over a broad 
frequency band. One approach is to utilize an array with uniform spacing, 

x U 
d - - - 

2 
7 (3.335) 

where A, is the wavelength of the highest frequency. We then use frequency- 

dependent weightings to process the beams. The difficulty with this ap- 
proach is that the required number of sensors may be prohibitive. The 
spacing in (3.335) is required to avoid grating lobes. If we require that the 

width of the main lobe be constant across the frequency band of interest, 
then the total length must be proportional to the Al. From (2.109), 

x1 
BWNN = Q! -, 

Nd 
u-space, (3.336) 

where Q. is a constant dependent on the shading. Using (3.335) in (3.336) 
gives 



3.11 Broadband Arrays 

Figure 3.57 Nested arrays. 

so the required number of elements is proportional to the band ratio. In 
this section, we discuss two techniques that utilize arrays with non-uniform 
element spacing. 

The first technique uses a compound array consisting of a nested set of 
subarrays, each of which is designed for single frequency. The most common 

type of nested array is shown in Figure 3.57. The bottom subarray has N 
elements spaced at & = X,/2, where A, is the wavelength at the highest 
frequency. In the figure, N = 11. The next subarray has N elements spaced 
at d;! = X,, which corresponds to half-wavelength spacing at &/2. The 
third subarray has N elements spaced at d3 = 2X,, which corresponds to 
half-wavelength spacing at f,/4. The fourth subarray has N element spaced 
at d4 = 4X,, which corresponds to half-wavelength spacing at &/S. 

The total number of elements is 

, N odd, (3.338) 

and 

NT 
N 

= N+3T, N even. (3.339) 
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We process the highest octave, fula < f < jU, with the first subarray, the 
next octave, fill2 < f < f,/4 with the next subarray, and so forth. 

We divide the output of each subarray into K frequency bins and use 
narrowband processing (complex weights) to create a beam in the frequency 
bin 36 We consider two different weight techniques. . 

If we use conventional weighting, then the beam patterns are similar to 

those in Figure 2.20 for various d/X values ranging from d = X/2 to d = X/4. 
In Figure 3.58, we show the beam patterns for K=8, where the frequency 

bins are centered at 

Thus 
d If 1 I 2m+l --- - 

4\ 
l-t- > m = 0,. l l x 16 7 ,7. (3.341) 

m 

As we would expect, the beam narrows as the frequency increases. As we 
move from fl to fzL, the BVV NN goes frorn 8/N in u-space to 4/N in u-space. 
This approach can be extended to any of the weightings developed earlier in 
the chapter. In all cases, the main-lobe width will decrease as we go up in 

frequency. Note that the beam patterns are repetitive in each octave because 
of the choice of the subarray. 

A different technique is used if we want a constant beam pattern over 

each octave. The technique is described in Chou [Cho95] (see also [GE931 
and [Tuc57]). We first define a desired beam pattern at fi for a uniform 
linear array whose spacing is 

x U 
d - - - 

2 I 

and 

Xl = 2x,. 

For example, if we use uniform weighting, 

(3.342) 

(3.343) 

(3.344) 

The beam pattern is shown in Figure 3.59 over the interval -2 < u < 2. - - 
Because d = X1/4, we need to consider the beam pattern over twice the 

36An important issue is the technique for combining the outputs of the different fre- 
quency bins to synthesize the output signal. This is discussed in Section 6.13. 
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Figure 3.58 Beam patterns: N=ll, K=8; fo and f7 plus endpoint references 

fz alld fw 

visible region. For each of the frequencies in (3.340)) we sample the beam 
pattern at 

C N-l N-l 
un = - 

Nde fkn’ 
--<n< 

2 
- - -, N odd, 

2 
(3.345) 

l-ac<K. - - 

We perform an IDFT on the samples to obtain the weightings for that 
frequency bin fk. We then take the DFT to find the beam pattern for fre- 
quency bin fk. In Figure 3.60, we show the samples and resulting weightings 

for 

fo = flP + 1/q, (3.346) 

and 

f7 = fi(l + 15/16). (3.347) 

We recall from Example 3.3.4 that we need samples outside the visible region 
to specify the weight vector when d < A/2. In Figure 3.61, we show the 
resulting beam pattern over four octaves from 500 to 8000. The main lobe 
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Figure 3.59 Desired beam pattern. 

is essentially constant over the interval and there is only a slight variation in 
the sidelobes. The technique can be extended to other desired beam patterns 
by changing (3.344). 

A possible disadvantage of the nested approach is that only a limited set 
of band ratios; 2, 4, 8, l l . are achievable. 

An alternate approach that allows more flexibility in broadband array 
design is described in Doles and Benedict [DB88]. They use the asymptotic 

theory of unequally spaced arrays that was developed by Ishimaro (e.g., Ishi- 
maru [Ish62], Ishimaru and Chen [IC65], and Chow [Cho65]). The resulting 
arrays have exponential spacing. The reader is referred to these references 
for discussions of the technique. 

3.12 Summary 

This completes our discussion of analysis and synthesis of the weight vectors 
for linear arrays. We have developed an extensive set of tools to carry out L 
the process. 

The majority of the chapter was devoted to two problems. In the first 
problem, we wanted to generate a pattern that had a narrow main lobe and 

low sidelo bes . Sections 3.1 and 3.4 developed techniques for designing a 

weight vector that provided a suitable compromise between these conflicting 
objectives. The Dolph-Chebychev and Taylor weightings are widely used 

in classical array design and play an important role in the optimum array 
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Figure 3.60 Samples and array weights; N=ll, K=8, conventional desired 
pattern. 
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Figure 3.61 Beam patterns for broadband array: N=ll, K = 8, 500 < f < - - 
8000, constant main lobe. 

processing problem. 
In the second problem, there is a desired beam pattern. In Sections 3.3, 

3.5, 3.6, 3.7, and 3.9.3, techniques were developed to approximate the desired 
beam pattern. These techniques can be divided into three categories: 

(i) Sampling techniques (Section 3.3) 

For uniform linear arrays, this approach resulted in DFT and 
IDFT relations. The general sampling approach applies to arbi- 
trary array geometries. 

(ii) Minimax techniques (Sections 3.6 and 3.9.3) 

These techniques impose hard constraints on the allowable de- 
viation of the synthesized beam pattern from the desired beam 
pattern. They utilize an iterative technique to obtain the weight 
vector. The technique in Section 3.9.3 extends the hard con- 
straint criterion of Sections 3.4 and 3.6 to arbitrary array ge- 
ometries. 

(iii) Least squares techniques (Sections 3.5 and 3.7) 
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Least squares techniques (generally with some type of constraints) 
are widely used in array design. The techniques are applicable 

to arbitrary array geometries. The least squares criterion leads 

to a quadratic minimization problem. In Sections 3.5 and 3.7, 
an analytic solution is available. The quadratic minimization ap- 

proach applies to arbikary arrays and is encountered frequently 
in subsequent discussions. 

The remainder of the chapter discussed four other topics: difference 
beams, non-uniform linear arrays, beamspace processing, and broadband 
arrays. 

Section 3.8 discussed the synthesis of difference beams with low sidelobes; 
these beams are widely used in applications where we want to estimate the 
angle of arrival of a plane-wave signal from a target and aim the array at 

the target. Section 3.9 discussed linear arrays with non-uniform spacing. 
The concept of a minimum redundancy linear array was introduced. Syn- 

thesis techniques for linear arrays with non-uniform spacing were developed. 
Section 3.10 developed the basic ideas of beamspace processing. Various 
beamspace applications will be discussed in subsequent chapters. Section 
3.11 introduced some of the techniques for broadband array design. This 
topic is revisited in subsequent chapters. 

Many of these techniques can be extended to planar arrays. Chapter 4 

discusses planar arrays. 

3.13 Problems 

P3.1 Spectral Weighting 

Problem 3.1.1 
Consider a linear aperture of length L: 

Find the beam pattern, the HPBW, and height of the first sidelobe. 

Problem 3.1.2 
Consider a linear aperture of length L: 

w(z)= (1-($)2)2, -+g. 

(3.348) 

(3.349) 

Find the beam pattern, the HPBW, and height of the first sidelobe. 
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Problem 3.1.3 
Consider a linear aperture of length L: 

Find the beam pattern, the HPBW, and height of the first sidelobe. 

Problem 3.1.4 
Consider a standard linear array with 9 elements, 

(a) Compute the DPSS weighting for $0 = O.h, O.2n, 0.3n, 0.47~ 

(b) Plot the resulting beam patterns. 

(c) Compute the HPBW, BM/ NN, and the height of highest sidelobe. 

Problem 3.1.5 
Show that the for the Kaiser weighting is proportional to 

> (3.351) 

where I/JO is the approximate beamwidth of the main lobe. 

Problem 3.1.6 
The Lanczos weighting for a standard linear array is defined as 

where the indexing is symmetric. 
Pl .ot t he array weighting and 

(3.350) 

. 

u-k(n) = 

SlIl $y, [ 21 { 21 
L 

47rn Y  J-0, 

w-4 

corresponding beam 

Problem 3.1.7 
Compute Au4 (see Problem 2.4.8) for: 

(a) Hann weighting 

(b) Hamming weighting 

(c) Blackman-Harris weighting 

and compare to the HPBW. 

Problem 3.1.8 
Compute Au4 for: 

(a) Gaussian weighting 

(b) DPSS weighting 

(c) Kaiser weighting 

for several 

(3.352) 

values of L. 
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and compare to the HPBW. 

Problem 3.1.9 

Consider an ll-element standard linear array with symmetric weighting 

wo = 0.5, 

wn = w-n = 1.0+0.5(n-l), n= 1,2,.‘.,5. 

(4 Plot &4*)- 
(b) Where might this beam pattern be useful? 

(3.353) 

(3.354) 

Problem 3.1.10 
Consider an 1 l-element st,andard linear array with symmetric weighting, 

Wn = 1.0, n = O,l, 2,3, (3.355) 

Compute and plot B&/J). 

Wn = 0.6, n = 4, (3.356) 

Wn = 0.2, n = 5. (3.357) 

Problem 3.1.11 
The Riesz (Bochner, Parzen) window [Har78] is defined as 

I I 
2 

Wn = 1.0 - -2- 
N/2 ' 

(3.358) 

(a) Find and plot the beam pattern for N = 10. 

(b) Compute the HPBW, BW NN, the height of the first sidelobe, the rate of sidelobe 
decrease, and t#he directivity. 

Problem 3.1.12 

The Riemann window is [Har78] 

(3.359) 

and corresponds to the main lobe of a sine function. Repeat Problem 3.1.11. 

Problem 3.1.13 

The de la Valle-Poussin (Jackson, Parzen) window is a piecewise cubic curve obtained 
by self-convolving two triangles of half-extent or four rectangles of one-fourth extent. It is 

(3.360) 

Repeat Problem 3.1.11. 

Problem 3.1.14 

The Tukey window [Har78], [Tuk67] is a cosine lobe of width (c42)N convolved with 
a rectangle window of width (1.0 - a/2)N. The window evolves from the rectangle to the 



210 3.13 Problems 

Hann window as the parameter Q varies from unity to zero. The Tukey window is defined 

(3.361) 

(a) Plot wn and the corresponding beam pattern for cx = 0.25,0.50,0.75. 

(b) Compute the HPBW, BM/ NN, the height of the first sidelobe, the rate of sidelobe 
decrease, and the directivity. 

Problem 3.1.15 

The Bohman window [Har78], [BohGO] is obtained by the convolution of two half- 
duration cosine lobes; thus its transform is the square of the cosine lobe transform. The 
window is defined as 

wT2 = [l.O- $1 cos [7r$$] +$in [7rj+j 

Repeat Problem 3.1.11. 

Problem 3.1.16 
The Poisson window [Har78], [Bar641 is a two-sided 

> (3.362) 

:xponential defined by 

Wn (3.363) 

Repeat Problem 3.1 .11 for o = 2.0,3.0, and 4.0. 

Problem 3.1.17 

The Hann-Poisson window is constructed as the product of the Harm and the Poisson 
windows. The family is defined by 

(3.364) 

Repeat Problem 3.1.11 for Q! = 0.5,l .O, and 2.0. 

Problem 3.1.18 

The Cauchy (Abel, Poisson) window [Har78], [Akh56] is a family of windows param- 
eterized by ~11 and is defined as 

Wn = (3.365) 

Repeat Problem 3.1.11 for a = 3.0,4.0, and 5.0. 

Problem 3.1.19 
The Hamming, Hann, and Blackman windows are constructed from shifted conven- 

tional patterns. More generally, we can write 

N/2 

Wn = x am COS ($m(~n~ - 7)) , 0 5 1721 5 f 

m=O 

(3.366) 
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and 

211 

N/2 

B&Q+ = x(-l)“am [Yc(lb-$m)+Yc(~+~n2)]~ (3.367) 
m=o 

The Blackman window in the text uses a0 = 0.42, al = 0.50, a2 = 0.08. 
The “exact Blackman” window uses coefficients that place a zero exactly at + = 

3.5(2n/N) and $ = 4.5(2x/N). The coefficients are: 

7938 
ao = 18608 

- A 0.42650971, 

9240 
al = - A 0.49656062, 

18608 
1430 

- L 0.07684867. 
a2 = 18608 

(3.368) 

(3.369) 

(3.370) 

(a) Repeat Problem 3.1.11 for these coefficients. 

(b) Compare to the Blackman window in the text and observe how a small change in 
wn gives a significant change in the sidelobes. 

Problem 3.1.20 
Harris [Har76], [Har78] d eveloped 4-term windows to achieve minirnum sidelobe levels. 

The weighting is defined 

wm = a0 - al cos ($m)+a2cos($2m) -a,cos($3m), m=0,1,2;*N-1. 

(3.371) 
Four examples are listed in the following table: 

3-Term 3-Term 4-Term 4-Term 
(-67 dB) (-61 dB) (-92 dB) (-74 dB) 

a0 0.42323 0.44959 0.35875 0.40217 
al 0.49755 0.49364 0.48829 0.49703 
a2 0.07922 0.05677 0.14128 0.09392 
a3 0.01168 0.00183 

Problem 3.1.21: Gaussian weightings 
The Fourier uncertainty principle suggests that the optimum weighting for an infinitely 

long aperture has a Gaussian form. More precisely, for a given root-mean-square aperture 
extent, the weighting that generates the narrowest root-mean-square wavenumber response 
has a Gaussian function form. Moreover, the Gaussian weighting leads to a Gaussian array 
response that implies no sidelobes. The limiting factor for any implementation is the finite 
aperture extent that mitigates the consequences of the Fourier uncertainty principle, since 
the weighting must be terminated with a step discontinuity, however small it may be. The 
Gaussian weighting is a family of weightings parameterized by its width relative to the 
aperture length L. It is given by 

(3.372) 
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where c(a) is a normalization constant such that response on the main response axis is 
unity (or equivalently, the area under the weighting is unity). The constant is given by 

c(a) = [2&(1 - Q (+-)I -’ 7 (3.373) 

where Q(Z) is the complementary error function for the Gaussian probability density.37 
The array weightings are 

up+) = 
N-l N-l 

wN(z)Iz=+, n=-- -- - 2 ’ ’ 2 ’ 
(3.374) 

( > a 

(b) 

( > a 

Plot the beam pattern for a standard 11-element linear array for CT = 0.25, 0.177, 
and 0.125. 

Comput8e the HPBW, BM/ NN, and first sidelobe height for the three values of 0 in 
part (a). 

Discuss your results. 

Problem 3.1.22: Binomial38 
Consider a standard N-element linear array steered to broadside. We want to synthe- 

size a pattern whose zeros are all at x = - 1. Thus, 

*c > x = (z + l)N-l 
N-l - - 2 + . . . +a,x”+~*~+l, 

where 

CL, = 
(N - l)! 

n! (N - 1 - n)! 

(3.375) 

(3.376) 

is the binornial coefficient. 
The resulting coefficients are given by Pascal’s triangle. 

N=l 
N=2 
N=3 
N=4 
N=5 
N=6 
N=7 
N=8 
N=9 

N = 10 

1 1 
1 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 
1 6 15 20 15 6 1 

1 7 21 35 35 21 7 1 
1 8 28 56 70 56 28 8 1 

1 9 36 84 126 126 84 36 

g (3.3;7) 

(a) Plot t,he beam pattern for N = 10. Compute the HPBW and the tolerance factor. 

(b) Discuss the behavior for large N. 

P3.2 Array Polynomials and the x-Transform 

Problem 3.2.1 [Ba182] 
A 3-element array is placed along the z-axis. Assuming the spacing between the 

elements is d = X/4 and the relative amplitude excitation is equal to al = 1, u2 = 2, a3 = 1: 

“‘Q(x) = & szrn e -g dx, which was defined as erfc, (x) in [DEMT I], [VT68], 

[VTOla]. 
38The binomial distribution was originally suggested by Stone [Sto]. He proposed that 

the amplitudes be proportional to the coefficients of a binomial series of the form of (3.375). 
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(a) Find the nulls of the beam pattern where the interelement phase shift +T (2.127) 
is 0, r/2, and 3~12. 

(b) Plot the beam patterns. 

Problem 3.2.2 

Design a linear array of isotropic elements placed along the z-axis such that the zeros 
of the array factor occur at 8 = O”, 60”, and 120’. Assume that the elements are spaced 
d = X/4 apart and that the interelement phase shift between them is 0”. 

(a) Find the required number of elements. 

(b) Determine their excitation coefficients. 

(c) Write the array factor. 

(d) Plot the array factor pattern. 

Problem 3.2.3 

Consider a linear array along the x-axis. Assume that d = X/2. The nulls in the array 
factor are specified to be O”, 60”) and 120”. 

(a) Find the minimum number of array elements. 

(b) Specify the array weighting. 

(c) Find and plot the array factor. 

Problem 3.2.4 

Consider a standard 21-element linear array. Plot the zeros in the x-plane for the 
following array weighting functions: 

(a) Triangular 

(b) Cosine 

(c) Raised cosine 

(d) Cosine2 

(e) Cosine3 

(f) Cosine4 

Problem 3.2.5 

Consider a standard 21-element linear array. Plot the zeros in the x-plane for the 
following array weighting functions: 

(a) Raised cosine-squared 

(b) Hamming 

(c) Blackman-Harris 

Problem 3.2.6 
Consider a standard 15-element linear array. Plot the zeros in the x-plane for the 

following array weighting functions: 
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Figure 3.62 Four-tower broadcast array pattern requirements. [Adapted 
from [Kra88]] 

(a) DPSS ($0 = O.l57r, 0.251r, and 0.574 

(b) Kaiser (,0 = 2 and 8) 

Problem 3.2.7 [Ba182] 
The x-plane array factor of an array of isotropic elements placed along the z-axis is 

given by 
AF = x(z4 - 1). (3.378) 

Determine the 

(a) Number of elements of the array. Indicate any elements with zero weighting (null 
elements). 

(b) Position of each element (including that of null elements) along the z-axis. 

(c) Magnitude and phase (in degree) of each element. 

(d) Angles where the pattern will equal zero when the total array length (including null 
elements) is 2X. 

Problem 3.2.8 [Kra88] 
Four-tower BC array. A broadcasting station requires the horizontal plane pattern 

indicated in Figure 3.62. The maximum field intensity is to be radiated northeast with as 
little decrease as possible in field intensity in the 90” sector between north and east. No 
nulls are permitted in this sector. Nulls may occur in any direction in the complementary 
270” sector. However, it is required that nulls must be present for the directions of due west 
and due southwest, in order to prevent interference with other stations in these directions. 

Design a four-vertical-tower array to fulfill these requirements. The currents are to 
be equal in magnitude in all towers, but the phase may be adjusted to any relationship. 
There is also no restriction on the spacing or geometrical arrangements of the towers. Plot 
the beam pattern. 
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Figure 3.63 Cosecant pattern. 

P3.3 Pattern Sampling in Wavenumber Space 

The cosecant beam pattern is encountered in a number of applications. The next four 
problems, which are taken from [Ba182], use the Woodward procedure to synthesize these 
patterns. 

Problem 3.3.1 [Ba182] 
In target-search, grounding-mapping radars, and in airport beacons it is desirable to 

have the echo power received from a target, of constant cross section, to be independent 
of its range R. 

Generally, the far-zone field radiated by an antenna is given by 

IE(R,Qp)( = Coy, (3.379) 

where Co is a constant. According to the geometry of Figure 3.63, 

h 
R = sin = hcsd 

For a constant value of 4, the radiated field expression reduces to 

(3.380) 

(3.381) 

A constant value of field strength can be maintained provided the radar is flying at a 
constant altitude h and the far-field antenna pattern is equal to 

f(e) = cz csc(8). 

This is referred to as a cosecant pattern and it is used to compensate for the range 
variations. For very narrow beam antennas, the total pattern is approximately eq ual to 
the space or array 
factor is given by 

factor. Design a line source, using the Woodward method, whose array 

AF(0) = 
0.342csc(e), 20” < 8 < 60”, _ _ 
o 

7 elsewhere. 
(3.382) 

Plot the synthesized pattern for L = 204 and compare it with the desired pattern. 

Problem 3.3.2 [Ba182] 
Repeat the design of Problem 3.3.1 for a linear array of N = 21 elements with a 

spacing of d = X/2 between them. 
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Problem 3.3.3 [Ba182] 
For some radar search applications, it is more desirable to have an antenna that has 

a square beam for 0 5 8 5 80, a cosecant pattern for 80 5 0 5 8,, and is zero elsewhere. 
Design a line source, using the Woodward method with an array factor of 

1, 150 < 8 < 200, 
AF(0) = o.342csc(e), 20” 7e760°, _ _ (3.383) 

elsewhere. 

Plot the synthesized pattern for L = 20X, and compare it with the desired pattern. 

Problem 3.3.4 [BalS2] 
Repeat the design of Problem 3.3.3 using the Woodward method, for a standard linear 

array of 41 elements. 

Problem 3.3.5 
Repeat the design problem in Problem 3.3.1 using the Woodward method. 

Problem 3.3.6 

Repeat the design problem in Problem 3.3.2 using the Woodward method. 

Problem 3.3.7 

Design a standard linear array with N = 21 when the desired array factor is 

AFd(S) = sin30, 20” 5 8 5 60". (3.384) 

Use the Woodward procedure. 

P3.4 Minimum Beamwidth for Specified Sidelobe Level 

Problem 3.4.1 

Show that the Dolph-Chebychev procedure and the Riblet-Chebychev procedure lead 
to the same beam pattern for d = X/2. 

Problem 3.4.2 

Consider a standard lo-element linear array pointed at broadside. 

(a) Find the Dolph-Chebychev weightings for sidelobes of -20 dB, -30 dB, and -40 
dB. 

(b) Plot the resulting beam pattern and compute the HPBW, BIVNN, and the direc- 
tivity. 

(c) Plot the roots in the x-plane. 

Problem 3.4.3 

Repeat Problem 3.4.2 for a 20-element linear array with d = X/4. Repeat parts (a)- 

(b) . 

(c) Find the Riblet-Chebychev weighting for the same sidelobe requirements and com- 
pare the BWNN. 

Problem 3.4.4 

Compute the HPBW of the Chebychev array in Problem 3.4.2 when it is scanned to 
8 = 60”. 
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Problem 3.4.5 

Consider a standard 7-element linear array pointed at broadside. 

(a) Find the Dolph-Chebychev weightings for sidelobe of -20 dB, -30 dB, and -40 
dB. 

(b) Plot the resulting beam pattern and compute the HPBW, BWNN, and the direc- 
tivity. 

Problem 3.4.6 
[KraM] Calculate the Dolph-Chebychev distribution of a six-source broadside standard 

linear array for /X = 5,7, and 10. 

Problem 3.4.7 

Consider a standard 5-element linear array. The array is aimed at broadside. 

(a) Find the Dolph-Chebychev weightings for -20 dB sidelobes. 

(b) Plot the resulting beam pattern. 

(c) Find the HPBW and BWNN. 

Problem 3.4.8 

Consider an 8-element linear array with d = 3X/4. The array is aimed at broadside. 

(a) Find the Dolph-Chebychev weightings for -40 dB sidelobes. 

(b) Plot the resulting beam pattern. 

(c) Find the HPBW and BWNN. 

Problem 3.4.9 
Consider a standard linear array with N = 15. 

(a) Repeat Problem 3.4.2. 

(b) Repeat part (a) for Taylor weighting with ii = 6. 

Problem 3.4.10 
Consider the model in Example 3.4.2. Find and plot the aperture weighting function 

and the corresponding beam pattern. 

Problem 3.4.11 (continuation) 

(a) Plot the beam pattern for the corresponding linear array with d = X/4 and N = 17. 

(b) Plot the beam pattern for the corresponding linear array with d = X/2 and N = 9. 

Problem 3.4.12 (continuation) 
Instead of finding the weighting of the discrete array by sampling the continuous 

weighting, find a discrete weighting so that the nulls of the two patterns are matched (e.g., 
[EllU]). 

Problem 3.4.13 

Consider a 41-element standard linear array. Design a beam pattern using a Villeneuve 
?i weighting with a maximum -30-dB sidelobe. 
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(a) Plot t/he beam pattern for fi = 6. 

(b) How does the pattern change as a function of ii? 

(c) Find the array weights for the pattern in part (a). 

Problem 3.4.14 
Repeat Problem 3.4.13 for -35-dB maximum sidelobes. 

Problem 3.4.15 

(a) Calculate the directivity of a standard N-element linear array pointed at broadside 
using a Dolph-Chebychev weighting. 

(b) Plot the directivity index DIB versus N for sidelobe levels of -15, -20, -30, -40, 
and -60 dB. Let N vary from 10 to 1000. 

Problem 3.4.16 

Repeat Problem 3.4.15 for a Villeneuve fi weighting with fi = 6. 

Problem 3.4.17 

Derive a simple expression for the BLYNN of a SLA using Dolph-Chebychev weighting. 
Plot BWNN versus SLL in dB for N = 10. 

Problem 3.4.18 

In order to find the Chebychev weights, Stegen [Ste53] used the following technique. 
The array coefficients are represented by an inverse DFT, 

N-l 

1 2 
a, = - c Pme 

j$+nm 

N 
(3.385) 

N-l m=- 
2 

for N odd. The pm correspond to equally spaced samples of the beam 
If the pattern corresponds to a Chebychev polynomial, then 

pattern in q-space. 

Pm =Th’-&co~=). 
N 

(3.386) 

Using (3.386) in (3.385) g ives an expression for the coefficients, 

a, = 
1 

RN 
R+2 

N-l 
n =O,l,...,- 

2 ’ 

for N odd. Similarly, 

(3.387) 

(3.388) 
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for N even. 
Use this approach to find the weights in Example 3.4.1. 

P3.5 Least Squares Error Pattern Synthesis 

Problem 3.5.1 
The desired Bo (0) is uniform on ---/r/4 5 8 5 37r/4. Use the Fourier transform method 

to find the aperture weighting function for a linear aperture of length L = 5X and L = 10X. 

(a) Plot the resulting beam pattern. 

(b) Calculate the resulting maximum sidelobe. 

(c) Calculate BONN. 

(d) Calculate the peak overshoot in the main-lobe region. 

Problem 3.5.2 
Repeat Problem 3.5.1 for a standard linear array with N = 11 and N = 21. 

Problem 3.5.3 
Assume that Bd( 0) is uniform on -30” < 8 < 60”. Repeat Problem 3.5.1. _ _ 

Problem 3.5.4 
Assume that B@) is uniform on 30” 5 0 5 60”. Repeat Problem 3.5.2. 

Problem 3.5.5 
The desired beam pattern is uniform on -~/a 5 $J 5 ~/fi and zero elsewhere. 

(a) Find the Fourier coefficients for N = 11 and N = 21. 

(b) Use a Hann window. Plot the resulting beam pattern. Compare 6, the main-lobe 
overshoot, and &,& the transition distance. 

(c) Repeat part (b) using a Hamming window. 

(d) Assume N = 21. Use a Kaiser window. Find p to match the overshoot in part (b). 
Plot the resulting beam pattern. What is A+? 

(e) Repeat part (d) d an match the overshoot in part (c). 

Problem 3.5.6 
Consider the model in Example 3.5.2. 

(a) Use a DPSS window with $0 = 7r/6. Plot the resulting beam pattern and compare 
to Figure 3.33(a). 

(b) What is the effect of varying $0 on the window? 

P3.6 Minimax Design 

Problem 3.6.1 
Consider the model in Example 3.6.1 (N = 11) with 6,/6, = 10. Assume 6, is chosen 

to match the Hamming window in Example 3.5.2. 
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(a) Use the Parks-McClellan-Rabiner algorithm to design the optimum weighting and 
plot the resulting beam pattern. 

(b) What A+ = $p - $.+ Compare this result with A+ found in Example 3.6.1. 

Problem 3.6.2 

Utilize the techniques in Section 3.6.2 to repeat Problem 3.6.1 for the case when 
N = 10. 

Problem 3.6.3 

Consider a standard linear array. Assume 2Olog,, Sp = -53 dB and 6,/d, = 10. 
Assume the Parks-McClellan-Rabiner algorithm is used to design the array weighting. 

Plot &9 as a function of N, the number of array elements. 

P3.7 Null Steering 

Problem 3.7. I 
Consider a standard 41-element linear array with a Chebychev pattern (-40 dB side- 

lobe). In Example 3.7.3, we placed four nulls at u = 0.22,0.24,0.26, and 0.28. An alter- 
native strategy is to place a first- and second-order null at u = 0.235 and 0.265. Find the 
resulting beam pattern and compare to Example 3.73. 

Problem 3.7.2 

Consider a st)andard 21-element linear array. We require a null at $0. B&b) corre- 
sponds to uniform weighting. 

(a) Find the least squares approximation to B&+9) subject to this null constraint. 

(b) Plot the beam pattern for $0 = 37r/N, $0 = 27r/N, $0 = T/N, and $0 = 0.57rlN. 
Discuss your results. 

Problem 3.7.3 
Consider a linear array that consists of two segments: (i) an ll-element standard 

linear array centered at z = 0; and (ii) two 5-element standard linear arrays centered at 
2 = -+7.5x. 

(a) Assume that the 21 elements are weighted uniformly. Plot the beam pattern and 
discuss the grating structure. 

(b) We denote the beam pattern in part (a) as B&b). We require a null at $ = 0.57r/N. 
Find the least squares approximation to Bd($) subject to the null constraint. 

P3.8 Asymmetric Beams 

Problem 3.8.1 

Assume N is even. Let the wn, n = 1,2, . . . , N/2 correspond to Hamming weighting, 
and 

w-n = -wn. (3.389) 

(a) Find and plot the resulting beam pattern. 

(b) Find the slope at the origin and the height of the first sidelobe. 
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Problem 3.8.2 

We can divide an asymmetric (N even) array polynomial into two components: 

B(z) = &(z)B2(z), (3.390) 

B1(z> - - 
1 - z-l 

(3.391) 

and 

B2(z) = N52b2(n)2”, (3.392) 
n=O 

and thus 

mt9 * = sin( 2). (3.393) 

(a) Use this approach to find the beam pattern for uniform weighting. 

(b) Use this approach to design an asymmetric Hann beam pattern. 

Problem 3.8.3 (continuation) 
Assume N = 10. Then B&z) is an eighth-order polynomial. 

(a) Choose the coefficients to achieve a Dolph-Chebychev weighting with -40 dB side- 
lobes. 

(b) Plot the resulting beam pattern. 

(c) Calculate the slope at the origin. 

Problem 3.8.4 (continuation) 
Assume that the beam pattern in Problem 3.8.3 is B&b). Find the least squares 

approximation to Bd (T/J) with a zero-order null constraint at $0 = 57r/N. 

P3.9 Spatially Non-uniform Linear Arrays 

Problem 3.9.1 

Consider a 4-element non-uniform linear array whose element spacings are d, 3d, 2d. 

(a) Plot the beam pattern for uniform weighting. 

(b) Unifor pm weighting corresponds to wr = w2 = w5 = w7 = 1 14 an d w3 = 
0 in a standard linear array. Plot the autocorrelation of w with itself. 

w4 = WfZj = 

Problem 3.9.2 

Consider a 5-element non-uniform linear array whose element spacings are d, 3d, 5d, 2d. 
Repeat Problem 3.9.1. 

Problem 3.9.3 (continuation) 
Consider the array in Problem 3.9.2. Use the algorithm in Section 3.9.3 to design a 

beam pattern with -20 dB sidelobes. 
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Problem 3.9.4 

(a) Consider a standard linear array with 21 elements. Use the technique in Section 
3.9.3 to design a beam pattern that maximizes the directivity subject to a -35-dB 
constraint of the sidelobe. Describe your algorithm. 

(b) Compare the resulting BWNN with that of a 21-element SLA using Dolph-Chebychev 
weighting. 

P3.10 Beamspace Processing 

Problem 3.10.1 
Consider a 32-element standard linear array and a 7 x 32 beamspace matrix whose 

rows use conventional weighting. We want to implement the null steering techniques in 
beamspace. Assume 

Bd($) = vbHs(~)vbs(+)- (3.394) 

We want to place a null at $1 while minimizing the least squares error between the desired 
beam pattern and the beam pattern containing the null. 

(a) Let $JI = 3132. Find WE and plot the resulting beam pattern. 

(b) Repeat part (a) for $1 = 7132 and @I = 13132. 

(c) Let 
Bd($‘) = ‘&h+bs(+)- (3.395) 

R.epeat part (a) for +T = I/32 and $1 = 5132. 

Problem 3.10.2 
In many applications, we require 

BE Bbs = I. (3.396) 

If  we use a 
denote this 
We denote 

Taylor weighting, the rows of the beamspace 
matrix as B,H,. We pass the outp ut of B,H, t 

the cascade of the two processors as 

matrix 
hrough 

are not orthonormal. , We 
an Nbs X Nbs matrix HW. 

BE = H, B,H,. (3.397) 

(a) Show that if 
H, = [B,“, B,,] -l/2) (3.398) 

then BE satisfies the orthonormality condition. Is H, unique? 

(b) Consider the 7 x 32 beamspace matrix whose rows have Taylor weighting. Verify 
the above result numerically. 

(c) Plot the beam patterns for the orthogonal beams. Discuss the sidelobe behavior. 

Problem 3.10.3 
Consider an 32-element standard linear array and a Nbs x N beamspace processor 

where rows are orthonormal conventional beams. 
We want to generate a beam pattern corresponding to the cosNbS-element-space weight- 

ing in (3.18). 
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(a) Consider the case when Nbs is even. Assume the beam sector is centered at us = 0. 
Find the required beam steering directions and beamspace weights for Nbs = 2,4, 
and 6. Plot the resulting beam patterns and calculate the HPBW, ANN, DN, and 
the height of the first sidelobe. 

(b) Repeat part (a) for Nbs = 3, 5, and 7. 

Problem 3.10.4 (continuation Problem 3.10.3) 
Repeat Problem 3.10.3 for the case in which the desired beam pattern corresponds to 

the Hamming beam pattern in (3.21). In this case, Nbs = 3. 

Problem 3.10.5 (continuation Problem 3.10.3) 
Repeat Problem 3.10.3 for the case in which the desired beam pattern corresponds to 

the Blackman-Harris beam pattern in (3.23). In this case, Nbs = 5. 

Problem 3.10.6 (continuation Problem 3.10.5) 
Extend the results of Problem 3.10.5 to the case when Nbs = 7. 

Problem 3.10.7 (continuation, Example 3.10.3) 
Consider a standard 32-element linear array and the 6 x 32 bearnspace processor in 

Example 3.10.3. We use an asymmetric beamspace weighting, 

[ 1 wbs m  = - wbs M-m, [ 1 m = 1,2,3. (3.399) 

(a) Plot the beam pattern for real constant weights. Plot both &s(U) on a linear scale 
and I&&)( in dB. 

(b) Consider 
behavior. 

various other weightings that trade-off slope at the origin versus sidelobe 

P3.11 Broadband Arrays 

Problem 3.11.1 
Consider the compound array with nested subarrays shown in Figure 3.57. Each 

subarray has N = 11 elements. In some applications, we want to place a null at a specific 
point in u-space over the entire octave. Assume that we use K = 8 frequency bins. 

The desired beam pattern corresponds to conventional weighting in each bin (Figure 
2.20). Design a beamformer that provides a least squares approximation to the desired 
beam pattern (e.g., Section 3.7) with a null at u = 0.30 in each bin. 

Problem 3.11.2 
Consider the compound array with nested subarrays shown in Figure 3.57. Assume 

that we use K = 8 frequency bins. 
Design a beamformer using the Riblet-Chebychev algorithm in each frequency bin. 

Plot the resulting beam pattern in each bin. 
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Chapter 4 

Planar Arrays and Apertures 

In this chapter we discuss analysis and synthesis techniques for planar arrays. 

A planar array is an array whose elements all lie in the zy-plane. 

In the array case, we consider three types of element geometries, as shown 
in figures 4.1, 4.2, and 4.3. We find that both the element topology and the 
boundaries are important. In the aperture case, we consider two cases, as 
shown in Figure 4.4. 

Many of the ideas that we developed for linear arrays and apertures 
carry over to the planar case. In other cases, extensions are necessary. As in 
the linear array case, our development is a combination of classical antenna 
theory and finite impulse response filter theory. Classical antenna refer- 
ences that discuss planar arrays include [Ell81], [Ba182], [Mai94], [Ma74], 

[Ste81], and [Zio95]. Two-dimensional FIR filter references include [RG75] 
and [DM84]. 

In Section 4.1, we consider array geometries utilizing a rectangular element 
grid. We extend the techniques in Chapter 3 to the analysis and synthesis 
of rectangular arrays. 

In Section 4.2, we develop analysis and synthesis procedures for circular 
arrays and ring apertures. We show that the Bessel function decomposition 

replaces the Fourier series decomposition for linear arrays. 

In Section 4.3, we develop analysis and synthesis procedures for circular 

apertures. These apertures correspond to the limiting case for filled circular 
arrays. The circular aperture also occurs in parabolic reflector antennas. 

In Section 4.4, we consider arrays using a hexagonal (also called trian- 
gular) element grid. Sampling theory indicates that a hexagonal grid is the 

most efficient grid and hexagonal grids are widely used in various applica- 
tions. Hexagonal grid arrays are closely related to rectangular grid arrays. 

231 
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Rectangular grid, 
rectangular boundary 

Rectangular grid, 
circular boundary 

( > a (b) 

Figure 4.1 (a) Rectangular grid, rectangular boundary; (b) rectangular grid, 
circular boundary. 

Circular array 

( > a 

Concentric 
Circular array 

04 

Figure 4.2 (a) Circular array; (b) concentric circular array. 



Figure 4.3 Hexagonal arrays; circular boundary. 

Our development utilizes the circular aperture results in Section 4.3 which, 
in turn, uses the circular array results in Section 4.2. This path is the reason 
the two sections are separated. 

In Section 4.5, we discuss nonplanar arrays briefly. In Section 4.6, we 
briefly summarize our results. The structure of Chapter 4 is shown in Table 
41 . . 

4.1 Rectangular Arrays 

Our discussion of rectangular arrays parallels the development of synthesis 
techniques for linear arrays in Chapter 3. 

4.1.1 Uniform Rectangular Arrays 

The geometry for a planar array with a uniform rectangular grid and rectan- 
gular boundary is shown in Figure 4.5. We refer to these arrays as uniform 
rectangular arrays (URAs). Utilizing the relations in Chapter 3 we can 
write the beam pattern as the 2-D Fourier transform of the weighting func- 
tion 
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(a) Rectangular (b) Circular 

(c) Ring aperture 

Figure 4.4 Apertures: (a) rectangular; (b) circular; (c) ring. 
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Table 4.1 Structure of ChaDter 4. 

4.1 Rectangular _-___-_-_-_--- _--__---_--_ 

fiectangular grid 
UKA, SRA 
Separable weighting 
2-D Z-Transform 
Circular symmetry 
2-D DI;I 
Chebychev 

4.2 Circular Arrays ---_---__--_---------------- 

Ring aperture 
Circular arrays 
Phase mode exicitation 

4.5 Nonplanar Arrays -------_---__--------------- 

Cylindrical 
Spherical 

4.4 Hexagonal -----------.---------------- 

Triangular grid 
UHA 
SHA 
H-R Transformations 
Beamspace processing 

4.3 Circular Aperture -----------a -..--------- 

Separable weighting 
Taylor synthesis 
Sampling 
Difference beams 

We can also express 

n=O m=O 

27r 
‘lx = 4 px sine cos 4, 

$ 
27r 

Y= yiy sin 8 sin q!k 

(4.2) and (4.3) in terms of t 

‘UX = sin e cos 4, 

(4 2) . 

(4 3) . 
he directional cosines, 

(4 4) . 
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Figure 4.5 Planar array geometry. t 

The visible region is 

TLY = sin 8 sin 4. 

n uq- - J u,; + tL; < 1. 

In terms of T/J,, qy, the visible region is 

(4 5) . 

(4 s> . 

(4 7) . 

For the case in which 

d d 
x 

I . &Lx, y=-, 
2 (4 8) . 

(4.2) and (4.3) reduce to 

and 

(4) Y = 7ruy. (4.10) 

We refer to uniform rectangular arrays that satisfy (4.8) as standard 
rectangular arrays (SRAs). We normally work in (&, $J,) space or (ux, uy) 
space because of the Fourier transform relationship. However, it is important 



Figure 4.6 Mapping between (8,@) space and (uz, uy> space. 

to remember the mapping into (0, $) p s ace. This is shown in Figure 4.6 for 

the d = x/a case. The pairwise mapping (uX, uy> +-+ (O,@) is unique. 
As in the linear array case, we must consider the grating lobe structure. 

To do this, we rewrite (4.1) as 

First, consider the case when the array is steered to broadside. Expand- 
ing (4.11) and recalling that ko L Ikl = 271-/X, we see that grating lobes will 
occur at 

x 
ux =p-p p= 1,2,***, (4.12) 

X 

x 
uY =qz, q= 1,2;-. 

Y 

This periodicity is shown in the (uz, uy) plane in Figure 4.7. 

(4.13) 
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Figure 4.7 Planar array-grating lobe grid (rectangular lattice-rectangular 
grid). 

Now assume the array is steered to (00, $0) J Then, 

UXO = sin 00 cos $0 (4.14) 

and 

uYO = sin 80 sin 40. (4.15) 

Also, 

and 

uYO = tan 40 
uxo 

(4.16) 

J- ~~ 

c 

uio + /uzo = sin 00. (4.17) 

The location of the main beam in (‘u,, fuy) space is given by (4.14) and (4.15) 
and is shown in Figure 4.8. The grating lobes shift along exactly the same 
vector as shown in Figure 4.8. We can now determine the values of d, and 
d, required to avoid grating lobes in the visible region. We illustrate the 

process with a simple example. 

‘The subscript “0” denotes the steering direction. 
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f 

Figure 4.8 Planar array---scanned. 

Example 4.1.1 
Consider a rectangular grid array with uniform spacing d, and cl,. We are required 

to scan from 0” 5 0 5 60” and over all values of 4. Some possible locations of the grating 
lobes are shown in Figure 4.9. In the figure, we have chosen d, and d, so that the grating 
lobe is on the border of the visible region in the worst case. 

Thus, 
x x 

x=d, 
= 1.866, (4.18) 

and we require, 

d, 5 x 
1.866 ’ 

(4.19) 

and \ 
d, 5 n 

1.866 ’ 
(4.20) 

If we are required to scan 0’ < 8 < 90”, then we require - - 

x 
d, < 2 - 

and 

d, 5 
x - . 
2 

(4.21) 

(4.22) 
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Figure 4.9 Possible locations of the grating lobes. 

We will refer to a rectangular array with 

d d 
x 

J:= ,y=-’ 
2 

(4.23) 

as a standard uniform rectangular array. 
For the special case in which we have separable weightings 

the beam pattern is the product of the two individual array factors, 

If the weighting is uniform in both directions, then 

sin N 
( > & 

sin zx 
( > 

3L 

M sin $J ( > 3-Y 

sin 9 
( > 

(4.25) 

(4.26) 

There are several ways to plot beam patterns for the 2-D case. We 
illustrate them for this case. In subsequent cases, we use the plot that is 
most appropriate for the particular problem. We use M = N = 10 in the 
plots. 
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0.8 

Figure 4.10 Magnitude of beam pattern of standard rectangular array: N = 
M = 10, uniform weighting, linear vertical scale. 

(i) In Figure 4.10, WC show the amplitude of the beam pattern versus ‘ucc and 
uY wit811 a linear vertical scale. In Figure 4.11, we show the amplitude 

of the beam pattern versus uX and uY on a logarithmic scale. Both of 

these give a good overall view of the pattern but are not convenient 
for examining the details of the main lobe and sidelobe behavior. 

(ii) In Figure 4.12, we show polar plots of the amplitude of the beam pattern 
versus 0 for various values of $. These plots are vertical cuts through 

the 3-D beam pattern. Note that the right side of the polar plot 
corresponds to the indicated value of 4. The left side corresponds to 
4 + 180’. In Figure 4.13, we plot the amplitude on a logarithmic scale 

versus thT = sin8 for various values of 4. These plots are referred to as 
pattern cuts and are generally tlhe most useful for a detailed pattern 
analysis. 

(iii) In Figure 4.14, we show a contour plot of the amplitude in dB versus 
u, and ‘uy. This plot gives a good view of the pattern symmetries and 
is particularly useful when plotted in color. 
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Figure 4.11 Magnitude of beam pattern of standard rectangular array: N = 
Al = 10, uniform weighting, vertical scale is 20 log I&(u) (. 

4.1.1.1 Beamwidth 

The half-power beamwidth for a pattern array is a contour in (u,, uY) space 

or (t),+) space where the magnitude-squared of the beam pattern is 0.5. For 
general weights, this contour must be evaluated analytically. 

In some cases, the weights are chosen so that when the array is steered 
to broadside, the 3-dB contour can be approximated by a circle if n/l = N 

and an ellipse if hf # N. In these cases, an approximate expression for the 
axes of the half-power ellipse can be used. 

The beamshape versus scan angle is shown in Figure 4.15. As the MRA 
of the beam moves away from 8 = 0, the circular 

and the beamwidth in the o-direction increases. 
contour becomes elliptical 

Two planes are chosen to characterize the beamwidth. The first is the 
elevation plaSne corresponding to C$ = 40 and the second is a plane perpen- 
dicular to it. The half-power beamwidths in the two planes are designated 
by 8~1 and XIJ 1-i . For a large array steered near broadside, 0~ is given ap- 
proximately by 
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Figure 4.12 Pola,r plot of beam pattern cut of standard rectangular array: 
N = I’M = 10, uniform weighting; (a) 4 = 0’ or 90”; (b) 4 = 45’. 
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Figure 4.13 Beam pattern cut of standard rectangular array: N = M = 10, 

uniform weighting, plotted versus u,; (a) q$ = 0’ or 90”; (b) 4 = 45O. 
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Figure 4.14 Contour plot of magnitude of beam pattern for standard rect- 
angular array: N = M = 10, uniform weighting. 

Figure 4.15 Beam shape versus scan angle. 
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(4.27) 

where 

(i) &o is the HPBW of a broadside linear array wit*h N elements; 

(ii) 8,o is the HPBW of a broadside linear array with 111 elementIs (e.g., 
Elliot [El1641 or Problem 4.1.1). 

The HPBW values are obtained from our previous linear array beamwidth 
results in Chapter 3. 

For a square array with equal separable weightings, 

(4.28) 

which is identical to our result in Chapter 2. 

The HPB W in the perpendicular plane is given by 

(e.g., Elliot [El1641 or Problem 4.1.2). Note that it does not depend on 80. 

For a square array with equal separable weightings t, 

QH = &O = 8,O. (4.30) 

The beam solid angle & is the product of the HPBWs, 

R4 = hr QH 7 (4.31) 

which can be expressed as 

i-IA = 
&O tlgO set 80 112 112 

l (4.32) 

sin240 
e2 

+ 8 cos2& 
x0 

1 [ 
e2 

sin240 + 8 cos2@0 
YO 

1 
The expression in (4.32) is useful. However, in most examples we plot the 
actual half-power contour of the beam pattern in the uz, uY plane or examine 
it for various pattern cuts. 
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4.1.1.2 Directivity of a planar array 

The directivity of an array is given by (2.144) as 

(4.33) 

where (00, ~$0) is the MRA. We desire an expression for the directivity that is 
valid for any planar array in the zy-plane. The directivity does not depend 
on the choice of the coordinate system, so the result is valid for any planar 

array. 
For an N-element planar array in the zy-plane, we denote the position 

of the nt,h elernent by (px, ,pYn). Note that the array can have arbitrary 
configuration in the Icy-plane and that we are indexing the elements with a 
single index YL Note that N is the total number of elements and would equal 
NILI for the array in Figure 4.5. 

The beam pattern can be written as, 

W-1 

B(8, 4) = C /w:~ exp j 7 (pz,, sin 8 cos C$ + p,, sin 8 sin 4)) . (4.34) 
n=o 

The denominator in (4.33) can be written as 1 *27r 7T 
DEN n - - 

47r J s ~B(Q#~)~~sinBdBd$ 
0 0 

which reduces to 

N-l N-l 

DEN = x C w;c2wm o~~sinO~d0~2~~ 
n=O m=O s 

( 27r 
l exp j- x sin 0 (ApZnnL cm 4 + np,,, sin 4) 

> 
@, (4.36) 

where 

and 

AP nPXn-PXmY Xnm - (4.37) 

‘P nPjj,-P,mm Ynrn - (4.38) 
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Now define 

Prim = @PxnJ2 + @PynJ2)+ = IlnPnrnlL (4.39) 

and 
A 4 Pyrlrn 

nm = arctan ----- ( > AP 
. 

Xnna 

(4.40) 

Then 

AP 
- 

Xnrn - Prim COS km 7 (4.41) 

and 
Ap = Ynm Prim sin $nm l 

(4.42) 

Using (4.41) and (4.42) in the inner integral in (4.36) gives 

i2’; & eXp (j~/lnrnSinB (COS$COS+nm + Sin@3in&mj) d$ 

= ~2r~exp(~~PnmSine(COs(~-On711)))d~ 

27r - - 
JO -/42m sin 0 7 

( x > 

(4.43) 

where Jo() is a Bessel function of order zero. Substituting (4.43) into (4.36) 
gives 

DEN - - 
N-l N-l 

n=O m=O 

N-l N-l 

n=O m=O 

(4.44) 

Defining a matrix B with elements 

PI 
27r 

nm 
= sine -fIInm , 

( > x 
(4.45) 

the directivity can be written as 

where 
v() = v(~o,#o)7 (4.47) 
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is the array manifold vector steered at (00, 40). 
If we normalize the weights so that B(&, 40) = 1, then (4.46) reduces to 

D = [w”Bw]+ . (4.48) 

Note that B does not reduce to an identify matrix for a standard rect- 
angular array. 

For large rectangular grid planar arrays Elliot [El1641 has shown that 

DO = n cod0 D, D,. (4.49) 

The reader is referred to that reference for a discussion of this result. 

will use the result in (4.46) to calculate the directivity. 
We 

In the linear array we developed a number of techniques for synthesizing 
desireable beam patterns. In the next several sections, we look at the exten- 
sion of these techniques to planar arrays and the introduction of modified 
techniques where appropriate. Before doing that development, it is useful 

to consider the array manifold vector in more detail. 

4.1.2 Array Manifold Vector 

The array manifold vector was defined for an arbitrary array in (2.28). For 
rectangular planar arrays it is convenient to define an array manifold matrix 
as an intermediate step. 

We define 
,jm+, 

,mz+m&J 
vmW> = . 7 (4.50) . 

,.?W-1)1L.+mi,) 
d 

as the array manifold vector corresponding to the mth line of sensors in the 
y-direction. The vector Q is 

+ 
$J X - - [ 1 + . Y 

Then, 

v@(q) = [  vo(q) j l * *  i VM-l(Q) ]  1 

(4.51) 

(4.52) 

is an N x M array manifold matrix. Then, we can define a vector that is 
obtained by stacking the vectors to obtain an NM x 1 vector (see (A.106)), 
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It is easy to verify that vet [V&q!J)] is conjugate symmetric. 

The expression in 4.53 can also be written as a Kroneker product (A.79): 

(4.54) 

We can describe the weight vector using this notation. The weight vector 
down the nzt h line is 

w, = 

and the weight matrix is 

and 

W - - 
[ WO 

vet 

Then, 

. . . 

WOp 
. 
. . 

‘WL ,m 
. . . 

WN-l,m 

Wm em8 

Wm 

(4.55) 

WM-1 7 1 
(4.56) 

(4.57) 

BW) = Bblk7 @,> = vecH [W] vet [V+(+)] . (4.58) 

If vet [W] is conjugate symmetric (or real and symmetric), then B(Q) will 
be real. 

For a conventional delay-and-sum beamformer, 

vecH [W] = vecH [v+ w] 7 (4.59) 
s 

and 

is real. 

B,(q) = vecH [v+, btu] vet [v+ w] (4.60) 

We will find t,he vec(-) notation useful in a number of cases later in the 
text. 
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4.1.3 Separable Spectral Weightings 

In Section 3.1, we introduced various spectral weightings to obtain desirable 
sidelobe patterns and acceptable main-lobe beamwidths. 

A straightforward approach is to use the linear array spectral weighting 

along each axis: 

Wnm = WnWm. (4.61) 

Since the weighting is 
two linear arrav beam ” 

separable, the beam 
patterns. ’ Then, 

pattern will be a product of the 

In many cases, this will lead to satisfactory patterns. The problem is that it 
is not clear how the two-dimensional pattern will behave when 4 # 0 or 7r/2. 
For example, we saw in Figure 4.13 that the sidelobe structure for C) = 7r/4 
was significantly different than that for 4 = 0 or 7r/2. 

We consider an example to illustrate the behavior. 

Example 4.1.2: Hamming window 

We assume that hl = N = 11 and use the Hamming weighting from (3.21): 

‘wN(n> = 
0.54 +0.46cos(~), InI 5 5, 
o 

7 elsewhere. 
(4.63) 

The resulting pattern is shown in Figure 4.16. In Figure 4.17, we show pattern cuts at 
4 = 0” (or 90’) and 4 = 45”. W e see that the main lobe is wider for C$ = 0” (or 90’). The 
sidelobes are lower for 4 = 45” than for C$ = 0” (or 90’). 

This behavior is typical for separable weightings. In order to obtain beam 

patterns whose pattern cuts are similar for all 4, non-separable weightings 
are required. 

4.1.4 2-D z-Transforms 

Just as in the 1-D case, we can write the x-transform of the weighting matrix 
as 

We define 

N-l Ibf-1 

&&Q.~ 22) = x x Wnm zcn Xarn l (4.64) 
n=O m=O 

Xl 
= ,.Nx , (4.65) 

and 

x2 = ,j& . (4.66) 
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Figure 4.16 Beam pattern: separable Hamming weighting. 
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Figure 4.17 Beam pattern cuts: separable Hamming weighting. 
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The beam pattern can be written as 

(4.67) 

4.1.5 Least Squares Synthesis 

In this section, we apply the least squares results in Section 3.5 to planar 
arrays. The square error can be written as 

1 *2?r ‘7r M-l 
- 

I - - 
J J 4x0 0 

]B&,#) - x w~v~(8,#)]2sinOd0d$ (4.68) 
m=O 

Differentiating with respect to w:L and setting the result equal to 0 
gives,:! 

1 *27r 7r - 
Wn,o = -A1 

47r 
m J s 

v,l(h dq$p, 4) sin 0 de do, 
0 0 

m=O,*m*,M-1, (4.69) 

where 

A 
1 271. 7r 

n-1 = 
-s s 4no 0 

vm(4 $)V$#C $) sin~dfW$ 

‘rn = O,..., M - 1 (4.70) 

is an N x N matrix. Frorn (4.50), we observe that 

is not a function of m so the subscript can be removed from the left side of 
(4.70). Evaluating (4.70) gives: 

PI r11 = sine [(n - L)] = 7&l (4.72) 

for a standard rectangular grid. Thus, 

1 27T ‘7r 

Wm,o = 
47r s J 2. 0 

vm(O,4)B~(8,~)sin8ded~. (4.73) 

We consider two examples to illustrate typical behavior. 

Example 4.1.3 
The desired bearn pattern is shown in Figure 4.18. 

‘This approach is the same as Section 3.5. 
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Figure 4.18 Ideal rectangular wavenumber beam pattern. 

(4.74) 

The limits of the integrand are completely inside the visible region so that we can use 
rectangular coordinates. The nth component of wm+, is 

Integrating gives 

sin sin 

1 (( 
m  - y b 

Wm,o n = 
)*) 

n = 0, -  l . , N - 1, 

m=0,~QK--1. (4.76) 

which is a separable weighting. The weight is real, so [w+~], = [wR,,] . 
The resulting beam pattern for N = M = 11 is a product of thne uniform beam 

pattern in Figure 3.32 with a uniform beam pattern of identical shape (with $a # $b). As 
expected, we have an overshoot because of the Gibbs phenomenon. 

Just as in the 1-D case, we can alleviate the overshoot problem by using 

one of the windows discussed in Section 3.1. For example, if we use the 



Least Squares Synthesis 255 

Null 

________________________ Sidelobe 

Figure 4.19 Ring-type sidelobe structure of +-symmetric pattern. 

Kaiser window from Example 3.4.3, the resulting pattern will be a product 
of the beam pattern in Figure 3.33 with itself when +a = $b. 

In a large number of applications, we would like the beam pattern to be 
uniform in 4. This corresponds to circular symmetry in (qz, +,) space. This 
implies, 

The argument of the function on the right side corresponds to the radial 
wavenumber, 

Beam pat terns satisfying (4.77) will have a ring sidelobe structure, as 
shown in Figure 4.19, and will lead to a non-separable weighting function. 

Example 4.1 .43 
The simplest case corresponds to a desired beam pattern that is constant over a circular 

region, as shown in Figure 4.20. 
In this case, it is useful to use symmetric indexing. Then, for N odd, 

N-l M-l 

BQ (&j+,) = 2 2 a;m,j~n’~+m’y), (4.79) 
N-l M-l n=- 
2 m=-- 

3This example is on p. 446 of [RG75]. 
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wx 

Figure 4.20 Desired beam pattern: circular symmetry. 

and, for N even, 

(4.80) 

The weight is denoted by aEm when symmetric indexing is used. 
Since the beam pattern has circular symmetry, the weighting function will have circular 

symmetry. 

a*(n,lm) = a: (4.81) 

A simple way to find a*(n, m) is to first find a*(n, 0) and then replace n by JEFGFF: 

1 
a*(n,O) = G 

.I 

‘ln ejn@:I: d+x 

-QR 

Letting, 
*X = $R sin cp, 

$ cp=tar? $ . ( > Y  

(4.82) 

(4.83) 

(4.84) 
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Figure 4.21 One quadrant of a rectangular array: d, = d, = 0.5X. 

dt+bx = ?,bR cos ‘p dcp, (4.85) 

(4.86) 

where J1 (s) is the first-order Bessel function. In (4.86), ‘~2 is treated as a continuous 

variable. Then 

(4.87) 

Now consider a square array with N elements in each direction. One 
quadrant of a square array with N = 20 is shown in Figure 4.21. We 
consider two ways of truncating a* (rrz, m) in (4.86). 

The first choice is to let 

a*(rl, 7-n) = 
a*(dm), 0 < &FTG? < 10, - - o (4.88) 

7 elsewhere. 

The effect of (4.88) is to give the square array a circular boundary as 
shown in Figure 4.2 1. All of the elements outside of the circular boundary 
have zero weights. 
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Figure 4.22 Beam pattern cut: standard rectangular grid array with circular 
boundary: N = lb1 = 10, ?/Q = 0.4~, dm 5 10, 4 = O”, 30”, and 45’. 

The second choice is to let 

a*(n,m) = 
u*(&~QGG), 0 < (121 < 10,O < Iml < 10, - - - - o (4.89) 

7 elsewhere. 

In this case, all of the elements have non-zero weights. To illustrate the 
effect of the t,wo boundaries, we consider the case in which $i = (0.4~)‘. 
Then, 

0.47rJ1 0.47~ dm 
a* (n, m> = ( > 

27r&q-YY7 . 
(4.90) 

Beam pattern cuts at C$ = 0,30”, and 45’ are shown in Figure 4.22 for case 1 
and in Figure 4.23 for case 2. We see that using non-zero weights for all of the 
elernents provides better sidelobe behavior. It gives a closer approximation 
to circular symmetry for the sidelobes but slightly less main-lobe symmetry. 

The cuts show the same Gibbs phenomenon as in the one-dimensional 
case. This leads us to the topic of circularly symmetric windows and circu- 
larly symmetric weightings. 
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Figure 4.23 Beam pattern cut: standard rectangular grid array with square 
boundary: N = M = 10, QR = 0.47r, n < 10, m < 10, 4 = O”, 30”, and 45’. - - 

4.1.6 Circularly Symmetric Weighting and Windows 

In Section 3.1, we developed a set of spectral weightings and then in Section 
3.5 discussed their application as windows. We can extend these ideas into 
two dimensions in a st!raightforward manner. 

We want the beam pattern associated with the weighting (or window) to 
approximate a circularly symmetric function. Huang [Hua81] showed that 
weightings (windows) of the form 

wmn = Wl (m) , (4.91) 

where WI (a) is a continuous one-dimensional weighting (window), provide 
good results. Thus all of the weightings in Section 3.1 can be used for the 
2-D case. As a simple example, we consider the example in Section 4.1.4. 

Example 4.1.5 (continuation) 
Assume that we use a Kaiser window 

WK,nm = 
IO (p> 

, 0 < n < 10,O < nt < 10 - - - - ) (4.92) 
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Figure 4.24 Beam pattern cut: standard rectangular grid array with square 
boundary: N = h!l = lO,lj!Q = 0.4~, Kaiser window, C$ = O”, 30”, and 45’. 

where ,O = 5.0 and 10 is t,he modified Bessel function of zero-order. The constant 14 
comes from d%G, corresponding to the corner element of the array. We apply the Kaiser 
window to a*(n, VL) in (4.87). Figure 4.24 shows several beam pattern cuts. All three cuts 
are identical. Figure 4.25 shows a plot of the beam pattern versus uz and q,. We see that 
we have obtained a good approximation to circular symmetry over a sign;ficant part of the 
+1,*2 space. 

Other weightings and windows are analyzed in the problems. In Section 
4.3, we analyze circular apertures and develop some desirable beam patterns. 
We will revisit rectangular grid arrays at that point and see how well they 
can approximate these beam patterns. 

4.1.7 Wavenumber Sampling and 2-D DFT 

In Section 3.3.3, we saw that Woodward’s approach to finding the weighting 
function for a linear array corresponded to a DFT relation. These ideas 
are readily extendible to two dimensions. The problem has been studied 
ext,ensively in the FIR context and is referred to as the frequency sampling 
problem (e.g., Rabiner and Gold [RG75]). 
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Figure 4.25 Magnitude of beam pattern versus ux and uY: standard rectan- 
gular grid arrav with square boundary, Kaiser window. 0 

The z-transform of the array weighting function is 

N-l M-l 

B&Q,x~) = c x w(n,m)x~nz~m. 
n=O m=O 

The beam pattern is 

and 

(4.93) 

(4.94) 

We sample at 

Zl 
=ej(kl-?)% k1 -0 . . ..N-1 - 7 1 7 (4.96) 

and 

x2 
= ej(k2-v)$f k2 - 0 . . . - 7 Y ,M-1. (4.97) 

This corresponds to samples that are symmetric about the origin. Then, 

B; ($,kl , $yk2)(+(%+)xkl +%+yk2 > 
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N-l M-l 

= c x ‘1u(n, m)z~rl,yrrl 
n=O m=O 
N-l M-1 

n=o m=O 

N-l M-1 
= x c (,(,, m)ej[~~R( q)+mn( w)]) e--j(kln$+k2Tn%] ,(4.98) 

n=O m=O 

where 

?+!&kl = 7 k1 =O,l,*eeTN-l, (4.99) 

+gk2 = 
M-1 27r 

k2 - - 
2 > 

-7 M 
k2 = 0, 1, l l ’ ,  M  -  1. (4.100) 

Now define 

and 

B(kl,k2)=B~(~~k~,~yk:2)e-j(~~~~~+~~~hl). kl=O,l,*“,N-l, 
k2 = 0, 1, . . l , M - 1. 

(4.102) 

Then, 

which is the 2-D DFT. The IDFT is 

b(n, m) = &. “2’ Mc’ B(kl, k2)ej(“‘“$f+h+$, 
(4.104) 

ICI=0 k2=0 

To find the weighting function, we: 

(i) Sample the desired beam pattern to obtain 

B * 
+ 

kl - - 7 

k1 = 0, l l l , N - 1, k2 = 0, l l l , M - 1 

(ii) Use (4.102) to find B(kl, k2) 
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wx 

Figure 4.26 Sampling grid in wavenumber space. 

(iii) Use (4.104) to find b(n, m) 

(iv) Use (4.101) to find w(n,m) 

(v) Use (4.1) to find &&!Q,$$ 

If the desired beam pattern was synthesizable by a standard planar array, 

then &($I 7 $2) will equal &(@I, $9). In this case, the choice of the initial 
sampling point is unimportant. 

For other desired beam patterns, the choice of the initial sampling point 
will affect the accuracy of B&$r, $9) and it may be useful to investigate 
several options (recall the discussion in Section 3.3.3). 

We consider a simple example to demonstrate the technique. 

Example 4.1.6 
Consider the 11 x 11 sampling grid in $-space shown in Figure 4.26. The samples are 

at ((h - ~)~,(kz-~)$!f), _ 0 < ICI 5 N - 1, 0 < k2 < M - 1. The desired beam _ _ 
pattern is constant over a circle of radius 

2-r 
$R=y l Js (4.105) 

We set 

B$ (ICI - 5, k2 - 5) = 
1, 13 interior samples, 
i, 8 samples on edge, 

0, all remaining samples. 
(4.106) 
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We carry out the five steps listed after (4.104) to find &(q!~~,&). In Figure 4.27(a), 
we show the beam pattern. In Figure 4.27(b), we show several beam pattern cuts. 

4.1.8 Transformations from One Dimension to Two Dimen- 
slons 

In this section, we consider a diff’erent approach to the specification of the 

2-D beam pattern. In Sections 4.1.5 and 4.1.7, we specified the 2-D beam 
pattern and then found a weighting function. In this section, we start with 
a desirable 1-D pattern and transform it into two dimensions. We then 
find the weighting function. The approach is due to Baklanov [Bak66] and 
Tseng and Cheng [TC68] and develops a transformation for the Chebychev 
pattern, although the technique is applicable to any pattern. We develop 
this technique in Section 4.1.8.1 and also consider alternative approaches. 

In Section 4.1.8.2, we discuss some modifications to the technique. 

4.1.8.1 Chebychev patterns for planar arrays4 

In this section we consider the planar array shown in Figure 4.5. There are 
AT2 identical elements. The interelement spacing is d, in the z-direction and 
d, in the y-direction, so that the array is not necessarily square. 

We assume that the weights are real and symmetrical about the x and y 

axes and the elements are cophasal in the direction of scan (80, $0). 
The beam pattern is 

N N 

= 4):): 
m=l n=l 

$1 cos [(2n- I)$] 

(4.107) 

for an even number of elements in each row and column, and 

N+l N+l 

l cos [(2*- l)?] (4.108) 

40ur discussion follows Tseng and Cheng [TC68]. 
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Figure 4.27 Beam pattern synthesized by pattern sampling. 
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for an odd number of elernents in each row and column. In (4.108) cm = 

Lm - . - 1 E 7 rr1 = 2, ‘127, # 1; en = 1, n = 1; qL = 2, n # 1. The variables $J~ and 

d + are 

‘x= e F (sin 0 cos 4) (4.109) 

and 

ti y= F (sin H sin 4) . (4.110) 

The separable approach is to generate Q, (ti3, $+J as a product of two 

Chebychev polynomials of order N - 1. The ‘resulting pattern is only opti- 

To get a Chebychev pattern in any cross section, we must use a single 
Chebychev polynomial.5 For N even, 

TN- 1 +x & 

“$) w&&J = 
( 
:I& cos -g- cos 2 

> 
R 7 (4.111) 

where R = TN-1 (~0). The function B,+ (tin:, $J,) has a maximurn value of 

!&L&(j) at ?,bn: = ?,by = 0 and has sidelobes of value -20 log R dB in any 
cross section. The value ~0 is determined in the same manner as in the 1-D 
case. For example, if N = 111 = 10, and we require -20-dB sidelobes, we 

solve ?:nl_l(zo) = 10. This gives ~0 = 1.0558. 
In order to find the corresponding weights, we find B(kl, Icz) from (4.102), 

Jc2 = 0, 1, ’ l l , M - 1. (4.112) 

where JLJ~~~ and $+kz are given by (4.99) and (4.100). We use the four steps 
following (4.104) to find w(n,m). 

We illustrate the procedure with a sirnple example. 

Example 4.1.7 
Consider a 10 x 10 array with d, = X/2 and d, = X/2. The steering direction is 

broadside (00 = 0’) and we desire -20-dI3 ring sidelobes. Then, 

TN--&O) = Tb(xo) = 10, (4.113) 

and 
x0 = 1.0558. (4.114) 

The weightings can be obtained by taking the IDFT of (4.112) using (4.104) and (4.102). 
The results are shown in Table 4.2. 

5This result is due to Baklanov [BakCiG]. 
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Table 4.2 Weightings 0btained from (4.112): 
W rr171, 'rn = 6, - - . , 10, n = 6, . . m , 10 

-- Wnln 6 7 8 9 10 
6 0.7725 0.5686 0.7961 0.0294 1 .oooo 
7 0.5686 0.9461 0.1186 0.6176 0.6667 
8 0.7961 0.1186 0.4859 0.7773 0.2857 
9 0.0294 0.6176 0.7773 0.3866 0.0714 
10 1.0000 0.6667 0.2857 0.0714 0.0079 

The 2-D Dolph-Chebychev pattern is shown in Figure 4.28(a). Several pattern cuts are 
shown in Figure 4.28(b). W e see that they exhibit the desired Dolph-Chebychev behavior. 
Similar results are available when N is odd. 

4.1.8.2 Modified transformations 

The transformation in Section 4.1.8.1 used a cos(~~$/2) term as a starting 
point because of the Chebychev beam pattern. 

In many other cases when the 1-D beam pattern is real and symmetric 
we can write it’ as, 

N-l 

B&tq = i: Qmc~s(mYq, N odd, (4.115) 

where, from Figure 3.22 and Table 3.2, 

i 

(20, 
a/, = 

2a m, 1-C fm, < !!$k - - 
(4.116) \ 

From our discussion in Section 3.5, we can write 

N-l 

B?)(G) = i: ~m(~oS~)m, (4.117) 
m=O 

where aim and am are related by the Chebychev polynomials (3.133). We 
create a 2-D bearn pattern by using the transformation 

cos $J = cos & cos $$. (4.118) 

This transformation is a special case of transformation due to McClellan [McC82] 
and is a generalization of the transformation used by Baklanov [Bak66] and 
Tseng and Cheng [TC68]. 
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Figure 4.28 Four +-cuts of the beam pattern of a standard rectangular grid 
array with rectangular boundary; N = M = 10; Tseng-Cheng distribution, 

-20-dB sidelobe level. 
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The resulting 2-D beam pattern is 

- 

BQ ($x, tiy) = Nf &n (CW& coy)” l 

(4.119) 
m=O 

Example 4.1.8 
Consider an 11-element rectangular array with d:, = d, = X/4. We use a Riblet 

weighting with -20-dB sidelobes (e.g., (3.162)-(3.168) and Figure 3.28) and the transfor- 
mation in (4.117)-(4.119). The resulting bearn pattern is shown in Figure 4.29(a). Several 
pattern cuts are shown in Figure 4.29(b). We see that the transformation provides the 
desired 2-D bearn pattern. 

These two transformations, (4.111) and (4.119), provide an effective pro- 
cedure for generating desirable 2-D beam patterns. We have demonstrated 
them for the Dolph-Chebychev and Riblet-Chebychev patterns, but the gen- 
eral technique is applicable to a large class of 1-D patterns. 

4.1.9 Null Steering 

Our basic discussion on null constraints in Section 3.7 was valid for arbitrary 
array geometries. We then considered several examples using linear arrays. 
We now consider the application to planar arrays. For notational simplicity, 
we will only consider pattern nulls and not derivative nulls. The derivative 
null case follows in a straightforward manner (see Problem 4.1.22). 

As in (4.50), we can write the array manifold vector for the nzth column 
of the array in Figure 4.30 as 

T 
Vm(+) = ,-j(+Qx++Q%) [ ,jm& ,jWx+m& . . . ,j((N-l)d~x+m.li&J ] . 

(4.120) 
We then create an NM x 1 array manifold vector, as in (4.54), 

vet [v&/q = 

’ vo(@> -------------- 

. . . 7 ------_------- 
(4.121) 

where Vm(+) is the array manifold for the mth column, as shown in Figure 
4.30 for 111 odd. The vector + is 

(4.122) 
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Figure 4.30 Array manifold for rectangular array. 

and $J, and tiY are given in (4.2) and (4.3). 

The null constraint matrix is (from (3.251)), 

co = [  vet [v&h)] i vet [v&h)] i l a l j vet [v+WIuJ] ]  7 ww 

and has dimensions NM x MO where MO is the number of null constraints. 

We assume that the desired weighting is given by an NM x 1 weight 
vector wd. Then (3.268) applies directly, 

wO H = WY - [w,:‘co [c;Qzo]-l cf] . (4.124) 

We use (4.124) to compute the weight vector. The resulting beam pattern 

B&t!‘> = B&b> - a Cr vet [V+(+)] . (4.125) 
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Using (4.123) in (4.125) gives, 

vecH [v&h)] ‘uec [v&q -  

_____-__- - - _ - - - - - - -  --w-v- - -  e-v-- m-e 

vet H ] vet [v&q . 

, 

. (4.126) 

(4.127) 

is t,he beam pattern of a uniformly weighted array steered to $J = Qm. Thus, 

B&/J) = &(@) - c amNM&(@ : hn). (4.128) 
m=l 

The results in (4.126)-(4.128) are useful to understand the behavior, but 
(4.124) is used to compute wf. 

We consider a simple example to illustrate the result. 

Example 4.1.9 
Consider a standard 10 x 10 array with Dolph-Chebychev weighting (-20-dB sidelobes) 

Gned at, broadside. The spacing between elements is d, = $, d, = y. We put a null at 
0 = -30" and 4 = -60”. 

‘J31er1 

co = vet [v&L,] 3 (4.129) 

with $7nz = -0.25~ and Grny = -0.4337~ The resulting beam pattern is shown in Figure 

4.31. 

4.1.10 Related Topics 

In this section we have developed the major results for rectangular arrays. 
There are several topics of interest that have been omitted: 

(i) Beamspace processing: the techniques in Section 3.10 can be extended 
to rectangular arrays in a straightforward manner. 

(ii) The beam pattern design algorithms in Section 3.9.3 can be extended 
to rectangular arrays. 
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x 

Figure 4.32 Ring apertures. 

(iii) Rectangular apertures: the techniques utilized for linear apertures can 
be extended to rectangular apertures. 

(iv) Difference beams can be developed for rectangular arrays. In Section 

4.3.4, we discuss difference patterns for circular apertures. These tech- 
niques coupled with the techniques in Section 3.8 can be applied to 
ret t angular arrays. 

(v) Arrays of apertures: the techniques of Section 2.8 can be extended to 
rectangular arrays. 

Most of these topics are developed in the problems. 

4.2 Circular Arrays 

The geometry for the circular array and ring aperture problem is shown in 
Figure 4.32. ‘The model in Figure 4.32 is for a continuous circular (or ring) 
aperture. For an iv-element array with equal spacing between elements we 
sample the ring around the circumference. We begin our discussion with the 
continuous ring aperture. 
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4.2.1 Continuous Circular Arrays (Ring Apertures) 

In this section we consider continuous circular arrays. These are also referred 
to as ring apertures and are shown in Figure 4.4(~)~ and Figure 4.32. 

The first step is to find v(k) as defined in (2.28). The wavenumber is 

k 
27r - c- - 
x 

, 

for a plane wave arriving from [O, $1. The position vector is 

for an element at [R, $11. Thus, 

kTP$b 
27T 

1 = -x R sin 8 [cos 4 cos 41 + sin 4 sin @I] 

- - -FRsinO[cos@-&)I. 

The frequency wavenumber response is 

s 2n 

Y(L; : k) = w(+l) ej$f R Sinokos(d-#d] Rd&. 

0 

Writing (4.133) as a beam pattern 

(4.130) 

(4.131) 

(4.132) 

where /CO = (ICI = 27r/X. S ince any weighting function will be periodic in 4, 
we expand the aperture weighting function in a Fourier series. 

00 

w(4 
- - 

c w~Lejm4) (4.135) 
VI/=-00 

where 
1 

27T- .I 

827.r 
w; = - 4P> e -jr@ d@ (4.136) 

0 

“[Ma741 has a complete discussion of circular geometries. [Bag761 has this example. 
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Each term is called a phase mode excitation of the aperture. 
Then, (4.134) can be written as 

- - 2rR E W:,jmtJn (koRsin0) Grn4, (4.137) 
m---o0 

where Jm(2> is the Bessel function of the first kind of order ~2. 

It is convenient to normalize the weights so that when ‘w() = 1, B(0, 4) 
will equal 1. 

w:, = -‘Wm. 
27iR 

(4.138) 

We denote the component of the beam pattern due to the rnth term as 

B,(B7 4) = wmjmJm (koRsin0) eJrn’. (4.139) 

We see that each phase mode excitation term gives rise to a spatial harmonic 
in the beam pattern. This correspondence means that we can take a desired 
beam pattern in the @dimension, decompose it into its Fourier components, 
and separately excite each of the Fourier components with a phase mode 
term. The weighting must take into account the appropriate Bessel function 
term. The observation was made by Davies [Dav65], [Rs83] and can be used 
to develop effective pattern synthesis techniques. 

First, consider the case of uniform weighting, 

wo = 1 (4.140) 

and 
Wm=O, m#O. (4.141) 

The pattern is uniform in 4 and the main response axis is perpendicular to 
the plane of the aperture. 

B(8,qh) = JO (koRsin8) = J&+!q$ (4.142) 

where 

$R = 
27r 
XRsinO = 27rRx sin& (4.143) 

and RA is the radius measured in wavelengths. 
For a ring aperture, JO(-) plays the same role as sinc() did for linear 

aperture. The two functions are shown in Figure 4.33. The first zero of 
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JO(+R) is at $R = 2.4. The first sidelobe level (SLL) occurs at +R = 3.8 and 
its height is -7.9 dB. These values can be compared to a linear aperture. 
The function sinc($R) has its first zero at $R = x and its first sidelobe 
occurs at ?,bR = 4.7 with a height of -13.6 dB. 

From (4.143), 

$R 8 = sin-l 2;rrR , 
( > x 

and the first null is at 

OM/LL = sin -1 

(4.144) 

(4.145) 

As expected, the beamwidth decreases as the radius increases. 

The visible region corresponds to 

0 < 1 sin01 < 1, - (4.146) 

or 

0 < ?,i!& < 27rRx. - - (4.147) 

In order to generate a beam pattern with #-dependence we need to utilize 
phase modes with m # 0. In many applications, we are primarily interested 
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in the beam pattern in the zy-plane. We find that we can synthesize sat- 

isfactory patt!erns for a specific 80, but the sidelobe behavior is poor for 

Q # 00. 
To illustrate a simple case of pattern synthesis, assume that 2M+ 1 phase 

modes are weighted in the following manner: 

(4.148) 

We first’ examine the pattern in the zy-plane (0 = 90’ and sin 8 = 1). This 
weighting causes all of the modes to contribute equally to the beam pattern 

m--M M 
- - c ,.W+ - sin A@ 

-- 
m--M 

sin4 ’ 
(4.149) 

The resulting patt,ern is the conventional sin Mc$/ sin 4 pattern in +-space. 
Note that the pat’tern extends over 360’ and the argument is $. This is 
in contrast to the ULA, which exbends over 180’ and the argument is QJ = 
x cos 8 (for an array along the x-axis). 

The arnplitude and elevation dependence of each phase mode is governed 

bv the corresponding Bessel function. I/ 
For the weighting in (4.148), the pattern for other values of 8 is 

M B(Q, 0) = c Jm (2~Rx sins> ,jm$ 

Jm (27-A) ’ m=-M 

(4.150) 

Using t,lie relation, 

J-m(X) = (-l)“Jm(X)7 (4.151) 

we can write (4.150) as 

BP, 45) = 
JO (27~ Rx sin 8) M Jm (2rR~ sin8) 

Jo (27%) 
+x2 cos m+. (4.152) 

m 1 = Jm (27&i) 

For small 101, the beam pattern is still acceptable, but it 
as 8 increases. 

ates rapidly 

To determine how many modes can be excited for a ring aperture of 
radius R, we examine the behavior of the Bessel functions in the visible 
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Figure 4.34 Jo($~~) through JT(+R) versus $JR; $R = 27&x sin& Rx = 1. 

region. The first seven Bessel functions are plotted versus x = 27rRx sin 8 in 
Figure 4.34 for the case when 

Rx = 1. (4.153) 

In this case the visible region is 0 < x < 27~ We see that the first six Bessel 
functions have a non-zero value in the visible region, and that J7 has a slight 
non-zero value toward the upper end of the region. 

In general, the amplitude is small when the order m exceeds the argu- 
ment. Thus, 

M N 2rRx (4.154) 

is a useful limit. We can use 2M + 1 phase modes. 

In order to have each mode available, we need to choose R so that 

J&7&) # 0. (4.155) 

One can show (e.g., p. 307 of [R-+83]) that if the diameter, 2R, is an integral 
number of half-wavelengths, then (4.155) is satisfied. 

We see that by using the phase mode excitation technique, for any given 
elevation angle 0, we can synthesize a desired pattern in 4 corresponding to 
a (2M + l)-element linear array. Thus all of the design techniques in Chapter 
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Figure 4.35 Geometry ror circular array. 

3 can be applied to the ring aperture. In Section 4.2.3, we discuss methods 
for irnplement ing phase mode excitation beam pat terns. 

In practice, we normally use a circular array rather than a continuous 

aperture. We analyze its behavior in the next section. 

4.2.2 Circular Arrays 

The geometry of interest for the discrete circular array is shown in Figure 
4.35. For isotropic elements, the array weighting will correspond to sampling 
the continuous aperture weighting. If we assume the aperture weighting 
generated M spatial harmonics, then a sampling theorem argument indicates 

that we need (2M+ 1) elements to reproduce these spatial harmonics. Using 
(4.154), this condition implies 

N>2 2-5 +l, - 
( > x 

(4.156) 

which implies the spacing on the arc is 

x 
dcir < -. - 

2 
(4.157) 



To find the beam pattern, we use a sampling function. We assume that 

the highest spatial frequency that affects the beam pattern is, I 

lbl = 27rRx. (4.158) 

Then, the minimum sampling frequency is 47rRx and the samplinp: interval ”  

around the circle is 
27r x 

&P=--- 
22”R - 2R’ 

(4.159) 
x 

The sampling function is 

s@(4) = E 6(+ - nb+ 
n--O0 

We can use the expression, 

E 6($ - n$T) = f-& 5 ejqN4, 
T-L=-00 q--o0 

and rewrite that sampling function as 

S&P) = 2 @w 

q--o0 

= 1 + 5 e.W94 + 5 e-jN94e 

q=l q=l 

Then, the weighting for the mth-order phase mode is, 

Wm(dd = Wm~jrn'S~(l$). 

Using (4.162) in (4.163) gives 

00 00 

f4r-W = twm,jm+ + wm C @WmM + wm x e-jW9-mM 

q=l q=l 

The corresponding beam pattern for the mth mode is, 

Bm(W) = wmjm Jm(2nRx sin O)&‘m’ 
00 

+x wmj-‘Jg(2rRA sin O)Cjg” 
g=l 
00 

-I- 1 Wmjh Jh(2TRx sin 8)eJh0, 
h=l 

(4.160) 

(4.161) 

(4.162) 

(4.163) 

(4.164) 

(4.165) 
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where g = (Nq - m) and h = (Nq + m). 
The first term is the desired beam pattern corresponding tlo the ring 

aperture and the remaining terms are residual distortion rnodes due to sam- 
pling. The first distortion mode has a Bessel function of order (N - m). It 
will have negligible amplitude in the visible region if 

271-R 
N-m>T. (4.166) 

However, 
271-R 

m<M<----. - - 
x 

(4.167) 

Thus, (4.166) implies that the distortion modes will be negligible if 

N> 
47rR 
->2lkl. - 

x 
- 

The condition in (4.168) is satisfied if 

(4.168) 

x 
dcir < -. - 

2 
(4.169) 

We can make the distortion modes as small as desired by increasing N. 
In Table 4.3,7 we show the maximum residual contribution as a function of 

(N -n/r) for Rx = 1. 

Table 4.3 Maximum Residual Contribution as a Function of N 

iv 13 14 15 16 17 18 19 

JN-M(kOr) 0.158 0.073 0.029 0.010 0.003 8.8e-4 2.3e-4 

We see that for N > 15, the residual contribution would be approximately 

0.01 (dCi, = 0.42). We will focus our attention in the text on arrays that 

satisfy (4.168) and (4.169). 
The total pattern is 

B(W) = Bm(B,@), (4.170) 
m=-co 

where Bm(B,$) is g iven by (4.165). When the main response axis of the 
array is steered, it is convenient to define a new set of variables.’ The beam 
pattern is 

7From [M294]. 
‘This is a reasonably standard derivaCon (e.g., [Ma74], p.192). 
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Figure 4.36 Beam patterns for a uniform circular array steered to broadside: 
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N-1 

B(e74)= x ut,exp[jkORsin~ cOS(+-$n)+jpn], 
n=o 

(4.171) 

where ,& is the phase factor with respect to the origin. To align the MRA 

along (00, #o) 7 

P r-h= -k&in& COS ($50 - $n) . (4.172) 

We now define a new set of variables, 

P = R { [(sin 0 cos 4 - sin 00 cos ~$0)~ + 

+ (sin 8 sin q5 - sin80 sin+0)2] “} , 

and 

(4.173) 

cost = 
sin 8 cos 4 - sin 80 cos q50 

[ (sin 0 Cos qh - sin 80 cos ~$0)~ + (sin 8 sin $ - sin 00 sin q50)2] ’ ’ 

(4.174) 
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We can rewrite (4.171) as 

(4.175) 

If we assume uniform excitation and equally spaced elements, then 

1 
wn = -, 

N 
(4.176) 

and 

4 
27rn 

n = - 
N 

7 (4.177) 

(4.178) 

where 172N is the product of the index m and the nurnber of elements N. 
The term corresponding to m = 0, J&p) is the principal term and the other 
terms are the residuals. This expression has the same form as (4.165) and 
our previous discussion concerning residuals carries over. The behavior of 
the pattern can be examined by plotting (4.178). 

The beam pattern of a uniform circular array with 27&x = 10 for the 

80 = 0 case is plotted in Figure 4.36 for 4 = 0 and 4 = 5 and several values 
of N. In this case, (4.178) reduces to 

B(O,@ = 2 jn2N,-jmNEJmN (koRsin0). (4.179) 
m=-00 

The main-lobe behavior is adequately described by the Jo term. The effect 
of finite N appears in the sidelobe structure. 

In Figure 4.37, we show the beam pattern for a 20-element array with 

27rRx = 27rR/A = 10 (dcir = x/2). In Figure 4.38 we show the vertical 

patterns along the planes 4 = 0’ (the left side of the plot in 4 = 180”). As 
N is increased for a fixed 27rR/X, the beam pattern approaches the beam 
pattern of the ring aperture. 

4.2.3 Phase Mode Excitation Beamformers 

Davies [R-+83], [Dav65] lh s owed how to excite the phase modes using a Butler 
beamforming matrix. Our approach is similar to his original work. In order 
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Figure 4.38 Beam patterns as a function of 8 for a uniform circular array of 
20 elements (27rR/X = 10) with uniform weighting: 4 = O” (and q5 = 180’). 
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to generate the Ah phase mode from the incoming signal, we multiply by 
the N x 1 weight vector, 

wJf 
1 - 

m - 
m 

1 ejm% ,jm$2 . , , ejm$N--l) . 1 (4.180) 

We can generate a (2M + I)-dimensional beamspace with the matrix BgM, 

where 
B” PM = CjBy, (4.181) 

(4.182) 

and 
Cjndiag - j-n/l;..,j-l,l,jl;.., (4.183) 

The matrix B{I generates the phase modes and the diagonal matrix Cj scales 

the output. The scaling in Cj is motivated by (4.139). Then the beamspace 
array manifold vector is given by the (2M + 1) x 1 vector 

vBS(o, 4) = BFMV(8, 4) (4.184) 

Using (4.139)) we can write (4.184) as 

vBS(8,+) = ~(27rR~&-d)v(~), (4.185) 

where the azimuthal dependence is completely contained in v(4): 

v(+) = [ e-M+ . . . ,-j# 1 $4 . . . ,jM4 IT, (4.186) 

which has the same form as a uniform linear array. The elevation dependence 
is contained in J ( l ) , 

J( > J/’ 6 diag {&(z), l l l ,J1(~),Jo(~),J1(~),~**,~~~(~)}~ 

(4.187) 

We observe 
BP&~ are or 

We can 
Defining, 

that vBs(e,@) is conjugate 
thonormal. 
now operate on v~S(8,+) to achieve a desired beam pattern. 

H 
wPM = ?dM ‘*’ 

symmetric and that the columns of 

1 
T 

WT, . . . 
w& 7 (4.188) 

the output y(k) is 

Y(k) 
H BH =wPM PM x(lc) 7 (4.189) 
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Figure 4.39 Phase mode excitation beamformer. 

and the beam pattern is 

v, 4) = w&&271-Rx sinO)v@). (4.190) 

The beamspace processor is shown in Figure 4.39. 
We illustrate the design procedure with an example. 

Example 4.2.1 
Consider a 25-element uniform circular array with radius 27rR = 10X. Using (4.154), 

we see that we can excite 21 phase modes. 
We design the beam pattern for the case when B = 90”. The desired pattern corre- 

sponds to the Villeneuve pattern in Figure 3.31(a) in &space instead of u-space. 
To achieve the desired pattern, we use 

[WgM]m = [wF’Llm 
jmJm.(2rRx) ’ 

(4.191) 

where WVIL was derived in Section 3.5.4. The resulting beam pattern is plotted versus 4 
for 8 = 90” in Figure 4.40. The pattern exhibits the desired behavior for 0 = 90”, but 
deteriorates rapidly as 0 moves away from 90” (these patterns are not shown). To achieve 
satisfactory behavior we need to introduce vertical directivity in the sensor elements. We 
do this in the next example. 

Example 4.2.2 (continuation) 
Consider a 25-element uniform circular array with radius 27rR = 10X. Each element is 

a linear aperture that is parallel to the x-axis (perpendicular to the q-plane) with length 
L = 10X. We use the same phase mode weighting in (4.191). In Figure 4.41, the resulting 
beam pattern is plotted versus 4 for 0 = 0.51377r radians. (This corresponds to the first 
sidelobe of the element pattern.) The resulting pattern is well-behaved. 

The argument of the Bessel function restricts both the elevation beam 
pattern and the array bandwidth. g This limitation is due to cancellation 
effects between elements at opposite sides of the circle. Therefore, most 

circular arrays use elements with an element beam pattern whose main re- 
sponse axis is in the radial direction. Synthesis of desirable array beam 
patterns is more difficult because the pattern is not a product of the ele- 
ment pattern and the array factor. Discussions of this topic are contained 
in Mailloux [Mai94], Davies [Dav87], and Rahim and Davies [RD82]. The 

‘This discussion follows Chapter 4 of Mailloux [Mai94]. 
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Figure 4.42 Circular aperture. 

synthesis techniques that were developed in Section 3.9.3 are applicable to 
this problem and have been applied to it by Sureau and Keeping [SK821 and 
Bell et al. [BVT99]. 

In many applications, the main response axis is scanned in azimuth and 

only the elements in a 90’ sector centered on the MRA are utilized. The 
techniques in Section 3.9.3 are useful in this case also. 

Other references that discuss various aspects of circular arrays include 

Hansen [Han98], which contains a history of the various advances, and the 
book by Ma [Ma74]. 

4.3 Circular Apertures 

In this section we consider the characteristics of circular apertures lying 
in the J::c/-plane, as shown in Figure 4.42. These apertures are important 
in many applications (perhaps the most common being the aperture of a 

parabolic antenna). In addition, they provide the limiting case for several 
array configurations such as the concentric circular array shown in Figure 
4.2(b) and the hexagon array shown in Figure 4.3. 
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4.3.1 Separable Weight ings 

WC assume that the weighting function is separable in polar coordinates, 

w(T, @a) = wR(r> w&b>* (4.192) 

We will find that a number of useful beam patterns can be synthesized with 
separable weight@. The bearn pattern for a broadside beam (00 = 0) is 

given by 

‘(up, $42) exp j 5 sin8 COS (4 - ($a) T dr d+,. x 1 (4.193) 

Letting kr denote the radial component of the wavenumber, 

k 
2nr 

r= 
x 

sin 8, 

and defining 

we can write 

Using (4.194)~-(4.196), the beam pattern can be written as 

w  (j, $a) exp (j kT sin a) r dr. 

We can write the exponential term in (4.197) as a Fourier series, 

00 

exp (jkr sin ol) = x Jn( k,) Edna:, 
n--o0 

where 

exp [kj (k, sinz - nz)] dz. (4.199) 

Using (4.192), (4.195), and (4.198) in (4.197), we hado 

B(0, $) = 2 jn ejn’ [/2r w4(#a) e-j@, d+a] 
n=-00 0 

. .I 0 
Rwll(T)Jn (F she) rdr, 

(4.194) 

(4.195) 

(4.196) 

(4.197) 

(4.198) 

(4.200) 

“We use exp (jy) = jn and Jwn(x) = (-l)“Jn(x). 
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which is the desired result. We now consider some simple cases. Assume 

w&$-J = ejrn4,. (4.201 

This is equivalent to a sinusoidal variation in 4. Substituting (4.201) into 
the first integral in (4.200) gives, 

s = 2;TTiimn, 
0 

so (4.200) becomes 

s R 
B(8,+> = 2rjrn ejrnd wR(r) Jm 

0 
(F sin0) rdr. 

(4.202) 

(4.203) 

For the special case in which m = 0, the weighting in the @direction is 

uniform and 

B(O,+) = B(0) = 2n 
s 0 

RwR(r)Jo ($ Sinti) rdr. 

If we substituter’ 
2R 

‘uR = - sin 8, 
x 

7rr 
P=p 

and 
2 

go(p) = 2R wR 
7r 

then (4.204) can be written as, 

s 

7r 
B(B) 

- - P 90 (P) JO (URP) dP- 
0 

(4.204) 

(4.205) 

(4.206) 

(4.207) 

(4.208) 

The reason for t’his choice of variables is to obtain an integral with [0, -ir] 
limits. 

The final simplification is to assume that wR(?) is constant (wR( r) = c) 

from 0 to R. In this case, we can use (4.204) without the change of variables. 
Then (4.204) becomes 

B(0) = 271-c iR JO ($ sinH) rdr. (4.209) 

llNote that UR is not the radial component in (q&, &) space. It contains a factor of R 
so the visible region is 0 5 UR 5 2R/X. This notation is used to be consistent with the 
antenna literature. 
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Figure 4.43 Beam pattern of a circular aperture lying in the Icy-plane with 

R/X = 10 and uniform weighting; the horizontal axis is UR = T+!Q/T and the 
visible region is 0 < u < 2R/X. - - 

Using 

s 

R 
x J&XX) dx = c J&q, 

0 a 
we obtain 

2rR sin8 
BP) = CR J( 1 x > 

sin 8 
. 

x 

One can show that 

B(O) = mR2, 

so the normalized pattern is 

B(0) = 2 l J( ‘lR sin 8 > _ 2 J1 bud 
““x” sin8 - Tit& ’ 

(4.213) 

(4.210) 

(4.211) 

(4.212) 

The visible region is 0 < $Q < 271-R/l In Figure 4.43 we plot the - - 
normalized beam pattern versus UR. 

The first null of Jl (m@) is at 

W-L = 1.22, (4.214) 
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x 
0 = sin-l 1.22 2~ . 

( > 

The height of the first sidelobe is -17.6 dB. 

One can show that the HPBW is 

(4.215) 

Ae 

x 
= 29.2zdegrees. (4.216) 

This compares to the HPBW for a square aperture of the same area 

x 
= 28.65Rdegrees. (4.217) 

Thus, the circular aperture has a slightly larger 3-dB beamwidth, but the 
sidelobes are significantly lower (-17.6 dB vs. -13.4 dB). 

In order to improve the sidelobe characteristics, a nonuniform radial 
weighting is used. A family of weightings that is used in practice (e.g., 
[Ba182], [JasGl] ) is 

wR(r) = 
[‘-(;)2]n, ‘sr< R,n=0,1,2,3,***, (4.218) 
0 ? elsewhere. 

For n = 0, we have the uniform distribution that we just analyzed. The 
characteristics for n = 0, 1, and 2 are shown in Table 4.4. As n increases, 
the HPBW increases and the height of the first sidelobe decreases. 
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Table 4.4 Characteristics of Circular Apertures with Circular 
Symmetric 

Radial Weighting Uniform 

wdr) 
Beam 

I- (5)’ O 

pattern 2 Jl (Qw) 

$1~ 

Half-power 
beamwidth 29.2 

R 
=I 

(degrees) 
R > x 

BWNN 

(degrees) y 

R > X 
First 

Radial Taper 

8-y 
I? 

36.4 
I? 
‘; 

93.4 
R 
T 

-24.6 

o.375(yy2 

Radial Taper 
Squared 

42.1 f 

116.3 
R 
Yi 

-30.6 

0.28(T)2 

4.3.2 Taylor Synthesis for Circular Apertures 

Taylor [Tay60] also developed a synthesis procedure for circular apertures 
that is a modification of the procedure developed for line sources in Sec- 
tion 3.5.3. He starts with the pattern for a uniformly illuminated circular 
aperture J&ru)/( ) d 7~ an removes a set of zeros from it and adds new zeros. 

The roots of Jl(xu) are the values of urn such that 

J1(7wrl) = 0, m = 1,2,***. 

The Taylor pattern is obtained by removing first (fi 
replacing them with (fi - 1) new root pairs 

BTAY(U) = 
Jl (ru> 

37-U 

n-1 n ( 1 U2 

n=l -.2 > 
F?T-1 

I2 ( 
1 

,“z 

m=l -u2 m ) 

(4.219) 

1) root pairs and 

(4.220) 

12Table follows [Jas61], [Ba182], and [Mai94]. 
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Figure 4.44 Taylor pattern for a circular aperture, fi = 6, -20 dB SLL; 
R = 5X. 

Taylor showed that the location of the new roots should be 

x2 
2 

n = ufi A +( 
2 n-3 

> 

2 

A +c 
2 fi-$ 

> 

2 1 (4.221) 

where 

A 
1 

= - cosh-l(Ro), (4.222) 
7r 

or, in other words, -2010g10 cosh(nA) is the desired SLL. 

A representative Taylor pattern is shown in Figure 4.44 for fi = 6 and 
-20-dB sidelobes. The radius R equals 5X so, from (4.205), the visible region 
is 1~~1 < 10. - 

To find the aperture weighting go(p) that will produce this pattern we 
write go(p) as a series 

go(p) = fy Bm Jo(u,PL 
m=O 

(4.223) 

where the urn are roots of J~(TTu) and the B,, are the coefficients in the 
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series. Then the pattern is 

BTN (u> = g Bm lTP J&rnP) JobP) dP 
m=O 0 

UmPJ1 (UmP) JO (UP) -UPJO(UmP) Jd”P) 7r - - 
U2 - u2 

II 

. 

m 0 

(4.224) 

We denote the kth zero of the uniform distribution by uk. Now BTAY(U~) is 
determined by a single term in the series, , 

.I 
7r 

BTW(uk) = Bk P $ (ukd @ 
0 

- - Bk $ [J&kp) + $(ukP)] 1 
7r2 - - Bk [ 1 yj- J;(ukr) - 

7r 

0 

(4.225) 

Thus, 
2 BTAY(Uk) 

BI, = - 
?r2 J,“(ujyr) ’ 

Since BTM ('uk) '1 
= 0 for Ic 2 fi, the sum in (4.224) is finite and 

(4.226) 

2 n-1 
go(P)=7 c 

BTAY (urn) 

Jo2 (Urnn) 
JO(UmP), 

m=O 

(4.227) 

where BTM(u~) is obtained from (4.220). The zero locations of J1 (Umr) 
are shown in Table 4.5. 

Table 4.5 Zero Locations u, for J1 (mm)13 

m Urn m urn m %n 
1 1.2196699 6 6.2439216 11 11.2466228 
2 2.2331306 7 7.2447598 12 12.2468985 
3 3.2383155 8 8.2453948 13 13.2471325 
4 4.2410629 9 9.2458927 14 14.2473337 
5 5.2439216 10 10.2462933 15 15.2475086 

13Frorr1 [ElltH]. 

m U rn 

16 16.2476619 
17 17.2477974 
18 18.2479181 
19 19.2480262 
20 20.2481237 
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Figure 4.45 Weight function: Taylor weighting and radial taper squared 

weighting. 

Tables of the roots of circular Taylor patterns and the corresponding 
aperture distributions are given in Hansen [Han59], [HanGO]. Hansen[HanGO] 
also compares the characteristics of Taylor weightings and the second-order 

weighting from Table 4.4. In Figure 4.45, we show the Taylor weighting 
function for the 30-dB sidelobe case and the second-order weighting from 
Table 4.3. The beam patterns for the two weightings are shown in Figure 
4.46. The main-lobe beamwidth is larger using the radial taper squared, but 
the sidelobes decay more quickly. In Table 4.6 (from [HanGO]), we show the 
comparative beamwidths for the Taylor weighting and the (1 - (T/R)“)~ 
weighting. We see that for similar first sidelobe levels there is a significant 
decrease in the beamwidth obtained by using the Taylor weighting. However 
the remaining sidelobes decrease more rapidly with the radial taper. 

Table 4.6 Comparative Beamwidths 

Taylor (1 - (TIR)2)N 
Sidelobe ?i Beamwidth Sidelobe N Beamwidth 
Level, dB Level, dB 

25 4 1.13X/2R 24.6 1 1.2,7X/212 
30 4 1.2OA/2R 30.6 2 1.47X/2R 
35 5 1.25X/2R 36.0 3 1.65X/2R 
40 5 1.31X/2R 40.9 4 1.81X/2R 
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Figure 4.46 Beam patterns for Taylor weighting and radial taper squared 
weighting. 

4.3.3 Sampling the Continuous Distribution 

In many applications we approximate the circular aperture by a discrete 
array. In this section,14 we discuss the effect that sampling the continuous 

aperture function has on the beam pattern. 
We first consider a rectangular array with a circular boundary. One 

quadrant of a 20 x 20 array is shown in Figure 4.47. We want to approximate 
the Taylor pattern in Figure 4.44. 

For the nrrlt h element, the distance from the origin is 

d,, = { [Wl;Wq2+ [i2lyq’)l) (4.228) 

where symmetric indexing is used. Then, 

d nm 
Prim = 

R 
(4.229) 

and 

Wnm = 90 (Pm-J l 
(4.230) 

14’his section follows Elliott [EllN], pp. 225-230. 
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I i i i i i i i i i II I 

Figure 4.47 One quadrant of a rectangular grid array with circular boundary: , 
d x- y d = 0.5X, R = 5X. 

The beam pattern can be written as 

B(B,$) = 4 g e wnmcos [ (2n ,l,‘x] cos [ (2m ; iii,] , (4.231) 
n=l m=l 

where 

ti X = 7rsin0 cos@, (4.232) 

$ Y = 7rsin0 sin+. (4.233) 

In Figure 4.48, we show four cuts of the pattern for 4 = O”, 15”, 30”, 45’. We 
see that there is reasonable agreement with the continuous pattern in Figure 
4.44. 

In Section 4.4, we discuss hexagonal grids and their ability to generate 
various circular patterns. 

4.3.4 Difference Beams 

In Section 3.8, we explored the usage of difference patterns in linear arrays. 
They play a similar role in circular apertures (and arrays). In this section, 
we develop a general structure for difference beams.15 

150ur discussion follows Section 6.11 of [E1181]. 
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Figure 4.48 Beam pattern cuts: rectangular grid array with circular bound- 
ary; N = 20, SLL = -20 dB, n = 6, R = 5X, weights obtained by sampling 
continuous Taylor distribution. 

In order to find the beam pattern we write w(r, 4) as 

w(r,qq = E wn(r) e?? (4.234) 
n=-03 

Then, from our discussion in Section 4.3.1 (specifically (4.192)-(4.202)), we 
can write the beam pattern as 

B(Q, 4) = 27~ E (j)” e@#) SR wn(T> J,(k, sin0) r dr. (4.235) 
n=-03 0 

In Section 4.3.1 we focused on the case in which only wo was non-zero. 
In order to construct a difference beam we look at the special case in 

which only the n, = rtl weights are non-zero. We denote this difference 
beam as D(&c$). Letting n = &l in (4.235) gives 

D(O,$) = 27-Q ejy, WI (r) J1 (k, sin 0) 

-,-3P w-l(r) J-l(k, sirlO)] r dr. (4.236) 
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Since J- 1 (x) = -,11(x), if we set W-~(T) = WI(T), then (4.234) becomes 

‘uI(T7 4) = 2tiQ (r) cos 4, (4.237) 

and (4.236) becomes 

s 

R 

D(%, c$) = 47rj cos$ WI(T) Jl( kT sin 8) r dr. (4.238) 
0 

We see that the resulting pattern is of the form 

alp, 4) = 4Tj NE 4 De(%), (4.239) 

where De(%) is the integral in (4.238). Now consider a cut of the pattern 
through any plane containing the x-axis. Then, 

Q@, 4) = 4r.j cos 4 De(%), (4.240) 

and 

a@, 4 + r> = -47rj cos q!~ Do(%), (4.241) 

which give a difference pattern in the various planes containing the x-axis. 

The function Do(%) is weighted with cos 4 so the maximum slope is in the 
zx-plane and the function is zero in the yx-plane. 

To develop a useful difference pattern for the yx-plane, we set w-l(r) = 
-WI (Y). Then, 

fw(r7 4) = 2jfw-l (r) sin 4, (4.242) 

D/3(%, 4) = -47rsin4 De(e). (4.243) 

This difference pattern provides maximum slope in the yx-plane. Thus, we 
utilize a beamspace consisting of a sum beam and two difference beams 
D&%, 4) and Dp(%, 4). The shape of the difference patterns is determined 

by De(%). We now focus on how the aperture weighting function affects 

De(%)- 
Defining 

2R 
u = -sin%, 

7-l-r 

x 
p = -, 

R 
(4.244) 

we can write De(%) as, 

wl (P) J1 (UP) P dP* (4.245) 
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In order to perform the integration, we expand WI(P) in an orthogonal ex- 
pansion of Bessel functions, 

w (P> = (4.246) 
m=O 

where the urrl are eigenvalues that we will define shortly. Using (4.246) in 

(4.245) gives 

D&L) = 

= 

Jl (UmP) J1 (uP) P dP 

J~(";;~-$Jo(2Ld J1(ump)] 1;. 

(4.247) 

Since /uJo (u) = J&) + vJ;(v), where the prime denotes differentiation, 

(4.247) can be rewritten as 

D&u) = (t)’ go& [ UmP J[ (UmP) J1 CUP> 

- 
u2 --;Ji’up) J1’ump’] 1; 

- - A m 
rum Ji (Turn) J1 (XU) - TUJ~(TU) J~(Tu~) 

U2 - u& 
. 

(4.248) 

To get D&L~~,) equal to zero for rz # m, we require either J1 (rum) = 0 or 

Ji (n/Urn) = 0. The first choice requires w&r) = 0, which is undesirable, so 
we use the second option. The um are the zeros of J’(Tw), so 

J’(num) = 0; (4.249) 

then (4.248) becomes 

TUJ;(YUL) 
Am JI @Urn> u2 

m 
-4 ’ (4.250) 

The zeros of J;(x) are tabulated (e.g., p. 252 of [E1181]). The first 10 zeros 
are shown in Table 4.7. 
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Figure 4.49 Aperture distribution for generic difference pattern: v = 0.586~. 

Table 4.7 Bessel Function Zeros, Ji(nu,) = 0 

m %n m urn, 

0 0.5860670 5 5.7345205 
1 1.6970509 6 6.7368281 
2 2.7171939 7 7.7385356 
3 3.7261370 8 8.7398505 
4 4.7312271 9 9.7408945 

We now consider the simple case in which there is a single term corre- 
sponding to ‘I?Z = 0. In this case, 

(4.251) 

The aperture weighting Jl(O.586~) is shown in Figure 4.49 and the beam 
pattern is shown in Figure 4.50. We see that the first sidelobe is at about 
-14 dB. We would like to preserve an adequate slope at the origin and 
decrease the height of the sidelobes. 

This problem is analogous to the linear array problem that led to a 
Bayliss difference pattern. Bayliss [Bay681 also derived the difference pattern 
for a circular aperture. 
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Figure 4.50 Beam pattern for generic aperture distribution: UR = 2R sin 6/X. 

The reader should consult the above reference for a discussion of Bayliss 
difference patterns for circular apertures. 

A sum beam and two difference beams are often used to estimate (0,+) of 
a signal (or target). In later chapters, we use these beams to do beamspace 
processing. 

4.3.5 Summary 

In Sections 4.3.1 and 4.3.2 we developed techniques for synthesizing beam 
patterns for circular apertures. Our emphasis was on patterns in which 
the weighting in the $-direction was uniform. However, the relationships 
in (4.200)-(4.203) can be extended to include non-uniform weightings. We 
found that uniform weighting leads to a Jr ($Q)/$JR beam pattern. We devel- 
oped a family of radial t!aper weightings and Taylor weightings that resulted 
in lower sidelobes. 

In Section 4.3.3, we discussed sampling the cant inuous distribution using 
a rectangular grid. Although the performance was satisfactory, we will find 

that the hexagonal grid in Section 4.4 provides a better approach. In Section 
4.3.4, we developed techniques for synthesizing difference beams. 
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Figure 4.51 Configuration of a typical hexagonal array. 

4.4 Hexagonal Arrays 

4.4.1 Introduct ion 

In this section, we discuss arrays whose elements are located on a hexagonal 

(or equilateral triangular) grid, as shown in Figure 4.51. The horizontal 
interelement spacing is d, and the vertical spacing between rows is 

d 
fi 

y= 2 d x. (4.252) 

The rnotivation for using hexagonal-grid arrays can be approached from 
three viewpoints. The first viewpoint emphasizes that the array is sampling 
a spatial field. Peterson and Middleton [PM621 showed that hexagonal sam- 

pling is the optimum sampling strategy for signals that are bandlimited over 
a circular region of the Fourier plane. ‘In the array case, this corresponds to 
the visible region, 

u;+u; < 1. - (4.253) 

We revisit this viewpoint in Chapter 5. 

The second viewpoint emphasizes the grating lobe viewpoint. Sharp 
[ShaGl] shows that if the main beam is required to scan inside a cone whose 
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Figure 4.52 Nineteen-element hexagonal arrays. 

axis is normal to the array, then the number of elements can be reduced by 
13.4%. 

A third viewpoint emphasizes the circular symmetjry of many desired 
beam patterns. To illustrate this point, consider the 19-element hexagonal 
array in Figure 4.52. The hexagonal grid causes the elements to be arranged 
in concentric circles. From the discussion in Section 4.1, we would anticipate 
that the hexagonal array would be an efficient arrangement. 

Our discussion will focus on triangular-grid arrays that have six equal 
sides with 

d 
x 

x = -7 
2 

(4.254) 

and 

d 
J3 

Y= 4 x 

l 

(4.255) 

We refer to these as standard hexagonal arrays (SHA). The total number 
of elements will be 7, 19, 37, 61, l .*, 

N,--1 

NH = 1 + 2 6n, (4.256) 
n=l 

where Nx is the number of elements in the horizontal row through the origin, 
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and NX is odd in order to get a symmetric array. Standard hexagonal arrays 
with NH = 7 and 19 are shown in Figure 4.53. 

This configuration is useful whenever the desired beam pattern is cir- 
cularly symmetric. An application that uses a similar configuration is a 

geostationary military satellite operating at 8 GHz that uses a 19-beam 
multiple beam antenna for reception and Gil-beam multiple beam antenna 
for transmission. 

Our discussion of hexagonal arrays is reasonably short because many of 

the rectangular-grid techniques can be applied directly to hexagonal arrays 
by using an appropriate coordinate system. 

In Section 4.4.2, we discuss several beam pattern design techniques that 
are representative of possible approaches. 

In Section 4.4.3, we discuss a hexagonal-grid to rectangular-grid trans- 
formation that will be useful for several applications. 

In Section 4.4.4, we summarize our results. 

4.4.2 Beam Pattern Design 

In this section we discuss techniques for beam pattern design for standard 
hexagonal arrays. To illustrate the notation, consider the standard 19- 
element hexagonal array shown in Figure 4.53(b). Each horizontal row of 
sensors is indexed with the variable n, which ranges from n = 0 to n = NT--- 1, 
where NT is the number of elements in the row. The rows are indexed by 
the varia#ble rn? which ranges from -(NX - l>/a to (N, - 1)/2. ‘We see that 
N T= x-fm. N I I 

We define a 19-element array manifold vector as, 

T 
(4.257) 

where 
T 

v2 
= ,jnv%J 

[ 
e-jTuX 1 ejnUX , 

I 
(4.258) 

Vl 
= ejnqUy 

[ 

e-jrp e-jfly ej7+f ejn+ 1 
T 

7 (4.259) 

vo- e 
[ 

- j2mx e-jrUx 1 ejrUx ej2r% 1 
T 

, (4.260) 

* a 
[ 

* 3ux e-jr";" ej7+f ,jr* 1 
T 

v-1 = e-JrTuY e-Jr 2 1 (4.261) 

v-2 = e -jdTu, e-j-rru, 
[ 

T 
1 @ux . 1 (4.262) 

We see that vec&u,, uy> is conjugate symmetric. 
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Figure 4.53 Configurations of standard hexagonal arrays: (a) A$1 = 7; (b) 
NH = 19. 
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For a standard hexagonal array with Nx elements along the z-axis, the 

nmth term in t,he array manifold vector is 

[‘UecH(Ux, %J)l,m = =P 

The beam pattern is 

B U 

rn= x-1 N 
2 

jn- 
a 

m--guy + nu, - 
Nx - Irn1 - 1 

2 
UI, . Ii 

(4.263) 

(‘Ux, up> = x w;m -P 
m=- Nx2-1 

J3 
myuy + 

Nx - Iml - 1 

2 
U, 

N,--lrnl-1 

. 
c 

exp {jwru,} l (4.264) 
n=O 

For uniform weighting, 
1 

Wnm= AT 7 (4.265) 

and 

N, 1 2 

(ux,uy) = - x 
NH 

exp 
NZ m=- 2 

jr 
J3 

myi+ - 
Nx - lrnl - 1 

2 
UX 

N,--lrnl-1 . c exp {jrnu,} . (4.266) 
n=O 

We first consider a design approach in which we construct the desired 
weighting for the circular aperture using the techniques in Section 4.3. We 
then sample the aperture weighting on a hexagonal grid to find the element 
weightings. 

To match the hexagonal array to the continuous aperture, we observe 
that, if R is the radius of the continuous aperture and 2R/X is an integer, 
then 

R 
N X - - . 
4 

x (4.267) 

In our examples, we use Nx = 11, which corresponds to a standard hexagonal 
array with 91 elements. 

Example 4.4.1 
Consider a SHA with 91 elements with uniform weighting. Then B&, uy) is given 

by (4.266), with N, = 11 and NH = 91. 



310 4.4 Hexagofnal Arrays 

s-20 

z. 
c -30 

5 
$= -40 

kz 
E -50 

g 
m  

-60 

-70 

-80 
1 

-1 -1 
u 

Y  5 

Figure 4.54 Beam pattern of a standard 91-element hexagonal array with 
uniform weighting. 

The beam pattern is shown in Figure 4.54. A contour plot in Figure 4.55 shows the 
6-fold symmetry inside the visible region. Beam pattern cuts at 4 = O”, lo”, 20”, and 30” 

are shown in Figure 4.56. The horizontal axis is Us = (UZ +u;>“. These pattern cuts can 
be compared to t,he beam pattern of the circular aperture in Figure 4.43. The main lobe 
and the first sidelobe are almost identical, but the other sidelobes vary from those of the 
aperture. 

In order to reduce the sidelobes we can use a radial taper from Table 4.4. 

Example 4.4.2 
Consider a standard 91-element hexagonal array. We start with the radial taper in 

column 2 of Table 4.4. 

(4.268) 

where 
R = 2.75X. (4.269) 

We choose the hexagonal array weights using 

u n- 
W =I-- 

-lp-‘) S)” + (,d3x)2 

nm 
R2 

. (4.270) 

The hexagonal array beam pattern is shown in Figure 4.57 with pattern cuts in Figure 
4.58. 



Bear-n Pat t em Design 311 

0.8 

0.6 

-0.6 

-0.8 

-Ll -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

% 

Figure 4.55 Contour plot of a standard 9Lelement hexagonal 
uniform weighting. 
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Figure 4.56 Beam pattern cuts of a standard 91-element hexagonal array 
with uniform weighting: (a)+ = 0”; (b) 4 = 10”; (c) 4 = 20”; (d) 4 = 30°. 
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Figure 4.58 Cuts through beam pattern of a standard 91-element hexagonal 
array with radial taper: R = 2.75)\. 
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Figure 4.59 Beam pattern of’ a standard 9Lelement hexagonal array with I 
radial taper sqmred weighting: R = 2.75A. 

The corresponding beam patterns for the weighting in column 
shown in Figures 4.59 and 4.60. 

three of Table 4.4 are 

A s expec ted, the sidelo be levels are much lower and 

radial tapers in comparison to the uniform weightings. 

the main lobe is wider for both 

In Example 4.4.2, we have assumed that the desired radial weighting function is known. 

An alternative approach is to assume that the desired beam pattern is known and use 

(3.156) to find the weight vector. 

If we desire a Dolph-Chebychev beam pattern in each cross section, we use (4.111) : 

& q 
B+($&+ TN-lcxoco; 2 'OS 2 , (4.271) 

to generate the desired beam pattern. We sample the resulting beam pattern at NH points 
and use (3.156) to find wnTn. 

If we desire a Taylor beam pattern, we use (4.220) and (4.221) to generate the desired 

beam pattern. We sarnple the resulting beam pattern at NH points and use (3.156) to 

find wrzm. 

In both cases, it is irnportant to choose a sampling grid that gives a well-conditioned 

VH ($). Several exarnples are developed in the problems. A Dolph-Chebychev example is 

done in Problem 4.4.5. The results indicate that the resulting beam pattern is sensitive to 
the sarnpling grid and the choice of NH. 
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Figure 4.60 Cuts through beam pattern for a standard 91-element hexagonal 
array with radial taper squared weighting: R = 2.75)\; (a) 4 = 0”; (b) 
c/4 = 10”; (c) 4 = 20”; (d) 4 = 30’. 

4.4.3 Hexagonal Grid to Rectangular Grid Transformation 

Most of the Fourier transform relationships that we used for beam pattern 
design and analysis can be utilized with hexagonal arrays by defining a suit- 

able hexagonal Fourier transform or hexagonal DFT. An excellent discussion 
of hexagonal signal processing is contained in Mersereau [Mer79] 

We use an approach due to Lo and Lee [LL83] that is similar and adequate 
for our purposes. The basic idea is to map the hexagonal array into an 
equivalent rectangular grid array and formulate the processing using the 
equivalent array. 

In Figure 4.61(b), we show a 19-element standard hexagonal array. In 
Figure 4.61(a) we show a 19-element array on a standard rectangular grid 

(d = x/a). To obtain the rectangular grid array, we have rotated and 
stretched the hexagonal grid array. 

We write the beam pattern of the rectangular grid array in v-space, 
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Figure 4.61 Hexagonal-rectangular transformation. 

N -1 m=- x2 

mvy - 
Nx - 1m1 - 1 

2 
VJ: - 

N,---lrnl-1 

m 
-VX 2 II 

. x expjn-nvx, (4.272) 
n=O 

where 

VX = sin 0, cos q!+, (4.273 

and 

vY = sin 8, sin q&, (4.274 

and the subscript 9” denotes rectangular. 
Comparing the expressions in (4.272) and (4.264), we obtain the relation 

between u-space and v-space, 

VX = ux (4.275) 

and 
UX J3 

vy = -y + yy7 (4.276) 

or 1 0 
v= [ 1 J3 1 u 

5 2 

(4.277) 
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and u=[ f $]v= (4.278) 

We can take any hexagonal array and map it into an equivalent rectangu- 
lar-grid array. The motivation for this transformation is that we will find 

several array processing algorithms that work well on rectangular arrays. We 
implement these algorithms on the rectangular grid array and then transform 
the results from v-space to u-space. 

4.4.4 Summary 

In this section, we have studied arrays whose elements are located on a 
hexagonal (or equilateral-triangular) grid. The grid provides an efficient 
spatial sampling strategy and is widely used in practice. 

In Section 4.4.2, we considered standard hexagonal arrays and assumed 
that we had synthesized the desired beam pattern using a continuous cir- 
cular aperture. We then sampled the continuous aperture weighting on a 
hexagonal grid to obtain the array beam pattern. 

In Section 4.4.3, we introduced a hexagonal-grid to rectangular-grid trans- 
formation that will enable us to use techniques developed for rectangular 
grids to solve hexagonal-grid problems. We find this transformation to be 
useful in several optimal array processing algorithms. 

A number of other hexagonal-grid array issues are developed in the prob- 
lems. 

4.5 Nonplanar Arrays 

In many applications of interest the physical location of the sensors must con- 
form to the shape of the curved surface that they are mounted on. Examples 
include arrays mounted on submarines, aircraft, or missiles. These arrays 
are referred to as conformal arrays, and their properties are discussed in 
numerous references. 

References that discuss various aspects of conformal arrays include Bor- 
giotti [Bor87], Hansen [Han81], Mailloux [Mai84], Antonucci and Franchi 
[AF85], Hansen [Han98], and Kummer et al. [KSV73]. 

A complete discussion of the issues associated with the various conformal 
array geometries would take us too far afield, so we will restrict our attention 
to two commonly used geometries: cylindrical and spherical. We discuss 
cylindrical arrays in Section 4.5.1 and spherical arrays in Section 4.5.2. 
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Figure 4.62 Cvlindrical array geometry and the cylindrical coordinate sys- b . 
km. 

4.5. I Cylindrical Arrays 

The cylindrical array geometry and the cylindrical coordinate system are 
shown in Figure 4.62. 

The element beam pattern are assumed to be isotropic. The beam pat- 
tern is given by 

N-l 

B(O, (#I) = 2 
M 

x u~;~e-j~~~“~, N odd, (4.279) 
n=-y m=l 

where N is the number of circular arrays and M is the number of elements 
in each circular array. The center of the circular arrays is the x-axis and the 
array is symmetric in the z-direction about the origin. 

We can use the discrete version of (4.134) to write 

N-l 

B(f), 4) = 2 
M 

x ~~m~jko[~sinecos(~-~l)+~n cosel. 

N-l m=l 
n=---T- 

(4.280) 
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This can be written as 

The term in the 

Thus, 

braces is just the beam pattern of the nth circular array. 

N-l 
2 

(4.281) 

,jk& cos BB 
cir,n (6 4) 7 (4.282) 

which is analogous to the beam pattern of a linear array with 

If 4im in (4.280) is separable, 

W* nm = w;w;, 

(4.283) 

(4.284) 

then (4.281) reduces to 

N-l 

B(0, $) = e wiejkozn CoSeBcir(B, 4) 
n=-E.fL 

= Blin(k 4)Bcir(87 d$ (4.285) 

which is the pattern multiplication result from Chapter 2 (2.235). 
We consider an example to illustrate a typical pattern. 

Example 4.5.1 

We consider a cylindrical array consisting of 11 circular arrays with radius 27rR = 10X. 
We assume that M = 25 so that we can utilize 21 phase modes. 

We want to create a beam with a narrow beamwidth pointed at 0 = 0, q!~ = 0. We 
use Dolph-Chebychev weighting in the x-direction and the Villenueve uniform phase mode 
excitation from Example 4.2.1 for each circular array. 

The resulting beam pattern is shown in Figure 4.63. We see that it has acceptable 
sidelo be behavior. 

In many, if not most, applications the elements will have a non-isotropic 
beam pattern. As in the ring array case, the main response axis of the 
element pattern will point in a radial direction. Synthesis of a desirable 
beam pattern is more complicated, but the techniques in Section 3.9.3 are 
applicable. 
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Figure 4.63 Beam pattern cuts at 4 = 0 and 4 = 0.045~ 
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In many applications, the main response axis is scanned in azimuth and 

only the elements in a section around the MRA are utilized at a particular 
time. The t,echniques in Section 3.9.3 are also applicable to this problem. 

References that discuss various aspects of cylindrical and cylindrical sec- 

tor arravs include Hansen [Han98], James [Jam47], Lee and Lo [LL65], Har- 
rington ‘and Lepage [HL52], H essel [Hes’lO], Munger and Gladman [MG70], 
Shelcg [She75], Borgiotti and Balzano [BB72], and Knudsen [Knu59] l 

4.5.2 Spherical Arrays 

Arra,ys with elements on a spherical surface are used for various applications. 

In most cases, the array extends over a hemisphere. In other cases, the entire 
sphere is used. 

References that discuss various aspects of spherical arrays include Schrank 
[Sch72], Hoffman [Hof63], Chan et al. [CIS68], Sengupta et al. [SSL68], and 
MacPhie [MP68]. Pattern coverage and grating lobes issues are discussed in 
these references. 

We confine our discussion to an expression for the beam pattern. The 
spherical coordinate system was shown in Figure 2.1. The nth element of 
the arrav manifold vector is 

bdk)], = exp ( -jkTPn) ? (4.286) 

and the beam pattern is 

N 

B(4 4) = x wn exp (-jkTl?n) l 

n=l 

(4.287) 

Expressing k and p in spherical coordinates, we can write the beam 
pattern as 

BP: 44 = x ‘Wn exp {jk,R [sin 8 sin 8, COS((b - +n) 
n=l 

+COSOCOS~,l)l (4.288) 

where R is the radius of the sphere. For non-isotropic elements, the ex- 
pression in (4.288) must be modified to include the element patterns. The 
technique in Section 3.9.3 can be used to synthesize a desired beam pattern. 
Several examples are developed in the problems. 
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4.6 Summary 

In this chapter, techniques for analyzing and synthesizing planar arrays have 

been developed. The chapter focused on the array geometries: rectangular, 
rings, circular apertures, and hexagonal arrays that are commonly used in 
practice. 

Section 4.1 considered arrays with sensors on a uniformly spaced rectan- 

gular grid. Many of the techniques developed for linear arrays carried over 
to rectangular grid arrays. Separable weightings produced sidelobe behavior 
that varied significantly as + changed. Circularly symmetric weightings were 
developed to irnprove the behavior. 

Section 4.2 considered ring apertures and ring arrays. The function Jo(-) 
played the same role in a ring aperture that sinc() did for a linear aperture. 
Phase mode excitation beamformers were developed that allowed the use of 
linear array weightings to synthesize desirable beam patterns. 

Section 4.3 consider circular apertures. The discussion focussed on weight- 
ing functions that were separable in polar coordinates. Most of the examples 
consider desired beam patterns that were uniform in &space (a circularly 
symmetric pattern). A family of radial tapers was developed that were effec- 
tive in controlling the sidelobe levels (Table 4.4). Synthesis of Taylor beam 

patterns was also developed. Techniques for synthesizing difference beams 
were developed. 

Section 4.4 considered arrays whose sensors were located on an equi- 
lateral triangular grid that produced a hexagonal array. The elements lie 
on a set of concentric circles so the array is particularly suited to cases in 

which the desired beam pattern has circular symmetry. Beam pattern design 
techniques were developed. A hexagonal-to-rectangular transformation was 

developed tha.t is useful in various applications. 

Section 4.5 provided a brief discussion of nonplanar arrays. 

There are several issues that we have not discussed in our development 
of classical array theory: 

0 I i n some applicat 
elements. A n input 

ions, there 
to sensor n 

is mutual coupling between the sensor 
will cause an output at sensor m. 

(ii) In some applications, the incoming signals are polarized (either 

horizontal and vertical or circular). 

(iii) In some applications, the wavefront impinging on the array has 

curvature. 
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Although these topics a,re not discussed in detail, in the discussion of opti- 
mum array processing algorithms later in the text, we occasionally point out 

how these issues impact the performance of the algorithm. 

4.7 Problems 

P4.1 Rectangular Arrays 

Problem 4.1.1 

Derive the expressions for 0~ given in (4.27). 

Problem 4.1.2 

Derive the expressions for *H given in (4.29). 

Problem 4.1.3 

Assume N = M = 11 and d, = d, = X/2. We use separable Hamming weighting 
in both the x and y  direction: 80 = 30”, $0 = 0”. Plot the beam pattern and find the 
directivity DO. 

Problem 4.1.4 

Repeat Problem 4.1.3 for separable Dolph-Chebychev weighting with -30-dB side- 
lobes. 

Problem 4.1.5 

Consider an 11 x 11 stlandard square array. (a) The array MRA is broadside. Assume 
we use a separable Kaiser weighting with p = 6 in the J: and y  directions. Find and plot 
the resulting beam pattern. Cornpute the directivity and beamwidth. (b) Repeat part (a) 
for 00 = 45”, $0 = 30”. 

Problem 4.1.6 

Consider a 17 x 17 square array with d, = d, = X/4. Use the separable Taylor 
weighting with -30-dB SLL and E = 6. Plot the beam pattern and compute the directivity 
and HPBW. 

Problem 4.1.7 

Use the vet(.) notation in Section 4.1.2 to derive the beam pattern for a delay-and- 
sum (conventional) beamformer for a signal arriving from qsT, $gT. Is the resulting beam 
pattern real? 

Problem 4.1.8 

In many cases, we are interested in beam pattern cuts at 4 = &. Modify the results in 
Section 4.1.2 to take into account that the beam pattern is a function of a single variable. 

Problem 4.1.9 

Verify that the results in Section 4.1.2 are valid for N and/or M odd. Are there any 
restrictions? 
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Problem 4. 
Assume 

1.10 
iV and n/r are even. Write xuec[w] as 

where wd is a NM 12 x 1 vector corresponding to the u pper half of 
vec[w] is conju .ga t,e asymm etric. Find the resulting beam pattern. 

vec[w] = 

vec[w 1 . 

(4.289) 

The total 

Problem 4.1.11 

Repeat Problem 4.1.5 for the circularly symmetric Kaiser weight’ing in (4.92). 

Problem 4.1.12 
Repeat Problem 4.1.5 for a circularly symmetric Hamming weighting. (a) Compare . 

your results to the separable Hamming weightings in Example 4.1.1. (b) Compare the 
directivities of the two beam patterns. 

Problem 4.1.13 [El1811 
Find the separable weightings for a rectangular grid array with a rectangular boundary 

if& = 5X/8, d, = 3X/4, N = 8, and M = 12, and if’ 25-dB and 35-dB Dolph-Chebychev 
patterns are desired in th’e xz and yx planes, respectively. Assume the main bearn points 
at 00 = 0” and plot the -3-dB contour of the main beam. What are the heights of the 
off-axis sidelobes? 

Problem 4.1.14 [El1811 
In Problem 4.1.13, if the element pattern is hemispherically isotropic in z > 0 and is 

zero in x < 0, find the peak directivity. What is the area1 beamwidth (defined as the area 
inside the -3-dE-3 contour) ? Find the changes in diroctivity and area1 beamwidt,h if the 
bearn is scanned to the positlion 0 = 30”, 4 = 45”. 

Problem 4.1.15 [El1811 
Design an equispaced planar array under the following specifications. 

(a) Rectangular grid, rectangular boundary, separable distribution. 

(b) Sum and difference pattern capability. 

(c) Sum pattern scannable out to 8 = 30” in any +-cut. 

(d) 0,o = 14’ and 0,0 = 20” 

(e) Both principal cuts are Dolph-Chebychev, -20 dB in the zz-plane and --I5 dB in 
the yx-plane. 

Problem 4.1.16 [El1811 
Assume that the sum pattern weighting found for the array of Problem 4.1.13 is 

retained, except that the sign of the weighting is reversed for the two quadrants in which 
J: < 0. Write an expression for the resulting difference pattern. Plot this difference pattern 
for 4 = 0”/180” and discuss the SLL. 

Problem 4.1.17 [El1811 
A rectangular grid array with d, = d, = 0.7X has a circular boundary for which 

13 = 3X. Because of the cutoff corners, there are only 13 elements per quadrant. Find 
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the weighting of this array if one uses Dolph-Chebychev separable weighting with -20-dB 
sidelobes and sets the weighting of the three cutoff elements equal to zero. Plot the beam 
pattern in the cuts 4 = O”, 15”,30”, and 45”. Find the beamwidth and directivity. 

Problem 4.1.18 [El1811 
Repeat Problem 4.1.17, except use a Tseng-Cheng nonseparable weighting with -2O- 

dB sidelobes. Find the beamwidth and directivity. 

Problem 4.1.19 
Repeat Problem 4.1.18 using the transformation in (4.119). 

Problem 4.1.20 
Consider a 17 x 17 square array with d, = d, = A/2. Use the discretized Taylor 

pattern derived in Example 3.4.3 as a starting point. 

(a) Use the Tseng-Cheng rotation to generate a 2-D beam pattern. 

(b) Sample the pattern in wavenumber 
array weighting function. 

space. Use the inverse 2-D DFT to find the 

Problem 4.1.21 
Consider a standard 17 x 17 square array. Use the Villenueve fi weighting discussed 

in Section 3.4.4 with fi = 6 and -25-dB sidelobes as a starting point. Repeat Problem 

Problem 4.1.22 
Extend the results in Section 4.1.9 to the case of first derivative and second derivative 

nulls. 

Problem 4.1.23 
Repeat Example 4.1.9 with zero-, first- and second-order nulls at 

* mx = 0.25~~ *my = 0.433~. 

Problem 4.1.24 

Repeat Exarnple 4.1.9 with zero-order nulls at the following nine locations 

* mx = 0.25~~ @my = 0.41n, 0.437r, 0.45x, 

$ mx = 0.27n, $my = 0.41n, 0.437r, 0.457r, 

$ mx = 0.23~~ $my = 0.417r, 0.43n, 0.457r. 

Problem 4.1.25 

(4.290) 

(4.291) 

(4.292) 

(4.293) 

Consider the rnodel in Example 4.1.9. The nominal pattern is a symmetrical Dolph- 
Chebychev with -2O-dB sidelobes. 

We want to design an array weighting so that in the region (20” < 0 < 50”) f~ (40” < - - 
$ < 70”) the beam pattern is lower than -50 dB. - 

Design a nulling scheme to achieve this result. Use as few degrees of freedom as 
possible. Plot a contour plot of your result. 
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P4.2 Circular Arrays 

Problem 4.2.1 
Consicler an s-element circular array with equal spacing between elements. It could 

also be viewed as two 4-element rectangular arrays with the first array oriented along the 
z-y axes and the second array rotated by 45”. (a) Using this model, find the beam pattern 
and compare your result to the result in the text. (1)) Assume d = X in the rectangular 
arrays. Plot the resulting bearn pattern. 

Problem 4.2.2 
Extend the approach in Problem 4.2.1 to other values of N. 

P roblem 4.2.3 
Consider a lO-element circular array with uniform weighting whose radius is R = X. 

Assume that an elernent is added at the origin with weight WO. 
Choose PLQ to reduce t’he height of the first sidelobe. 

Problem 4.2.4 
Consider the cylindrical array in Figure 4.62. Assume the circular component, has 10 

isotropic elements in each circle separated by d = X/2. There are 10 circular segments 
separated by X/2. Assume uniform weighting of the 100 elements. 

Plot the bearn pattern. 

Problem 4.2.5 

Show that a uniform circular array can be modeled as a non-uniform linear array (e.g., 
pp. 205 of [Ma74]). 

Problem 4.2.6 

Show that a uniform circular array can be modeled as a set of uniform linear arrays 
where each LJLA corresponds to a fixed 0 (e.g., [TH92]). 

Problem 4.2.7 [Ma741 
We want to derive the directivity of a single-ring circular array with isotropic elements. 

D= 47r IBmas12 

s,“” s,” (B(O, qb) I2 sin Ode d# l 

(4.294) 

(a) Show that a typical term in IB(O, 4)I” can be written as, 

wrnwC exp [jkpmn sinOcos(4 - 4mn)] ) (4.295) 

4 
sin 4m - sin 4n 

mn = tar? 
COS @m - COS #n 1 ’ 

m  # n. 

(b) Show the denominator can be written as 47rTT where 

(4.296) 

(4.297) 

N-I N-l 

m=O n=O 

(4.298) 



4.7 Problems 

I Iint: IJtilize the following relation [AS65]: 

42 
J~(xsin8)sink&3= 

l/2 J- l/2 (2) sin x 
- - - 
(x)1/2 - x ’ 

(c) Then, 

(4.299) 

(4.300) 

Problem 4.2.8 
Consider a uniform circular array with radius equal to 4X. Assume N is chosen so 

tl= 0.4x. 

(a) Using phase mode excitation, construct a Hamming pattern in @space in the xy- 
plane. 

(b) Plot. the beam pattern for 0 = 30”, 60”, and 90”. 

Pd.3 Circular Apertures 

Problem 4.3.1 
Consider a circular aperture with a separable weighting, 

and “4 (44 is uniform. 
Derive the results 

WR(7’) = 
l-(g2> O<r<R, - - 
o 

7 elsewhere, 

in the appropriate column of Table 4.4. 

Problem 4.3.2 Repeat Problem 4.3.1 with 

w,(r) = ( [l-(:)2]2, O<r<R, 
I O) elsewhere. 

(4.301) 

(4.302) 

Problem 4.3.3 
Consider the circular aperture in Problem 4.3.1 with the radial taper. Design an 

aperture weight’ing that is a least squares approximation to w,-(r) with a constraint that 
there is a null at 0 = $$ and4=0”. 

Problem 4.3.4 [El1811 
A circular Taylor pattern, -20-dB SLL, fi = 3, is desired from a continuous circular 

aperture for which R = 3X. Find A2, 0, and the modified root position u1 and ~2. Write 
the explicit expression for this Taylor pattern. Plot the pattern in 0” 2 0 5 90” and the 
apert,ure distribution in 0 5 p 5 3X. 

Problem 4.3.5 [El1811 
A circular grid array with four concentric rings at radii p/X = 0.7,1.4,2.1, and 2.8 

is to be weighted to give a pattern approximating a circular Taylor -20-dB SLL, fi = 3. 
Determine the weightings (a) by conventional sampling of the Taylor distribution; (b) by 
matching to the nulls of the pattern found in Problem 4.3.4. 
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Problem 4.3.6 [Ell81] 
Read the discussion in [EW31] on Bayliss difference patterns. For a GA-diameter con- 

tinuous circular aperture, find the weighting I,hat will produce -20~dB SLL, fi = 3, Bayliss 

difference pattern. Write the explicit, expressions for pattern function and aperture distri- 

bution. Plot both the patt,ern and the distril)ution. 

Problem 4.3. 
Consider t 

7 
he following alternative to the Taylor circular aperture design p . 

(a) Design a linear aperture using the techniques in Section 3.4.3. 

Transforrn 
format.ion. 

the resulting pattern into two dimensions using the Tseng-Cheng trans- 

raced ure. 

Utilize this approach for the rnodel in Exarnplc 3.4.3 (L = 10.5X) and compare the 

results to the Taylor circular procedure with IX = 5.25A. 

P4.4 Hexagonal Arrays 

Problem 4.4.1 

Consider a standard 6 l-element hexagonal array. Plot the beam pattern for the fol- 

lowing circular aperture (R = 2.25X) weightings: 

(a) Uniforrn 

(b) wR(r) = 1 - (a)” 

(c> wR(r) = [I - (G)2]2 

Problem 4.42 (continuation) 

Repeat Problem 4.4.1 for a standard 127-elcrnent hexagonal array. 

Problem 4.4.3 

(a) Plot the co-array for a standard 6l-element hexagonal array. 

(b) Discuss how to reduce the redundancy. Find several lower redundancy arrays. 

Problem 4.4.4 

Consider a standard 19-element hexagonal array. 

(a) Develop a full-dimension (19) beamspace procedure using orthogonal beams. 

(b) Plot the MRAs of the 19 beams in (j~~,zl,~) space. 

Problem 4.4.5 

Show that (4.266) can be written as 
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e 
jx(n- $)I&,: 

+ 

(4.303) 

Problem 4.4.6 

Consider a st)andard 9Lelement hexagonal array. Design a beam pattern that has 
uniform sidelobcs that are -40 dB lower than the main lobe. Assume the MRA is broadside 
and try to minimize the diarneter of the main lobe. 

P4.5 Nonplanar Arrays 

Problem 4.5.1 

Consider two parallel standard N-element linear arrays in the sy-plane. The first 
array lies on the :E-axis and is centered at the origin. The second array is parallel to the 
first array at y  = d sep and is centered on the y-axis. 

Assume Iv = 40. Plot the beam pattern for various dsep. 

Problem 4.5.2 

Consider the array in Example 4.5.1. We want to steer the array to 00, 40. Use 
Hamming weighting in the x-direction and Hamming weighting of the phase modes. 

(a) Find t,he appropriate weights and plot the beam pattern. 

(b) What is the HPBW? 

Bibliography 

[AF85] J. Antonucci and P. Franchi. A simple technique to correct for curvature ef- 
fects on conformed phase arrays. Proc. 1985 Antenna Applications Symposium. 
RADC/TR-85-743, Vol. 2, December 1985. 

[AGW72] N. Amitay, V. Galindo, and C. P. Wu. Theory and Analysis of Phased Array 
Antennas. Wiley-Interscience, New York, 1972. 

[AS651 M. Ab ramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover 
Publications, New York, 1965. 

[Bag761 A. B. Baggeroer. Space-time processes and optimal array processing. Technical 
Report 506, Navy Undersea Center, San Diego, California, December 1976. 

[Bak66] Y. V. Baklanov. Chebyshev distribution of currents for a plane array of radiators. 
Radio Eng. Electron. Phys., ~01.11, pp. 640-642, April 1966. 

[Ba182] C. A. Balanis. Antenna Theory Analysis and Design. Wiley, New York, 1982. 



Bibliography 329 

[Bay681 E. T. Bayliss. Design of monopulse antenna. difference patterns with low side 
lobes. Hell System Tech. J., ~01.47, pp. 62% 640, May--June 1968. 

[BB72] G. V. Borgotti and Q. Balzano. Analysis and element pattern design of periodic 
arrays of circular aperture on conduct,ing cylinders. IEEE. Trans. Antennas 

Propaga L ) vol.AP--20, pp. 547-555, Sept~cml,or 1972. 

[BVT99] K. I,. Bell and H. L. Van Trees. Adaptjive and non-adaptive beampattern con- 

[Bor87] 

[CIS68] 

[Dav65] 

[Dav87] 

[DM84] 

[El1641 

[El18 I] 

[Han591 

[HanGO] 

[Han811 

[Han981 

[Hes70] 

[HL52] 

[Hof63] 

[Hua81] 

trol using quadrat,ic beampattern constraint,s. Proc. X%-d Asilomar Conference 

on Signals, Sys terns, and Computers, Paci lit Grove, California, pp. 486-490, 
October 1999. 

G. V. Borgiotti. Conformal arrays. In A. Rudge et al., editors, The Handbook of 

Antenna Design, ~01.2, chapter 11, Peter Percgrinus, London, 1987. 

A. K. Chan, A. Ishimaru, and R. A. Sigelmann. Equally spaced spherical arrays. 
Radio Sci., vol.,, pp. 401-404, May 1968. 

I). El:. N. Davies. A transformation between t,he phasing techniques required for 
linear and circular aerial arrays. Proc. IbX, ~0.112, pp. 2041-2045, November 
1965. 

D. E. N. Davies. Circular arrays. In A. ltutlge et al., editors, The Handbook of 

Antenna Design, ~01.2, chapter 12, Peter l’crcgrinus, London, 1987. 

D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing. 

Prentice-Hall, Englewood Cliffs, New Jersey, 1984. 

R. S. Elliott. Beamwidth and directivity of large scanning arrays. lllicroulawe J., 
pp. 74-82, ,January 1964. 

R. S. Elliott. Antenna Theory and Design. Prentice-Hall, Englewood Cliffs, New 
Jersey, 1981. 

12. C. Hansen. Tables of Taylor distributions for circular aperture antennas. 
Technical Report 587, Hughes Aircraft, Co., Culver City, California, February 
1959. 

R. C. Hansen. Tables of Taylor distributions for circular aperture antennas. IRE 
Trans. Antennas Propagat., vol.AP-8, pp.22-26, January 1960. 

R. C. Hansen. Conformal Antenna Array Design Handbook. Dept. of the Navy, 
Air Systems Cornmand, AD A11091, September 1981. 

R.C. Hansen, editor. Phased Array Antennas. Wiley, New York, 1998. 

A. Hessel. Mutual coupling effects in circular arrays on cylindrical surfaces- 
aperture design implications and analysis. In A. A. Oliner and G. H. Knittel, 
editors, Ph.ased Array Antennas, pp. 273-2!31, Artech House, Boston, 1972. 

R. F. Harrington and W. R. Lepage. Directional antenna arrays of elements 
circularly disposed about a cylindrical reflector. Proc. IRE, ~01.40, pp. 83-86, 
January 1952. c 

M. Hoffman. Conventions for the analysis of spherical arrays. IEEE Trans. 

Antennas Propagat., vol.AP-11, pp. 390-393, July 1963. 

T. S. Huang. Two-dimensional digital signal processing I. In Topics in Applied 
Phvsics, ~01.42. Stxinrrer-Verlaz New York. 1981. 



330 Bibliogra,phy 

[Jam471 P. W. James. Polar patterns of phase-connected circular arrays. proc. I&!?, 
vol.1 12, pp. 1839-1847, 1965. 

[Jas61] II. Jasik, editor. Antenna E@yheering Handbook, pp. 2-25--2-26. McGraw-Hill, 
New York, 1961. 

[Knu59] I-I. Knudsen. Antennas on circular cylinders. IRE Trans. Ant ennns Propaga t., 
vol.AP--7, pp. S361-S370, December 1959. 

[KSV73] W. H. K ummer, A. F. Seaton and A. T. Villeneuve. Conformal antenna arrays 
study. Final Report, AD-909220, Hughes Aircraft Co., Culver City, California, 
January 1973. 

[LL65] S. W. Lee and Y. T. Lo. Pattern function of circular arc arrays. IEEE Trans. 
Antennas Propagat., vol.AP-13, pp. 649-650, July 1965. 

[LL83] Y. T. L o and S. W. Lee. Antenna Handbook, Volume II (Antenna Uzeory). Van 
Nostrand Reinhold, New York, 1983. 

[Ma741 M. T. M a. Theory and Applications of Antenna Arrays. Wiley, New York, 1974. 

[Mai84] R. J. Mailloux. Conformal and Low-Profile Arrays. In R. C. Johnson and H. 
Jasik, editors, Antenna Engineering Hundbook, chapter 21, McGraw-Hill, New 
York, 1984. 

[Mai94] R. J. M ai 11 oux. Phased Array Antenna Handbook. Artech House, Boston, 1994. 

[McC82] J. H. McClellan. Multidimensional spectral estimation. Proc. IEEE, ~01.70, no.9, 
pp. 1029-1039, September 1982. 

[Mer79] R. M. M ersereau. The processing of hexagonally sampled two-dimensional sig- 
nals. Proc. IEEE, ~01.67, no.6, pp. 930-949, July 1979. 

[MG70] A. D. M un g er and B. R. Gladman. Pattern analysis for cylindrical and conical 
arrays. Proc. Conformed Array Conference, AD-875 378, Naval Electronics Lab. 
Center, San Diego, California, January 1970. 

[MP68] R. H. MacPhie. The element density of a spherical antenna array. IEEE Trans. 
Antennas Propagat., vol.AP-16, pp. 125-127, January 1968. 

[MZ94] C. P. Mathews and M. D. Zoltowski. Eigenstructure techniques for 2-D angle 
estimation with uniform circular arrays. IEEE Trans. Signal Process., ~01.42, 
no.9, pp. 2395-2407, September 1994. 

[PM621 D. P. Peterson and D. Middleton. Sampling and reconstruction of wave-number 
limited functions in n-dimensional Euclidean spaces. Inf. Control, ~01.5, pp. 
279-323, April 1962. 

[R-+83] A. W. Rudge et al., editors. The Handbook of Antenna Design, chapter 12. 
Peregrinus, London, 1983. 

[RD82] T. R 1 a lim and D. E. N. Davies. Effect of directional elements on the directional 
response of circular arrays Proc. IEE, ~01.129, Part 11, no. 1, pp. 18-22, February 
1982. 

[RG75] L. R. Rabiner and B. Gold. Theory and Application of Digital Signul Processing. 
L Prentice-Hall, Englewood Cliffs, New Jersey, 1975. 

[Sch72] H. E. S h c rank. Basic theoretical aspects of spherical phased arrays. In A. A. 
Oliner and G. H. Knittel, editors, Phased Arruy Antennas., pp. 323-327, Artech 
House, Boston, 1972. 



Bibliography 331 

[SSLSS] 

[%a6 l] 

[She751 

[SK821 

[Ste81] 

PaY601 

[TC68] 

[TH92] 

[Zio95] 

D. L. Sengupta, T. M. Smith and I~,. W. Larson. Radiation characteristics of a 
spherical array of circularly polarized elements. IEEE Trans. Antennas Propa- 

gut., vol.AP-16, pp. 2--7, January 1968. 

E. D. Sharp. A triangular arrangement of planar-array elements that reduces 
the number needed. IRE Truns. Antewnas Propugut., vol.AP-3, pp. 126-129, 
January 1961. 

B. Sheleg. Circular and cylindrical arrays. Workshop on Conformal Antennas, 

AD-A015 630, Naval Air Systems Command, pp. 107-138, April 1975. . 

J. C. Sureau and K. J. Keeping. Siclelobe control in cylindrical arrays. IEEE 

Trans. Ant,ennus Propugak, vol.AP-37, pp. 1017-1018, 1989. 

S. Stein. Algorithms for ambiguity function processing. IEEE Trans. Acoust., 

Speech, Signal Processing, vol.ASSP-29, no.3, pp. 588-599, June 1981. 

T. T. Taylor. Design of circular apertures for narrow beamwidth and low side- 
lobes. IRE Truns. Antennas PropugaL, vol.A13-8, pp. 17-22, 1960. 

F. I. Tseng and D. K. Cheng. Optimum scannable planar arrays with an invariant 
side-lobe level. Proc. IEEE, ~01.56, pp. 1771--1778, 1968. 

A. El. Tewfik and W. Hong. On the application of uniform linear array bearing 
estirnation techniques to uniform circular arrays. IEEE ‘Truns. Signal Process., 

~01.40, no.4, pp. 1008-1011, April 1992. 

L. J. Ziomek. Fundamentals of Acoustic Field Theory and Space-Time Signal 
Processing. CRC Press, Boca Raton, Florida, 1995. 

































































































































































Observation Noise 411 

; - Actual 
; - AR(l) 
; - - AR(2) 

6 

5 

oJ3 

-J?4 

s 
-% 

a* 

3 

2 

1 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

_‘. _‘_ 

-0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 

Figure 5.31 Wavenumber spectrum of a complex AR(l) process with additive 

white noise: ~;/a: = 0 dB; (a) )x11 = 0.5; (b) Jxli = 0.9. 



































Chapter 6 

Optimum Waveform 
Estimation 

6.1 Introduction 

In Chapters 2, 3, and 4 we discussed deterministic design techniques and 
developed the basic ideas of beam patterns, array gain, sidelobe control, 
and null placement. In Chapter 5 we developed statistical representations 
of space-time random processes. 

In Chapters 6-10, we utilize the statistical representation of the signal 
and noise processes to design array processors that are optimum in a statis- 
tical sense. The first step is to define the objectives of the array processor. 
We consider the following objectives in the remainder of the text: 

(i) The first objective of interest is to estimate the waveform of a plane- 
wave signal impinging on the array in the presence of noise and in- 
terfering signals. More generally, we want to estimate the waveform 
of D plane-wave signals impinging on the array in a similar environ- 
ment. This problem is sometimes called t-he “signal copy” problem 
in the literature. This objective will lead us to beamformers that are 
optimum in a statistical sense. They are the statistical analog to the 
deterministic beamformers in Chapters 2-4. In Chapter 6, we assume 
that! the appropriate statistics are known. In Chapter 7, we assume 
that the necessary statistics must be measured from the data and are 
led to adaptive bkamformers. 

(ii) The second objective of interest is to detect the presence or absence of a 
signal that impinges on the array as a plane-wave or a spatially spread 

428 
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signal. More generally, we want to detect which signal belonging to a 
finite alphabet is present. 

This problem is the spatial generalization of the optimum detection 
problem that we studied in Parts 1 and 3 of DEMT ([VT68], [VTOla]). 
We study this objective in Chapter 10. In most cases, the spatial 
aspects of the problem lead to the same beamformers as in Chapters 
6 and 7. 

(iii) The third objective of interest is to estimate the direction of arrival 
of D plane waves that are impinging on the array in the presence of 
interference and noise. In most cases of interest, the spatial spectral 
matrix S, and the noise level ai are unknown. Thus, we formulate 
the problem as a more general parameter estimation problem, 
in which there are D desired parameters plus a set of unwanted (or 
nuisance j parameters. 

This problem is the spatial generalization of the parameter estima- 
tion problem that we studied in Parts 1 and 3 of DEMT ([VT681 and 
[VTOla]). We study this problem in Chapters 8 and 9. 

There is a problem contained in this third objective that deserves spe- 
cial mention. This is the case in which the array manifold vector is 
either unknown or is perturbed from its nominal position. In some 
application our focus is on the signal DOAs and we treat array param- 
eters as nuisance parameters. In another application, the value of the 
array parameters is also important. This latter case is known as the 
array calibration problem. We treat it briefly in Chapter 9, but do 
not discuss it in detail. 

All of the problems within this objective are characterized by a finite 

parameter set. We want to estimate some (or all) of the parameters in 
this set. 

(iv) The fourth objective of interest is to estimate the spatial spectrum 
of the space-time process that is impinging on the array. If we model 
the space-time field parametrically as in Section 5.6, then the basic 
ideas (but not the details) carry over from the parameter estimation 
problem. However, in many applications, a parametric model is not 
appropriate and we utilize non-parametric spatial spectrum estimation. 
We do not cover non-parametric estimation in the text. In Chapter 9, 
we cite several references on spectrum estimation. 
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PI l 

x 

\J Plane wave 

Figure 6.1 Sensor array with single plane-wave signal. 

In the course of the remainder of the text we amplify on these objectives 
and suggest excursions. It is important to always keep the desired objective 
in mind when evaluating the array processor, because a particular processor 
may appear under several different objectives and its performance will be 
evaluated according to different criteria. 

For example, in Section 6.2.1, we develop a beamformer referred to as the 
minimum variance distortionless response (MVDR) or Capon beamformer. 
It also appears in the parameter estimation context in Chapter 9 and would 
appear in the non-parametric spatial spectrum estimation problem if we 
developed it. We must evaluate its performance in the context of the specific 
objective. 

The basic models that we utilize in this chapter are shown in Figures 
6.1 through 6.5. The array consists of N sensors located in a 3-D space. 
Normally we assume isotropic sensors, but we show how to modify the results 
to take element patterns into account. In Figure 6.1, we show a single plane- 
wave signal propagating along a,. The temporal characteristics of the signal 
of interest include known signals, signals with random parameters, random 
processes? and unknown nonrandom signals. This includes a large number 
of communications, radar, sonar, and seismic problems. In Figure 6.2(a), 
we show multiple plane-wave signals propagating along ai; i = 1, l . l , L,. 
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Figure 6.2 (a) Multiple plane-wave signals; (b) multipath environment. 
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The model arises in the multipath environments of communications, radar, 

sonar, and seismic environments, as shown in Figure 6.2(b). The temporal 
characteristics of the signals can vary as in the single-signal case. The third 
signal case of interest is shown in Figure 6.3(a). Here the signal source 
has a continuous distribution in frequency-wavenumber space. This model 
can arise in communications systems (e.g., the tropospheric scatter model 
shown in Figure 6.3(b)) or sonar systems (Figure 6.3(c)) as well as other 
areas. For spatially spread signals, the temporal characteristics are modeled 
as a random processes. 

Various noise models are used with these signal models. Our model 

always assumes that there is a non-zero sensor noise that is uncorrelated from 
sensor to sensor. A typical discrete interference model is shown in Figure 

6.4. Here the external interference consists of a set of plane-wave signals. In 
the radar and communications area, this is a realistic model for jammers. 
In the sonar case, it can represent’ discrete noise sources such as propellors. 
These noises can be either continuous-wave (CW) signals, modulated signals, 
narrowband random processes, or wideband random processes. A typical 
continuous noise field is shown in Figure 6.5. These fields occur frequently 
in the sonar and radar area. 

In all of our work in this chapter we assume that the statistical charac- 

teristics of the signal and noise fields are known. We also assume the array 
characteristics (e.g., location, element patterns) are known. We look at the 
effect of imprecise or erroneous knowledge of these characteristics, but defer 
the study of unknown environments to a later chapter. In addition, we focus 
our attention on the case where the signal and noise processes are stationary 

and the observation interval is long. 
In Section 6.2, we begin our discussion by modeling the signal as an 

unknown nonrandom signal propagating along some known direction and 
develop the concept of an optimum distortionless filter that guarantees that 

any signal propagating along the specified direction will pass through the 
filter undistorted and the output noise power is minimized. If the noise 
is a sample function from a Gaussian random process then the output of 
the optimum distortionless filter is the maximum likelihood estimate of the 
signal. We refer to this filter as the minimum variance distortionless response 

(MVDR) filter. 
We then consider the case in which the signal is a sample function from 

a random process and design the optimum linear processor to generate the 
minimum mean-square error (MMSE) estimate of the signal. The result is 

the vector version of the Wiener filter that we studied in Chapter 6 of DEMT 
I [VTSS], [VTOla]. We demonstrate that the optimum processor consists of 
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Figure 6.3 (a) Spatially spread signals; (b) troposphere; (c) sonar. 
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an optimum beamformer followed by an optimum scalar filter. We then 
show that if the signal and noise processes are Gaussian, the optimum linear 
processor is generating the conditional mean (thus, no nonlinear processor 
could do better). 

We show that if the signal is a single plane wave, then the optimum 
matrix processor (i.e., the optimum beamformer) is the same for either signal 
model. 

We then examine two other beamformers. The first maximizes the out- 
put SNR. For a single plane-wave signal, this criterion leads to the same 
optimum beamformer as the MMSE beamformer. Thus for single plane- 
wave signals we have a criterion-invariant receiver. The second beamformer 
assumes that we know (or can measure) S,(w) but do not know the spectral 
matrix of the noise component (S,(w)). W e c h oose a steering direction and 
find the optimum distortionless filter for that direction. We refer to this as 
the minimum power distortionless response (MPDR) filter. If the steering 
direction corresponds to the actual signal direction, then the MPDR beam- 
former reduces to the MVDR beamformer. Later we examine the effects of 
a mismatch. 

All of the results in Section 6.2 apply to arbitrary noise fields. In Section 
6.3, we examine the case in which the interference consists of a set of discrete 
plane waves and find explicit solutions for the optimum beamformers and 
their performance. We introduce the idea of an eigenbeam receiver as a 
realization of the optimum processor. 

In Section 6.4, we study spatially spread interference. We use the physical 
noise models from Section 5.3 and the ARMA models from Section 5.6 to 
model the interference and study the performance of the MVDR and MPDR 
beamformers with this type of interference. 

In Section 6.5, we extend the results to the case in which there are mul- 
tiple desired plane-wave signals. The results are a logical extension of single 
plane-wave signals. However, the resulting beamformer has some interesting 
properties. 

A major problem in applying optimum beamformers in operational sys- 
tems is the potential sensitivity to mismatches between the actual environ- 
ment and the model used to derive the optimum beamformer. 

In Section 6.6, we analyze how the performance of the MVDR beam- 
former is affected by various types of mismatch. Typical mismatches include 
DOA mismatch, sensor gain and phase perturbations, and sensor position 
perturbations. The MVDR beamformer degrades gracefully. However, we 
find that the performance of the MPDR beamformer degrades rapidly un- 
der mismatch. We introduce a technique called diagonal loading to improve 
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robustness. 
In Section 6.7, we incorporate additional linear constraints in order to 

further improve the robustness of the beamformer. We derive the linear 
constrained minimum variance (LCMV) and the linear constrained minimum 

power (LCMP) beamformer. We find that, with the addition of diagonal 

loading, these beamformers are reasonably robust. We also introduce a 
generalized sidelobe canceller realization of the beamformer. 

In Section 5.5, we showed how the use of an orthogonal expansion in 
terms of eigenvalues and eigenvectors enabled us to represent the set of 
plane-wave signals and interference in a subspace. In Section 6.8, we develop 
beamformers that perform an eigendecomposition of S,. A subset of the 

eigenvalues and eigenvectors is used to construct the beamformer. Two 

types of eigenvector beamformers, eigenspace beamformers and dominant- 
mode rejection beamformers, are developed and analyzed. In the known 
spectrum case, they have the potential to provide improved performance in 
the presence of mismatch. In Chapter 7, we see that, in the real-world case, 
where we have to estimate S, or an equivalent statistic, they offer additional 
advantages. 

In Section 6.9, we consider the case in which we first form a reduced- 

dimension beamspace by processing the data with a small set of non-adaptive 
beams that span the sector of interest. We then process the beam outputs 
using an adaptive processor. We find that there are a number of advantages 
to this technique. 

In Section 6.10, we consider the use of quadratic constraints to improve 

beamformer robustness. We introduced it in Section 6.6 to motivate diagonal 
loading. We revisit it to more fully exploit its potentials and to set the stage 
for variable diagonal loading in Chapter 7. 

In Section 6.11, we develop an algorithm to minimize the squared error 

between a desired beam pattern and the actual beam pattern over a region 
of w-k space. We minimize the output power subject to a constraint on the 
squared error. This approach leads to a beamformer that is referred to as 

a soft-constraint beamformer. It is a generalization of diagonal loading that 
is useful in some applications. 

In Section 6.12, we consider the case in which the desired signal and 
the interference are coherent (I p I= 1) or correlated (I p I# 0). We find 
that, as ( p 1 approaches one, there is significant performance degradation 

because the desired signal is cancelled. We introduce a technique called 

spatial smoothing to obtain beamformers that will operate in a coherent 
environment. 

In Section 6.13, we consider broadband beamformers. The frequency- 
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domain implementation is a straightforward extension of our narrowband 
results because of our use of the frequency-domain snapshot model. The 
time-domain implementation requires an extension of the narrowband time- 

domain model in Section 5.2. 

In Section 6.14, we summarize our results and discuss some of the issues 

that remain to be explored. 

The structure of Chapter 6 is shown in Table 6.1. Most of the material in 
the first part of this chapter appeared in “Chapter 11-5: Multi-dimensional 
and Multi-variable Processes” [VT69], which was part of the course notes for 
my course in Advanced Topics in Detection and Estimation Theory taught 
at M.I.T. in the Spring term of 1969. Although these notes were unpub- 

lished, they had a significant underground distribution. Some of the mate- 
rial had been published earlier in [VT66b] and [VT66a] with the grandiose 

title, “A Unified Theory for Optimum Array Processing.” Other references 
include [VT64], [VT65], and [VT68]. The material was intended to be the 
last chapter in DEMT III [VT711 and [VTOlb], but was omitted because of 
space limitations. Some of it appeared subsequently in [Bag76]. Other early 
work in the area covered by this chapter includes Bryn [Bry62], Middle- 
ton and Groginsky [MG64], Schweppe [Sch68], Gaardner [Gaa66] [Gaa67], 
Burg [Bur64], Pritchard [Pri63], [PriSl], Vanderkulk [Van63], Childers and 
Reed [CR65], Becker and Cron [BC65], F aran and Hills [FH53], Kelly [Kel65], 

Price [Pri53], [Pri54], [Pri56], Wolf [Wo159], Capon et al. [CGK67], Edelbute 
et al. [EFK67], M ermoz [Mer64] and Middleton [MidGO]. The material start- 
ing in Section 6.6 is new and is based on a large number of journal articles, 

conference papers, and books that have appeared in this area over the last 
30 years. 

It is worthwhile re-emphasizing that throughout this chapter we assume 
that the signal and the interference statistics are known. In Chapter 7, 
we develop adaptive beamformers that estimate the appropriate statistics 
from the incoming data. We would expect that these adaptive beamformers 

will converge to one of the beamformers in this chapter if the processes are 
stationary and the observation time approaches infinity. Thus, we might 
consider the beamformers in this chapter to be the “steady-state” version of 
the corresponding adaptive beamformer. 

Even if a particular beamformer developed in this chapter has good per- 

formance, it does not guarantee that its adaptive version will have good 
performance (or be computationally feasible). However, if the beamformer’s 
performance assuming known statistics is poor, then it is unlikely that the 
adaptive version will be useful. 
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Therefore, the purpose of this chapter is to develop a collection of beam- 

formers that have good properties in a known statistics environment. These 
beamformers serve as candidates for adaptive implementations. 

It is important to understand the notation we use in the chapter. We 
use the frequency-domain snapshot model developed in Section 5.2.1. We as- 
sume that the approximations developed in that section are valid. Therefore, 
the input to the array processor is a sequence of statistically independent 
circular complex Gaussian random vectors, X&W,, k), m = - (A4 - 1)/2 5 
m < (M- Q/2, k = 1, l . l , I-(. Sections 6.2-6.12 consider narrowband beam- - 
formers. Because X&W,, , k) and X&W,, , k) are statistically indepen- 
dent, the narrowband beamformers for each frequency bin are uncoupled. 
Therefore, it is convenient to suppress the m subscript of w. The discussion 
assumes that tlhe spatial spectral matrix is known and is the same for each 
snapshot. Therefore it is convenient to suppress the k-dependence. Chapter 
7 focusses on the behavior as a function of k. The approximations in Section 
5.2.1 replace the mean and covariance of XaT(LJ,, k) with m,(w,, k) and 
S, (wm), respectively. Therefore it is convenient to suppress the AT sub- 
script. Thus, to keep the notation as simple as possible, X(w) will be used 
in Sections 6.2--6.12 to represent XAT(W,, k). 

In many cases, the w-dependence will also be suppressed and X will be 

used. Occasionally, one or more of the subscripts or indices will be used to 
make a specific point. 

It is also useful to note that, since Sections 6.2-6.12 deal with narrow- 
band beamformers, the entire development could have been done in the time 
domain. For the same spatial characteristics of the signals and noise, the 
resulting weight vectors in the beamformers are identical. 

6.2 Optimum Beamformers 

In this section, we derive optimum beamformers for plane-wave signals be- 
ing received in the presence of a noise field and analyze their performance. 
We consider four models. The objective of the optimum beamformer is to 
estimate the signal waveform. . 

In Section 6.2.1, we assume that the noise is a sample function of a 
random process with known second-order statistics, but the signal is an 
unknown nonrandom plane-wave signal arriving from a known direction. We 

derive the optimum linear array processor to provide the minimum variance 
unbiased estimate of the signal waveform. We show that this criterion is 
the same as requiring the array processor to be a distortionless filter (i.e., 
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any waveform coming from the specified signal direction will pass through 
the filter undistorted) and find the distortionless filter that minimizes the 
output variance. Finally, we show that if the noise process is Gaussian, then 
the output of the optimum distortionless filter is the maximum likelihood 
estimate of the signal waveform. 

In Section 6.2.2, we assume that the signals and noises are sample func- 
tions of stationary random processes and that their second-order statistics 
are known. Initially, we consider a single plane-wave signal arriving at the 
array from a known direction. We derive the optimum linear array processor 
to estimate the signal waveform using a MMSE criterion. Finally, we observe 
that if the signal and noise processes are Gaussian, then the optimum linear 
array processor is optimum over the class of all processors. 

In Section 6.2.3, we utilize the signal and noise model of Section 6.2.2. 
However, now we assume that the criterion is maximum output SNR. We 
show that the optimum processor consists of the same matrix operation as 
in the second model followed by a different scalar filter. 

In Section 6.2.4, we consider a fourth model. This model is closely related 
to the first model. In this model we select a steering direction that we believe 
the signal is arriving from. However, the actual signal may be arriving 
from a different direction. In addition, we assume that we know (or can 
measure) the statistics of the total received waveform x(t), but do not know 
the statistics of the signal and noise components. We derive the distortionless 
filter for the specified steering direction that minimizes the mean square 
output power. We refer to the processor derived using this model as the 
minimum power distortionless response (MPDR) beamformer. When the 
signal direction and the steering direction coincide, the MPDR beamformer 
reduces to the MVDR beamformer. In other cases, there may be a significant 
difference in performance. 

In Section 6.2.6, we extend the results to multiple plane-wave signals. 

6.2.1 Minimum Variance Distortionless Response (MVDR) 
Beamformers 

In this section, we consider the first model that was described at the begin- 
ning of the section. This is the case in which the signal is nonrandom but 
unknown. In the initial discussion, we consider the case of single plane-wave 
signal. 

The frequency-domain snapshot consists of signal plus noise, 

x(w) = X&J) + N(w). (6 1) . 
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Figure 6.6 Matrix processor. 

The signal vector can be written as 

X,(w) = F(w)v(w : k,), 

441 

(6 2) . 

where F(w) is the frequency-domain snapshot of the source signal and v(w : k,) 
is the array manifold vector for a plane wave with wavenumber k,. The noise 
snapshot, N(w) is a zero-mean random vector with spectral matrix, 

S,(w) = S,(w) + a;1. (6 3) . 

Later we will add the assumption that N(w) is a zero-mean circular complex 

Gaussian random vector. 

6.2.1.1 Minimum variance distortionless response (MVDR) beam- 

former 

We process X(w) with a matrix operation WH(w) as shown in Figure 6.6. 
The dimension of WH(w) is 1 x N. 

The first criterion of interest is called the distortionless criterion. It is 
required that, in the absence of noise, 

Y(w) = F(w), (6 4) . 

for any F(w). Under this constraint, we wish to minimize the variance of 
Y(w) in the presence of noise. Thus, we write 

Y(w) = F(w) + Y,,(w), (6 51 . 

and minimize E [Iyn(w)12]. 
The constraint of no distortion implies 

WH(w)v(w : k,) = 1. 

The mean square of the output noise is, 

E [iy,l”] = W”(w)S,(w)W(w). 

(6 6) . 

(6 7) . 

xyf
矩形
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We want to minimize E [IY,12] subject to the constraint in (6.6).l 
Before doing this, we state a second criterion that leads to the same 

minimization problem. 
This second criterion is called the minimum variance unbiased estimate 

criterion .2 Here we require that Y(w) be the minimum variance unbiased 
estimate of F(w). This implies 

E[Y(w)] = F(w). (6 s> . 

Thus, using (6.5) in (6.8), 

qwl = w$41+ w+J>l 
= qfw1, (6 9) . 

for any F(w). This equality implies 

WH(w)v(w : k,) = 1, (6.10) 

which is identical to the constraint in (6.6). 
Thus we have the same minimization problem as before. We now solve 

this problem by imposing the constraint in (6.6) by using a Lagrange multi- 
plier. The function that we minimize is 

F A WH(w)Sn(w)W(w) + X(w) [WH(w)v(w : k,) - l] 

+X*(w) [vH(w : k,)W(w) - l] . (6.11) 

Taking the complex gradient with respect to WH(w) and solving gives 

W,H(w) = -X(w)vH (w : kJS,l (w). (6.12) 

To evaluate X(w), we use the constraint in (6.6), which gives 

x( > w =- [vH(w : ks>s,‘(w)v(w : k,)]-’ . (6.13) 

Thus, 

(W:(w) = A(w : k,)vH(w : k&S,‘(w), 1 (6.14) 

‘The idea of combining multiple inputs in a statistically optimum manner under the 
constraint of no signal distortion is due to Darlington [Dar58]. An interesting discussion 
of the method is contained in Brown and Nilsson’s text [BN62]. 

2This criterion was first considered for this application by Levin [Lev64]. 
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where 

A(w : k,) 2 [vH(w : k#,‘(w)v(w : k,)] -I . (6.15) 

The matrix processor in (6.14) and (6.15) is referred to as the MVDR beam- 

former and was first derived by Capon [Cap69]. It is sometimes referred to 
as the Capon beamformer. 

For notational simplicity, it is convenient to suppress w and k, in these 
formulas. 

b - n v(c3c 1 ks), (6.16) 

s,(w) 2 sn, (6.17) 

A n vHS-lv S- n l 

(6.18) 

Then, 
vvH 0 = A,VHS,l (6.19) 

or 
WH mvdr = AgHS,l, 

where the subscript emphasizes the optimization criterion. 

(6.20) 

6.2.1.2 Maximum likelihood estimators 

We consider the same model as in Section 6.2.1.1 except the assumption that 

N(w) is a circular complex Gaussian random vector is added. The likelihood 
function at Wm is 

l&m) = [XH(wm) - F’(wm)vH(wm)] $@m) [x(wm) - F(Wm>v(wm)] 7 

(6.21) 

where constant multipliers and additive terms that do not depend on F(wm) 

have been dropped. 
Taking the complex gradient with respect to F*(wm), setting the result 

equal to zero and solving the resulting equation gives 

@Cwml Iml = VH(Wm)S,+Jm)X(wm) 

VH (Wrn)Sil (Wm)VH (urn) ’ 
(6.22) 

The estimate in (6.22) is identical to the output of the MVDR processor in 
(6.14) with w = Wm. 

The reason for introducing wm in (6.21) is that, in order to find the ML 
estimate of f(t>, the joint ML estimate of F(wm),m = -(M - 1)/2 5 m 5 
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A(m)vH (03 : k&(o) 

Figure 6.7 Minimum variance distortionless response (MVDR) processor. 

(M - 1)/2 is required. Then f(t)lml is reconstructed using (5.36). However, 
because the frequency-domain snapshots for w,~ # wm2 are statistically 
independent, the joint likelihood function is a sum of the likelihood functions 

in (6.21) over m. The resulting F(Wm>lml are independent. 
The output of the optimum distortionless (or MVDR) matrix is the ML 

estimate of F(w,) and can be used to generate f(t)lm13 The important 
point is that the ML derivation did not assume a linear operation (matrix 
multiplication) on X(wm>. As in the scalar case, the Gaussian model leads 
to a linear processor. 

This ML result has occasionally caused confusion in the literature. The 
MVDR filter provides the ML estimate of the signal f(t> when the signal 
wavenumber (direction of arrival) is known and S,(w) is known. In Chapters 
8 and 9, we will estimate the DOA of the signal. In most cases, the MVDR 

filter scanned in wavenumber space does not provide the ML estimate of the 
signal’s DOA. 

6.2.1.3 Array gain 

We denote the matrix filter in Figure 6.7 by W!(w) where subscript “0” 
denotes optimum: 

wmHvdr LA w,H(w) = - R(w)vH(w : ks)S,l(w). (6.23) 

The array gain at a particular frequency w is given by the ratio of the 
signal spectrum to the noise spectrum at the output of the distortionless filter 
compared to the ratio at the input. The spectrum of the noise component 
of Y(w) is 

= vH(W)S~l(w)S,(w)S,l(w)v(w) l A2(w) 

= A(w). (6.24) 

Since the W:(w) is distortionless, 

sys (4 = Sf (4 (6.25) 

“This result was first obtained by Kelly and Levin [KL64]. 
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If we assume that the noise spectrum at each sensor is the same, then the 

input SNR at each sensor is ,$J$$. Therefore, 
n 

A&w : k,) = 

= Sn(W)VH(W: ks)S,'(w)v(w : k,). (6.26) 

We define a normalized spectral matrix p,(w) by the relation, 

&l(w) = Sn(w)pr-&)- (6.27) 

Then, 

Ao(w : k,) =vH(w : k,)p,'(w)v(w : k,). (6.28) 

Suppressing w and k,, (6.28) can be written as 

A ti -1 
0 = vs Pn vS- (6.29) 

Recall from Chapter 2 that the conventional delay-and-sum beamformer is 

W;(w) = $vH(w :k,). (6.30) 

The output noise is 

1 
-VH(W 
N2 

and the resulting array gain is 

ks)%-&)v(w k) s 7 (6.31) 

Ac(w : k,) = N2 
vN(w:k,)Pn(w)v(w:ks)' 

(6.32) 

or, suppressing w and k,, 

A 
N2 

c- H 
vs PnVS' 

(6.33) 

Whenever the p(w) matrix is diagonal, (i.e., the noises at the different sensors 
are uncorrelated) the conventional and optimum receivers are identical and 
the two array gains are identical: 

Ao(w : k,) = Ac(w: k,) = N. (6.34) 

In other cases, 

Ao(w : k,) > Ac(w : k,). (6.35) 
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6.2.2 Minimum Mean-Square Error (MMSE) Estimators 

In this section, we find the optimum linear matrix processor whose output 
is the MMSE estimate of a desired signal snapshot D(U). 

6.2.2.1 Single plane-wave signal 

We first consider the problem of a single plane-wave signal in noise. Thus, 

X(w) = F(w)v(w : k,) + N(w), (6.36) 

where the source signal snapshot, F(w), is a scalar zero-mean random vari- 
able with variance Sf (w). The signal and noise snapshots are uncorrelated. 
We assume that N(w) contains a spatial white noise component so that 

S,(w) = s,(w) + ($1. (6.37) 

The spectral matrix of X(w) is 

S,(w) = Sj(w)v(w : k,)vH(w : k,) + S,(w). (6.38) 

For convenience we have assumed the noise snapshot has the same statistics 

at each sensor. The case of unequal values follows directly. 
The desired snapshot D(w) is equal to the source snapshot, F(w). The 

matrix processor is an N x 1 matrix denoted by H(w) whose output is B(w). 
The mean-square error is 

t = E {ID(w) - HoX(w)12} 
= E {(D(w) - H(w)X(w)) (D*(w) - XH(w)HH(w))} . (6.39) 

Taking the complex gradient with respect to HH(w) and setting the result 
equal to zero gives, 

E [D(w)X”(w)] - H(w)E [X(w)X”(w)] = 0, (6.40) 

or 

sd,H(w> = Ho(w)&(w)- (6.41) 

Thus, 

(Ho(w) = s dxH(w)s,l(w)- 1 (6.42) 

From (6.36) and the uncorrelated signal and noise assumption we obtain 

s&H(W) = s,(W)VH(W : k,). (6 43 . 
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Figure 6.8 MMSE processor. 

Then, 

H,(w) = S,(w)vH(w : k&'(w). (6.44) 

Inverting (6.38) using the matrix inversion formula, we obtain 

S,‘(w) = s,l - s;?sfv(l+ VHS,‘SfV)-lVHS~l, (6.45) 

where we have suppressed the w and k, arguments on the right side of the 
equation. Defining 

(6.46) 

and substituting (6.45) into (6.44), we obtain, 

Sf (4 
Ho(w) = Sf (w) + A(w) 

dl(w)vH(w : k&'(w). (6.47) 

The MMSE processor is shown in Figure 6.8. We see that it consists of the 
optimum distortionless matrix followed by a scalar multiplier. 

Substituting (6.47) into (6.39) g ives the optimum mean-square error: 

Sf (444 
co(w) = Sf (w) + A(w)’ 

which can also be written as 

50(w) = 
Sf(LJ) [s] 

Sf(W) + [s] ’ 

(6.48) 

(6.49) 

The effect of the array is completely characterized by the optimum array 
gain Ao(w : k,). 

We look at optimum array gains for various signal and noise environments 
in Sections 6.3--6.5. 
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6.2.2.2 Conditional mean estimators 

In the previous sections, we have assumed that the second-order statistics of 
the signal and noise processes are known and then found the optimum linear 
MMSE matrix processor. From our results with scalar waveforms in DEMT 

I ([VT68], [VTOla], e.g., pp. 476-479) we would expect that if we assume 

that the signal and noise processes are vector Gaussian random processes, 
then the optimum processor will be a linear processor. The proof of this 
conjecture follows in a straightforward manner. 

The frequency-domain snapshot is 

qwm> = F(wm>v(wm) + N(wm). (6.50) 

The MMSE estimation is the mean of the a posteriori probability density of 
F(wm), given X(wm). This mean is referred to as the conditional mean. 

The probability density of X(wm), given F(w,), is 

PX(w,)lF(wn)(*) = cl exp (- [X”(wm) - F’(w,)vA(wm)] 

S,+Jm) [x(wm) - F(w,)+4n)l) l (6.51) 

The probability density of F(w,) is 

PF(w,)(‘) = c2 exp (-F’(w,)s,-l(w,)Fo) ’ 

Using Bayes rule, the a posteriori density at wm is, 

(6.52) 

PF(wm)lX(wm) (‘) = c3 =p [-F*(wm)s~l(wm)F(wm)] 

‘exp [ xH(Wm)S,l(Wm)x(W,) - F*(w,)vH(wm)s,l(wm)X(wm) 
-XH(Wm)s,l(Wm)F(Wm)V(Wm) + F*(w,>vH(w,>s,‘(w,> 
v(wm>F(wm>] l 

(6.53) 

Defining 
-1 1 1 

Hs (Wm’ = A(Wm) + Sf(Wm)’ 

where A(Wm) was defined in (6.15), (6.53) can be written as 

pF(wm >IX( Wm 

(6.54) 

)(‘) =C4exp{ [F’(w,) ~~H~~m)s,lov(~m)H~~~m~~ 

H,‘(Wrn) [F(w,) - Hs(Wm)VH(Wm>S,l(Wm) 

X(wdl> l 
(6.55) 
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Figure 6.9 Maximum SNR processor. 

Thus, the conditional mean is, 

&urn) = Hs(G-l)vH (Wm)S,l (Wm)wJm> 
sf Cwm> - - 

s&m> + A(Wrn) 
l A(Wm)V”(Wm)Snl(Wm)X(Wm,), (6.56) 

which corresponds to the operation in (6.47) with w = Wm. The resulting 
mean-square error at Wm is 

r(wm> = x&4-n) = 
sf Cwm>llCwm> 

Sf (Wm) + Qm> ’ 

(6.57) 

Therefore, whenever the Gaussian model is utilized, the optimum MMSE 
processor will be the linear processor derived in Section 6.2.1.1. 

6.2.3 Maximum Signal-to-Noise Ratio (S’IW) 

In the two preceding sections we found the optimum receiver for different 
criteria. For the single plane-wave signal case, both criteria and signal models 
led to the sarne matrix operation. The effect of the array was contained in 
the array gain. A logical question is, “if we maximized the array gain, would 
the optimum receiver be different ?” It is straightforward to demonstrate that 

the resulting matrix processor is identical to the processor in the previous 
sections. Note that, since the input SNR is fixed, maximizing the output 
SNR maximizes the array gain. 

The system of interest is shown in Figure 6.9. The SNR at frequency w 
is. 

5 n KH k4%s www) 

N - K”(w)S,(w)K(w) ’ 
(6.58) 

which is a ratio of two quadratic forms. 
For notational ease and in anticipation of the final answer, we define4 

p A S/N. (6.59) 

4This derivation is due to N. Owsley (private communication). 
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Taking the complex gradient of (6.58) with respect to Kn and setting the 

result to zero gives 

&,K(K%,K) - S,K(K%,,K) 
(K”S,K)2 = ” 

(6.60) 

where we have suppressed the w dependence. This implies 

/ml K = Sx,K, (6.61) 

or 
,OK = [S,‘S,,] K. (6.62) 

This result is familiar as the eigenvalue problem. Setting K equal to any 
eigenvector of [S;‘!&,] will satisfy (6.62). However, we want to maximize 

,O = S/N, so we choose the eigenvector corresponding to the largest eigen- 
value. This result is valid for an arbitrary spectral matrix SX, (w). 

For the special case of a plane-wave signal, 

S,,(w) = Sf(w)v(w : k,)vH(w : k,). (6.63) 

Substituting (6.63) into (6.62) gives 

,OK = S,hSfvvHK, (6.64) 

where the w dependence is suppressed. The solution to (6.64) is 

K = S,lv, (6.65) 

and 
S - p (3 - 
N 

= Sf(VHS;b). (6.66) 

The matrix operation for maximizing the SNR is identical to the MVDR 
beamformer and t’he MMSE beamformer. (The constant A(w : k,) in (6.24) 

does not appear but can be included.) For homogeneous noise, (6.66) can 
be written as 

S - 
N- nw 

EvH(w : ks)p-‘(w)v(w : k,) 

- Sf (4 - -A,(w : k,). 
ST-L (4 

(6.67) 

We see that, for a wide class of criteria, the optimum processor is an 
MVDR beamformer followed by a scalar filter that depends on the criterion. 
In [VT66a], we termed this a “criterion-invariant receiver.” The important 
implication is that the MVDR beamformer creates a signal subspace (in this 

case, 1-D) where all subsequent processing takes place. 
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6.2.4 Minimum Power Distortionless Response (MPDR) Beam- 
formers 

The final beamformer that we develop is referred to as the minimum power 

distortionless response (MPDR) beamformer. It is closely related to the 
MVDR beamformer of Section 6.2.1. 

The model has two new features. The first is that we will match the dis- 

tortionless filter wH to a plane wave arriving from the direction a,. Defining 

Vm - n V(LJ 1 Elm), (6.68) 

we require 
H 

W Vm = WH(Ld)V(Ld 1 a,) = 1. (6.69) 

We refer to v,, as the steering vector. Ideally, we would like the steering 
vector to correspond exactly to the signal vector, 

Vm = vs, (6.70) 

but in many cases this may not be true. 
The second feature of the model is that we assume that S,(w), the spec- 

tral matrix of the entire input, is available to design the beamformer. By 
contrast, our previous models assumed that S,(w) and v(w : k,) were avail- 
able (the MMSE model also assumed knowledge of Sf (w)). We want to 

minimize the total output power subject to the constraint in (6.69). The 
derivation is identical to that in (6.11)-(6.14). The result is 

WH 
V$3,1 

mpdr = VH~-~vm’ 
m  x 

(6.71) 

In the majority of the literature, this beamformer is also referred to as 
an MVDR beamformer. We use a different name to emphasize that we are 

using S,l instead of S$. 
It is straightforward to verify that, if vm = v,, then 

H 
Wmpdr 

H 
= Wmvdr (6.72) 

(see Problem 6.2.2). 
When V, # vm, the beamformers are different. In this chapter, S, is 

assumed to be known. However, in actual applications, S, is estimated. The 
estimate S, will be constructed with the actual vs, not the model vm. This 

is the source of the problem with mismatched signals. In Sections 6.6 and 
6.7 we will study the effects of steering vector mismatch on the performance 
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of MVDR and MPDR beamformers. This steering vector mismatch can 
be caused by signal direction mismatch, array perturbations, or frequency 
mismatch. We will find that the presence of the signal in S,(w) can cause 
significant degradation in the receiver performance when vs # v,. We will 
devote a significant amount of effort to the design of beamformers that are 
robust to mismatch. The array gain for the MPDR beamformer is 

2 

A 
VgS,‘V, 

mpdr = ,$-Q-1 
m  X PnSxlVm ’ 

(6.73) 

6.2.5 Summary 

In this section, we have considered a single plane-wave signal in the presence 
of interference and noise. We have shown that, for several important criteria, 
the optimum beamformer is the MVDR (or Capon) beamforrner specified by 
(6.14) and (6.15). Wh en w  and k, are suppressed, it can be written as 

WI-I 
vp,l 

mvdr = vH~;lv l 

s S 

(6.74) 

This beamformer is widely used in applications where it is possible to mea- 
sure or estimate S,(w). 

In applications where the signal is always present we use the MPDR 
beamformer specified by (6.71). 

In Section 6.3, we examine the performance of the MVDR and MPDR 
beamformers for discrete interference. In Section 6.4, we examine their per- 
formance for spatially spread interference. 

6.3 Discrete Interference 

In this section, we consider an important special case in which the noise 
consists of a set of D interfering plane-wave signals plus uncorrelated noise. 
We assume that D + 1 is less than N, the number of array elements. 

The key result is that in this model the optimum beamformer generates 
D + 1 sufficient statistics and then combines them. Thus the problem is 
reduced to a (D + l)-dimensional “signal-plus-interference” subspace rather 
than the original N-dimensional element space. This leads to significant 
simplification in the processor. 

In Section 6.3.1, we consider a single interfering signal to illustrate the 
basic ideas. In Section 6.3.2, we consider D interfering signals and develop a 
“directional interference beamformer.” In Section 6.3.3, we summarize our 
results. 
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6.3.1 Single Plane-wave Interfering Signal 

In this case, we consider a single plane-wave desired signal with array mani- 
fold v(w : k,) and a noise process consisting of a single plane-wave interfering 
signal with array manifold v(w : kl) plus a white noise component at each 

2 sensor with spectral height CT,. We will find the optimum distortionless fil- 
ter, the array gain of the optimum and conventional beamformer, and the 
beam pattern of the optimum beamformer. The single plane-wave interferer 
case illustrates many results that can be generalized to multiple interfering 
signals. 

For a single directional noise, 

S,(w) = a;1 + M1(w)v(w : kl)vH(w : kl), (6.75) 

where Ml(w) is the spectrum of the interfering signal. Suppressing w and k, 
(6.75) becomes 

S 2 H 
n = BwI + MpqVl . (6.76) 

Using the matrix inversion lemma, 

The noise spectrum at each sensor 

s l 1 - 
I Ml H 

n = 
- 

a2 
VP1 l 

W 0; + NM1 1 (6.77) 

Sn = (0; + Ml)e (6.78) 

Using (6.77) in (6.23) gives 

H H- A 
H I- 

L 

Ml 
wmv&=wo --v H 

o-2 s 
VP1 ’ 

W 0; + NM1 1 (6.79) 

Now define 
H 

Pl 
n Vs vl 

s -- 
N 9 (6.80) 

which is the spatial correlation coefficient between the desired signal 
and the interference. Note that 

Psi = B,(kl : k), (6.81) 

is the conventional beam pattern aimed as k, (the signal wavenumber) and 
evaluated at kl (the interferer wavenumber). 
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Figure 6.10 Optimum MVDR processor: 

general case; (b) high INR. 
single plane-wave interferer; (a) 

Then (6.79) reduces to 

wH 
H 

0 = Psi 
NM1 v1 

a;+NMl’ N ’ I 
The normalizing coefficient A is given by 

Ml 
-1 

A - H - 

0; + NM1 VP1 1 1 Ys 

(6.82) 

- - (6.83) 

The resulting beamformer is shown in Figure 6.10(a). We see that the 
beamformer is generating two “spatial” sufficient statistics, one correspond- 
ing to the desired signal and one to the interfering signal, and then combin- 
ing them optimally. Note that each of the spatial processors is precisely a 
conventional beamformer pointed at the signal and interferer, respectively. 
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The bottom path has a logical interpretation. It is easy to verify that 
Cl(t) is the minimum mean-square estimate of n(t) (use (6.47) with Ml = Sf 
and S, = 0$1) in the absence of the desired signal. We then subtract a 
fraction of the estimate corresponding to the spatial correlation of the two 
signals. 

We observe that, if NM1 >> a$ then (6.79) can be written as 

vvH 
0 

= $v:i [I-v, [Y:IV1lIyr] 

A - - -vHPL 
o2 S I 1 

W 

(6.84) 

where Pf is the projection matrix onto the subspace orthogonal to the inter- 
ference. The resulting processor is shown in Figure 6.10(b). The beamformer 
is placing a perfect null on the interfering signal. 

The optimum array gain is obtained by substituting (6.78) and (6.83) 
into (6.26) to obtain 

A = N(1 + a;> 
IL + Ngl - lps112] 

0 

l+Noy I 
7 

2n Ml LJ INR. Or--F- 
W 

(6.85) 

(6.86) 

(6.87) 

Notice that optimum array gain depends on both a& which is an interference- 
to-white noise ratio (INR), and pSl, which is the spatial correlation between 
the signal and the interference. 

The limiting cases of (6.85) are of interest. For large Nay, 

A&J : k,) = N( 1+ 0;) [l - (PSI 12], (6.88) 

so, for large INRs, the array gain can be quite large if lpSll # 1. 

For lpsll = 1, (i.e., collinear signal and interference), 

2 

Ao(w : k,) = N 11++;;2, 
I 

(6.89) 

which approaches 1 for large o-;. 
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Figure 6.11 Array gain versus (1 - 1~~11~): lo-element array: (a) INR = 0 
dB; (b) INR = 10 dB; (c) INR = 20 dB. 

The conventional array gain is obtained by substituting (6.76) into (6.32) 
to obtain 

A,(w : k,) = 
N(1 + 0;) 

1 + +qps112 l 

(6.90) 

The optimum and conventional array gains are plotted in Figure 6.11 for 
N = 10. Note that the array geometry is embedded in pSl through the 
conventional beam pattern (6.81) so that these results apply to an arbitrary 
array. We have also shown the HPBW line at lp,l12 = 0.5. For lp,112 to the 

left of this line, the interferer is inside the HPBW region of the main lobe. 
When we examine beam patterns in the examples, we find that this may 
cause pattern problems. 

For large N, and 

N,g [l - IPs112] 29 1, (6.91) 

(6.86) becomes 

A 0 g N(1 + a;)(1 - lpsl12). (6.92) 

Therefore, it is convenient to plot A,IN as shown in Figure 6.12. 

The beam pattern for the optimum array can be obtained by substituting 
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Figure 6.12 Normalized op timum array gain versus (1 - (psi 12). 

(6.82) into (2.51). The resu 

Bo(w : k, 

t is 

AN - N&h1 - 
CT2 

Psa - 
l+N~@l~ ’ 1 (6.93) 

W 

where A is the normalizing function in (6.83) and we have suppressed the w  
dependence on the right side of (6.93). We observe that 

1 
Psa = F~H(~ :k,)v(w :k) 

= B,(k : k,), (6.94) 

which is just the conventional beam pattern for a delay-and-sum array beam- 
former pointed at k,, and that 

Pl a= 
’ H g (w:kl)v(w:k)= B,(k:kl) (6.95) 

is just the conventional beam pattern for a delay-and-sum array beamformer 

pointed at kl. 
Thus, we can interpret the optimum array pattern as the conventional 

beam pattern pointed at the signal minus a constant times the conventional 
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beam pattern pointed at the interferer 

B&, k : k,) = 
A(w) l N 

,2 
W 

2 

l Bc(w, k : k,) - 1 ;zo2 . B,(kl : k,)B,(k : kl) 
I 

Note that this result follows directly frorn Figure 6.10. 

. (6.96) 

The value of the multiplying constant depends on two factors. The first 
is the value at kl of the conventional beam pattern aimed at k, . If the 
interferer happened to be at a perfect null in the conventional pattern, there 

would be no effect and therefore no reason to subtract it. If the interferer 
is at a sidelobe of the conventional pattern, we would need to subtract a 
proportional amount. The second term depends on the value of Na;. As 

No; + 00, this term approaches one. 
The combined effect of the two terms is to create a partial null in the . 

beam pattern at k 1. The value of the beam pattern at kl is 

B,(kl : k,) = 4 > 
5 ’ NB,(kl : k,) 

W 

(6.97) 

as N,P goes to infinity the optimum array pattern has a perfect null at the 
direction of the interferer. For finite INR, it creates a partial null (or notch) 
whose depth is adjusted to minimize the output variance. 

All of the discussion up to this point applies to an arbitrary array. We 
now specialize the results to a linear uniformly spaced array. 

Consider the standard lo-element linear array along the x-axis. From 
(2.92), t,he conventional beam pattern for an array pointed at broadside 

( u,s = 0) is 

(6.98) 

where u = co&. 

It is useful to divide u-space into three regions in order to analyze the 
MVDR processor: 

SIDELOBE REGION: 0.2 5 Iu( < 1.0, - 

OUTER MAIN LOBE: 0.045 < IuI < 0.2, - 

HPBW REGION: 0 < (UI < 0.045. 
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Figure 6.13 A, and A,IA, versus u@VVNN; 1NR = 0 dB and 20 dB. 

“,‘BwlVIV 

We assume the interferer arrives from UI. In Figure 6.13, we plot A, 
as a function of UI/BWNN. We also plot A,IA, as a function of UI and 
observe that its maximum is at the HPBW point. We see that as soon as 
the interferer is outside the main lobe (‘1~1 > O.~BWNN) the optimum array 
gain is (N l INR) dB. The conventional array gain has the same behavior as 
the beam pattern in u-space. 

In Figure 6.14(a) and 6.14(b), we show the optimum beam pattern for 
two values of UI in the sidelobe region for an INR (03) of 10 dB. In Figure 
6.14(c) and (d), we show the optimum beam pattern for the same values of 
UI in the sidelobe region for an INR (a;) of 20 dB. We see that the beam 
pattern is essentially the same as a conventional beam pattern except for the 
region near the null. 

In Figure 6.15, we repeat Figure 6.14 for two values of UI in the outer 
main-lobe region; UI = 0.18 and UI = 0.09. For UI = O.iS, the behavior is 
similar to the sidelobe region except for the growth of the sidelobe nearest 
to the null. However, at UI = 0.09, two effects are apparent: (1) the main 
lobe has shifted to the left (away from the null) and its height is larger than 
unity; (2) the height of the right sidelobe is about -3 dB. 

In Figure 6.16, we consider two values of UI in the HPBW region; UI = 
0.0433 and ul = 0.02. We only show the beam pattern inside the BWNN. 
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Figure 6.14 Optimum beam pattern for sidelobe interference: (a) 012 = 10 

dB, UI = 0.30; (b) 0; = 10 dB, uI = 0.50; (c) 0; = 20 dB, uI = 0.30; (d) 
2 

O-I = 20 dB, uI = 0.50. 

We see that the main lobe has split into two “sidelobes” whose heights are 
significantly larger (about 5 dB at the HPBW point) than the gain in the 
signal direction. 

Thus, as the interferer moves inside the main lobe the peak of the op- 
timum pattern is no longer pointed at the target and the “off-target” gain 
is significantly larger than the “on-target” gain, which is constrained to be 
one. 

Due to the slope of the beam pattern at the MRA (in this case, when us = 
0)j we would anticipate that the beamformer will be sensitive to signal DOA 
mismatch. In Section 6.6.2, we analyze DOA mismatch. We assume the 
signal actually arrives from ua and derive an expression for the normalized 
array gain Amvdr (va : vm)/Ao(vm) . The result for the scenario in Figure 
6.16 is shown in Figure 6.32. We see that the array gain is very sensitive to 
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Figure 6.15 Optimum beam pattern for outer main-lobe interference: (a) 012 
= 10 dB, uI = 0.18; (b) 0; = 10 dB, uI = 0.09; (c) 0; = 20 dB, uI = 0.18; 

cd) 
2 

O-I = 20 dB, uI = 0.09. 

mismatch. In some applications, the variation may be acceptable. However, 
in most cases, we will want to impose additional constraints in order to 
maintain reasonably constant performance in the presence of small DOA 
mismatch. 

If the mismatch between the model and actual environment is due to 
array perturbations, then the sensitivity functions that we encountered in 
Chapter 2 (2.209) is an appropriate measure. 

The sensitivity function is the inverse of the white noise gain, 

T(h) = A,y?k) = /w:(h)/2 l 
(6.99) 

For the single interferer case, the sensitivity function is obtained by substi- 
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tuting (6.82) and (6.83) into (6.99) to give 

T - 1 1 + 2N+x2 + N2a4a2 I -- 
N (1 + N+x~)~ ’ 

(6.100) 

where 
a2 = 1 - lp,112. (6.101) 

The sensitivity function is plotted versus a2 in Figure 6.17(a). This plot is 
valid for an arbitrary array. In Figure 6.17(b), we plot T versus z~/BkVjv~ 
for a standard linear array. 

To compare A, and A, is interesting, but not particularly relevant, as we 
argued in Chapter 3 that we would seldom use uniform weighting. A more 
realistic comparison is to compare A, to some of the patterns we designed 
in Chapter 3 (or Chapter 4 for planar arrays). 
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The array gain against white noise was computed for the weightings in 
Chapter 3 (recall that the white noise array gain A, and directivity D are 
identical for a standard linear array). The array gain against directional 
noise (in the absence of white noise) is just the magnitude of the beam 
pattern squared. When the INR is near unity, we must calculate the array 
gain. However, for large 1NR we can use the value of the beam pattern 
squared. 

In Figure 6.18, we plot the array gains and array gain ratios for the 
Dolph-Chebychev weighting. The result is what we would expect. Outside 
the main-lobe region, the array gain is just the beam pattern squared. Thus, 
for an INR of 20 dB, the performance may be acceptable. However, as the 
INR increases, the optimum array gain continues to improve (A, ~si N l INR) 
while the deterministic array gains remain the same. 

We can summarize the main results as: 

(i) In the sidelobe region, the MVDR beamformer offers significant per- 
formance improvement for larger INR and gives an acceptable beam 
pattern. 

(ii) In the outer sidelobe region, the beam pattern of the MVDR beam- 
former starts to degenerate. 



Multiple Plane-wave Interferers 465 

(iii) In the HPBW region, the MVDR beamformer generates a solution 

that distorts the main lobe and is sensitive to model mismatch. One 
of the major issues that we discuss in later sections of this chapter is 
techniques to provide “main-lobe protection” when a strong interferer 

arrives in the HPBW region. 

It is important to note that our comments about the MVDR beamformer 
are in the context of the objective of the beamformer. We are steering the 
the beam in a specific direction unz. Our objective is to reproduce a signal 
coming from that direction as accurately as possible. If the signal is a digital 
signal, we want to detect the bits with a minimum probability of error. We 
do not want the performance to degrade significantly for signal directions 

close to u,. The allowable variation in uu will depend on how wide an area 
in u-space is covered by a given steering direction. 

In Chapters 8 and 9, we study DOA4 estimation. In this problem, and the 
spatial spectral estimation problem, we want the array processor to be very 
sensitive to the direction of arrival of the signal. We discuss the performance 
of the MVDR beamformer in that context in Section 9.2. 

6.3.2 Multiple Plane-wave Interferers 

In this sect ion, we generalize the single interferer results from Section 6.3.1 

to the case of D plane-wave interferers. 

The realization of interest is shown in Figure 6.19. There are D paths, 
which are normalized steering and sum devices corresponding to the D in- 
terfering noises. Notice that they are not orthogonal. The other path is a 
normalized steer-and-sum device corresponding to the desired signal. The 
transform of the interfering noise can be written as 

D 

N,(w) = x N;(w)v(w :k i> (6.102) 
i=l 

and 
D D 

s,,(w> = x 1 sn,lLj(+o :k i)VH(W 1 kj). (6.103) 
i=l j=l 

We define an .N x D dimensional matrix, 

VI = 
i 

v(kl) i v(k2) j 0. l , v(kd ] 7 j (6.104) 
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Figure 6.19 Directional noise receiver. 

which represents the composite array manifold, and 

%1(w) S21(4 l l l 

SI = &2(w) S22(w) l l l 

I  

7 
(6.105) 

. . . . . . sDD(w) 

is the interference spectral matrix. We assume that the signal and interfer- 
ence are statistically independent. 

Suppressing the w and ki dependence, the total interference plus white 
noise spectral matrix is 

S - o;r + VI SI VB. n- 

Using the matrix inversion lemma 

(6.106) 

1 - 
s l n = 

o2 
I -- (6.107) 

W 

Then, (6.107) can be written as 

‘1 H I - &(I+ ,zv, Vr)-l$vr 
I 

. (6.108) 
W W 
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Figure 6.20 Optimal direct ion al noise receiver. 

From (6.23), the MVDR beamformer is 

(6.109) 

where 

1 --I H 
$6 7 (6.110) 

W 

is a D x N matrix. We shall see that H,, is the matrix filter whose output 
is the minimum mean-square error estimate of nl(t) in the absence of the 
desired signal. 

The matrix psr is the 1 x D spatial correlation matrix, 

PI 
n v,“VI 

s - N 
. (6.111) 

The resulting receiver is shown in Figure 6.20. Thus, the optimum receiver is 
estimating the directional noise vectors and then subtracting the component 
of the estimate that is correlated with the desired signal. The ith component 
of the spatial correlation matrix is 

[P 1 
vHva s 2 

SI i = - = B,(ki : k,). 
N 

(6.112) 

Similarly the ijth element of VfW* can be expressed as a conventional beam 

pattern 

[vpI]ij = , vfvj = NBc(kj : ki). (6.113) 
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Thus, all of the spatial relationships can be expressed in terms of conven- 
tional beam patterns. 

The final term to be defined in (6.109) is A. Substituting (6.108) in 
(6.15), we obtain 

A 1 - PI S 
I 

- 
1 

SI 
2’ 

W 

N . H 
PI S (6.114) 

The first performance measure of interest is the array gain. The noise 
spectrum at a single sensor is 

S n =l*SIl+o~. 

Using (6.108) and (6.115) in (6.28) gives 

A, = N (l+ w) (I- Ncx), 
W 

where -1 
a! = PSI 

[ 
I+ 

sI H 
yG VI 1 SI H 

W 
,2&I* 

W 

The CY. can also be written as 

The second measure of interest is the optimal beam pattern 

B&k : k,) = 9 I+ 
sI H 

W 
yI VI 

W 

Note that 
B,(k : kl) 

vgv k B,(k : k2) 
- - - 

N 
. n B,(k : kI) - 

Bc(k:: kD) 

(6.115) 

(6.116) 

(6.117) 

(6.118) 

(6.119) 

(6.120) 

is a D x 1 matrix of conventional beam patterns. This is what we would 
expect from the receiver configuration in Figure 6.20. Then (6.146) can be 
written as 

B*(k : ks) = -+k$ [B,(k : k,) - NpsI [I + $$Vf%]-l $B(k : kI)] . 
W W 

(6.121) 
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Thus, the optimal beam pattern is the weighted sum of D + 1 conventional 
beam patterns corresponding to the desired and interfering signals. 

If the interfering signals are uncorrelated, we can write 

sI n 
o-2 

- 
W 

- 2 
O-1 0 

2 
a2 

0 
. . . 

Then, (6.109) can be written as 

(6.122) 

lw: = g [I-VI [jrry+vpI]-kq ./ (6.123) 

For large $, this reduces to 

/I = T- [I-V, [vyv,l’v:i] ,I (6.124) 

which can be written as 

WH 
A 

0 = 
-,ffpl 

a2 
s I 7 (6.125) 

W 

where PI is the projection matrix onto the interference subspace and Pf 
is the projection onto a subspace orthogonal to the interference subspace. 

Thus, we are putting a null on each of the interfering signals. 
The single plane-wave case illustrated many of the properties of the mul- 

tiple plane-wave interference case. In the sidelobe region with multiple sep- 
arated interferers, the effects are similar to the single interferer case. 

We consider two examples to illustrate some interesting behavior. 

Example 6.3.1 
Consider a standard lo-element linear array. The desired signal is at q!~ = 0. There are 

two uncorrelated interfering signals located symmetrically about $ = 0. In Figure 6.21, 
we show the optimum beam pattern for a; = 20 dB. We see that in the sidelobe region 
the optimum pattern has a deep notch at the locations of the interferers and the other 
lobes are well behaved. As the interferers move inside the main lobe, the optimum pattern 
has two large symmetric sidelobes plus three other sidelobes that are larger than the main 
lobe. 

In Figure 6.22, we show the array gain as a function of U/BWNN for various values of 
o-f (for N > 10). - 

Example 6.3.2 
Consider a standard linear array with 21 elements. (This is the same array as in 

Example 3.7.2.) We assume there are three interferers at u1 = 0.21, u2 = 0.22, and 
u3 = 0.23. 
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Figure 6.22 Array gain/N versus u/BVVNN. 

The resulting beam pattern is shown in Figure 6.23 for several values of INR. The 
corresponding array gains are indicated. 

We see that for ai = 20 dB; the pattern is still different from the result in Example 
3.7.2 (Figure 3.40). (The MVDR preserves the main lobe and the first sidelobe.) This is 
because the MVDR beamformer does not need to create three nulls. 

6.3.3 Summary: Discrete Interference 

For discrete interference, the optimum receiver forms a signal plus inter- 
ference subspace and then performs optimal processing in that subspace. 
We could have derived the optimum processor by arguing that the signal 
plus interference subspace forms a sufficient statistic for the optimization 
problem. 

If the INR is modest, then the optimum processor forms notches (partial 
nulls) in the direction of the interfering signals. As the INR increases, these 
notches approach perfect nulls. 

If the interferers are outside the main lobe, then the beam pattern of the 
optimum processor is well-behaved and we can obtain a significant improve- 
ment in array gain. If the interferers are inside the main lobe, the optimal 
solution creates large spurious lobes away from the desired MRA. We will 
look at several alternative approaches later, but will find that main-lobe 
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Figure 6.23 Beam pattern for three interferers: N=21, uS=O, u~=O.21, 0.22, 
0.23; (a) 0; = 0 dB; (b) a; = 10 dB; (c) 0: = 20 dB. 
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interference is a difficult problem. 

6.4 Spatially Spread Interference 

In this section, we consider the performance of the MVDR beamformer in 
the presence of spatially spread interference plus white noise. In Section 
6.4.1, we consider the physical noise models that were developed in Section 

5.3.3. In Section 6.4.2, we consider the ARMA models that were developed 
in Section 5.6. 

6.4.1 Physical Noise Models 

In Section 5.3.3 and the associated problems (e.g., Problems 5.3.1-5.3.3), we 
developed several noise models that corresponded to noise fields encountered 
in acoustic environments. 

We consider two examples to illustrate the performance of an optimum 

processor in that environment. 

Example 6.4.1 
Consider a st)andard lo-element linear array oriented in the vertical direction (along 

the z-axis). The frequency-domain snapshots are 

The noise contains a white component with spectral 
noise component whose spatial spectral mat rix is 

matrix ai I 

& [sinc( kOAp) - cos( kOAp) 
0 

(6.126) 

and a high-surface 

cost?, ) 
> 

(6.127) 

and a = 1 (see Problem 5.3.1). The surface noise and the white noise are uncorrelated. 
The optimum array gain is obtained by: 

(i) Evaluating So(w : 8,$) at the sensor locations to obtain the spectral matrix Sn, (w). 

(ii) Find Snl(w) = [S,,(w) + &I]-’ numerically. 

(iii) Substituting into (6.28) to find A,. 

(iv) Substituting into (6.32) gives A, for comparison. 

In Figure 6.24 we show the results as a function of 0, for several values of S,(w)/&. 

Example 6.4.2 [Bag761 
We consider the same model as in Example 6.4.1 except Sn, (w) corresponds to a 

high-layer noise environment. The spatial spectral matrix is 

s,,(w) = 

(6.128) 
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Figure 6.24 MVDR beamformer: array gain versus 8, for various &&,)/a~ 
levels; high surface noise. 

with or = 1 (see Problem 5.3.2). We repeat the steps in Example 6.4.1 to obtain the 
optimum array gain and the conventional array gain. We show the results in Figure 6.25 
as a function of 8, for several values of S,(w)/&. 

6.4.2 ARMA Models 

In this case, we assume that the spatially spread noise process can be mod- 
eled as an autoregressive process of order 13 where N, the number of sensor 
elements in the standard linear array, satisfies 

N > 2p+ 1. - (6.129) 

In order to implement the optimum beamformer we need to evaluate 
Sir, where n(k) is an AR(p) process (see (5.308) and Figure 5.22). We first 
consider the case in which the sensor noise is negligible. Subsequently we 
consider the case of small sensor noise and then the general case. 

A formula for Sil in terms of the AR parameters was given in (5.338). 
We give two examples. 
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For a complex AR(l) process, For a complex AR(l) process, 

s l 1 - 
n = 

a2 
U 

a PI 
+;a[l]i2 

0 0 - 1 . . . 0 
a[l] 1 a * PI 0 . . . 0 

0 aPl 1 + ]a[l]12 a*[l] l . l 0 
. . . . . . . . . . . . . 

0 0 . . . 

0 0 . . . 0 41 1 ~ 
(6.130) 

We observe that S;’ is a Hermitian, persymmetric matrix, but it is not 
Toeplitz. We also observe that we can partition S,’ as 

- 
s l n = 9 (6.131) 

and the middle (N - 2) x N matrix B is a right circulant matrix as well as 
a banded Toeplitz matrix. 
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For a complex AR(2) process, we have, 

s,l = 1 
2 

0T.L 

1 a* PI a* PI 
4ll 1 + 14112 a* [l] + a[+* [Z] 

a[21 a[11 + a*[l]a[2] 1 + la[l]l” + Ia[2]1” 

. . . . . . 

0 . . . a[1 
0 . . . 

0 . . . 

1 + a* PI421 
aPI 

0 

0 

a* PI 
a* [l] + a[l]a* [2] 

1 + la[1]12 + Ia[2]12 a* 
a[l] + a* [l]@] 

aP1 

. . . 0 

. . . 0 

. . . 0 

[l] + a[l]a*[2] a*[21 
1 + 141112 a* PI 

aPI 1 J 
(6.132) 

For the AR(p), (5.338) can be written as 

ij 
= -f$C(a[i-k]ul[j-k]-ua*[N-i+k]a[N-j+k]) 

k=l 

i=1,2,999,N;j=1,2;*9,N, (6.133) 

where u[k] = 0 for k < 0 and k > p. 
We consider a simple example to illustrate the result. 

Example 6.4.3 
Consider an N-element standard linear array with n(k) consisting of a complex AR(l) 

process and assume there is no observation noise. We assume Iv is odd. 
Then, the MVDR filter is 

wo H = RVH(*,)S,l, 

and the optimum array gain is 

(6.134) 

A0 = [E [Ini(rc) A-l = (1 -7-&I12)A-” (6.135) 

where 
A = [VH(~s)S,‘V(&)] -l l (6.136) 

The elements of the MVDR filter (omitting the A term temporarily) are obtained by 
using (6.130) in (6.14) 

I 
Wol = e3 *+% [l - Ia+ -eTh -w ] ) (6.137) 

Wbn = ej[y-(n-1)]@3 _ al ,j(+S-+TL) 
[I 1 + (1 + Iall”) - (,l]e-j(+S-q”)] 

- - ,pg-(~-O]& [ (1 + Ial I”> - 2lail cos($b - I&)] 

n = 2,3, l -  l , N - 1, (6.138) 
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wbhr = ew3 ~~~. [l - (,+p--] = w;, (6.139) 

where the prime denotes the absence of A. 
The beam pattern for a standard 11-element linear array is shown in Figure 6.26. We 

see that as the peak of a: moves inside the main lobe, the MVDR beamformer narrows 
the main lobe, causing a significant increase in the sidelobes. 

To find the array gain, we substitute (6.130) into (6.28) and obtain 

A, = & [N - 2(N - l)lall cos(tis - q&x> + (N - 2)iai2] 

- - i-$-Q [N(l - 1~11”) - 2(N - l>lUll (Ial I - COS(d)s - *7-J)] 

2(N - 1) Iall 
l+N- 

1 - lull2 
(lull - COS(*s - *n)) - (6.140) 

The array gain is plotted versus Au/B WNN = (us -un)/BW~~ in Figure 6.27 for several 
values of Ial 1. 

As Iall approaches unity, the required INfi for the no white noise assumption to be 
valid becomes higher. In these cases, the array gain is calculated numerically. 

In Figure 6.28, the array gain is plotted versus ~.L/BWNN for various values of Iall 
and a: /a$. We also show the result for a single plane wave from Figure 6.13. We see 
that, as Iall increases, the array gain approaches the single plane-wave result. For small 
Ial 1, the interference is spread over more of u-space and the optimum beamformer is less 
effective. In the limit, as Iall goes to zero, the AR process is identical to white noise and 
A3 = 10.41 dB. 

6.5 Multiple Plane-wave Signals 

In this section, we consider the case in which there are multiple desired 
plane-wave signals. In Section 6.5.1, we consider MVDR beamformers. In 
Section 6.5.2, we consider MMSE beamformers. 

6.5.1 MVDR Beamformer 

In this section, we find the optimum distortionless matrix processor for D 
plane-wave signals. Using the frequency-domain snapshot model, 

X(w) = &F(w) + N(w), 

where V, is an N x D array manifold matrix, 

V S= [ 
v(w:kl) i v(w:kz) i -0. i . , v(w : kD) ] 7 

(6.141) 

(6.142) 

F( > W= 

Fl cw> 
fib4 . . . 

_ Fdw) 
(6.143) 
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Figure 6.26 Optimum beam pattern: complex AR(l) interference in the 
absence of white noise: Iall = 0.9; (a) $ = 0.57r; (b) 4 = -0.47r; (c) C#I = 
-0.67~; (dj 4 = -0.67~; (e) 4 = -0.7075 no additive white noise. 

is the Fourier transform of an unknown nonrandom signal vector. The pro- 

cessor, W H (w), is a D x N distortionless matrix processor: 

WH(“) = 

Suppressing the w dependence, the distortionless criterion implies, 

(6.144) 

wyVF = Fl, 
vv?VF = F2, 

$JVF = FD. (6.145) 
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Figure 6.27 Array gain: complex AR(l) interference; A, versus Au/BWNN; 
Iall = 0.2,0.5 and 0.7. 

Because (6.145) must be satisfied for arbitrary F, it places D constraints on 
each wi. For ~1, 

w~vlFl = F’I, 

WF v2 F2 = 0, 

wfboFo= 0. 

These constraints imply, 

H WlVl’ 1, 
H Wl v2 = 0, 

H w1 VD = 0. 

or, for the ith beamformer, 

H 
Wi Vj = 6ij i,j = l;-,D. 

(6.146) 

(6.147) 

(6.148) 
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Therefore, the ith beamformer is distortionless with respect to the ith signal 
and puts a perfect null of the other D - 1 signals. The output noise of the 
ith beamformer is 

o2 ni = WY S, Wi. (6.149) 

We minimize Eli subject to the D constraints on wi. We define 

i = l,... , D. (6.150) 

Minimizing gives 

WHS,+XijV~=O~ i,j=1,"*,D, (6.151) 

or 
WEi i =-xij~,HS,~, i,j= l,***,D. (6.152) 

Substituting (6.152) into (6.148) gives 

- XiiVHSG’Vi=l, i=l,..*,D. (6.153) 

-XijVHSi’vj ~0, i,j= l,**-,D, (6.154) 

or 
-XijvHSi’vj=Sij, i,j=l,...,D. (6.155) 

We define a D x D matrix A whose ijth element is Xij. Then (6.155) can 
be written in matrix notation as 

-A[VH s,l v] = I, (6.156) 

A = -[VH s,l VI-l. (6.157) 

Then, the optimum distortionless beamformer can be written as 

w,H, = [VH s,l VI-’ VH s,l. (6.158) 

The output of W,H, is the D x 1 vector, 

h 
F 0 = 

1 
VHS,lV -lvHs,Ix, 

I 

which is also the minimum variance unbiased estimate of F. 

(6.159) 
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It is also straightforward to show that 

h h 
F ml= 07 F (6.160) 

if the Gaussian assumption is added. 
For the special case of white homogeneous noise, 

the optimum processor is 

s n = 0;1, (6.161) 

wg = [VHV]-WH . (6.162) 

Thus, 
e. = [VW]-WHX. (6.163) 

This result in (6.163) was first pointed out by Schweppe [Sch68]. As he did 
not include the derivation in the paper, it has been rediscovered in several 
subsequent papers. 

It is useful to rewrite the result in (6.148) in a different manner. Consider 
the first signal and partition V as, 

v = [v Iv,]. (6.164) 

Then 

VHV = 

H ;H 
v1 Vl ’ v1 VI I 

(6.165) 

Using (6.165) in (6.163) gives 

h TT f 
F ml1 = cvn 1 {I - Vr(v:‘h)-‘Vq x, (6.166) 

where c is the normalizing constant, 

C= 
1 

+[I - V,(vfwr)-lv~]vl}-l l (6.167) 

The matrix in the brace is just a projection matrix onto the subspace 
defined by the columns of VI (the interference subspace) : 

PI n V~(V~V$W~. - (6.168) 
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Figure 6.29 Optimum beamformer: multiple plane waves. 

The complement of the projection matrix is 

Pl I = I - PI. (6.169) 

Then we can write h 
F ml1 = cvHPfX 1 l 

(6.170) 

The representation in (6.169) and (6.170) emphasizes that when we want 
to simultaneously find the ML estimate of D plane-wave signal waveforms 

or construct a D x N MVDR processor, the optimum receiver treats the 
ith signal (i = 1,2,.=* , D as the desired signal and the other (D - 1) sig- 
nals as interferers and puts “perfect” nulls on them. Note that this result 
only corresponds to (6.124) in the limiting case of large 0;. The optimum 
beamformer is shown in Figure 6.29. 

6.5.2 MMSE Processors 

In this case the signal component of the received waveform consists of D 
plane-wave signals arriving from different .directions. The source signals 
are sample functions from stationary zero-mean random processes that are 

uncorrelated with the noise field but may be correlated with each other. We 
define the source signal snapshot vector as a D x 1 complex vector, 

F(w) = 

Fl cw> 
w4 

_ FD(w) 
The source spectral matrix is Sf and is assumed 

manifold matrix, V,, is an N x D matrix, 

(6.171) 

to be of rank D. The array 

V S- v(w : kI) i v(w : k2) i 0-e i , v(w : kD) ] 1 (6.172) 

where we have suppressed the w dependence on the left side of (6.172). The 

spectral matrix of the input is 

S X = V,SfV,H + s,. (6.173) 
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We want to find the MMSE estimate of the D source signals. Thus, the 
desired signal snapshot vector D(w) is a D x 1 vector. I 

D(w) = F(w), (6.174) 

and H, will be a D x N matrix processor whose output is the desired estimate 
D(w). The mean square error is defined as 

t  = E { I I  D(w) -  I j ( , )  I I ”>  l 

Proceeding as in the single plane-wave case, we obtain 

(6.175) 

H 0= S -1 
dXHSX 7 (6.176) 

where 
S dx H = SfV,H. (6.177) 

Taking the inverse of S,(w) gives 

- 
s l x = s,l [I - V,(I + s#%,‘v,)-‘s&%~~] ) (6.178) 

where the w and k& = 1, .** ,O) dependence are suppressed. Then using 
(6.177) and (6.178) in (6.176), we have 

H 0 = SfVHS,l [I - V(I + sfvHs~~V)-‘SfvHs~‘] 

= SfVHS,l - SfVHS,‘V(I + SfVHS,lV)-l x 

SfVHS,l. (6.179) 

This can be put in more convenient form by rewriting the first term. Then 

H 0 = 1 (I + SfVHs;lV)(I + SfVHS,lV)-lSfVHs;l 

-sgHS,lV(I + s~v~s~~v)-‘s~v~s~‘) ) (6.180) 

which reduces to, 

) Ho = (I + SfVHS,lV)-lSfVHS,l. ) (6.181) 

This result is the multiple plane-wave generalization of (6.47). The opti- 
mum processor is shown in Figure 6.30. Note that the first matrix operation 
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fib) 
vHs-’ n 

+(I+SfVHS,lV)-lSf~ b 

Figure 6.30 MMSE processor, multiple plane-wave signals. 

Figure 6.31 MMSE filter for single signal (temporally uncorrelated). 

is generating a set of D sufficient statistics that are then multiplied by a ma- 
trix that takes into account the signal spectral matrix and generates o(w). 

Note also that the ith output is the MMSE estimate of the corresponding 
source signal J$ (w>. In other words, minimizing < in (6.175) is equivalent to 
minimizing each &, 

& = E {p&(w) - bi(W)i2}. (6.182) 

Therefore, we would expect that the multiple plane-wave signal problem is 
equivalent to D single plane-wave signal problems in which the other D - 1 
signals are treated exactly as if they were noise (see Problem 6.5.5). If the 

signal of interest (e.g., Fr(w)) is uncorrelated from the other D - 1 signals, 

then, 

(6.183) 

In this case the processor in Figure 6.30 can be partitioned into the configu- 
ration shown in Figure 6.31. We observe that this is exactly the distortionless 
processor shown in Figure 6.10 followed by a scalar gain. 

A special case of interest is when the noise is temporally and spatially 
uncorrelated. If, in addition, the spectral height is the same at each sensor, 
then 

S,(w) = a;1 (6.184) 
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and H,(w) becomes, 

6.6 Mismatched MVDR and MPDR Beamformers 

/Ho = (I + gVHV)-l %V”. 1 (6.185) 

Comparing (6.181) and (6.158), we see that both the MVDR processor 
and the MMSE processor use the same matrix operation, V”s,r, to create 
the D-dimensional signal subspace. The MVDR processor then uses a D x 
D matrix operation to generate a distortionless output, while the MMSE 
processor uses a different D x D processor to generate the MMSE output. 

Most of the behavior in the single-signal case carries over to the multiple 
plane-wave signal case. Several examples are given in the problems. 

6.6 Mismatched MVDR and MPDR Beamformers 

6.6.1 Introduction 

In Section 6.2, MVDR and MPDR beamformers were derived and their per- 
formance was analyzed. In this section, their behavior is analyzed when they 
are mismatched. As a starting point, we repeat the formulas for the ideal 
MVDR and MPDR beamformers. 

From (6.14), 

W,HV& = hv~S,l (ideal MVDR) . (6.186) 

From (6.71), 
(ideal MPDR) , (6.187) 

where Al is the reciprocal of the denominator in (6.71). In (6.186) and 
(6.187), we assume the beamformer is designed assuming the array manifold 
vector of the desired signal is v,. The subscript m denotes model. The w  
and k, are suppressed. 

In a typical application the beamformer is scanned across the region 
of (8,@) space of interest by changing v, in discrete steps. For example, 
for a standard linear array, one might scan across u-space by changing the 
steering direction in un = 2/N steps. With this step size, conventional 
beams pointed at different steps are orthogonal. At each step, the MVDR 
or MPDR beamformer is constructed, assuming the signal of interest arrives 
along the steering direction vm. However, all signals in the interval, -l/N < - 
u 5 l/N, must be treated for the beamformer pointed at u = 0. Therefore, 
the effect of this DOA mismatch must be considered. 
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In many applications, the step size can be reduced. This reduces the 

signal mismatch problem but increases the time required to scan a given 
area. 

There are other sources of mismatch. The sources of mismatch can be 
divided into three cases. 

Case 1 
The steering vector in (6.186) or (6.187) is unequal to v,. This can 

happen in two ways. 

Case la 
The steering vector is pointed at the wrong point in frequency-wavenumber 

space because 

a, # a,, (6.188) 

ws # wm, (6.189) 

or the velocity of propagation is different from that used in the model (this 
difference may occur in sonar applications). 

In (6.188), the steering vector is pointed at the wrong coordinates in 
azimuth and elevation, but the frequency is correct. In (6.189), the steering 
vector is pointed at the correct coordinate in azimuth and elevation, but the 
frequency is incorrect, so the wavenumber is incorrect. 

Case lb 
The steering vector is pointed at the correct point in frequency-wavenumber 

space, but the array has been perturbed. Array perturbations could include 
errors in sensor gain and phase or location of sensors. Then, 

Vm(kd) # V&d)* (6.190) 

Recall that we studied this problem in Chapter 2 in the context of the change 

in beam pattern and array gain. 
A combination of Cases la and lb is also possible. 

Case 2 
The spatial spectral estimates will not be exact if there is a finite amount 

of data. Thus, 

s-l # s, (6.191) 

and 

(6.192) 



490 6.6 Mismatched MVDR and MPDR Beamformers 

We might expect that, depending on how the various errors are modeled, 
that Cases la, lb, and 2 would all have a similar effect on the beamformer 
performance. The advantage of recognizing this similarity is that, when the 
MVDR or MPDR beamformer is modified to improve performance for one 
kind of mismatch, the modification will generally improve performance for 

the other types of mismatch. 

In Section 6.6.2, we study the case in which the signal mismatch is due to 
the desired signal arriving from a different direction than the direction that 
was used to design the beamformer. This is referred to as DOA mismatch. 

In Section 6.6.3, we consider the case in which the steering vector mis- 
match is due to array perturbations. 

In Section 6.6.4, we introduce a technique referred to as diagonal load- 
ing to make the beamformer more robust in the presence of mismatch. 

In Section 6.6.5, we summarize our results and discuss other techniques 
for improving robustness. 

We defer our analysis of Case 2, the finite data problem, until Chapter 
7. We will find that the techniques that we use to improve robustness in 
the presence of signal mismatch will usually improve robustness to spatial 
spectral matrix mismatch. 

6.6.2 DOA Mismatch 

In this section, we discuss the problem of signal mismatch in MVDR and 
MPDR beamformers. We also consider the conventional beamformer for 
comparison.5 

The weight vectors for the three beamformers are: 

and 

where 

WH 
VH m 

c = N 7 

H 
Wmvdr = 

vf$,l 

V,HS,lVm ’ 

H 
Wmpdr 

VgS,lVm ’ 

(6.193) 

(6.194) 

(6.195) 

Vm n V(W 1 km). (6.196) 

50~r discussion follows Cox [Cox73]. 
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Using the frequency-domain snapshot model, the input is 

X(w) = w-P(w) + N(w), (6.197) 

where 
v, L v(w : kO,) (6.198) 

is the actual array manifold vector. The vector v, can be different from 

vm because the signal is actually arriving from a different direction than we 
assumed, or it could be different because the array geometry is different than 
our model. In this section, we initially assume that va is deterministic. 

If there are interfering plane waves, they are included in N(w). For 
simplicity, we assume that the noise power is the same at each sensor. We 
can define a normalized noise covariance matrix as 

The output power is, 

S n= n s 

P 2 H 
0 = US W Va 

= Pc+P,. 

Therefore, the output SNR is 

SNR, 
P A”= - 
P n 

%r (6.199) 

2 
+ WHSnW 

(6.200) 

U,2 W H 2 
I I 

Va 

WHSnW ’ 
(6.201) 

The signal mismatch has two negative effects: it can lower the output signal 
power P,, and it can raise the output noise power P,. 

The array gain is 

A - I 1 
WHVa 

2 

- 
wHpnw l 

(6.202) 

The array gain for the three beamformers in (6.193)-(6.195) in the presence 
of mismatch will be computed. First, consider the conventional beamformer 
defined by (6.193). 

6.6.2.1 Conventional beamformer 

The output SNR, is6 

SNR, = 
~,H%hr-h 

(6.203) 

‘The notation for Bc(v, : vm) is used to emphasize the dependence on v. 
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As expected, the output signal power is reduced as a function of the beam 
pattern. The denominator is unchanged. 

The array gain is 

/A, (6.204) 

The ratio of the mismatched array gain to matched array gain is just the 
power pat)tern of the array 

Ac(va> 2 - - 
Ac(Vm> - iB&a ’ Vm>i ’ (6.205) 

We now consider the MVDR beamformer. 

6.6.2.2 MVDR beamformer 

In this discussion, it is useful to 

cos 2 
( 

-1 
VmTa 1 n 

p > 

introduce the generalized cosine notation, 

- - cos 2 
( 

-1 
Va7Vm 1 n 

p > 

n - 

H -1 2 
vmPn va 

( 
H -1 

VmPn Vm >( 
H-1 7 va Pn Vu 

> 

(6.206) 

which is an inner product in a P;’ space. 
Substituting (6.194) into (6.200) gives the output signal power, 

PS = +-v-;;ly-J =o$~;;y;;~2 

= 0,2 (~~~~~~~) COS2 (Vm,V, 1 p,l) . (6.207) 

This can also be written in terms of the beam pattern of the MVDR beam- 
former. 

P S = 0: (Bmvdr(Va 1 vrn)i2 l 
(6.208) 

The output noise power is 

Pn = A = [ymHS,lV,l-l , (6.209) 

which is unchanged from the nominal model. The output SNR, is 

SNR, = 
0: IV$,‘Va12 _ 0: IVf+~1Va/2 

VH~,lv - ,2 H -1 
(6.210) 

m m n VmPn Vm 
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and the mismatched array gain is 

vg&$a 
2 

A mvdr- fi -1 l 

VmPn b-b 

(6.211) 

The array gain can also be written as 

A mvdr va ( 
: v ) IBmvdr(Va 1 vm)12 

m= 
(V,Hp2Vm)-1 

= 1Bmvdr (Va z vm) I2 Ao(vm). (6.212) 

We can normalize this expression by dividing by A,(vm), 

A mvdr va ( ’ Vm’ = IBmvdr(Va I Vm)i2. 
A&m) 

(6.213) 

Thus, the mismatch degradation is completely characterized by the optimum 

MVDR beam pattern steered to vm. As long as the interference is in the 

sidelobe region, the main lobe of the beam pattern is well-behaved, so we 
would anticipate a gradual degradation due to mismatch. 

The expression in (6.212) includes two effects: the beamformer mismatch 
and the different matched array gain because va # vm. We can isolate the 
mismatch effect by dividing by Ao(Va), 

A mvdr va ( 
Ivrn’ = iBmvdr(Va I Vmji2#. 

A* (Va) 0 Va 
(6.214) 

We can also write the expression in (6.214) as 

A mvdr va ( : Vm) VgP$Va 
2 

A"(Va> = (VHP~'Vm)(VHp~lVa) m a 

(6.215) 

Using (6.206), the right side can be written as the generalized cosine, 

A mvdr I vm#va 2 

A I 
= cos 

mvdr vm=va 
(6.216) 

which is always less than one. Its value depends on the angular separation 

of vm and va and the noise field. The effect of the noise field enters through 
its eigenvalues and eigenvectors. 
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Denoting the eigenvalues and eigenvectors of pn by (Xl, . . l , XN) and 

(@ 17 l l l 
a~), respectively, we have 

VHflhl-l~HV 2 

COS2(V,,Va 1 p,l) = 
m a 

(V,~A-l~HV,)(Va~A-l~HVa) 

- - (6.217) 

where prni is the correlation between vm and C& and psi is the correla- 
tion between va and @i. (Recall that C & = N because of the normaliza- 
tion.) Thus, the cos 2 function emphasizes the components of v, and va 

corresponding to small eigenvalues and de-emphasizes those corresponding 
to large eigenvalues. 

Example 6.6.1 

Consider a standard lo-element linear array. The interference consists of a single 
plane-wave interferer plus white noise. We assume the interferer is at UI = 0.30. We 
assume 1~~1 < 0.1. In Figure 6.32, we plot the expressions in (6.213) for an INR = 10 dB 

(INR& $). The pl o is insensitive to the INR value. t u IU 

Example 6.6.2 (continuation) 
Consider the same model as in Example 6.6.1 except UI is inside the main lobe. In 

Figure 6.33(a), we assume UI = 0.0433 and plot the expression in (6.213) for several values 
of INR. In Figure 6.33(b), we assume UI = 0.02 and plot the same results. 

We see that the array gain is very sensitive to mismatch for both values 

of UI. If the actual signal DOA moves away from the interferers location, 
UI, the normalized array gain increases dramatically. However, if the actual 
signal DOA moves toward UI, the normalized array gain approaches zero. 
In some applications, this variation may be acceptable. However, in most 

cases, we will want to impose additional constraints in order to maintain 
reasonably constant performance in the presence of small DOA mismatch. 

6.6.2.3 MPDR beamformer 

In this beamformer, the spectral matrix of the entire input is inverted instead 
of the noise-only input. From the results with discrete interference in Section 
6.2, we can anticipate what will happen when vm # va. The processor will 
treat the signal along va as a discrete interfering signal and will put a partial 

null in its direction. In the limit, as a: approaches infinity, it will become a 
perfect null and the signal will be completely eliminated. 
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-0.1 -0.08 -0.06 -0.04 -0.02 

Figure 6.32 Normalized array gain of MVDR beamformer in the presence of 
mismatch (normalized by Ao(vm)) single plane-wave interferer with INR = 
10 dB at UI = 0.3, urn = 0. 

The array gain is obtained from (6.73), 

A mpdr = 
vp,lp,s,lv,’ 

(6.218) 

The spatial spectral matrix is 

s 2 
X = o,v,v,H + o:pn, (6.219) 

where 

o2 n = a; + ;tr [SC]. (6.220) 

In (6.220), S, denotes the non-white noise component. We use the matrix 
inversion lemma to obtain 

o2 
I-v,v;p+ 

o2 
1+ svH -lv, 

02 a Pn . (6.221) 
n n 



496 6.6 Mismatched MVDR and MPDR Beamformers 

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

( a 1 

20 I 1 I  I  I  I  1 1 I  

.  
-‘\ - INR=lO dB . ;\ A’ \ -- 

:\... ‘. \ . :. INR=20 dB . ,_.: ..,..,....: . . .: . . 
1. 0. : .-.- /NR=30dB - 

0 
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 

"a 

(W 

Figure 6.33 Normalized array gain, Amvdr (va : vm>/A&J, of MVDR 
beamformer in the presence of mismatch: (a) UI = 0.0433; (b) UI = 0.02. 

To evaluate the numerator in (6.218), we write 

1 vHs-lv - - 
mx a- 

o-2 n 
{ 

H 
VmPi'Va I- 

[ 

o2 o2 -1 

VFpG'Va$ 1 + sVH 

n ( ,2 a Pn -lVa ) I} . 
n 

(6.222) 

We denote the output SNR of an MVDR processor that is matched to 
Va as 111, 

M a; H -1 - - 7va Pn va. (6.223) 
n 

Then (6.222) can be written as 

V,HS,lVa = (6.224) 
VzPilVa 

a:(1 + M )  l 
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To evaluate the denominator in (6.218), we write 

1 
vf$,‘p,s,‘v, = vz7p,l 

[ 

o2 

n 
I - v&‘p$-$(l + M)-r 

n 1 1 
P -I . Il,zPll I - v],v~p,l--$ O2 (1 + M)-’ vm. 

n n 1 
(6.225) 

This reduces to 

v~s,lp,s,‘v, = 
1 H -1 

,qvmPr3 vm 
2 H -1 

1 - 21BmvdrI VmP, vrn- 
n 

,“4 (1 + M)-1 
n 

2 H --I 
+ IBmvdr( VmP, 

M o2 
VTTL 

(1 + M)2 CT! ’ 1 (6.226) 

where the argument of Bmvdr is suppressed. The form of this expression can 
be simplified if we use the generalized cosine notation and the relationship 

Sh2(Vm, V,; &l) = 1 - COS2(Vm, V& p,l>. 

Using these definitions in (6.226), the denominator becomes 

(6.227) 

DEN = ’ ~V~p~lV,(l+M)” [l + (2M + M2) sin2(Vm, ~a; pi’)] . (6.228) 
n 

Using (6.228) and the magnitude squared of (6.224) in (6.218) gives 

A mpdr va ( 1 Vm) = 
vgp$vrn /Bmvdr(Va : vm)i2 

1 + [2M + M2] Sin”(v,, v,; pi’) ’ 
(6.229) 

or equivalently, 

A mpdr = 
va Cos2(Vm,Va;p;1) 

l+[2M+M2] sin2(vm,va;&) ’ 
(6.230) 

Note that either (6.229) or (6.230) can be written in terms of MVDR 
array gain in a perfectly matched environment, 

A mpdr va ( IV,) = 

i 

A,(V,)IBo (b : Vm)i2 

l+ [2M + M2] Sin2(vm,~a,;pL1) i 

A&a) COS2(Vm7 Vu; p,l) - - 
1 + [2M + M2] sin2(vm,v,;p,‘) 

. (6.231) 
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sin2(vm, va; p,‘, 

Figure 6.34 Ratio of Amvdr to Ampdr versus sin2 (v,, vu; p,l> for various hf. 

The numerator of (6.231) is just the array gain of the MVDR filter in 
the presence of the mismatch. Thus, the denominator of (6.231) indicates 
the effect of including the signal in the matrix inversion. The ratio of the 
two array gains is 

A mvdr va ( : v,) 

A mpdr va ( 1 Vm> 
= 1 + [2M + M2] sin2(vm, v,; p,‘). (6.232) 

The result in (6.232) is due to Cox [Cox73]. 
In Figure 6.34, the array gain ratio is plotted versus sin2(v,,v,; pz’) 

for various values of the maximum SNR. Since the gain ratio depends on 
Ma sin2(vm, -J v,; pn ), large values of M can cause significant signal suppres- 
sion. For example, if M = 10 and sin2(vm,v,&) = 0.5, then the array 
gain ratio is 61. The output SNR of w: is 5.0 and the output SNR of WKPdr 
is 0.082. As we would expect from our directional noise examples, weak 
signals suffer less suppression than strong signals. 

The results in (6.230) and (6.232) are useful general expressions. How- 
ever, examining some specific array geometries will give additional insight. 

Note that, for white noise, (6.230) reduces to 

A mpdr va ( 
N IPma12 

: Vm) = 1 + [2M + M2][1 - Ipma12]’ 
(6.233) 
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Figure 6.35 Array gain of MPDR beamformer versus B$NN :N = 10, 
ASNR = -10 dB, l ., 30 dB. 

where 

IP 1 
2 

ma = cos2(vm, va; I) = IBc(va : vm)12y (6.234) 

and 

M=N-$!ASNR (6.235) 
W 

is the optimum array output SNR in the presence of white noise. The actual 
output SNR is 

o2 
SNR, = $Ampdr (Va 1 Vm) . 

W 

(6.236) 

We consider an example to illustrate the behavior. 

Example 6.6.3 
Consider a standard N-element linear array where the interference is white noise. In 

Figure 6.35, we plot the array gain in (6.233) versus Au/BWNN for various values of M. 
The result in Figure 6.35 is valid for N > 10. We see that if the ASNR is high (e.g., > 10 
dB) there is significant degradation for Aall Au/B WNN. 

- 

We see that as the SNR increases the performance degrades significantly 
with very small DOA mismatch. Therefore, if DOA mismatch is anticipated 
in the application of interest, then we need to find techniques to avoid the 
degradation illustrated in Figures 6.34 and 6.35. 
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Techniques that appear feasible include: 

(i) Impose additional constraints on the beamformer to prevent (or de- 
crease) the signal nulling. We consider quadratic constraints in Sec- 
tions 6.6.4 and 6.10. We will find that quadratic constraints lead to a 
technique called diagonal loading. This technique designs the beam- 
former by assuming that the white noise 0; is higher than its actual 
value. We consider linear constraints in Section 6.7. 

(ii) Eliminate (or reduce) the signal component before estimating S,. If 
we could achieve perfect signal elimination, then the MPDR beam- 
former would become an MVDR beamformer. This is possible in some 
applications. 

. . . ( > 111 The degradation relative to perfectly matched performance becomes 
worse as the SNR increases. When we study parameter estimation, 
we find that the accuracy with which we can estimate the DOA of a 
plane-wave signal increases with the ASNR. We show that for a single 
plane-wave signal impinging on a standard linear array in the presence 

of white Gaussian noise the root-mean-square error in estimating ua is 

L 
(ELI 

h 
ua - ua12])i _ - 
B WNN 

2 (6.237) 

for ASNR > 10 dB. In (6.237), K denotes the number of snapshots. 
The estimator for this case is simple to implement. In Figure 6.35, we 

have superimposed the normalized version of (6.237) onto the plot in 
Figure 6.35 for ASNR 2 10 dB and relabeled the axis as ?+/B~/I,TN = 

( 
h 

Ua - ua)/mNN. For our current purposes, it provides a guideline as 
to the maximum amount of mismatch that must be considered in a 
beamformer that includes a preliminary estimation step. 

We refer to beamformers that attempt to preserve good performance in 
the presence of mismatch as robust beamformers. A minimal goal for ro- 
bust beamformers is that their performance should never degrade below the 
performance of a conventional beamformer (or some other classical beam- 
former from Chapter 3 or 4) due to allowable mismatch scenarios. In the 

course of our development, we will see if this is a realistic goal. Note that this 
goal is not a useful mathematical statement because we have not identified 

any positive performance objective (such as maximum SNR, in the absence 
of mismatch). 
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Before considering solutions to the DOA mismatch problem, we consider 
the array perturbation problem and show that it causes a similar degrada- 
tion. 

6.6.3 Array Perturbations 

In this section, we discuss how array perturbations affect the performance 
of the MVDR beamformer and the MPDR beamformer. We recall from 
Chapter 2, that the effect of random errors in sensor gain and phase and 
sensor position was to add a constant floor to the beam pattern whose height 

was inversely proportional to the array gain in the presence of white noise, 
A,. If the weight vector was normalized such that 

H w &=I, (6.238) 

then 

A.0 = {II w 112}-1, (6.239) 

so that, as the norm of the weight vector increased, the sensitivity to array 
perturbations increased. 

In this sect!ion, we investigate the behavior of the output signal-to-noise 
ratio (SNR,) of MVDR and MPDR beamformers in the presence of array 
perturbations. 

This problem has been analyzed using various perturbation models in a 
number of references (e.g., Nitzberg [Nit76], Kleinberg [Kle80], Mucci and 

Pridham [MP81], Farrier [Far83], Q uazi [Qua82], Godara [God85], [God86], 
and Youn and Un [YU94]). 

The general frequency-domain snapshot model can be written as 

where F(w) is a composite source signal matrix that contains both the desired 

signal Fd(w) and the D plane-wave interfering signals FI(w). The vector $J 
describes the angles of arrival of the D+ 1 signals in e-space. The vector p is 
a real M x 1 vector that represents the perturbations in the array parameters. 
The additive white noise has spectral height ai. For notational simplicity, 
we assume that the array lies along the x-axis and assume the signals lie in 
the zy-plane. Thus, the direction of arrival of signals can be described by a 

scalar variable. We return to the 3-D case later. 
We first assume that p is a real Gaussian random vector 

Pp(P) = 
1 1 

(27r)T ppp exp 
-z(P - PdT$YP - PO> 

> 
, (6.241) 
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where p. represents the nominal value of the parameter vector p and Ap is 
the covariance matrix. Later, we consider the case when p is a real unknown 
nonrandom vector. 

We rewrite the array manifold vector to include the gain and phase of 
each sensor explicitly. 

In the general case, the p vector is a 5N x 1 vector containing a gain, phase, 
and position vectors. Define 

[ 1 an = a:(1 +Aa,>, n = O,*ee,N - 1, (6.243) 

Ml n = $;+A&, n=O,*ae,N-1, (6.244) 

b 1 *n = pEn+Ap,n, n=O,*a*,N--1, (6.245) 

IP 1 Yn = p;n+Ap,ny n=O,***,N---1, (6.246) 

[P I Zn = ppn+Ap,ny n=O,~~~,N--1. (6.247) 

The superscript “r-2’ denotes the nominal value. This model is similar to the 
model in Section 2.6.3. Then, p is 

P 
- - 

[ aT GT PZ P; PT IT* (6.248) 

In most cases we study a subset of the possible variations and p has a 
smaller dimension. The probability density of p is given by (6.241). 

In the second perturbation model, we combine a and $ into a complex 
vector g, 

Sn =cJ,@~,~=O,***,N-~, (6.249) 

where 
gn=(l+Aan)GA’n, n=O,l,ee*,N-1, (6.250) 

where Aan and A$, are the amplitude and phase errors. For small errors, 

(6.251) 

If the gain and phase errors are independent with equal variances 0; = 
$, then Agn is a zero-mean circular complex random variable. Then, 

E [AgiAgr] = 20:. (6.252) 

Thus, for small perturbations and equal variance for the gain and phase 
errors, the two models are the same. 
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This second model is more restrictive than the first model. The advantage 
of the second model is that it leads to analytic results in some cases where 
the first model is analytically difficult. 

We consider two examples to illustrate the effect of array perturbations. 

Example 6.6.4 
Consider a standard IO-element linear array along the x-axis. The signal arrives from 

broadside and the interferer arrives at uX = 0.30, +, = 0 with an INR = 20 dB. Assume 
that the sensor positions are subj ect to random perturbations in the x and y  directions. 
The pert urbations are statisti tally independent zero-mean Gaussian random variables with 
standard deviation opt where c+ = 0, 0.05X, 0.1X, and 0.2X. The perturbations are constant 
during the snapshot sequence. Thus, the actual array manifold vector, vp, is the random 
vector defined by (6.246). We assume that the actual spatial spectral matrix S,,, is 
available to design the beamformer. In an actual adaptive beamformer, SX,, will be the 
matrix we estimate. We design the beamformer using vnz, the nominal array manifold 
vector. Thus, using (6.71), 

H 
Wrnpdr,p = 

vgs,,l,v, l 

(6.253) 

In Figure 6.36, we plot the expected value of the array gain versus input SNR for 
various a:. We see that the array pertur bat ions cause the array mani fold vector vm to be 
mismatched. A .s the SN R increases, the beamformer a ttempts to null out the mismatched 
signal and the array gain decreases. 

Example 6.6.5 
Consider a standard lo-element linear array. We consider only gain errors and use the 

first perturbation model. The interference consists of white sensor noise. 
The actual received spectral matrix is 

S xa = &di$ +&I, (6.254) 

where 
+d ff v&k a) 

and 
an =l+Aa,,n=O,l;..,N-1. 

The Aan are independent zero mean, and 

(6.255) 

(6.256) 

gi+E[lAa,12], n=O,l,B*.,N-1. (6.257) 

The beamformer uses Sxa to find the optimum MPDR weight vector 

H 
w = 

v,Hs,-,lvd ’ 
(6.258) 

Note that (6.258) would imply perfect knowledge of Sxa. In practice, we use Sxa, and 
(6.258) represents the limiting behavior of the weight vector. In this case, one can find 
the SNR, analytically (e.g., [YU94]). The result is 

SNR, = SNRin 
N + a,2 

(1 + (N - l)~;sNRi,)~ + (N - l)(N + c$)a;SNR& 
> 

l 

(6.259) 
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Figure 6.36 Array gain of MPDR beamformer versus SNR for various +: 

N = lO,u, = O,uI = 0.30; 500 trials; (a) INR = 20 dB; (b) INR = 30 dB. 
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Figure 6.37 SNR, versus ai. 

For N > 1, N >> ai and large SNRin, 

SNR, = 
1 

NIT~(~ + ai)SNRi, ’ 
(6.260) 

The output SNR, is plotted versus ai in Figure 6.37 for N = 10. We see that if the SNRi, 
is large, there is significant degradation for small ai and the slope is 10 dB per decade, as 
indicated by (6.260). 

6.6.4 Diagonal Loading 

We have observed that the sensitivity of the MPDR beamformer to signal 
DOA mismatch and array perturbations increases as llw112 increases. This 

suggests the use of a quadratic constraint, 

II w II25 To, (6.261) 

where To is a design parameter. From the discussion in Section 2.6.2, we 
know that 

1 
To+. - (6.262) 

We explore the choice of To in Section 6.10. In this section, we show how 
the imposition of a quadratic constraint leads to a procedure that we refer 
to as diagonal loading (DL). 
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The quadratically constrained MPDR optimization problem is: 

Minimize WHS,W, (6.263) 

subject to the distortionless constraint, 

H w v,=l, (6.264) 

and the quadratic constraint, 

H w w=T,. (6.265) 

We 
con 

have used an equality constraint for 
straint in Section 6.10. 
The function to minimize is 

F n wHSxw+X1 - 

+x2 
[ 
WHV, - 

simplicity. We explore the inequality 

[ 
H w W-T, 1 

- 11 . (6.266) 

Differentiating with respect to w and setting the result to zero gives 

WHSx + AIWH + x;vi = 0. (6.267) 

Solving for wH and solving for AZ by imposing the constraint in (6.264), 
gives 

WH 
vgp, + x111-l - - 

v,H[s, +A11]-lv,' 
(6.268) 

We see that the effect of the quadratic constraint (QC) is to add a diag- 
onal matrix to S, in the formula for w? In effect, the MPDR-QC weight 
vector is designing for a higher white noise level than is actually present. 

The value of Al depends on the choice of TO. In this section, we use a 
simpler approach and specify X1 directly. In Section 6.10, we see that this 
approach is not optimum. However, it is adequate in many cases and is 
widely used in practice. To emphasize the decoupling from TO, we rewrite 

(6.268) as 

WH - v;[S,+a;I]-l - 
vgpx +a;I]+,' 

Rewriting (6.269) as 

H 
Wrnpdr,dl = 

vK[I + 21-l 

v,H[I + %I-lvm) 

(6.269) 

(6.270) 
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we see that, as c$ -+ 00, the MPDR-DL beamformer approaches the con- 

ventional beamformer. 
We can write S, as 

S 2 
X = (T,v,v,H + s, + a;1, (6.271) 

where va is the actual array manifold vector, S, is the non-white interference, 

and ~$1 is the uncorrelated noise component. We define the load-to-white 
noise level (LNR) as 

LNR=2. 
W 

(6.272) 

We consider two examples to illustrate how diagonal loading affects the 
performance. 

Example 6.6.6: MPDR-DL beamformer; mismatched signal 

Consider a standard lo-element linear array. The array is steered to broadside (vm = 
1). The interference consists of two equal-power uncorrelated plane-wave signals located 
at UI = 50.30. Thus, 

2 

S,=O,2V,V,H+)\(T.fViVy+ OiI. (6.273) 
i=l 

We utilize the beamformer in (6.269) and plot the array gain for various values of SNR, 
INR, and LNR versus BG;N. Figure 6.38 corresponds to an INR =30 dB. 

In Figure 6.38(a), we plot the array gain versus s$ for various input SNR with 
no loading. We see that there is significant degradationYk SNR > -10 dB. In Figure 
6.38(b), we plot the array gain versus u Bw;N with 20-dB MR. We see that loading 
provides adequate performance for SNR 5 10 dB. In Figure 6.38(c), we plot the array gain 
versus B$NN with 30-dB LNR. The curve for high input SNR has improved somewhat 
because we are not nulling the signal as deeply. However, the LNR equals the INR, so we 
are not nulling the interferers adequately. 

In order to compare results in a more compact manner, we model ua as a uniform 
random variable between rfO.1, 

13% = 
5 lUa/ < 0.1 
0 elsewhere. 

(6.274) 

The motivation for choosing an uncertainty range of kO.l (= & for a lo-element 
array) is the following scenario. We want to scan over u-space (-1 5 u 5 1) by forming 
optimal beams whose steering directions are spaced by 6. This spacing leads to orthogonal 
conventional beams whose main lobes intersect at zt $, I f  a, . l . . Therefore, any signal with 

I Ua- urnI 5 + would b e processed by the beamformer. Signals with & < lua - u,-J < $- 
would be processed by the adjacent beamformers. 

There are cases in which the uncertainty in u a may be much less than this. We could 
use closer beam spacing or we could do preliminary processing to estimate u^,. I f  we 
estimate Ua, we would use a Gaussian probability density for ue instead of the uniform 
density in (6.274). We discuss these cases later. 
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Figure 6.39 MPDR-DL beamformer, array gain, and optimal loading versus 
SNR for various INR; N=lO, um=O, UI = 4~0.3. 

We then compute E [Ampdr,dl] as a function of INR and SNR and choose the LNR 
to maximize E [Anpdr,dl 1. In Figure 6.39, we plot E [Ampdr,dl] versus SNR for various 
INR. We also show the optimum LNR values. Comparing the results in Figure 6.39 
with the results in Figure 6.35, we see that diagonal loading provides a significant gain in 
performance. 

This leads to our approximate rule of thumb, 

SNR + 10 dB < LNR < INR, - - (6.275) 

if the SNR and INR allow these inequalities. The worst case for this technique is when the 
SNR 2 INR and both are large (2 10 dB). We shall find that many of our beamforming 
algorithms have difficulty in this region. Although a particular algorithm may have trouble, 
the SNR > INR case is a desirable one. 

In the next example, we consider the use of diagonal loading to provide robustness in 
the presence of array perturbations. 

Example 6.6.7: MPDR-DL beamformer; array perturbations (continuation) 
Consider a standard lo-element linear array along the z-axis. The array is steered 

to broadside. The interference model is given in (6.273). In this example, the signal 
is matched (va = vm) but the sensor positions are perturbed in the x: and y  directions. 
The perturbations are statistically independent zero-mean Gaussian random variables with 
standard deviation up, where gP = 0.02X, 0.05X, and 0.1X. The perturbations are constant 
during the snapshot sequence. The actual array manifold vector vP is given bv (6.246). ” 
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We assume that S,,, is available to design the beamformer, 

2 

S X,P = a;vpvpH + 
Ix 

O.fViVy + 0iI. 
i=l 

The weight vector is 

HA H vH [sx,p + 0ZI-J -l m  
W - Wmpdr,dl = 

Viii [Sx,p + 0iIl-l Vm ’ 

(6.276) 

(6.277) 

We examine the behavior as a function of the SNR, INR, and LNR for various up. 
In Figure 6.40 we plot the array gain versus SNR for the case in which each interferer 

has an INR = 30 dB. In part (a), gp = 0.02X. We see that an LNR = 10 dB keeps the 
array gain above 40 dB for SNR < 10 dB. An LNR = 20 dB keeps the array gain above 
40 dB for SNR 5 18 dB. In Part (b), op = 0.05X. An LNR = 10 dB keeps the array gain 
above 40 dB for SNR 5 5 dB. An LNR = 20 dB keeps the array gain above 40 dB for 
SNR 5 13 dB. In part (c), op = 0.10X. An LNR = 10 dB keeps the array gain above 40 
dB for SNR < -3 dB. An LNR = 
3 dB. In all Lses, an LNR = 

20 dB keeps the array gain above 40 dB for an SNR < - 
30 dB degrades the nulling performance ,of the beamformer 

and reduces the array gain significantly. 
In Figure 6.41, we plot the optimurn loading versus y  for various SNR. We also show 

the corresponding array gain. In this case we assume that a,/X and SNR are known and 
we choose the optimum LNR based on that knowledge. 

In this section, we have seen that diagonal loading offers a significant 
improvement in performance in the presence of mismatch. If we have rea- 

sonably good information on the expected SNR and INn levels we can select 
the appropriate amount of fixed diagonal loading. 

The disadvantage of this approach is that we may not have enough prior 
information to determine the correct fixed loading level or the environment 

may change over time. In Section 6.10, we re-examine the MPDR-QC beam- 
former in (6.268) and study the choice of To. In Chapter 7, we study the 

finite data problem and develop variable loading algorithms that determine 
the loading level from the observed data. 

We will find that diagonal loading plays a central role in most robust 

beamformers. 

6.6.5 Summary 

In this section, we have studied the behavior of MVDR and MPDR beam- 
formers in the presence of various types of differences between the model 
and the actual environment. 

In Section 6.6.2, we studied the case of DOA mismatch. We found that 
the behavior of the conventional beamformer and the MVDR beamformer 
was characterized by their beam patterns in the absence of mismatch (see 
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(6.205) and (6.213)). Therefore, as long as the MVDR beam pattern is 
well-behaved, the performance degrades gradually in the presence of DOA 
mismatch. However, the MPDR beamformer treats the mismatched signal 
as an interferer and attempts to null it. As the SNR increases, the degrada- 

tion due to mismatch increases and small mismatches lead to unacceptable 
performance. 

In Section 6.6.3, we studied the case of array perturbations. We found 
that the array perturbations caused a performance degradation similar to 
that in the DOA mismatch case. 

In Section 6.6.4, we introduced a quadratic constraint in order to inhibit 
main-lobe nulling. The quadratic constraint leads to diagonal loading. We 

found that, if the INRs were 15-20 dB larger than the SNR, we could use 
DL and obtain adequate performance for both the DOA mismatch and the 
array perturbation case. 

In the next section, we develop other constraint techniques in order to 
provide main-lobe protection and increased robustness in the presence of 
mismatch. 

6.7 LCMV and LCMP Beamformers 

In Section 6.2, we derived the minimum variance distortionless beamformer 
by imposing a linear constraint, 

H w v,=l. (6.278) 

In Section 6.6, we saw that the performance of the resulting MPDR beam- 
formers was not particularly robust to various changes in the environment. In 
this section, we develop beamformers in which additional linear constraints 
are imposed to make the beamformer more robust. We refer to beamformers 
using S, as linear constrained minimum variance (LCMV) beamformers. In 
many cases, we must use S, instead of S,. We refer to these beamformers 
as linear constrained minimum power (LCMP) beamformers. The majority 

of the literature uses the LCMV descriptor for both types of beamformers. 
In this section, we develop the two beamforming algorithms. We define a 

set of linear constraints by the N x &$ constraint matrix, C, whose columns 
are linearly independent. We require that 

wHC=gH (6.279) 

or equivalently, 
CHw=g. (6.280) 
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Subject to the constraint in (6.279) we derive two beamformers. The 
LCMV beamforrner minimizes 

P H 
n =w SnW, (6.281) 

subject to the constraint in (6.279). The LCMP beamformer minimizes 

P 0 =WHS,W, (6.282) 

subject to the constraint in (6.279). 
In Section 6.7.1, we discuss typical linear constraints that are useful and 

discuss various choices of C and g. In Section 6.7.2, we derive the optimum 
LCMV and LCMP beamformers. In Section 6.7.3, we develop the generalized 
sidelobe canceller implementation of the LCMV and LCMP beamformers. 

In Section 6.7.4, we study the performance of the LCMV and LCMP 
beamformers. We first consider their performance in a nominal environment. 
We then consider the various mismatch problems such as steering vector 
mismatch and array imperfections, and see how the constraints improve 
robustness. 

The constraints in Sections 6.7.1-6.7.4 focus on constraining the beam 
pattern at specific points in frequency-wavenumber space and impose a hard 
constraint at those points. In Section 6.7.5, we study a different type of linear 
constraint called quiescent pattern constraints. We use the adjective 
“quiescent” to describe the beam pattern of the optimum beamformer in 
the presence of white noise. This beamformer utilizes the classical beam 
patterns that we developed in Chapters 3 and 4 as a basis for the design. By 
using these constraints (such as mean-square deviation from the quiescent 
pattern) we can obtain improved performance in some cases. 

In Section 6.7.6, we develop a technique called covariance augmentation 
to combat moving or broadband interferers. In Section 6.7.7, we summarize 
our results. 

6.7.1 Typical Constraints 

We use the frequency domain snapshot model. The input signal is modeled 

a% 
X(w) = VF(w) + N(u). (6.283) 

The output is 

Y(4 = WHX(W). (6.284) 

We now discuss typical constraints on w. 
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6.7.1.1 Distortionless constraint 

We introduced this constraint in Section 6.2. If the signal of interest corre- 
sponds to an array manifold vector v,, then we require 

H w y-y&=1, (6.285) 

which guarantees that any signal propagating along k, will pass through 
the filter undistorted. The subscript “m” denotes model. We would like 

b-l = vs, 

where v, is the desired signal’s array manifold vector. We use v, to allow 
for mismatch. 

We use an N x 1 vector ci to denote the ith constraint. Unless noted, 
always assume that the first constraint is the distortionless constraint. we 

Thus, 

Cl = v,. (6.286) 

We have seen that this constraint will be inadequate to ensure adequate per- 
formance in the presence of various mismatches. One possible improvement 
is to use multiple directional constraints. 

6.7.1.2 Directional constraints 

The general directional constraint is 

wHv(ki) =gi, i= 1,2,-•,Mo, (6.287) 

where ki denotes the wave number along which we want to impose the con- 
straint and gi is a complex number denoting the value of the constraint. 

To illustrate a special case of these constraints that could be used to 
make the beamformer robust against steering errors, we consider a uniform 

linear array. Then, the distortionless constraint can be written as 

wHv(&-J = 1. (6.288) 

We can try to force a flatter beam pattern near the signal direction by adding 
two constraints, 

wHv(+m + A$) = 1, (6.289) 

wHv(h?-l - A$) = I. (6.290) 
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In matrix notation, the constraint matrix is an N x 3 matrix, 

’ = [ vWJm> i V($m + A$) i V(Qm - A$..) ] , (6.291) 1 g - - [ 1 1 1 1 (6.292) 

WHC = gH. (6.293) 

In later examples, we see that this type of constraint can degrade the noise 
rejection performance significantly. A second possibility is to choose the gi 
to match the conventional beamformer shape. Thus, 

1 

g -K.(Qm +A@ : $m> . 1 (6.294) 

Bc($m - w : $47-J 

Depending on the extent of signal mismatch, other values of g2 and g3 may 
be appropriate. For symmetric mismatch, we use 

[ 

1 

g 
- - SC 

SC 

where 

(6.295) 

B&+m + A$ : $m) < gc < 1. - - (6.296) 

Example 6.7.1 

Consider a standard N-element linear array. Assume we impose the distortionless 
constraint plus a constraint at the HPBW points of the conventional beam pattern, u = 
&0.891/N. Assume the array is pointed at broadside, C is an N x 3 matrix, 

c= [ 1 i vu(y) i vu (=+$=) 1) (6.297) 

where v&) is the array manifold vector in u-space. 
The value of g is given by either (6.292), (6.294), or (6.295). 

When we impose the constraints, we assume that the columns of C are 
linearly independent so that its rank is MO, the number of constraints. How- 
ever, we will find that if the wavenumbers are too close together, the matrix 
that we must invert will be ill-conditioned. 
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6.7.1.3 Null constraints 

We encountered null constraints in Section 3.7. This type of constraint is 
appropriate if there is an interfering signal (jammer) coming from a known 
direction. In this case, 

w”v(ki) = 0 , i = 2, l l - , l&. (6.298) 

Thus, 

C - - 
[ bn : v2 : v3 :  ”  l :  Q / f ( - )  

I  

(6.299) 

.  

and 

g 
T- - 

[ 
loo*-- . Ol (6.300) 

We recall from Section 6.3 that the MVDR beamformer only puts a perfect 
null on a directional noise when a;/~: is infinite. 

Thus, a constraint such as 

wHv(ki) = Q , i = 2,. l l 7 MO, (6.301) 

where &i is related to a;/~$ may be used. 
We also recall that the performance of the beamformer was sensitive to 

interferer mismatch. Thus, we may want to use multiple point constraints 
in the vicinity of the interferer. For example, in the single interferer and a 
linear array case, we might impose three constraints 

CI = 
[ vwI> i V(tiI + a$) i v($q - Ati> ] ) (6.302) 

where Cl is the null part of the constraint matrix, and 

g 
T- - 

[ 
OBB. 1 (6.303) 

Once again, we do not want to put the columns of CI too close together. 
This not only gives an ill-conditioned matrix but it also unnecessarily uses 
degrees of freedom. 

6.7.1.4 Derivative constraints 

Another method of controlling the shape of the beam pattern near the peak 
or a null is to utilize derivative constraints. The complex beam pattern is 

B(k : k,) = vvHv(k), (6.304) 
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and the corresponding power pattern is 

P(k : km) = IB(k : km)i2. (6.305) 

We can also write the above pattern using 0 and 4 as variables. For example, 

P(W) 0’0) = lB(cJ, 0’ @I2 ’ (6.306) 

The reason for writing the alternative forms is that we impose derivative 
constraints in a different manner in the various forms. Three representative 
choices are: 

(i) Beam pattern derivatives 

Set the derivatives of B(k : k,) with respect to k,, k,, kz equal to a 
specified value at some point k,. Alternatively, we can use derivatives 
with respect to 0 and c$. 

(ii) Power pattern derivatives 

Set the derivatives of P(w, 0, 4) with respect to 0 and 4 equal to a spec- 
ified value at some point (O,, &). Alternatively, we can use derivatives 
with respect to k. 

(iii) Frequency derivatives 

Set the derivatives of either 
equal to a specified value at 

B(w,O,q5) or P(w,O,4) with respect to w  
some point WL. 

We explore these cases briefly. First, consider a standard linear array. 
Then, 

B(!+q = wHv(@) (6.307) 

and 
d%b) -=w HdV(+) n H 

- =w 
dll, 0 

d(lCI)’ 

where, using symmetric indexing, 

r jnejn+, -v<n< _ _ 9, N odd, 

N 
2’ 

N 
l ’ 

-m 
2 ’ 

(6.308) 

(6.309) 
N even. 

Note that d(+) is conjugate asymmetric. 
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The second derivative is 

(6.310) 

where, using symmetric indexing, 

. 
i 1 dW - - n 

Neven’ 

(6.311) 
is conjugate symmetric. 

A typical application is to impose constraints on the derivatives of the 
main lobe evaluated at its steering direction. A simple example illustrates 
this application. 

Example 6.7.2 
We utilize an N x 3 constraint matrix. We assume the array is pointed at broadside. 

C = [ 1 ; d(0) ; d(0) ] s (6.312) 

There are several logical choices for the g vector. The first choice sets the first and 
second derivatives equal to zero. Thus, 

gH= [ l~o;o]. ) , (6.313) 

The second choice matches the behavior of the conventional beam pattern. Thus, 

gH= [ 
1 ; 0 ; , ) &(+)I+=o ] I (6.314) 

The third choice uses an intermediate value for g3, 

gr= [ 1;o;g31, ( ) (6.315) 

W?I)I,=, 5 93 L 0. (6.316) 

We could also express the beam pattern in &space. Then 

B(8) = wHve(B) 

and 

dB(O) H dvd8) -=w - 
d0 d0 

=: wHde(e), 

(6.317) 

(6.318) 
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where, using symmetric indexi ng7 

jn7r sin Oejnx ‘OS’, -!!!fl<n<i!!gL, - - N odd, 

LdeCo)l, ’ 

i 

j(n _ $) sin~~j(TZ-$)7TCOSe N 

j(n + $) sinBeJ(n+$l”cose~ 
n=l,*-,2, 
n = -1,. . . , -$!, 

N even, 

(6.319) 
with similar expressions for the second derivative. 

The constraints in (6.312)-(6.314) h ave been used by a number of authors 
(e.g., Cox [Cox73], Applebaum and Chapman [AC76], Vural [Vur77], [Vur79], 
Er and Cantoni [EC83], Steele [Ste83], Buckley and Griffiths [BG86]). 

In [BG86], it is pointed out that if one constrains the phase of the deriva- 
tive by setting (6.319) or (6.309) equal to zero, then the resulting beam pat- 
tern will be affected by the choice of the spatial reference point (the origin 
of coordinates). 

Tseng [Tse92] shows this dependency in a straightforward manner. As- 
sume that V is a steering vector defined at a reference point other than v. 
Then, 

V = ve jiJk(e) 
9 (6.320) 

where AT(~) is the time delay corresponding to the difference in the two 
reference points. Thus, if we impose a gain constraint, changing the reference 
point changes the phase of the beam pattern by a fixed amount, but does 
not affect the magnitude response. 

Imposing a derivative constraint has a different effect. Differentiating 
(6.320) with respect to 8 gives 

(6.321) 

Because of the second term, Q is not just a phase-shifted replica of ve. 
Therefore, both the magnitude and phase responses will be affected by the 
choice of spatial reference point. 

If we differentiate the power pattern, the problem of reference point 
sensitivity is eliminated. This approach is utilized by Tseng [Tse92], Tseng 
and Griffiths [TG92a], Thng et al. [TCL95], and others. This leads to a set 
of nonlinear constraints. However, [Tse92] shows how to transform them to 
a set of linear constraints. 

For a planar array, the best notation will depend on the array geometry. 
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For a standard rectangular array, using symmetric indexing, 

Then, 

dB(tix, ‘1cIY) 
w 

wnmi~ej[nQx+m@‘J, N odd, 
Y n= Ny1 m=-iLjS 

are the first derivatives. The second derivatives are 

d2BWx7 lh> 
d$) 2 

X 

N-l 

M-l 
2 

c 
m=-M.$. 

M-l 

N odd, 

(6.322) 

(6.323) 

(6.324) 

(6.325) 

d2Bi;iI;ly) = 2 2 Wn7n(-,2)ej[n’x’m’YI, Nodd, (6.326) 
Y n=-&!.$A m=-!!$S 

N-l 

d2~~+~~@!J) = 2 5 Wnm( -mn)ej[n~~+m~Y1, N odd. (6.327) 
x x n=- N-1 2” =.-M--l 

2 

Thus, to control the first and second derivatives in addition to the distor- 
tionless constraint will require six constraints. 

When dealing with derivative constraints in either linear or planar arrays 
it is important to check the columns of C for linear independence and remove 
any dependent constraint vectors (or use the SVD approach discussed in 
Chapter 3, e.g., discussion after (3.296)). 

The third case corresponds to frequency derivatives and can be illustrated 
with a simple example. 

Example 6.7.3 
Consider a uniform linear array. Then, 

B(w,u) = 

N-l 
2 

Ix 
N-l 

n=-T 

'Wund wne3c , (6.328) 
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N-l 

cwv4 

2 

- = 
dw c 

7 (6.329) 
N-l 

n=-Tr 

d2 B(w, u) ZE 
dw2 

N-l 
2 

N-l nzz- 
2 

e3 ‘2und 
. (6.330) 

For a uniform linear array, the behavior versus frequency is the dual of the behavior versus 
u. This duality does not necessarily apply to other array geometries. 

Before leaving derivative constraints, it is useful to revisit null con- 
straints. As discussed in Section 6.7.1.3, a null constraint can be used if 
there is an interferer coming from a specific direction. The performance is 

very sensitive to mismatch in the interferer direction. In order to improve 
robustness, derivative constraints in the vicinity of the null can be imposed. 
For a single interferer arriving from $1, a constraint matrix whose null com- 
ponent is 

CI = [ vbh~ +bbr> i;(?W ] 7 (6.331) 

where 
T- 

& - [o 0 9317 (6.332) 

can be used. These constraints will create a broader null. It is an alternative 

to (6.301) and (6.302) that may be more useful. 
We see from this brief discussion that derivative constraints offer a wide 

range of choices. After the optimum LCMV and LCMP beamformers are de- 
rived, we will explore how the derivative constraints affect the beam pattern 

and array gain. 

6.7.1.5 Eigenvector constraints 

A different type of constraint was introduced by Er and Cantoni [EC851 in 
order to achieve effective control of the beam pattern over a region of cJ-k 
space. The technique was further developed by Buckley [Buc87] and Van 

Veen [VV91]. (e.g., Chapter 4 of [HS92]).7 These constraints are referred 
to as eigenvec 
derived. 

tor constraints for reasons that will be clear when they are 

The basic 
region in the 

model assumes that there is a desired 
w-k space. We want to define a set 

response over 
of constraint 

a 
S 

specified 
that will 

minimize the total squared error between the desired response and the actual 
response. This is analogous to the least squared error approach in Chapter 

70ur discussion is similar to [EC85]. 
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Figure 6.42 Partition of beamformer. 

3, except we only specify the desired response over a segment of the w-k 
space. 

The desired beam pattern can be written as 

Bd (w, k) = w,Hv(w : k), (6.333) 

where we have suppressed the w dependence in the weight vector. The 

squared error is 

e2 = ~EK~Eo~w~v(w,k) -wHv(w: k)i2dkdw. (6.334) 

It is convenient to partition the beamformers as shown in Figure 6.42. 

Then, 
w=wd-wp. (6.335) 

Substituting (6.333) into (6.334) gives 

e2 H 
=wp Qw, (6.336) 

where 

Q = s,,, s,,,, V(w : k)vH(w : k)dk dw. (6.337) 

Note that Q is just the correlation matrix at the array from a distributed 
source SO (w : k) = 27r over K and 0. It does not depend on the desired 
pattern shape, but only the constraint region and the array manifold vector. 
It is a non-negative definite Hermitian matrix. 

We use the error expression in (6.336) in two different ways. In this 

section, we use the principal eigenvectors of Q to form the linear constraint 
matrix C. In Section 6.11, we impose a constraint on e2 (i.e., e2 < eo) and 
find the resultant beamformer. This leads to a generalized form of diagonal 
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loading called soft constraint beamforming. In this section, we imx>ose a set A 

of linear constraints on wP to reduce e2. 
The eigendecomposition of Q can be written as 

N 

(6.338) 

where N is the number of sensors. The matrix UQ is an N 
the eigenvectors, 

X1 N matrix of 

uQ= a1 a2 l *’ *N ,  

[  I  

and 
A Q 

- - diag 
{ 

xr x2 l 9 l AN 
> 

? 

is a diagonal matrix of the ordered eigenvalues. 
We impose Ne linear constraints on wP, 

(6.339) 

(6.340) 

*y wp = 0, i = l;~~, Ne. (6.341) 

We normally choose Ne to correspond to the number of significant eigenval- 
ues of Q. The eigenvalue behavior in Figure 5.14 is typical of many problems 
of interest. As we increase Ne, we reduce the number of degrees of freedom 
available for adaptation. However, we reduce the error in (6.336). Using 

(6.338) and (6.341) in (6.336) gives, 

N 

e2 - - x Xl@ wp12. 

N,+l 

(6.342) 

The choice of Ne is a trade-off between generating a beam pattern that is 

close to Bd over a desired region and retaining adequate degrees of freedom. 
For most Q matrices, the eigenvalues drop off sharply, so the choice of N, is 
clear. 

Note that the constraint in (6.341) is on the weight vector in the bottom 
path in Figure 6.42. In some cases, this model is the easiest to work with. 

In other cases, we want to impose the constraint direct#ly on w. 
To rewrite the constraints, we expand the three weight vectors in terms 

of their eigenvectors and match the coefficients. The resulting constraint on 
w 1s 

aHW - i&v i - i d, i = 1 . . . 7 7 N e* (6.343) 

To put (6.343) in the same notation as (6.279)-(6.280), define 

(6.344) 
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and 
H k 1 i =yf%i, i = 1,2;**,N,. 

The resulting constraint equation is 

(6.345) 

wHC=gH. (6.346) 

Note that we do not include a distortionless constraint because it will be 
almost linearly dependent on +I in most cases. 

We consider a simple example to illustrate the behavior. 

Example 6.7.4: Narrowband main-lobe constraint 
Consider a standard lo-element narrowband linear array. We assume that the desired 

beam pattern is the conventional beam pattern 

B&-J) = B,(u), -ud < u 5 ud. - (6.347) 

Then, 
Ud 

Q - - 
s 

v(u)vH (u) du. (6.348) 
- Ud 

The mn element of Q is 

I 
Ud 

[Ql - 
mn - 

ejdm-nl du 

- 2sin[7ri!hd(m - n)] - 
7r(m- n) ’ 

(6.349) 

so Q is a Toeplitz matrix. The eigenvectors are the discrete prolate spheroidal sequences. 
Note th at Q is completely determined by the array manifold vectors and does not depend 
on &(u). This Q matrix is the same as the matrix we encountered in Example 5.5.1. 
The number of significant eigenvalues will depend on ud. In many cases, we choose ud 
= l/N (Or ud = 0.1 for N = 10). From Figure 5.14, we see that there are three significant 
eigenvalues. 

This simple example does not illustrate the real value of eigenvector con- 
straints. We en 
beamfor ming. 

.counter more interesting examples when we study broadband 

6.7.1.6 Quiescent pattern constraints 

There are other types of constraints that will prove useful. The eigenvector 

constraint matched a desired response over a certain region. An alternative 
approach would be to specify the pattern over the entire w-k plane and try 
to approximate it in a least squares sense while minimizing the output power 

(or variance). We explore this approach in Section 6.7.5. 
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6.7.1.7 Summary 

At this point, we have developed a large menu of possible constraints. The 
next step is to develop the optimum LCMV and LCMP beamformers and 

then see how the various constraints affect the array gain, the beam pattern, 
and the robustness to model variations. 

6.7.2 Optimum LCMV and LCMP Beamformers 

In this section, we find the optimum LCMV and LCMP beamformers for the 

narrowband case. For Mc linear constraints, the constraint equation can be 
written as, 

wHC = gH, (6.350) 

where wH is 1 x N, C is N x MC, gH is 1 x MC, and N is the number of 
sensors. We require that the columns of C be linearly independent. 

We will assume that the first column of C is vm and that the first element 
of g is 1 so that the processor is distortionless. 

We consider two related optimization problems. In the first case, we 
assume that S, is known or that we will be able to estimate it. In the 
second case, we assume that S, is known or that we will be able to estimate 
it. These two cases correspond to the MVDR 

Section 6.2. 

In the first case, we minimize the output 

constraint in (6.350) 

a2 no = WHS,W. 

We refer to this case as the linear constraint 
beamformer. 

and MPDR beamformers in 

due to noise subject to the 

(6.351) 

minimum variance (LCMV) 

In the second case, we minimize the output power subject to the con- 
straint in (6.350) 

E 4 [ 2 = wEIS w 
x l 

(6.352) 

We refer to this case as the linear constraint minimum power beamformer 
(LCMP). 

The minimization procedure is identical for the two cases, so we will solve 

the first case and indicate the answer for the second case. 

We minimize the function 

J ii wHS,w + [wHC - gH] X + AH [CHw - g] . (6.353) 
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The Lagrange multiplier X is an & x 1 vector because of the MC constraints. 
Taking the complex gradient of J with respect to wH and setting it equal 
to zero gives 

s,w+cx=o, (6.354) 

or 
W= -s,lcx. (6.355) 

Substituting (6.355) into (6.350) gives 

-AHCHS,lC = gH. (6.356) 

Solving for XH and substituting into (6.355) gives 

H - gH [CHS,lCll CHS,l, ( Wlcmv - (6.357) 

as the optimum constrained processor for Case 1. The existence of the 
inverse is guaranteed because S, is full rank and the columns of C are 
linearly independent. 

Similarly, for Case 2, 

H 
Wlcmp = gH [cHs;ql CHS-l / x (6.358) 

is optimum processor for the second case.8 
One interpretation of the optimum processor in (6.357) is shown in Figure 

6.43. The beamformer first forms a set of i’& constraint beams and then 
combines them to form Y(U). Note that the processor can be viewed as 
operating in a A&-dimensional constraint subspace. 

The combiner utilizes the inverse of the matrix 
[ 
CHS,‘C . One of 1 

the issues in the practical implementation of constrained processors is the 
condition number of this matrix, 

x max 
T=-. 

x min 
(6.359) 

As this number increases there may be a problem with the numerical accu- 
racy of the results. The T will increase as the columns of C become more 
correlated in a space defined by S,l (or S;l). 

‘This result is contained in Frost [F’ro72] in the context of a tapped delay line imple- 
mentation of a closed-loop adaptive array processor. 
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+ 
y&, ‘I 

Figure 6.43 Optimum constrained receiver. 

If the noise is white, then (6.357) reduces to 

(6.360) 

r 
which is referred to as the quiescent weight vector (the idea or wQ was 
introduced by Applebaum and Chapman [AC761 and utilized by Gabriel 
[Gab76a], [Gab76b]). W e will find that it plays an important role in some 

of our subsequent discussions. 
In the next section, we interpret the optimum LCMV beamformer as a 

generalized sidelobe canceller. 

6.7.3 Generalized Sidelobe Cancellers 

A useful implementation of the LCMV (or LCMP) beamformer is obtained 

by dividing the N-dimensional space into two subspaces, a constraint sub- 
space and an orthogonal subspace. The constraint subspace is defined by 
the columns of C, an N x MC matrix. The orthogonal subspace is defined by 

the columns of B, an N x (N - Mc) matrix. The columns in B are linearly 

independent and each column is orthogonal to each column in C. Thus, 

CHB = 0, (6.361) 

where 0 is a A& x (N - 111,) matrix of zeros. 
First, we assume that w, is known. From (6.358) 

wHA H 0 - wlcrnp = gH [cHs;‘C]-l c”s,l. (6.362) 
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We partition the processor into two orthogonal components, 

WH 0 =w;f-wf, (6.363) 

where w? is defined to be the projection of wr onto the constraint subspace 
and wp” is the projection of wf onto B. The projection matrix onto the 
constraint subspace is 

PC = c [c”c]-l CH, (6.364) 

and 
WH 

C 
= WFPC. (6.365) 

Substituting (6.362)) and (6.364) into (6.365), 

WH 
H 

C 
= w, PC = gH [CHS;lC]-l CHS,l {C [CHC]-1 CH} (6.366) 

or 

w? = gH [c”c] -l CH = wf, / (6.367) 

which does not depend on S,. The weight vector in the upper path, w$ is 

the quiescent component of wf. If the input is white noise, 

WH 
H 

0 
= wq . (6.368) 

The second component of w,H is w:, which can be written as 

wp = -B BHB [ 1 -‘BHwO = -P&w,. (6.369) 

Thus, 

wP 
H = gH [c~s;~c]-~ CHS,~ l B [B~B]-~ By. (6.370) 

This leads to the processor shown in Figure 6.44. This is a correct, but not 
particularly useful, implementation. 

Note that 

6(w) = w,Hx(w) (6.371) 

is obtained by multiplying X(w) by a matrix completely contained in the B 
subspace. This suggests dividing the processor in the lower path into two 
parts, as shown in Figure 6.45. The first processor operates on X(w) to 
obtain an (N - MC) x 1 vector. Note that the output of B cannot contain 
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Figure 6.44 Part it ioned processor. 

Figure 6.45 Cascade of blocking matrix and adaptive matrix. 

any components in the C space because of (6.361). We refer to B as the 
blocking matrix. The second matrix operates on the (N - A&) x 1 vector 
to produce Yb(w). The formula for w,H follows directly from wF. It is the 
matrix that will adapt as a function of the data when adaptive beamformers 

are discussed in Chapter 7. Combining Figures 6.44 and 6.45 gives the real- 
ization shown in Figure 6.46. This realization is referred to as a generalized 
sidelobe canceller because of its similarity to classical sidelobe cancellers. 
Generalized sidelobe cancellers were utilized by Owsley [Ows71] and Ap- 
plebaum and Chapman [AC76]. Griffiths and Jim [GJ82] analyzed them 
and introduced the “generalized sidelobe canceller” name. Other references 

include Er and Cantoni [EC831 and Cox et al. [CZO87]. 
We now recall the criterion by which the overall filter was designed. It 

was to minimize the output power subject to the constraint 

wHC = gH. (6.372) 

The top processor satisfies the constraint exactly and the bottom path is 

orthogonal to C so it cannot impact the constraint. The output power is 

P 0 = wq [ - Bw,] H S, [wq - BwJ. (6.373) 

Taking the gradient with respect to w, and setting the result equal to zero 
gives 

[ w,H-ww,HBH]SxB=O, (6.374) 
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H 
wq 

H, )W”’ a 

(N-&)x1 * y, (0 ) 

Figure 6.46 Generalized sidelobe canceller. 

or 9 

h 
wH =w,HS,B[BHS,B]-? a (6.375) 

I 
For a single plane-wave signal input, 

S X = o,v,v, 2 H+S no (6.376) 

The first column of C is vm, so 

v:B = 0, (6.377) 

and 
SxB = SnB. (6.378) 

Then, (6.375) reduces to 

h 
WH a = wfSnBIBHSnB]-l. (6.379) 

Note that (6.377)-(6.379) assume that there is no signal mismatch (Va = 

vm) and that S, and Sn are known. In this case, the LCMV and LCMP 

beamformers are identical. More generally, as long as the signal is completely 
contained in the constraint subspace, the two beamformers will be the same. 
The formula in (6.375) is used to implement the beamformer because the 
model assumes that only S, is available. In practice, an estimate S, is used. 

When the noise is white, the left matrix product in (6.379), 

w,” ai1 B=O, [ 1 (6.380) 

‘The result in (6.375) can also be written as +I,” = Sdzd, -‘. We exploit this interpre- 
tation in Chapter 7. 
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solif= 0, which is the result in (6.368). For this case, the output noise is 

P n = o2 WHW WQ Q = ~~llwq112~ (6.381) 

the square of the magnitude of wq. If the columns of C approach linear 
dependency and the g elements belonging to those columns are very different, 
then llwql12 becomes large. 

This is the same phenomenon we observed with the MVDR filter when we 
moved the interferer inside the main lobe. Here, if we move a null constraint 
inside the main lobe, we obtain a beamformer that is is sensitive to model 
mismatch. 

Note that B is not unique. It must satisfy (6.361) and have rank equal 
to (N - n/rc). 0 ne method for constructing B is to find P&, 

P& = I - c (c”c)-l CH, (6.382) 

which is an N x N matrix. Then orthonormalize P& and choose the first 
(N - J&J columns of the orthonormalized matrix. The resulting B matrix 
has the property that 

BHB = I. (6.383) 

Note that (6.383) implies that the component of S, due to the white noise 
component of S, is white noise with variance ai. In subsequent discussions, 
we will always choose B to satisfy (6.383). 

6.7.4 Performance of LCMV and LCMP Beamformers 

In this section, we analyze the performance of LCMV and LCMP beamform- 
ers with directional, derivative, or eigenvector constraints. In this chapter, 
we assume the ensemble spatial spectral matrix is available. In Chapter 7, 
we analyze the behavior when we estimate S, or S, from the input data. 

The purpose of introducing the linear constraints is to provide main-lobe 
protection in the case of a main-lobe interferer and to prevent performance 
degradation in the presence of DOA mismatch and/or array perturbations. 
Our performance discussion in the text emphasizes the DOA mismatch prob- 
lem. The results for the array perturbation problem are similar and are de- 
veloped in the problems. Diagonal loading is used in most cases in order to 
obtain satisfactory performance. 

A large number of examples are included in order to adequately explore 
the utility of the various constraints. 
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6.7.4.1 Array gain 

The expressions for the array gain of LCMV and LCMP beamformers are 
straightforward. For the LCMV beamformer, w is given by (6.357). For the 
LCMP beamformer, w is given by (6.358). 

The output signal power is 

P 2 = OS H 2 
s I I w Vs 

The output noise power is, 

P 2 
n = on H 

w PnW 

(6.384) 

7 (6.385) 

where pn is the normalized spatial spectral matrix and includes both the 

white noise and any additional interference (see (6.106)). The array gain is, 

(6.386) 

where w is given by either (6.357) or (6.358). If we include a distortionless 
constraint, then the numerator in (6.385) is unity and the array gain is 

A, = [w~/I,w]-~ l 

The output SNR, islo 

(6.387) 

(6.388) 

Since we have included the interference in the noise spectral matrix, we refer 
to the result in (6.388) as the output SNR. 

The array gain for the LCMV beamformer is obtained by substituting 
(6.357) into (6.387). The result is 

&nv = 
1 

gH [cYp,lc]-lg l 

(6.389) 

In order to find the array gain for the LCMP beamformer, we substitute 
(6.358) into (6.387) and obtain 

1 Alcmp = { gH [CHS,lC] -’ CHS,lp,S,lC [CHS,‘C] -’ g}-‘. 1 (6.390) 

loThe subscript “0” on the left side of (6.387) d enotes output. On the right-hand side 
it denotes optimum. The meaning should be clear from the context. 
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From (6.379), the array gain for the LCMP case is equal to the array 
gain for the LCMV case when the distortionless constraint is imposed and 
the signal is perfectly matched. Thus, 

A 
1 

lcmp = 
gH [c”p,‘c] -l g’ 

(6.391) 

In order to study the effects of mismatch, (6.390) must be used. 
The array gain or SNR, when there is no model mismatch is one perfor- 

mance measure of interest. The second measure is the array gain or SNR, 
under mismatched conditions, which was one of the primary reasons for 
introducing constraints. 

In order to analyze the effect of signal mismatch, use Cm and vm in 
(6.358), 

WJf = gH (6.392) 

where Cm and gm are constructed assuming vm is correct. Substitute wH 
from (6.392) and v, into (6.385). Carrying out the substitution and simpli- 
fying gives 

A lcmp va ( IVm)= 

where 

Y 
H -1 

=% Pn va-va Pn H -lCm (Cf$l~lCm)-‘) Cf$,lVa, (6.394) 

and va is the actual signal manifold vector. The results in (6.393) and (6.394) 
are due to Steele [Ste83]. 

We consider a series of examples to illustrate the behavior using various 
constraints. In all of the examples, we consider a standard linear array and 
assume the array is steered to broadside. We assume ua, the actual arrival 
direction varies between -0.25Bw~~ and 0.25Bw~~. This assumption 
corresponds to a model in which we search u-space with beams spaced at 
o.tiBw~~. 

We can also search u-space using a finer grid. This technique would 
reduce the mismatch problem at the cost of increased computational com- 
plexity. 
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6.7.4.2 Directional constraints 

In this section, we study the behavior using directional constraints. 

Example 6.7.5: Directional main-lobe constraints; LCMV beamformer 

Consider a standard lo-element linear array. We use the three main-lobe constraints 
in (6.291), 

c = [ v,(O) ; &J-0.0866) I vJO.0866) ] ) * (6.395) 

where the arra,y manifold vector is specified in u-space. We consider four g matrices, 

g= [ 1 Qci Qci 1, i=l7*‘*74, (6.396) 

where 

!m = 1, (6.397) 

gc2 = B,(0.0866), (6.398) 

$23 = 
1 + Bc(0.0866) 

2 7 (6.399) 

gc4 = 
2 + Bc(0.0866) 

3 ’ 
(6.400) 

We asume the array is pointed at broadside (unL = 0) and the only interference is 
white noise. The actual signal arrival angle is ua, and we examine the output SNR, as a 
function of *. We assume that the actual value of S, (in this case aLI> is used to 
design the beamformer. 

In Figure 6.47, we plot the array gain versus sbN for an input SNR of 20 dB for 
the four choices of gc. We also show the MVDR beamformer as a reference. For LCMV 
beamformers, t,he array gain is not a function of the input SNR. We use this input SNR 
as a reference level in the next example. 

We see that the best choice for gc depends on the range of mismatch that we expect in 
a particular application. As gc is increased from B,(0.0866) to 1, the array gain at ua = 0 I 
decreases, but the slope of the array gain curve versus e also decreases. For our case 
in which the maximum mismatch is 0.25BwNN, we would use gc2. 

In the next example, we use the same model but assume that the actual 
S,, rather than S,, is available to design the LCMP beamformer, 

S 2 H 
X = op,v, t a;1. (6.401) 

. r We will see that there is a dramatic difference m perrormance. 

Example 6.7.6: Directional main-lobe constraints; LCMP beamformers (con- 
tinuation) 

Consider the same model as in Example 6.7.5. We use the actual S, to design the 
beamformer. We use the C matrix in (6.395) and use gc2 (6.398) in the g matrix. We 
plot the array gain versus skN for various input SNR (from -20 dB to 30 dB in IO-dB 
increments). The results are in Figure 6.48. 

We see that there is a significant d .ecrease in array gain for SNR > 10 dB. 

We could reduce this loss by adding more d .irectional constr aints, but this 
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Figure 6.47 LCMV beamformer using directional constraints in white 
environment, SNR = 20 dB, uc = f0.866; array gain versus 2.4JBk-V~~ 
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Figure 6.48 LCMP beamformer using directional constraints in white noise 

environment; uc = 310.0866, gc = B,; array gain versus uJBW~VN. 
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Figure 6.49 LCMP beamformer using directional constraints with two plane- 
wave interferers (f0.30) and white noise. INR = 10 dB for each interferer; 
array gain versus ~~,/AVNN. 

would reduce the degrees of freedom available to null interferers or reduce 
spatially spread noise. 

In order to avoid the signal nulling behavior, we utilize diagonal load- 
ing as developed in Section 6.6.4. The appropriate level of diagonal loading 
depends on the interference environment. Before introducing diagonal load- 
ing, we consider an example with multiple plane-wave interferers to provide 
a baseline case. 

Example 6.7.7: Directional main-lobe constraints; LCMP beamformers (con- 
tinuation) 

Consider the same model as in Example 6.7.5. In addition to the white noise inter- 
ference, we assume that there are two equal-power, uncorrelated plane-wave interferers 
located at UI = *0.30. Thus, 

(6.402) 

We use the C matrix in (6.395) and let gc = &(0.0866). We plot the array gain versus 
U~/~NN for various SNR and INR. In Figure 6.49, the INR of each interferer is 10 dB. 
In Figure 6.50, the INR of each interferer is 30 dB. As in the white noise case, there is 
significant degradation for higher SNR. 

We now introduce diagonal loading. 
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Figure 6.50 LCMP beamformer using directional constraints with two plane- 
wave interferers (~tO.30) and white noise, INR = 30 dB for each interferer; 
array gain versus u&%V~~++ 

Example 6.7.8: Directional main-lobe constraints; LCMP beamformers with 
diagonal loading (continuation) 

Consider the same model as in Example 6.7.7. The actual S, is given by (6.402). The 
weight vector is given by (6.358) modified to include diagonal loading, 

HA H wo - Wlcmp,dl = g S,+&]-lC]-lCH [S3c+&]-1* (6.403) 

The appropriate value of ai will depend on the SNR and INR. We define 

d LlVR=7. 
OW 

In order to decrease the signal nulling effect, we would like 

L,lVR > SNR+ 10 dB. - (6.404) 

However, to obtain adequate nulling of the interferers, we would like 

INR(dB) - (LNR)(dB) > 10 dB. - (6.405) 

In some scenarios the two requirements conflict. In Figures 6.51-6.54, we plot the array 
gain versus ua/BW~~ for various SNR, INR, and LNR combinations. 

In Figure 6.51, the INR is 30 dB. We plot the array gain with 15 dB loading versus 
U@WNN. We see that for SNR 5 20 dB, the array gain decreases monotonically to about 
38 dB at ua = 0.25m~~. In Figure 6.52, the INR is 30 dB. We plot the array gain with 
20-dB loading versus uJBWNN. The higher loading moves the curve for low SNR down 
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Figure 6.51 LCMP-DL beamformer using directional constraints with two 
plane-wave interferers (4~0.30) and white noise, INR = 30 dB, IAE! = 15 
dB; array gain versus u,/BWNN. 
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Figure 6.52 LCMP-DL beamformer using directional constraints with two 
plane-wave interferers (410.30) and white noise, INR = 30 dB, LNR = 20 
dB, array gain versus u,/I?WNN. 
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Figure 6.53 LCMP-DL beamformer using directional constraints with two 
plane-wave interferers (f0.30) and white noise, INR = 10 dB, LNR = 10 
dB, array gain versus ‘u,/AVNN. 

about 1 dB but raises the minimum value of the curve for SNR = 30 dB. 
In Figures 6.53 and 6.54, t,he INR is 10 dB. Now we cannot add enough loading to 

prevent nulling of the 30-dB signal. 
The plots in Figures 6.51-6.54 are useful to understand the beamformer behavior. 

However, a single metric is helpful to compare various techniques. We let ua be a uniform 
randorn variable ranging from -0.25m~~ to 0.25m~~ and compute the expected value 
of the array gain: 

1 
+o. 1 

- Jwl - - 
0.2 s 

A(ua : u,) du,. (6.406) 
-0.1 

We can then compute the diagonal loading that maximizes E[A] for a given interferer 
scenario (UI and INR) as a function of SNR. In Figure 6.55, E[A] is plotted versus SNR 
for several values of INR. We show the LNR values at several points on the curves. 

It is important to note that, in practical applications, we will generally not have the 
information necessary to find an optimum ILNR. However, these examples give us general 
guidelines. Later we will introduce variable diagonal loading based on data measurements. 

In general, the E[A] is not sensitive to the exact value of MR. In Figures 6.56 and 
6.57, we plot E[,4] versus LNR for various SNR. In Figure 6.56, the INR is 30 dB. In 
Figure 6.57, the INR is 20 dB. 

We see that, even for an SNR = 30 dB, the range of LNR, which results in a 3-dB loss 
from the optimum LNR exceeds 10 dB. 

This sequence of examples illustrates typical performance for LCMP-DL algorithms 
using directional constraints. As long as the INR is sufficiently larger than the SNR, we 
can achieve satisfactory performance by adding appropriate diagonal loading. For higher 
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Figure 6.54 LCMP-DL beamformer using directional constraints with two 
plane-wave interferers (f0.30) and white noise, INR = 10 dB, LNR = 15 
dB, array gain versus u,/I?N$~. 
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Figure 6.58 LCMP beamformer with second derivative constraints: SNR = 
20 dB, white noise environment, array gain versus uJHV~VN. 

SN.., we can reduce the range of mismatch by estimating ua. We can then move the 
directional constraints to the steering direction. 

6.7.4.3 Derivative constraints 

In this section, we consider derivative constraints. 

Example 6.7.9: Derivative main-lobe constraints; LCMV beamformer 
Consider a standard lo-element linear array. We use distortionless, first derivative, 

and second derivative constraints evaluated at the origin. From (6.312), 

C = [ 1 d(0) d(0) ] . (6.407) 

We consider four g matrices: (6.313), (6.314), and (6.315) with 93 = 0.4 w and 
( > 

0.9 J=g . 
( > 
We assume that the array is pointed at broadside (u, = 0) and that the interference 

consists of white noise. The actual signal arrival angle is ua, and we examine the array 
gain as a function of u,/M’I/NN. We assume that the actual value of S, (in this case, &I) 
is used to design the beamformer. 

In Figure 6.58, we plot the array gain versus ua/BW~~ for the LCMV beamformer. 
Using g3 equal to 0.9&(o) gives the best results for this scenario. 
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Figure 6.59 LCMV beamformer with second derivative constraints, SNR = 
20 dB, INR = 30 dB, uI = f0.3, g3 = 0.8&(O), array gain versus sNN. 

We now consider the LCMP case. Based on the results of the directional 
constraints, we go directly to the diagonally loaded model and include ai = 0 
as a special case. 

Example 6.7.10: Derivative main-lobe constraints; diagonally loaded LCMP 
beamformer (continuation) 

We utilize the interference plus noise model given in (6.402), and the C matrix in 
(6.407), and the g matrix in (6.315) with g3 = O@,(O). W e consider various combinations 
of SNR, INR, and LNR. 

In Figure 6.59, we plot the array gain versus u,/BWNN for an INR = 30 dB and an 
SNR = 20 dB. We see that, wit,h an LNR = 20 dB, the array gain goes from 42 dB at 

Ua = 0 to 38 dB at ua = 0.25m~~. In Figure 6.60, we plot E[A] versus SNR for various 
values of INR. 

Comparing Figures 6.55 and 6.60, we see that directional and derivative constraints 
provide essentially the same performance when optimal DL is used. Comparing these 
results to Figure 6.39, we see that the two additional constraints allow us to increase the 
SNR by about 15 dB and maintain the same E[array gain]. 

6.7.4.4 Eigenvector constraints 

In this section, we consider eigenvector constraints. 
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Figure 6.60 LCMP-DL beamformer with second derivative constraints and 
optimal loading, U, is uniform [-O.l,O.l], UI = f0.3, g3 = 0.8&(O), INR = 

10, 20, and 30 dB, E[ array gain] versus SNR. 

Example 6.7.11: Eigenvector constraints; LCMP beamformer 

Consider a standard lo-element linear array. In (6.347), we assumed that 

Bd(U) = &(u), --‘t&-j < u < t&-j. - - 

we let ud = 0.1. Since Q in (6.348) does not depend on B&u), the eigenvectors and 
columns of C are the discrete prolate spheroidal functions. The vector g H is given by 
(6.345). 

In Figure 6.61, we plot the array gain versus UJBWNN for the case in which the SNR 
is 20 dB and the INR of each interferer is 30 dB. As we would expect, the behavior is very 
similar to the behavior using directional constraints because, in the narrowband case, they 
are essentially equivalent. 

In Figure 6.62, we plot the expected value of the array gain versus SNR for various 
INR. 

6.7.4.5 Summary 

In Section 6.7.4, we have studied the performance of LCMV and LCMP 
beamformers in the presence of a DOA mismatch. This range of uncertainty 

I I Ua 5 k is among the most stressful for testing array robustness. In the 
problems, we consider array perturbations in the form of sensor position 
perturbations. 
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In the problems, we analyze a wide range of array configurations and 
interference scenarios. We find the results for the linear array with discrete 
interference are characteristic of the general case. The key element in the 
beamformer performance is an appropriate level of diagonal loading. In 
Section 6.10, we revisit the diagonal loading question. In Chapter 7, we 
develop variable loading algorithms that depend on the data input. 

We found that the case of high SNR compared to INR led to signifi- 
cantly degraded performance in the presence of DOA mismatch. A logical 
step would be to perform a preprocessing to estimate the DOA prior to 
beamforming. We look at this approach briefly in Chapter 7 a,nd in more 
detail in Chapter 9 when we study parameter estimation. 

6.7.5 Quiescent Pattern (QP) Constraints 

The constraints that we have discussed up to this point have focused on 
constraining the beam pattern at specific points in frequency-wavenumber 
space or in small regions of the space. The eigenvector constraints in Section 
6.7.1.5 can control arbitrary regions of the frequency-wavenumber space, but 
as the region grows more degrees of freedom are required. 

In this section, an algorithm is developed that first specifies a desired 
quiescent pattern (QP). We then specify a region in w-k space in which 
we expect the desired signal to arrive. Constraints are introduced to avoid 
signal degradation. These constraints are in a space that is orthogonal to 
the space defined by the quiescent pattern. 

Applebaum [AC76], in his early work on adaptive arrays recognized the 
importance of including desirable quiescent patterns in his adaption proce- 
dure. In [AC76], examples are given for a 32-element linear array in which 
the quiescent pattern utilizes Dolph-Chebyshev weighting with -30-dB side- 
lobes. Distortionless, first-order derivative, and second-order derivative con- 
straints are imposed and the optimum pattern is found for a single directional 
interferer and white noise. 

Gabriel [Gab871 also discusses the importance of a good quiescent pattern 
and gives examples. Subsequently, Griffiths and Buckley [GB87] developed 
a solution in the context of the generalized sidelobe canceller in Figure 6.46. 
A different approach was developed by Tseng and Griffiths [TG92b]. Our 
discussion follows [TG92b]. 

We denote the weight vector of desired quiescent pattern by wdq. In 
order to specify the constraint, we recall that the quiescent pattern is 

wq = C(CHC)-lg. (6.408) 
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Therefore, if we define 
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Wdq 
wdq = IIwdql12’ 

and use the constraint 
-H 

wdqw = 1, 

then the resulting quiescent pattern is, from (6.408), 

= wdq. 

(6.409) 

(6.410) 

(6.411) 

However, we must impose other constraints to prevent the desired signal 
from being cancelled by the adaptive weights. We assume there is a response 
region from which the signal will arrive. We specify that region in a (0,+, f) 
space and define 

(6.412) 

Note that this is same Q that we defined in the eigenvector constraint dis- 
cussion in (6.337). 

Instead of using this matrix directly, we define a modified matrix, 

- 

R S = Phd, QKkdq 7 (6.413) 

where 

P adq = %dq (+i$$dq)-l %$ (6.414) 

is the projection matrix with respect to tidq. We then construct a matrix C, 
whose columns are the principal eigenvectors of R, and require, in addition 
to the constraint in (6.410), that 

- 
CH sw=o. (6.415) 

Thus, the quiescent response is unchanged because cs is orthogonal to w& 
and the corresponding constraint values are zero. For example, if we use two 
eigenvectors: 

where + Sl and tis2 are the principal eigenvectors of R,. The algorithm relies 

C - - *dq cs ] = [ cdq @sl es2 ] 7 (6.416) 

on the eigenvectors in (6.416) for main-lobe protection. 
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In a similar manner, we can specify behavior in other regions of inter- 
est. For example, consider a particular area in w-k space where we expect 
interference (or jamming). Denoting this region as RJ, we add additional 
constraints, 

CJWH = 0, (6.417) 

where CJ are the principal eigenvectors of RJ, which is defined as 

- 
RJ =P& P&RJP$~,P& . s S 

(6.418) 

Once again, the additional constraints do not change the quiescent response. 
The total constraint matrix is 

and 

C - - 

- - 

g 
H- l’();...j - 

i 
I I . 
’ ’ I01 

Then, the optimum beamformer is given by (6.358), 

(6.420) 

(6.421) 

To illustrate the algorithm, we first consider an example with the same 

signal and interference model that we have used in previous examples. 

Example 6.7.12 
Consider a standard lo-element linear array. The nominal signal arrival angle is 

us = 0. The actual signal arrival angle is ua, where 0 5 Iua 1 5 0.1. We first consider the 
case in which wdq corresponds to the conventional beam pattern. 

Then 
cdq = l/N, (6.422) 

and 

P&q =I- llH/N. 

The region of interest is Jua 1 < 0.1. Then - 

(6.423) 

s 

Ud 

Q - - v(u)v” (u) du, (6.424) 
-ad 

which is the same Q as in (6.348) and ud = 0.1. Thus, 

[Ql - 2sin[7u&n - n)] 
mn - 7r(m - n) ’ 

(6.425) 

We use (6.423) and (6.424) in (6.413) to find R,. We find the eigenvectors of R, and use 
the Ne eigenvectors with the largest eigenvalues to construct Cs. 



550 6.7 LCMV and LCMP Beamformers 

50 I I I I I 1 I I I 

_’ ” : .. “’ 

LNR=lddB : f 

lo-. .’ . .: . ;.. :. . .: I.,.. . . _: ..,.. I,., . . . . . . . . . . . . . ._ 

- /NR=lOdB / f ; ’ ; ; 

5 _ - - mm=20 dB . .I . . '. . .:. . .:. . : .j. . . .:. . . ._ 
-.. /Nj+3(-)dB ; f / ; : ; 

-e- 3-dB points : : : !  I !  : 

-40 
I  I  I  I  I  I  I  I  I  

-5 0 5 10 20 25 30 35 40 

Figure 6.63 LCMP beamformer with quiescent pattern constraints; conven- 
tional QP, Ne = 2 , ud = 0.1, E[array gain] versus SNR for various INR. 

The interference model is given by (6.402). There are two plane-wave interferers at 
kO.30. 

s, = H 
&& 

+c 
&v~ +&I. (6.426) 

‘- z- 1 

The weight vector is given by (6.358) with the N x (Ne + 1) constraint matrix, 

and the g matrix, 
gH=[l 0 l ‘* 01. (6.428) 

In order to provide a comparison with our previous examples, we let Ne = 2 so that 
there are three constraints. We also add diagonal loading. 

In Figure 6.63, we plot the expected value of array gain versus SNR for various INR. 

We see that with appropriate LNR, we can maintain the array gain over values of SNR < - 

INR. 

Example 6.7.13 (continuation) 
The model is identical to Example 6.7.12. We use a desired quiescent weighting 

corresponding to a Taylor-Villenueve weighting with -20 dB maximum sidelobe and fi = 2. 
In Figure 6.64, we plot the expected value of the array gain versus SNR for various 

INR. We also show the results from Example 6.7.12. 

We see that the results for the two choices of quiescent beam patterns 
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Figure 6.64 LCMP beamformer with quiescent pattern constraints, Taylor 

QC Ne = 2, ud = 0.1, E[array gain] versus SNR for various INR. 

are similar for SNR 5 20 - 25 dB. For higher SNR, a higher LNR is required 
to prevent signal cancellation, and the quiescent sidelobe structure provides 
the array gain. 

To illustrate a different application of the QP technique, we consider a 
simple example from [TG92b]. 

Example 6.7.14 [TG92b] 
Consider a standard 21-element linear array. The desired signal direction is broadside 

and the anticipated jammer region is 40” 5 3 5 50°, where e is the broadside angle. 
The desired quiescent pattern is shown in Figure 6.65. It has unit gain in signal 

direction, -50-dB sidelobes in the anticipated jamming region (40” < 8 < 50”) and 
-30-dB sidelobes elsewhere. It is designed using the techniques in S&tiorL3.9.3. By 
having lower sidelobes in the area of the anticipated jammer, the adaptive beamformer 
will converge more rapidly if the jammer arrives in that area. 

The first two constraints are 
w,H,vv = 1, (6.429) 

and 
c,“w = 0, (6.430) 

where 

c2 = P~duv(o). (6.431) 

We refer to (6.429) and (6.430) as constraint set 1. 
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Figure 6.65 Desired quiescent pattern: N = 21, us = 0. 

A second constraint set is constructed by constraining the four nulls in the -50-dB 
sidelobe region (at 3&l”, 42.1”, 47.5”, and 52.3’) to remain nulls. Thus, 

RJ = i f)(&)vH(&). (6.432) 
i=l 

This step leads to four additional constraints, &, where the pi are the eigenvectors of 

- 
RJ = P&,PQ3JP&4P&. c t. (6.433) 

There are a total of six constraints, 

- c [ - *dq c2 @l lJ32 Th @4 ] 1 (6.434) 

where the pi are the four principal eigenvectors of RJ. 

We now assume that a jammer with a 30-dB INR arrives at 45”. The resulting adapted 
beam pattern is shown in Figure 6.66. We see that the constraint set preserves the desired 
quiescent pattern reasonably well and creates a null in the direction of the jammer. The 
array gain is 42.19 dB for this case. 

We also consider the case in which only the first two constraints are used. The resulting 
adapted beam pattern is shown in Figure 6.67. The array gain is 42.21 dB. 

We see that the QP approach provides a great deal of design flexibility 
and allows us to tailor our optimum beamformer to different anticipated 

scenarios. 
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6.7.6 Covariance Augmentation 

Diagonal loading is a useful tool to control signal mismatch. In many ap- 
plications, we also encounter interferer mismatch. This behavior can occur 

because our measurement of S, is poor due to small sample support, the 
interferers may move, or the interferer may be spread in either space or fre- 
quency. In order to deal with this problem, we want to broaden the nulls 
that the beamformer is placing on the interferers. 

One approach to broadening the nulls is to impose derivative constraints 
on the nulls of the adapted beam pattern, as discussed in (6.331) and (6.332). 

Gershman and Ermolaev [GE911 and Gershman et al. [GSB96] have devel- 
oped adaptive algorithms to accomplish this. 

A second approach was developed independently by Mailloux [Mai95] 
and Zatman [Zat95] that augments the spatial spectral matrix. A discussion 
of this technique that is referred as covariance matrix tapers (CMT) is 
given by Guerci [Gue99]. The relationship between the two techniques is 
derived by Zatman [Zat99] [ZatOO]. I1 We discuss the second approach in 
this section. 

Assume that the MPDR beamformer is designed under the assumption 
that 

D 

S 2 H 
x,m = o,v,v, + x af v&i> VH(U,) + a$. (6.435) 

i=l 

The actual interferers arrive from u,i = ui + nui. 

We construct an augmented spatial spectral matrix to account for the 
uncertainty in the interferer locations. We first define a matrix T, 

T ij = sinc(]i - j]y), (6.436) 

where y is a design parameter that is matched to the uncertainty in the ui. 

From Section 5.5.2, we recall that this is the spatial spectral matrix for a 
narrowband spatially spread signal whose power is constant over an interval 

-7 5 $5 y* 
We define an augmented spatial spectral matrix as a Hadamard product 

of S, m and T, 7 
S x,au A Sx,m 0 To (6.437) 

We design the beamformer using S, au 1 instead of S,. This augmentation 
broadens the nulls. We consider an example to illustrate the behavior. 

“We are using S,, so a more appropriate title is spatial matrix tapers. We use CMT 
to be consistent with the literature. 
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Figure 6.68 Array gain versus Au~/BLV&,C N=lO, ua=O, ur=0.3, INR = 30 
dB, covariance matrix taper with various y. 

Example 6.7.15 
Consider a standard lo-element array. The MPDR beamformer is designed under the 

assumption that 
S x,m = &v ,” + a; VI(UI) #(UI) + &I. (6.438) 

The array is steered to broadside. The actual interferer arrives from ula = UI + Au. 
We consider two beamformers. The first is the MPDR beamformer. The second is a 

beamformer that is constructed using the augmented S, matrix defined in (6.437). We 
first consider the case with no signal mismatch and UI = 0.30 with an INR = 30 dI3. We 
vary y  from 0 to 0.05 in 0.01 steps. 

In Figure 6.68, we plot the array gain versus Au@VVNN for the various y. In Figure 
6.69, we plot the beam pattern in the vicinity of UI = 0.3 for y  = 0, 0.01, 0.02 and 0.03. 
We see that the null has been broadened with negligible loss in array gain. 

6.7.7 Summary 

We have explored five types of linear constraints in Section 6.7.4 and 6.7.5. 
In Figure 6.70, we plot their performance for the signal and interference 
model that we analyzed in a sequence of examples. We see that the five 
LCMP-DL beamformers have similar performance for SNRs that are less 
than the 3-dB loss value. They are all significantly better than MPDR- 
DL. It is important to recognize the contribution of diagonal loading to the 
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Figure 6.69 Beam pattern around UI = 0.30: covariance matrix taper with 
various y. 

robust behavior. In most scenarios, it will be a necessary component of the 
optimum beamformer. Note that, although diagonal loading was introduced 
as the solution to a well-posed optimization problem (6.261)-(6.268), it is 
usually applied in a more ad hoc manner. When diagonal loading is used in 
this manner, it can provide good performance, but it is not optimum in any 
formal sense. 

In the problems, we discuss a number of signal and interference scenarios 
for DOA mismatch. We also study the array perturbation problem. We find 
similar results to the above examples. 

All of the optimum beamformers that we have discussed up to this point 
are operating in an N-dimensional space. In the next two sections, we de- 
velop algorithms that operate in a reduced-dimension space. We find that 
this reduced-dimension operation offers significant advantages. 

6.8 Eigenvector Beamformers 

In the first part of this chapter we found that MVDR and MPDR beam- 
formers are the optimum processors for waveform estimation under a variety 
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of criteria. In Section 6.6, we studied the problem of signal or interference 
mismatch and found that the optimum processors, particularly the MPDR 
beamformer, could suffer significant performance degradation in the presence 

of mismatch. In Section 6.7, we found that by introducing linear contraints 
and DL, we can obtain robust performance. 

All of beamformers assumed S,, the spatial spectral matrix (or S,), was 
known and required computation of S,’ (or S,l) to find the weight vector. 

In practice, we must estimate S, from a finite amount of data. Specifi- 
cally, we will have K independent samples of X available. In Chapter 7, we 
encounter several problems: 

(i) The accuracy of the estimate of S, depends on K/N; the ratio of the 
nurnber of samples, K, to the number of sensors, N. With our as- 
sumption of additive uncorrelated noise @iI) always being present, N 
is the rank of S,. 

(ii) We define the performance using known statistics as the steady state 
performance. We find that the ratio of the performance using esti- 
mated statistics to the steady state performance depends on K/N. 

(iii) In some applications, the environment is stationary over a long period 
of time and we can solve the problem by taking more samples so K/N 
increases. In other applications, the environment is only stationary 

over a short period (e.g., interfering signals arrive and depart) and we 
must work with a low K/N restriction. 

(iv) We also find that, in the low K/N environment, the 
cause significant degradation to the beam pattern. 

noise eigenvectors 

In addition to the problems of estimation accuracy, we encounter the 

problems of computational complexity: 

(i) The number of operations to compute S$ is of O(N3). 

(ii) More efficient algorithms can be developed but their complexity still 

increases with N. 

All of these problems motivate us to find algorithms in which we are 

doing our optimization in a smaller dimensional space. We consider two 
approaches to the problem. 

In this section, we utilize the eigenvectors to construct the optimization 
space. Since the eigenvectors and eigenvalues depend on S, (in practice, 
they depend on S,J the subspace construction will be data dependent (or 
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adaptive) in actual applications. In Section 6.9, we construct the subspace 
by preprocessing the input with a set of conventional beams that span the 
region of (w-k) space of interest. 

Many of the advantages of eigenspace (ES) and beamspace (BS) pro- 
cessing will not become apparent until we study their adaptive realizations. 

However, the steady state performance provides the foundation for these 
analyses. 

In this section, we develop beamformers that compute the eigenvalues 

and eigenvectors of S, and use them to construct the beamformer. In this 
chapter, we a,ssume S, is available. 

In many of the eigenvector beamformers that we develop, we only need 
to compute the eigenvectors corresponding to the largest eigenvalues. This 
requirement means that we can exploit various efficient computation tech- 
niques in lieu of performing a complete eigendecomposition. 

We consider two types of beamformers. They both utilize an eigende- 
composition, but they use the results in algorithms that are significantly 
different. The first type of beamformer projects the input onto a reduced- 
rank subspace called the eigenspace containing the signal and interference.r2 
They then process the projected input in the subspace to form the beam. In 
the presence of signal mismatch, this technique provides significant perfor- 

mance improvement even in the case of known statistics. It will also provide 
a reduction in computational complexity. We refer to these beamformers as 
eigenspace (ES) beamformers. 

In Section 6.8.1, we develop an algorithm that uses the principal com- 
ponents of S, as a basis for a subspace. In Section 6.8.2, we develop an 
algorithm that uses the cross-correlation between the eigenvectors and v, 
as a criterion for selecting the subspace. 

The second type of beamformer uses the eigendecomposition to construct 
a subspace called the dominant-mode (DM) subspace. The algorithm is 

designed to reject the modes in the DM subspace and is referred to as a 
dominant-mode rejection (DMR) beamformer. When there is no mismatch 
and the statistics are known, the DMR and ES beamformers are identical. 

However, in the presence of signal mismatch, array mismatch, or estimated 
statistics, their performance can be dramatically different. We develop and 
analyze this beamformer in Section 6.8.3. We summarize our results in 
Section 6.8.4. 

12This statement is true for the cases of discrete interference, known statistics, and no 
model m ismatch. We discuss t he general case in Sections 6.8.1 and 6.8.2. 
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6.8.1 Principal-component (PC) Beamformers 

The general approach has been studied under a number of different names. 
Under the eigendecomposition label, there are algorithms proposed by Hung 
and Turner [HT83], Citron and Kailath [CK84], Owsley [Ows85], Gabriel 
[Gab86], Friedlander [Fri88], Haimovich and Bar-Ness [HBN88], [HBNSl], 
Van Veen [VVSS], Chang and Yeh [CY92], Youn and Un [YU94], and Yu 
and Yeh [YY95]. 

Under the reduced covariance matrix or principal-components (PC) la- 
bel, the problem has been studied by Kirstein and Tufts [KT85]. 

Under the projection label, algorithms have been developed by Feldman 
and Griffiths [FG91], [FG94]. 

Related work includes that of Er and Cantoni [EC85], Zunich and Grif- 
fiths [ZG91], and Bull et al. [BABSO]. 

The first step in the design is to perform an eigendecomposition of S,, 

N 

S X- x 
Xi+i+F = UAUH, 

i=l 

where U is an N x N matrix of eigenvectors, 

and A is a diagonal matrix of the ordered eigenvalues, 

(6.439) 

(6.440) 

(6.441) 

In practice, we would use S,, the sample covariance matrix, to generate 
the eigendecomposition. We now select D, of these eigenvectors to form a 
N x D, matrix U,. The subscript T denotes “reduced.” 

There are several ways to select the eigenvectors to be used in U,. The 
first model assumes there is a single plane-wave signal, D plane-wave inter- 
ferers, and additive white noise. We select the eigenvectors corresponding to 
the D + 1 largest eigenvalues. We refer to these as the principal components. 
We define 

us+1 = fh a2 l *- %I+1 
[ I 

(6.442) 

to be the signal-plus-interference subspace. In this model, we must estimate 
the number of plane waves present. We develop techniques for estimating 
the value of D + 1 in Chapter 7 (e.g., the discussion of AIC and MDL in 
Section 7.9.3). 
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The second model does not assume any structure for the interference 
(e.g., it could include a spatially spread component). We perform the eigen- 
decomposition in (6.439) and select the D, largest eigenvalues. There are 
various tests for determining if an eigenvalue is large: 

the percent of the total power is contained in &, 

( > ii * >n2, 
i 

(6.444) 

the ratio of the (i + l)th eigenvalue to the ith eigenvalue which has been 
declared to be large. 

After we have selected an appropriate value of D,, we define a N x D, 
matrix, 

U r= [ *1 +2 l ** %I, 1 1 (6.445) 

which defines the reduced subspace and the D, x D, diagonal matrix, 

A r= diag 
{ 

Xr X2 . . l JQ. . 
> 

(6.446) 

Using the model in (6.442), we can write 

S X- us+1 As+1 uF+, + UN AN u;, (6.447) 

where UN is orthogonal to &+I. We can write S;’ as 

- s l -1 H -1 - 
x - us+l *s+r &+, + UN AN UH jjl* (6.448) 

Because vm is in &+I, it is orthogonal to UN. Therefore the MPDR 
beamformer reduces to 

WH mpdr,es = Yes VK US+1 f&i1 U$.+,, (6.449) 

where 

H -1 H 
VmUSt&+~US+~vm 

(6.450) 

We use the symbol Yes instead of our previous symbol A to avoid confusion 
with the eigenvalue matrix. The resulting beamformer is shown in Figure 
6.71. We refer to it as a principal component or eigenspace beamformer. 
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Figure 6.71 Principal component beamformer. 

The result in (6.449) can also be written in terms of the individual eigen- 
values and eigenvectors, 

If we use the model in (6.445), then 

wH mpdr,es = Tf22 Vz UT AL1 U,H. (6.452) 

The algorithm in this form is referred to in the literature as the eigenspace 

beamformer (e.g., [HBNSl],[CY92]) or the signal-plus-interference sub- 
space beamformer (e.g., [FriM]). 

We can also interpret (6.452) as a projection beamformer (e.g., Feldman 
and Griffiths [FG91], [FG94]). 

We define a projected steering vector as 

vP - * PU,Vm = UyUFVm, 

because 
u,Hu, = I. 

The projection beamformer is 

(6.453) 

(6.454) 

wP = “(ps,lvp = Y,S,lU,u,HVm. (6.455) 

Expanding Sxl gives 

wp = N NUN A-l H I U,U,HVm 7 (6.456) 

where UN is the N x (N - DT) noise subspace that is orthogonal to UT,. 
Then (6.456) reduces to 

wp = 7p ju,n;‘v,HJ vn2, 

which is the same as (6.452) if we choose yp = yes. 

(6.457) 
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Figure 6.72 Eigenspace beamformer. 

We see that we can interpret the PC beamformer as a beamformer that 
uses the projection of the model array manifold vector onto the principal 
component subspace in Wmp&es. We would expect that this projection ap- 

proach should provide robustness against model signal mismatch. 
A third interpretation of the beamformer is also useful. We can define 

X es = UpX7 (6.458) 

and 

Ves = u;v,. (6.459) 

This leads to the processor shown in Figure 6.72. Here 

WH 
V,Hsn,l 

mpdr,es = 
VfJh,lVes ’ 

(6.460) 

The advantage of this representation is that it highlights that the beam- 
former is operating in the eigenspace. 

If we include diagonal loading, 

Wes ,mpdr,dl = 
v,H, [A, + +D,]-’ 

Vg [&- -b ($I&] -’ Ves l 

(6.461) 

Note that the diagonal loading is in the eigenspace. When S, is known, 
diagonal loading is not useful to combat DOA mismatch. However, it is 

useful to protect the main lobe against main-lobe interferers. 
For aqLCMP beamformer, we define the constraints in the original N-- 

dimensional space. 

CHW = CH [UyWes] = CgWes = gH, (6.462) 

where 
c,H, A CHU,. - (6.463) 

Then, using (6.358) 

H 
w1 cmp,es = gH [C,H,A,lCe2]v1 C,H,n-l. r 

I 

(6.464) 
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Figure 6.73 MPDR eigenspace beamformer with D, = 3, UI = f0.3, INR = 
30 dB, various SNR; array gain versus u~/BIV”~. 

We consider an example to illustrate a typical result. 

Example 6.8.1 

Consider a standard lo-element linear array. The nominal signal arrival angle is 
Urn = 0. The input spatial spectral matrix is 

(6.465) 

We assume the interfering plane waves are at ~tO.30. We perform an eigendecomposition of 
S, and construct a 3-D subspace using the eigenvectors corresponding to the three largest 
eigenvalues. We use the eigenspace beamformer in (6.460) c 

In Figure 6.73, we plot the array gain versus ua/BW~~ for an INR = 30 dB. Com- 
paring these results to the MPDR-DL results in Figure 6.38(b), we see that the eigenspace 
beamformer is better for all of the SNR considered. The eigenspace beamformer partially 
compensates for the DOA mismatch by projecting vm into the actual subspace. 

The result in Example 6.8.1 for low SNR is correct but misleading. In 
practice, we have to estimate D, and use G, for the eigendecomposition. 
In Section 7.9.2, we find that for low SNR we frequently underestimate D, 
and lose the eigenvalue that is most closely correlated with the signal. To 
investigate this effect we repeat Example 6.8.1 with D, = 2 instead of 3. 
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Figure 6.74 MPDR eigenspace beamformer with D, = 2, UI = f0.3, INR = 
30 dB, various SNR; array gain versus u,lBIYjv~. 

Example 6.8.2 (continuation) 
Consider the same model as in Example 6.8.1. We use the beamformer in (6.451) with 

D, = 2. In Figure 6.74, we plot the array gain versus u,/BWNN. 

We see that the performance is significantly degraded. This is because 
there is very little signal content in the eigenspace. Thus, it is important 
that the dimension of the eigenspace is chosen properly. 

We can also implement the eigenspace beamformer in a generalized side- 
lobe canceller (GSC) format, as shown in Figure 6.75. The adaptive matrix, 
w,H, in Figure 6.46 has been divided into a cascade of two matrices. These 
matrices are defined in the next several equations. In this case, the eigende- 
composition of the spatial spectral matrix of X&J) is used (e.g., [VVSS]). 

The overall weight vector is 

W = wq - Bwa, (6.466) 

where 
wq = C[(CHc)]-lg. (6.467) 

From Section 6.7.3, the optimum adaptive component in Figure 6.46 is 

WH a0 = SdzHsL1, (6.468) 
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Figure 6.75 Generalized sidelobe canceller implement at ion of eigenspace 
beamformer. 

where 
S z = BHS,B (6.469) 

is the spectral matrix at the output of the blocking matrix B, and 

S dzH = w$S,B. (6.470) 

We now utilize an eigendecomposition of S,: 

S Z = uzIAzIu;+ uzlv~zNu,HN. (6.471) 

If the signal arrives from the direction that the blocking matrix assumed, 
then the first subspace in (6.471) is an interference subspace, because the 

blocking matrix B has removed all signal components. If there is signal 
mismatch, then some signal component will leak into the lower path. We 
refer to U,I as an interference subspace even though it may contain leaked 
signal. U,N is orthogonal to the interference subspace. We can also show 

that S dzH contains the component due to interference only (e.g., [Jab86a]) 

and Uz~ is orthogonal to SdZH. 

Therefore, 
w,Ho = w$S,B[U,&--U,H,I. (6.472) 

and 
WH a,es = w~S,Bu,rn,il. (6.473) 

The results in (6.468) and (6.473) specify the GSC version of the eigenspace 
beamformer. 

We should observe that some of the important issues concerning eigenspace 
beamformers will not appear until we study the finite data problem and 
adaptive implementations in Chapter 7. Specifically: 
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(i) We have to estimate D, and compute the eigenvalues and eigenvectors. 
It is important that a significant part of the signal energy is contained 

in the resulting eigenspace. When the SNR is low, we may include a 
“noise” eigenvector instead of a “signal” eigenvector. This error causes 
a dramatic decrease in performance. 

(ii) It is important to observe that we do not have to compute all of the 
eigenvalues. We can use the techniques discussed in Golub and Van 

Loan [GVL89] to compute the eigenvalues in descending order. 

6.8.2 Cross-spectral Eigenspace Beamformers 

In Section 6.8.1, we performed an eigendecomposition of S, and formed a 

reduced-rank beamformer by choosing the eigenvectors with the D, largest 
eigenvalues. In this section, we use a different choice of eigenvectors to form 
the subspace.r3 

The MPDR beamformer was designed to minimize the output power 
subject to the dist ortionless constraint, 

H w  v,=l. (6.474) 

The resulting weight vector is 

WH - - 

and the output power is 

vEs,l 
v,Hs,lv, ’ 

( H 

) 

-1 
P 0= v,s,&-& . 

The eigendecomposition of S, is 

(6.475) 

(6.476) 

S x= c X,tr?@f (6.477) 
i=l 

and 

(6.478) 

13This approach is discussed in Goldstein and Reed (e.g., [GR97a] ,[GR97b] ,[GR97c]). 
The ideas were discussed earlier in Byerly and Roberts [BR89]. 
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Figure 6.76 Cross-spectral beamformer. 

Using (6.478) in (6.476), we have 

P 0= (6.479) 

To retain D, eigenvectors as the basis for the reduced-rank. subspace, we 
choose the D, largest terms in the summation, 

%-4~ %4 = 

arg max 
Jj qj 

) (n) = I,***,&. (6.480) 
i7 i 

We use the subscript “(n)” on this set of eigenvectors because the subscript 
n has been associated with eigenvectors ordered according to the size of the 
corresponding eigenvalue. 

We define an N x D, matrix, U,,, whose columns are the D, eigenvectors 
chosen in (6.480). We then use the MPDR beamformer in the reduced-rank 
space 

vvH 
VHU A-WH c-3 cs 

cs = vH”u n-‘UHC: l 

(6.481) 
m cs cs cs m 

The cross-spectral (CS) b earnformer is shown in Figure 6.76(a). An equiv- 
alent implementation is shown in Figure 6.76(b). A generalized sidelobe 
canceller version is shown in Figure 6.77. 
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Figure 6.77 Generalized sidelobe canceller implement at ion 
beamformer. 

of cross-spectral 

If we try to implement the cross-spectral beamformer for the model in 
Example 6.8.1, we find that it does not work in the presence of DOA mis- 
match. For ua = 0, the steering vector is matched to the model steering 
vector v, and the eigenvectors that we pick correspond to the ones with 
the three largest eigenvalues. The resulting beamformer is the same as in 
Example 6.8.1. However, when ua # 0, we start picking eigenvectors cor- 
responding to the noise subspace and the performance deteriorates rapidly. 
Adding diagonal loading does not help. 

We would anticipate that the cross-spectral beamformer would offer a 
performance advantage when the dimension of eigenspace was less than the 
rank of the signal-plus-interference subspace. Goldstein and Reed [GR97b] 
have an example that demonstrates a performance improvement, but the 
interference model is tailored to the algorithm. We were able to construct 
scenarios in which the CS beamformer was better than the PC beamformer 
under nominal conditions, but it degraded rapidly with mismatch. Another 
scenario that should offer an advantage is spatially spread interference where 
the eigenvalues roll off gradually. We consider this case in the problems and 

find very little performance improvement over the PC beamformer. The 
computational disadvantage of the CS beamformer is that we must compute 
all of the eigenvalues in order to find the terms in (6.480). 

6.8.3 Dominant-mode Rejection Beamformers 

In this section, we develop a class of beamformers referred to as dominant 
mode rejection (DMR) beamformers. The reason for the name will be 

clear after we derive the beamformer. The DMR beamformer is a special 
case of an enhanced MPDR beamformer that was derived by Abraham and 
Owsley [A090]. 
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We perform an eigendecomposition of S, and divide the result into two 
terms, 

& N 

S X- p$@f + z A,@&?, (6.482) 
i=l i=D,+l 

where the eigenvalues are ordered, Ar > X2 . l v 2 AN, and D, is a parameter 
that we will discuss shortly. 

We form a modified spectral matrix by replacing the (N -- Dm) smallest 
eigenvalues by their average, 

1 
N 

aA ‘);7 x 
-N-Dmi D +1 ” 

(6.483) 
= m 

We can also find a from the expression, 

1 h-l. 
a!= 

N-D, 
tr [s,] - x xi . 

i=l 

(6.484) 

The advantage of (6.484) is that we only have to compute the D, largest 
eigenvalues. 

Note that, if the model consists of a plane-wave signal plus (D, - 1) 
plane-wave interferers in the presence of spatially uncorrelated noise (&I), 
then 

a 2 
= %J, (6.485) 

when the statistics are known. However when we estimate S, using finite 
data or have spatially correlated background noise, then cx # D:. 

The modified spectral matrix is 

&T-h N 

S n x - ~A$&P~ + cl! c ipia?y- (6.486) 
i=l i=D,+l 

We can denote the dominant mode subspace by the N x D, matrix 

u&j-&n 4e1 @2 ‘** 
[ 

@dn-t l 

I  

(6.487) 

The orthogonal noise subspace is 

ui-r2 n - +dm+l +dm+2 l * *  +N l 1 (6.488) 

Then (6.486) can be written as 

(6.489) 
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We refer to the D, eigenvectors with the largest eigenvalues as the domi- 
nant modes. They are due to the signal, plane-wave interferers, and spa- 
tially spread interference. 

Note that SX is a full-rank matrix in contrast to the reduced-rank ma- 
trices in Sections 6.8.1 and 6.8.2. 

The inverse of !& is, 

urn 
- 

s l 
- 

x - x +$q + +:,IuL]H 

i=l 2 

1 Dm 
- - - 

a! [ 
x . fhti# + Pdl, ) 
i=l 2 1 (6.490) 

where Pdl, is the projection matrix onto the subspace orthogonal to Udm. 
The weight vector is 

H 
Wdm = 

vmHs,l - 

v,Hs,lv, 
- (6.491) 

In the first case of interest, vm is completed contained in the DM sub- 
space. For the case of known statistics with no signal mismatch this will 
occur if D, is chosen correctly. Then, 

VHPL -0 m dm- 9 (6.492) 

and (6.491) reduces to 

H 
Wdm = (6.493) 

Comparing (6.493) and (6.451), we see that the eigenspace beamformer 
and the DMR beamformer are identical for this case. The DMR beamformer 
in (6.493) is distortionless in the absence of mismatch. 

To investigate the response due to an eigenvector (or mode), we first 
divide Ai into a signal and noise component, 

x i =X~+Q, i=l,Z,***,Dm. (6.494) 

The power output when the input spectral matrix is X,(a,@f is 

f&l, = 
c 

(6.495) 



572 6.8 Eigenvector Beamformers 

If A;/cx ;,> 1, then the output due to the kth mode will be small and that par- 
ticular mode will be rejected. Hence, the dominant mode rejection (DMR) 

beamformer name. The second term is a measure of the correlation between 
the kth eigenvector and vm. As this correlation increases, the depth of the 
null on the kth mode decreases. Note that vm is not normalized, so that the 
maximum value of the second term is N2. 

In practice there will be some mismatch in the model. We will have to 
estimate S,. The eigendecomposition of S, will lead to mismatch in the 
eigenvalues and eigenvectors. In addition, we will have to estimate Ddm, the 
dimension of the dominant-mode eigenspace. This estimate, Ddm, may be 
in error. There can also be mismatch in the signal DOA, so that v, # v,. 

In the next two examples, we discuss the behavior of the DMR beam- 
former under two types of mismatch. In Example 6.8.3, we consider the case 
of DOA mismatch. In Example 6.8.4, we choose Ddrn = Ddm - 1 in order to 
simulate underestimating the dimension of the d,ominant-mode eigenspace. 
Both examples use the same scenarios as in Examples 6.8.1 and 6.8.2. 

Example 6.8.3 

Consider a standard lo-element linear array. The nominal signal arrival direction is 
Urn = 0. The actual input spectral matrix is 

(6.496) 
*- z- 1 

We assume the interfering plane waves are at kO.30. We perform an eigendecomposition14 
of S, and construct a 3-D subspace using the eigenvectors corresponding to the three 
largest eigenvalues. We use the weight vector in (6.491) with Q! replaced by a& 

(6.497) 

In Figure 6.78, we plot the array gain versus u,/BW NN. When the SNR = -10 dB, 
there is very gradual degradation. When the SNR = 0 dB, the degradation is still gradual; 
by ua = O.~/BWNN = 0.25, the array gain has decreased by 13 dB. For higher SNR, the 
decrease in array gain is significant. 

Other scenarios with different ui and 0: give similar results. It appears that, when 

Dm = D + 1, the SNR must be at least 10 dB below the weaker interferer in the two 
interferer case. 

Example 6.8.4 (continuation) 
Consider the same model as in Example 6.8.3. We use (6.491) with Dm = 2 to test 

the effects of underestimation. Now a includes the third eigenvalue, 

Cl!= (6.498) 

14Note that this is exactly the same eigendecomposition. as in Example 6.8.1. 
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Figure 6.78 DMR beamformer with D, = 3, UI = f0.3, INR = 30 dB, 
various SNR; array gain versus us/B WNN. 

In Figure 6.79, we plot the array gain versus ZLJ SWNN. Vve see that for an SNR = 

-10 dB, 0 dB, and 10 dB, there is minimal degradation. This is 3ecause there is almost 

no signal content in the two DM eigenvectors. For SNR = 20 dB, there is some signal 

component in the two DM eigenvectors. As ua increases the geometry causes this signal 

content to decrease and the array gain goes up. For SNR = 30 dB, there is significant 

signal content and the array gain is very low. Other scenarios give similar results. 

This result suggests that the dimension of the dominant mode subspace 
should equal D, the number of interferers when the SNR < INR. 

The performance of DMR beamformer degrades when v, is in the dom- 
inant mode subspace. Cox and Pitre [CP97] (e.g., [CPL98] or [CoxOO]) have 
developed a robust DMR beamformer that improves performance under cer- 
tain scenarios. The reader is referred to those references for a description of 
the algorithm. 

6.8.4 Summary 

In this section we have developed two beamformers that utilize the eigende- 
composition in a different manner. 
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Figure 6.79 DMR beamformer with D, = 2, UI = IfrO.3, INR = 30 dB, 
various SNR; array gain versus u,/WV~N. 

The principal component (or eigenspace) beamformer forms an eigenspace 
using the eigenvectors with largest eigenvalues. All of the subsequent pro- 
cessing is done in this reduced-dimension eigenspace. In order to have good 
performance, the desired signal must have a significant component in the 
eigenspace. In order to accomplish this, the SNR must be large enough to 
cause this inclusion. The exact value required will depend on the signal 
and interference geometry, the accuracy of the 8, estimator, and other mis- 
matches. In practice, we must also estimate D, from the data and we will 
find that it is important not to underestimate D,. 

The dominant mode rejection beamformer performs the same eigende- 
composition, but uses it in a different manner. The DMR beamformer av- 
erages the smallest eigenvalues and uses the average value in place of Xi, 
i= Ddrn + 1,-y Iv. The result is a modified version of the MPDR beam- 
former. The eigenvectors that are not in DM subspace only appear in Pdl,, 
which can be calculated using the DM eigenvectors. If the model is per- 
fectly matched, then the DMR and PC beamformers are the same. In the 
presence of mismatch, their behavior is different. In the DMR beamformer 
we would like to remove the signal from the DM subspace. This result will 
happen in a low SNR environment. The exact value required will depend on 
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Figure 6.80 Orthogonal beams ror beamspace processor. 

the signal and interference geometry, the accuracy of the 9, estimator, and 
other mismatches. When we estimate D, from the data, an underestimate 

h 

D r= r D - 1 may improve the performance. 

In Chapter 7 (Section 7.9) we look at the behavior when the necessary 
quantities must be estimated from a data set. Our tentative conclusion is 
that we can improve on the MPDR performance by using eigendecomposi- 
tion. For high SNR, we would use the eigenspace beamformer. For low SNR, 
we would use the DMR beamformer. 

6.9 Beamspace Beamformers 

A second approach to reducing the rank of the processor is to perform a 
preliminary preprocessing with a set of non-adaptive beamforrners. We then 
process the beamformer outputs in an optimum manner. We refer to the 
space spanned by the output of the beamformers as the beamspace and the 
overall processor as a beamspace beamformer. 

A typical example is shown in Figure 6.80. The array is a standard 32- 
element linear array. We use seven orthogonal conventional beams spaced 
symmetrically about us = 0. We denote the weight vector associated with 
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Nh x N 1 x N hs 

Figure 6.81 Beamspace processing. 

the mth beam as bi m, r-n = 1, l . l $7. In this case, 7 

bH 
1 

bs,m = 
lm 

7 (6.499) 

where vu(u) is the array manifold vector in u-space. We define an N x 7 
matrix Bbs whose columns are the bbs vectors in (6.499). In the general 
case, Bbs is an N x Nbs matrix. 

We refer to the seven beams as a beam fan. We denote the interval 
between the first left null of the left beam and the first right null of the right 
beam as the beamspace sector. 

In Section 6.9.1, we consider beamspace MPDR beamformers with diag- 
onal loading. In Section 6.9.2, we consider beamspace LCMP with diagonal 
loading. In Section 6.9.3, we summarize our results. 

6.9.1 Beamspace MPDR 

The model is shown in Figure 6.81. The output of the beamspace matrix is, 

XbS = BEX, (6.500) 

and we require 
BEBb, = I. 

The beamspace array manifold vector is defined as 

(6.501) 

vbs 
H = Bbsvs. 

If we use orthogonal conventional beams as in Figure 6.80, then, as discussed 

in Section 3.10, 

H [ 1 
1 

bbs,i = - 
e-.ib- ~)(~c-(~-~)~) 

1/N I 
7 

n - 0 ..,,N - - 7 
1 

7 
n 

m = 1, l l l ,7, (6.503) 
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where q!~~ is the MRA of the center beam, and 

so, for $c = 0, 

vbs($) = fi 
Sin(&Wl)~)) 

sin( i$ (*-(m-4) s)) 
. (6.505) 

I 
. . . 

i 

sin( + (Q-3$) 
L sin 2 ( (@ 

27T - N 3 )> A 

If we use other weightings such as Chebychev or Taylor to form the beamspace, 
then 

577 

(6.504) 

[ 1 bH bs,i 
= wi e-4 “‘J-~)(~c-(~-~)~) 

7 
n = 0 . . . ,N _ 1 

7 7 
n 

m = l,.-.,7. (6.506) 

The output of the beamspace matrix, &s, is processed with a 1 x Nbs 
N matrix, Wbs to obtain a scalar output Y. Thus, 

H 
y = wbs xbs =wHBHX bs bs l 

(6.507) 

The resulting beam pattern is 

@.,!J(‘+) = W:Vbs(‘$+ (6.508) 

The spatial spectral matrix in beamspace is 

S H 
xbs = B,,SxBbs* (6.509) 

For a single plane-wave signal plus spatially correlated interference and white 
noise, 

S X =a,2vsv~+S,+~~I. (6.510) 

Then, 

S xbs = o,2B~v,v,HB,, + BES,Bb, + (+@$Bbs- (6.511) 

Using (6.501) and (6.502) gives 

S xbs = &bsvE + Bf$,Bb, + &. (6.512) 
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Figure 6.82 Beamspace processing using non-orthogonal beams. 

For the special case in which the spatially correlated interference consists 
of D plane waves 

s c = VSIVH, (6.513) 

and the second term can be written as 

B~%Bbs = vbsw;, (6.514) 

where 
H 

-& ii B,,V. (6.515) 

We can now use one of our optimum beamforming algorithms on xbs. 
Note that the beamspace beamformer has a reduced number of degrees of 
freedom so that the number of interferers or eigenvectors that we can sup- 
press is reduced. 

One way to compensate for this reduction is to use shaped beams to form 
the beamspace. For example, we can use a set of shifted Dolph-Chebychev 
or Taylor-Villenueve beams to reduce the sidelobes significantly. Then the 
beamspace processor can focus on interference within the beamspace sector. 

In the shaped beam case, the original beam set may not satisfy (6.501). 
We denote a non-orthogonal B as B,,. Then (6.512) becomes 

Most of our beamforming algorithms assume a white noise component so we 
pass xbS through a whitening matrix, as shown in Figure 6.82: 

The overall matrix filter is 

(6.518) 
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We then use BE as the matrix to form the beamspace. The sidelobes in 
the component beams of B bs are several dB higher than the original Dolph- 
Chebychev or Taylor beams. 

We consider several examples to illustrate beamspace beamforming. In 
Examples 6.9.1 through 6.9.5, we consider a standard 32-element linear array. 
The beamspace sector is centered around u = 0. 

Example 6.9.1 
In this example, we use the seven conventional beams shown in Figure 6.80 to form 

the beamspace. We then form the beamspace MPDR beamformer, 

H 
Wrnpdr,bs = 

vgSxbs -IL 

v~s;;svb, l 

(6.519) 

We steer the array to broadside. Using (6.499) in (6.502), we have 

v: = [o 0 0 d?v 0 0 01, (6.520) 

so that 
H 

Wrnpdr,bs = (6.521) 

We assume that, the interference consists of two equal-power uncorrelated plane-wave in- 
terferers at & and &. We assume that the signal direction is perfectly matched so the 
SNR does not affect the array gain or beam pattern. 

For INR > 10 dB the beam patterns have essentially the same shape. In Figure 6.83, 
we show the beam patterns for an IINR = 20 dB (each interferer) for the beamspace MPDR. 
The two array gains are essentially the same: for element-space MPDR, A = 37.806 and 
for beamspace MPDR, A = 37.753. 

The advantage of beamspace is that the dimension of the optimum beamformers is 7 
instead of the 32-dimensional element-space beamformer, so the computational complexity 
is reduced. In Chapter 7, we find that the number of snapshots needed to obtain a required 
accuracy will decrease as the dimension of the space decreases. 

In the next example, we investigate the performance in the case of DOA 
mismatch. As in the element-space beamformer, we use diagonal loading to 

improve robustness. 

Example 6.9.2 (continuation) 
We use the same model as in Example 6.9.1 and examine the behavior when ua # 0. 

There are two plane-wave interferers at UI = 3/32 and UI = 5/32. Each interferer has an 
INR = 20 dB. We consider SNR = 0 dB and 10 dB and use fixed loading of 10 dB and 15 
dB. In Figure 6.84, we plot the array gain versus ua/BW~~ for beamspace MPDR. 

The loading provides some robustness against signal mismatch, but an LCMP beam- 
former may be necessary. 

In the next example, we investigate the performance in the case of array 

perturbations. 

Example 6.9.3 (continuation) 
We use the same model as in Example 6.9.2 and assume ua = 0. We use the array 

perturbation rnodel in Example 6.6.4. We use a beamspace MPDR algorithm with diagonal 
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Figure 6.83 Beamspace MPDR; N=32, Nbs = 7, us = 0, SNR = 0 dB, 
UI = 0.094, 0.16, INR = 20 dB: beam patterns. 

loading. In Figure 6.85, we plot the array gain versus F when appropriate diagonal loading 
is used. We also include the results for element-space MPDR with diagonal loading. 

We use the same INR and LNR values as in Example 6.9.2. In Figure 6.85(a), the 
SNR is 0 dB. In Figure 685(b), the SNR is 10 dB. 

We see that the beamspace algorithm is always better than the element-space algo- 
rithm. For higher SNR, the performance difference is significant. 

In the next example, we modify the beam patterns of the fixed beams in 
order to further suppress out-of-sector interference. 

Example 6.9.4 
Consider a standard 32-element linear array. We form a ‘I-dimensional beamspace us- 

ing beams whose steering direction is shifted by $. Each beam utilizes Taylor (Villenueve) 
weighting with -30 dB sidelobes and fi = 6. We use (6.518) to generate the orthonor- 
ma1 rows in BE. The interference consists of eight statistically independent plane-wave 
interferers with DOA in u-space of f$+~&,k$$, and f$$ Note that six of the in- 
terferers are outside the sector (f7/32) of the beamspace and there are more interferers 
than beamspace degrees-of-freedom. Each interferer has the same IlvR. We use an MPDR 
beamformer in beamspace. 

In Figure 6.86, we show the resulting beam pattern for the case when the INR =30 
dB. The array gain is the same as the element-space MPDR beamformer. We see that the 
beamspace processor has put a “perfect” null on the interferer inside the beamspace sector 
and reduces the beam pattern to less than -59 dB in the direction of the out-of-sector 
interferers. 
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Figure 6.84 Signal mismatch, beamspace MPDR with fixed DL; N=32, 

Nbs=7, urn =O, SNR =0 dB, u 11=3/32, urz=5/32, INRl=INR2=20 dB, 
array gain versus u,/BW&T: (a) SNR = 0 dB, LNR = 10 dB and 15 dB; 
(b) SNR = 10 dB, LlVR = 15 dB and 20 dB. 
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Figure 6.85 Array position perturbations, beamspace MPDR with fixed DL; 
N=32, &=7, urn = 0, ur1=3/32, u1~=5/32, INRl=INRz= 20 dB, array 
gain versus a,/& 200 trials: (a) SNR =0 dB, LNR = 10 dB; (b)SNR = 10 
dB, LNR = 20 dB. 
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Figure 6.86 Beamspace MPDR beamformer with Taylor weighted beams; 
N=32, Nbs=7, u, = 0, SNR = 20 dB, eight interferers with INR = 30 dB; 
beam pattern. 

6.9.2 Beamspace LCMP 

We can also implement LCMV and LCMP beamformers in beamspace. We 
first formulate the constraints in element space. From (6.350), 

WHC = gH, (6.522) 

where wH is 1 x N, C is N x A&, and gH is 1 x MC. From Figure 6.81, 

WH =wEBg . (6.523) 

Using (6.523 

Defining 

) in (6.522 >g ives 

WC (BE C) = gH. (6.524) 

Cbs * BE c, - (6.525) 

(6.524) can be written as 
H 

Wbs Cbs = g 

H 
l 

(6.526) 

Following the steps as in (6.350)-(6.358), the optimum beamspace LCMV 
and LCMP processors are: 
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Figure 6.87 Beamspace generalized sidelobe canceller . 

H 
Wlcmp,bs - - gH [c; s;is cbs] -I c: s;;s. 9 > 

(6.527) 

(6.528) 

Note that, because the beamspace processor has fewer degrees of freedom, 
the impact of MC constraints on the ability to null multiple interferers is 
increased. 

The generalized sidelobe canceller implementation follows in the same 
manner as Section 6.7.3 and is shown in Figure 6.87. 

The quiescent weight vector is 

H 
wbs,q = g 

H (6.529) 

The beamspace blocking matrix is defined by the constraint, 

H 
cbs Bbsbl = 0, (6.530) 

and 
H 

Bbsbl Bbsbl = I- (6.531) 

The second processor in the lower path is 

^H 
Wbs,a = wbs,q H s 

-1 

x,bs I 
. (6.532) 

The various constraints that were developed in element space can be used 
in these two configurations. A summary of appropriate constraints is given 
in Table 6.2. 
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Table 6.2 Constraint References 

~1 

In most applications, diagonal loading is also added. In general, beamspace 
processing works well when the rank of the interference is less than the de- 
grees of freedom available in beamspace. When, the interference :rank is too 
large, the performance of the beamspace algorithm can be much poorer than 
an element-space algorithm. 

6.9.3 Summary: Beamspace Optimum Processors 

In this section, we have observed several advantages of beamspace processing: 

(i) The computational complexity is reduced from O(N3) to O(N&). 

(ii) The beamspace processor is more robust to array perturbations. 

(iii) By using low sidelobe beams to construct the beamspace, the subse- 
quent beamspace beamformer emphasizes the sector of interest in its 
optimization. 

In Chapter 7, we see another important advantage when we estimate 
s X bs. The number of snapshots (samples), EC, required to obtain an adequate 
estimate of S, is a function of K/N. However, the number of snapshots 
required to get a comparable estimate of S, bs is a function of K/NbS, which ) 
may be significantly larger. 

One disadvantage of beamspace processing is its loss of available degrees 
of freedom to combat interference. 

In the next section, we revisit the issue of diagonal loading. 

6.10 Quadratically Constrained Beamformers 

In Section 6.6.4, the technique of constraining llw112 in order to improve the 
robustness of MPDR beamformers to signal mismatch and array perturba- 
tions was introduced. It resulted in diagonal loading. The level of loading 
was chosen without coupling it to the original constraint on the norm of the 
weight vector. Diagonal loading was also used in Section 6.7 to improve the 
robustness of LCMV and LCMP to mismatch. 
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In this section, we revisit the quadratic constraint problem and solve for 
the optimum loading as a function of To. First, the derivation in Section 
6.6.4 is modified to include linear constraints. Then, a LCMV (or LCMP) 
beamforrner is designed that minimizes the output noise variance subject to 
the constraint thatI 

wHvv=T<To. - (6.533) 

The constraints To can only be set within a certain range of values. This 
range will be discussed shortly. 

The LCMP optimization problem is: 

Minimize PO = wHSxw, (6.534) 

subject to the linear constraints, 

CHW = g, (6.535) 

and the quadratic constraint, 

wHw -C To. - (6.536) 

Note that, when the signal is mismatched, minimizing El0 in (6.534) is 
not equivalent to maximizing the array gain. To maximize the array gain we 
would need S, (or an estimate of it). In our model we have assumed that 
only S, or its estimate is available. 

We first solve the problem for the equality constraint, 

H w  w=T,. (6.537) 

In order to explore the allowable range of To, we denote the optimum solution 
by GO. We write WO as a generalized sidelobe canceller, 

WO 
-L- = PcWo + P,w, 

-L- = wq + P,w,. (6.538) 

Therefore 
-H- 
w, wo = wfwq + w,HP&iGo > w,“w,. (6.539) 

so, 
min {ti$Gi70} = wfw,. (6.540) 

15The first approach to the design of optimum array with a robustness constraint was 
published in 1955 (Gilbert and Morgan [GM55]) and 1956 (Uzsoky and SolymAr [USSS]). 
The specific problem formulation used here was published by Cox et al. [CZOS7] and 
Owsley [Ows73]. 
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Therefore/ 

T* 2 wfwq = gH (c”c)-l CHC (CHC)-lg, (6.541) 

or 
7; > gH CHC -IL g. - ( ) 

(6.542) 

So we cannot set the constraint to be less than gH CHC 
( > 

-1 
g. 

We now solve the optimization problem. Initially, we use an equality 
constraint. The function to minimize is 

F e wHSxw + X1 [wHw - To] 

+x2 
[ 
CHW-g 1 [ + wHC-gH A& 1 (6.543) 

Taking the gradient with respect to w  and setting the result to zero gives 

WHSx + XIWH + X2CH = 0, (6.544) 

or 
WH = +cH [x11 + s,]-l . (6.545) 

Solving for X2 gives 

iq = gH [c” [S, + x111-l cl-l CH [s, + x111-l . (6.546) 

To emphasize that we are really using an inequality constraint, we change 
notation, letting 

w, = woqc (6.547) 

and 
/8=x1. (6.548) 

The solution in (6.546) can be written as 

woqc = (s, + p1)-l c [CH (s, + p1>-l cl-l g. (6.549) 

We can solve for ,O numerically using (6.549). As in Section 6.6.4, the effect 
of a positive ,8 is to add a diagonal term to the actual S, in the expression 
defining the optimum beamformer. This technique is the diagonal loading 
used in Sections 6.6 and 6.7. In those cases, we picked a value of ,O based 
on the SNR and INR. We now want to find the optimum value of ,O. The 
beamformer is implemented in a generalized sidelobe canceller configuration. 
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Assume 
BHB = I, (6.550) 

and write! the LCMP as 

%qc E g-$-J 
( 

cHs,lc 
> 

----I g, (6.551) 

where 
s X = s, + PI. (6.552) 

Then 
cvgsc = wq - BG, (6.553) 

and 

wa 
- - 

- - 

[B”S,B] -’ BHS,w, 

[B”S,B + ,8BHB]-l (B”Sxw, + PBHW,) 7 (6.554) 

which reduces to 

Wa = [B~S,B + PI]-’ BHSxwq. (6.555) 

Now find ,8 to satisfy 

ET0 > $$bJsc - 
= wHw +WHBHBW Q q a a 

H -H- 
= WqWq+WaWa, (6.556) 

or 
To - w:wq > T?r,Hwa. - (6.557) 

Replacing the left side by a2 gives 

pi5qGq (6.558) 

where o2 > 0. 
When 2 = 0, the standard LCMP solution is obtained. When ,8 -+ 00, 

the quiescent beamformer is obtained. 
As p increases, the norm of Gina decreases. To see this, we first rewrite 

(6.555) as 
%a = [ST + PI]-l pm (6.559) 
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where 
s Z = BHS,B, (6.560) 

is the spectral matrix of z, the output from the blocking matrix, and 

P Z = BHSxwq, (6.561) 

is tIhe cross-spectral term. 
The squared norm of the weight vector Wa can be written as 

-H- 
Wa Wa = P;(s, + pI)-2Pz* (6.562) 

Taking the derivative with respect to ,0 gives 

d -H- 
-W, Wa = 

@ 
-2PF(Sz + PI)-3Pz. (6.563) 

Since the diagonally loaded data matrix [S, + ,811 is positive definite when 
,0 Ir 0, the derivative value in (6.563) is negative. Therefore, the weight 
vector norm is decreasing in ,0 for p > 0. 

The amount of diagonal loading is adjusted to satisfy the qua,dratic con- 
straint, however, the optimal loading level cannot be directly expressed as a 
function of the constraint and has to be solved for numerically (Tian et al. , 
[TBV98]). 

Assuming W,HWa > a2, when p=O, an iterative procedure can be used 
to solve the constraint equation, 

$pw 
a a = w;%cB (B”S,B + /31)-2BHS,wq = a2. (6.564) 

Starting with ,8(O) = 0, let 

p(1) = p(O) + ap, (6.565) 

pw = /p-u + ap* (6.566) 

At each step, compute GG,Hw,. Continue the iteration until (6.564) is satis- 
fied. 

We consider two examples to illustrate typical behavior. 

Example 6.10.1 
Consider a standard lo-element linear array. The array is steered to broadside. The 

interference consists of two uncorrelated equal-power interferers each with an INR = 20 dB. 
The interferers are located at u = 0.29 and u = 0.45. The signal arrives ua with an SN-R = 
10 dB. An MPDR-QC beamformer is implemented with To = 0.12. Note that, whenever a 
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Figure 6.88 MPDR-QC beamformer with To = 0.12; MPDR-DL beamformer 
with LlVR = 15 dB and 20 dB; SNR =lO dB, INR =20 dB, uI=O.29 and 
0.45; array gain versus u&3iV&j~, 200 trials. 

distortionless constraint is included, To > l/N = 0.1. An MPDR-DL beamformer is also 
implemented with fixed loading of 15 dBand 20 dB. 

In Figure 6.88, the array gain for the three beamformers is plotted versus u,/BWNN. 

In Figure 6.89, the value of /? is plotted versus uJBWNN. In Figure 6.90, the value of 
)lwli2 is plotted versus u,/BWNN. 

In terms of array gain, there is only a moderate advantage in using the optimum p. 
However, the fixed loading levels were chosen based on knowledge of th.e SNR and INR. 
The constraint To was chosen based on a desired white noise gain level and the loading 
was derived to meet the constraint. This approach is more flexible and will lead to a useful 
adaptive loading technique. 

Example 6.10.2 (continuation) 
Consider the same model as in Example 6.10.1. In this example, there is no signal 

mismatch, but there are array perturbations. The signal arrives at us = 0. The array lies 
along the x-axis and the sensor positions are perturbed randomly in the II: and y  directions. 
The perturbations of each sensor in the x and y  directions are statistically independent 
zero-mean Gaussian random variables with standard derivation op. The SNR is 10 dB and 
the INR of each interferer is 20 dB. 

In Figure 6.91, the expected value of the array gain versus F is plotted for two cases: 
(i) MPDR-QC with To = 0.12. 
(ii) MPDR-DL with UW = 15 dB and 20 dB. 
In Figure 6.92, the value of p is plotted versus a,/X. 

The use of the optimum p provides a l-2 dB improvement over the fixed 
loading performance. 
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Figure 6.91 Array pertIurbations: MPDR-QC beamformer with To = 0.12 
and MPDR-DL beamformer with UW = 15 dB and 20 dB, average array 
gain versus 0&I, 100 trials. 

Figure 6.92 ,8 versus a,/& 100 trials. 
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In this section, quadratic constraints were introduced as a technique to 
rnake the optimum algorithm more robust in the presence of signal mismatch 
or array perturbations. It also provides main-lobe protection when a strong 

interferer moves into the main-lobe region. In Chapter 7, we find that it also 
provides robust behavior when the spatial spectral matrix is estimated from 
a limited amount of data. 

An iterative technique was used to find the value of p required to satisfy 
tlhe constraint. This technique has an advantage over fixed loading, because 
it only employs enough loading to meet the constraint. In the examples in 

this section, an appropriate level of fixed loading was chosen using knowledge 
of the signal and interference environment. In practice, this may be an 
unrealistic assumption. However, a suitable value of TO can be chosen based 

on the entire range of signal and interference scenarios that are expected. 
Quadratic constraints and diagonal loading will be revisited in Chapter 

7. They will be a necessary component of most practical algorithms. In the 
next section, an algorithm is developed that turns out to be a generalization 
of dia,gonal loading. 

6.11. Soft-constraint Beamformers 

In this section, a quadratic constraint technique is developed that is referred 
to in the literature as a soft-constraint beamformer. This type of con- 
straint was introduced by Er and Cantoni [EC851 and developed in detail by 

Van Veen [VV91]. Er and Cantoni consider the narrowband case and use a 
planaIr array as an example. Van Veen considers a broadband case using a 
tapped delay-line implementation. To simplify the notation, we consider a 
narrowband standard linear array in the text and develop the generalizations 
in the problems. The initial discussion is the same as Section 6.7.1.5. 

The first step is to specify a desired beam pattern B&,/J). We want the 

beam pattern to approximate it over some region in $-space. The desired 
beam pattern is 

Bd(+) = wfv($+ (6.567) 

In some cases Bd($) might not be realizable with an N-element array. In 
that case, wd is the weight vector that minimizes the squared error (see 
Section 3.7.2). 

We define 

beam. pattern 
a weighted least squares response error between the desired 
and the actual beam pattern over a region in $-space as 

(6.568) 
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where XIJO is the region of interest and f(q) is a weighting function that 
allows for emphasis of different regions in q-space. The error weight vector 
is defined as 

wP =wd--w. (6.569) 

Using (6.569) in (6.568) gives 

e2 H =wp Qwp, (6.570) 

where 

Q 2 s,, f ($9 vW4 vHW) dti. (6.571) 

For the special case of a standard linear array and a constant f($), 

[Ql mn = J 
,jlClb-4 

0 . 
QO 

If XI!0 is a symmetric interval [-$0, $01, then (6.572) reduces to 

[Ql 
s 

$0 

mn = 
,jNm-4 - d$) 

2sin($o(m - n)) 
- 

40 ( m- 
4 l 

(6.572) 

(6.573) 

Note that, if $0 = X, then we are attempting to approximate the desired 

beam pattern over the entire visible region and Q is a diagonal matrix. As 
$0 decreases, the off-diagonal terms increase. 

There are several approaches to introducing the constraint. The first 

([EC851 or [VV91]) is to minimize the output PO, 

P 0 =WHSxW, (6.574) 

subject to the constraint 
e2 < e& (6.575) 

where the value of ei depends on the application. 

Using a Lagrange multiplier, we define 

F=(w,H- w,“) sx (wd - wp) + A(,: Qwp - & (6.576) 

Minimizing gives 

tip = [s, + xQ]-l s,+d, (6.577) 

and X is chosen as large as possible subject to the constraint, 

(6.578) 
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Figure 6.93 Partitioned processor. 

We refer to the resulting beamformer as the MPSC beamformer. Van 

Veen [VV91] f re ers to it as soft-constrained minimum variance beamformer 

(SCMV). Note that the result in (6.577) corresponds to a partitioned proces- 
sor as shown in Figure 6.93. This is the same partitioned processor that we 
saw in Figure 6.42. We see that MPSC is a generalization of diagonal loading 
that provides freedom to emphasize different areas of the beam pattern. 

Just as in the diagonal loading case, we must solve for X as a function of 
2 2 e. using numerical procedures. As e. -+ co, X + 0, and we have an uncon- 

strained beamformer. In this case, wp -+ wd, and the output goes to zero. 
This result happens because of the absence of a distortionless constraint. As 
eg -+ 0, wp -+ 0, and the beamformer is wi’. 

To obtain useful results, ei must be small enough to avoid a zero output, 

but large enough to allow some adaptation. It is convenient to rewrite eg as 

2 
eO 

H 
=aWd @‘hi, _ _ O<a<l. (6.579) 

If ck! = 1, %, = wd satisfies (6.577) and (6.578) with X = 0, so we do not 
need to consider larger values of eo. 2 To avoid notational confusion between 
X and eigenvalues, we replace X with ,0 and rewrite (6.577) as 

Gmpsc,p = [sx + P&l -’ sx wd, 1 (6.580) 

subject to the constraint 

^H 
wmPsc,P Q Gmpsc,p < Q @: Q wd, O<a<l - - - l / (6.581) 

The parameter a plays a similar role to To in the diagonal loading model. 
As an alternative to solving for ,0 as a function of a, we can choose ,0 based 
on expected scenarios. This is analogous to fixed diagonal loading. 
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Figure 6.94 MPSC beamformer: normalized SNR, versus U@VNN, wd = 

~I~, $0 = 0.1X, CI! = 0.001, UI = 0.3 and 0.5, INR = 20 dB, SNR = 0 dB. 

We consider an example to illustrate typical performance of soft con- 
straint beamformers. 

Example 6.11.1 
Consider a standard lo-element linear array. The desired beam pattern corresponds 

to a conventional beam and $0 = 0.1~. There are two uncorrelated plane-wave interferers 
at u = 0.3 and 0.5 with an IAR =20 dB each. The performance of the MPSC beamformer 
specified by (6.580) with a = 0.001 is analyzed. 

For comparison, the LCMP beamformer using three eigenvector constraints (Example 
6.7.11), and an LCMP beamformer with second derivative constraints (Example 6.7.10) is 
also analyzed. 

In Figure 6.94, the normalized SNR, is plotted versus UJBWNN for an SNR = 0 dB. 
In Figure 6.95, the normalized SNR, is plotted for an SNR = 10 dB. Note that the vertical 
scale is different in the two Figures. 

For the SNR = 0-dB case, the eigenvector-constraint beamformer is slightly worse for 
ua/m~~ 5 0.1 and better for larger ua. The LCMP beamformer is better over the entire 
range, but the difference is small for uJl3Wlv~ 5 0.1. 

For the SNR = lo-dB case, there is a wider difference in performance. The eigenvector- 
constraint algorithm is slightly worse for small ua and slightly better for larger ua. The 
LCMP algorithm drops ofI’ for ua/BVV~~? but this could be improved by diagonal loading. 

Small values of a are used so the soft constraint is very tight. As or is decreased, the 
MPSC beamformer acts very much like an eigenvector-constraint algorithm that uses all 
of the principal eigenvalues. Thus, as C\I decreases, effective degrees of freedom are being 
lost. 
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Figure 6.95 MPSC beamformer: normalized SNR, versus u@VVNN, wd = 

l/N, $0 = O.h, a! = 0.001, UI = 0.3 and 0.5, INR = 20 dB, SNR = 10 dB. 

In order to improve the soft-constraint performance at ua = 0, a linear 
distortionless constraint can be added. In the general case, a set of linear 
constraints defined by C and g can be added. If we try to implement the 
beamformer in a direct form, there are two Lagrange multipliers and the 
solution is complicated. However, a GSC solution is straightforward. 

The GSC configuration in Figure 6.46 is used. We minimize 

[ wq - BW,]H SC [wq - Bwz], (6.582) 

subject to the constraint 

[ wq - Bw; - wdlH Q [wq - Bw, - wd] < e; = awfQwd. - (6.583) 

The constraint in (6.583) can also be written as 

i( wq - wd) - BWX]~ Q [(wq - wd) - Bw,] < e;. (6.584) 

Minimizing using a Lagrange multiplier gives 

h 
wa = [B”(Sx + BQP] -’ BH [sxwq + PQ(wq - wd)] 7 (6.585) 
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Figure 6.96 MPSC beamformer: normalized SNR, versus uJAV~VN, de- 
sired pattern is Dolph-Chebychev (-40-dB SLL), ~1 = 0.3 and 0.5 (20-dB), 
distortionless constraint plus soft constraint with c\! = 10m3. 

where ,0 is chosen to satisfy (6.584). To find ,0, an iterative procedure similar 
to the procedure in (6.564)-(6.566) is used. 

We consider a simple example to illustrate the behavior. 

Example 6.112 (continuation) 

Consider the same model as in Example 6.11.1 except the desired beam pattern is 
Dolph-Chebychev with -40-dB SLL. A single distortionless constraint is added. In Figure 
6.96, the normalized SNR, versus u@W’~~ for four beamformers is plotted. The SNR = 
10 dB and a = 10V3. As expected, the distortionless constraint improves the performance 
for small ua without degrading the performance for large ua. In Figure 6.97, or is decreased 
to 10-4. This decrease degrades the performances of MPSC and MPDR-SC for small ua, 
but improves them for larger ua. 

The LCMP-SC beamformer provides another technique for improving 
the robustness of an LCMP beamformer. In some signal, interference, and 
mismatch scenarios it can provide improved performance over other tech- 
niques. 
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Figure 6.97 MPDR-SC beamformer: normalized S’NR, versus u&M$N, 
desired pattern is Dolph-Chebychev (-40-dB SLL), UI = 0.3 and 0.5 (20- 
dB) distortionless constraint plus soft constraint with Q! = 10m4. 

6.12 Beamforming for Correlated Signal and 
Interferences 

6.12.1 Introduction 

In our discussion up to this point, we have assumed that the desired signal 
and the interference were uncorrelated. In many applications, the desired 
signal and interfering signals are correlated (IpI # 0) or coherent (IpI = 1). 
This situation can occur in a multipath environment or in a “smart” jamming 
scenario (i.e., the jamming signal is derived from the transmitted signal). 

We consider two approaches to the problem. In the first approach, we 
implement an MPDR or LCMP beamformer and analyze the effects of cor- 
relation between the desired signal and the interference. We then develop a 
pre-processing technique called spat ial smoothing that reduces the corre- 
lation. The output of this pre-processing step is the input to the MPDR or 
LCMP beamformer. 

In the second approach, we implement a MMSE beamformer. When 
the desired signal and the interference are uncorrelated, the MMSE and the 
MPDR processor have the same matrix processing (6.44). However, when 
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the desired signal and interference are correlated, the MMSE processor is 

given by (6.42), which does not reduce to the MPDR processor. 
In Section 6.12.2, we analyze the effects of correlation on the performance 

on an MPDR beamformer. In Section 6.12.3, we analyze the performance of 
an MMSE beamformer. In Section 6.12.3, we develop a technique called spa- 
tial smoothing to irnprove the beamformer performance. In Section 6.12.4, 

we summarize our results. 

6.12.2 MPDR Beamformer: Correlated Signals and 
Interference 

In this section, we analyze the effect of correlation between the signal and 
the interferers. We assume that the interference consists of (D - 1) plane- 
wave interferers and that one or more of these interferers are correlated with 

the desired signal. We use the frequency-domain snapshot model. 
In this case, 

X(w) = W(w) + W(w), (6.586) 

and the vector F(w) is a D-dimensional zero-mean random vector that con- 
tains both the desired signal and the interfering signals, 

S ,=VSfVI'+o~I. (6.587) 

The source spectral matrix, Sf, is not diagonal. The N x D matrix, V, 

is the array manifold matrix. The additive spatially white noise W(w) is 
uncorrelated with the signal and interference. If there is a single interfering 
signal, Sf can be written as 

(6.588) 

For Jp] = 1, the source covariance matrix is singular. We want to ex- 
amine the behavior of the MPDR beamformer as a function of p. This 
problem (or models with similar beamformers) has been analyzed by a 
number of references. References include: Owsley [Ows74], [Ows80], Can- 

toni and Godara [CG80], Widrow et al. [WDGN82], [Ows85], Kesler et 
al. [KBK85], Paulraj and Kailath [PK85], Shahmirian and Kesler [SK85b], 
Shah and Kailath [SK85a], Su et al. [SSWSS], Luthra [Lut86], Takao et 
al. [TKY86], Reddy et al. [RPK87a], [RPK87b], Paulraj et al. [PRK87], 
Bresler et al. [BRK88], Zoltowoski [Zo188], Godara [GodSO], Raghunath and 

Reddy [RR92b], [RR92a], and Tsai et al. [TYS95]. We utilize results from 
[TYS95]. In th is section, we analyze the performance. 
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To understand the behavior, it is useful to write X(U) as 

x(w) = os&&)v, + 01 [p’F,l(w) + j/g&(w)] VI + w(W). (6.589) 

The form in (6.589) separates FI(w) into a component that is correlated with 
the desired signal F,!(w) and the remaining uncorrelated terrn Fu(w). 

The MPDR, beamformer WmHpd, uses a distortionless constraint, 

w% - 1 s- 7 (6.590) 

and minimizes the total output power PO. Intuitively, we would anticipate 
that the optimurn w  would constrain the output from v, as required by 
(6.590), but would add in enough of F-j(w) arriving from VI to partially 
cancel the desired signal. The output is 

WJ) = wHasF--j(w)vs + wHq [p*Fd(w) 

+Js&(w)] VI + wHW(w), (6.591) 

Y(w) = H 
[ w vs& + w v~qp* 1 Fd(w) 

-twHv [&] F,(w) i- wHW(w) 
’ yd(w) + yI(w) + Y,(w), (6.592) 

where the three terms are uncorrelated. 
The output power in the desired signal is 

pdo = E [yd(w)yd*(w)l 

w 
H - V,& + w 

H - 
vprp* I[ H v, H wo, + VI wqp 1 

OIP 
* 2 

2 - - 0, a,+q---- 7 
OS 

(6.593) 

where 

as - 
H 

bv vs, 

and 

q n 
H 

w VI. 

(6.594) 

(6.595) 
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For an MPDR beamformer, as = 1 and (6.593) reduces to 

(6.596) 

602 

* 2 

P OIP 
d0 =a,2 l+q- . 

OS 

The output power of the interference is 

pro = E [fi(~)~H(w,] = lw12(1 - IP12)& 

and the output power due to noise is 

(6.597) 

P no = a; 11 wl12. (6.598) 

The output SNR, is 

SNR, = 
l’do 

Pro + Pi20 ’ 
(6.599) 

To evaluate the SNR,, we use wH from (6.14) in (6.593), (6.597), and 

(6.598). The result is (e.g., [TYS95]) 

A 
SNR, = B, 

where 

and 

Parameters in (6.601) and (6.602) include: 

r = 1 - Ip12, 

and 

BdI = 
1 H 

---VI vs, 
N 

and 
A = N2 (1 - Ii?d1/2) . 

Several limiting cases are of interest: 

(6.600) 

(6.601) 

(6.602) 

(6.603) 

(6.604) 

(6.605) 
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0 i 0: = 0, IpI = 1. In this case, we use L’Hopital’s rule on (6.600) to obtain 

SNR, = 0. 

(ii) High SNR and INR and a sidelobe interferer. Then (6.600) reduces to 

SNR, = 
r2a2 

S 

rlp12a,2 + g ’ 

which indicates the importance of IpI. 

(iii) For main-lobe interference, I& 1 z 1, 

(6.606) 

SNR, N 
a; l+p*Zi 

2 

D,“(l - Ip12) + g* 
(6.607) 

The numerator depends on p, and the interfering signal can have either 
a constructive or destructive effect. 

We consider an example to illustrate the behavior. 

Example 6.12.1 
Consider a standard lo-element 

~1 = 0.30 is plotted. The phase, &,, 
linear array. In Figure 6.98, the 
equals 0. The SNR is 0 dB and 

is varied from 0.1 to 10.0. In Figure’6.99, the SNR, for an SNR = 10 

SNR, versus 1 pi for 
the INRISNR ratio 
dB is plotted. 

for 
For IpI > 0.5, there is significant degradation in the performance. This result is typical 

a correlated interferer arriving in the sidelobe region. 

An alternative approach to the MPDR beamformer is an MMSE beam- 

former. When the signal and interference are uncorrelated the matrix pro- 
cessing is the same. However, for correlated signals and interference, they 
are different. 

6.12.3 MMSE Beamformer: Correlated Signals and 
Interference 

In this section, we analyze the performance of a MMSE beamformer for the 

correlated signal and interference model in (6.586)-(6.588). 
Frorn (6.42), 

vvH mmse = !$jxH s,l. (6.608) 

For the case of a single interferer, 

S dxH = +,H + a,alpvf 
I 

(6.609) 
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Figure 6.98 MPDR beamformer with correlated signal and interferer, SNR, 
versus (~1; us = 0, SNR = 0 dB, single plane-wave interferer at us = 0.3, 
various INR/SNR ratios. 

and 

- 
s l = X [ 

2 o,v,v,H + a,a*pvsvy + a,arp*vpf + a,2VIV~ + ($1 
I 

-l . (6.610) 

The expressions in (6.593) and (6.597)-(6.599) are valid with 

WH =W 
H 
mmsee (6.611) 

Note that as # 1 for W,H,se* 

Example 6.12.2 (continuation) 
Consider the same model as in Example 6.12.1. The MMSE weight vector is specified 

by (6.608)-(6.610). Substituting into (6.593) and (6.597)-(6.599) gives the output SNR,. 
In Figure 6.100, the SNR, is plotted versus IpI for the case when p = 1~1 exp(jn/4) 

and a: = 0 dB. The range 0.7 < IpI < 1.0 is plotted. For 1~1 < 0.7, the curve is almost - - - 
flat. As IpI increases, the correlated component of this signal from VI adds constructively. 
In Figure 6.101, the SNR, is plotted for the case when p = IpI exp(@r/4) and 0: = 10 dB. 
The range 0.9 < IpI < 1.0 is plotted. For 1pI < 0.9, the curve is almost flat. Once again, - - - 
the correlated component of this signal from VI adds constructively. 

In order to achieve this performance, the values of SdxH and S, must 
be known or the beamformer must estimate them. Alternatively, the beam- 
former can set vs = vm and estimate B:, o-3, p, VI, and S,. We find that 
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Figure 6.99 MPDR beamformer with correlated signal and interferer, SNR, 
versus ]p]; us = 0, SNR = 10 dB, single plane-wave interferer at UI = 0.3, 

various INR/SNR ratios. 

this estimation is more difficult than the estimation of S, required for the 
MPDR beamformer. 

One can think of the MPDR beamformer as a matched spatial proces- 
sor where the beamformer is matched to v,. The MMSE beamformer is 
matched to the multipath environment. 

6.12.4 Spatial Smoothing and Forward-Backward Averaging 

In this section, we introduce a technique referred to as spatial smoothing 
(SS) to remove the singularity in the input signal and interference corre- 
lation matrix, which is caused by the coherence between the desired signal 
and the interference. The original use of spatial smoothing was by Evans 

et al. [EJS82] in the direction-finding problem. We discuss this application 
in Chapter 9. The modification to the beamforming problem was done by L 
Shan and Kailath ([SK85b]). 

Our discussion is an adaption of [EJS82] and [PK89] to the beamformer 
problem. If we do not incorporate forward-backward (FB), averaging it re- 
duces to the result in [SK85b], w ic was analyzed in [RPK87a] and [RR92b]. h’ h 

Spatial smoothing requires a regular array geometry, such as a uniform 
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**- I_ 
I 1 

- INR/SNR=l 

I I - - - INR/SNR=lO I I 

Figure 6.100 MMSE beamformer: SNR, versus 1~1; ua = 0, SNL! = 0 dB, 
single correlated plane-wave interferer at UI = 0.0866, p = (~1 exp(jn/4), 
SNR = 0 dB, various INR/SNR ratios. 
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I PI 

Figure 6.101 MMSE beamformer: SNR, versus IpI; ua = 0, SNR = 0 dB, 
single correlated plane-wave interferer at UI = 0.02, p = IpI exp@/4). 
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linear array or a uniform rectangular array. We restrict our attention to a 
standard linear array in this section. We put the center of the array at the 

origin in order to eliminate some artifacts in FB smoothing. Because of this 
choice, t’he equations will be different from some of the above references. 

We restrict our attention to a standard linear array. The received signal 

1s 

X(w) = W(w) + W(w), (6.612) 

and the covariance matrix is 

sx = V&V” + 0;1, (6.613) 

where Sf is the source-signal spectral matrix and is assumed to be singular. 

We assume that D, the number of signals, is known or has been estimated. 
We use a frequency-domain snapshot model. 

The linear array of interest is shown in Figure 6.102(a). Note that the 
array elements are indexed from 1 to N. We construct a set of L subarrays 

of length M > D + 1, as shown in Figure 6.102(b). Each subarray is shifted - 
by one from the preceding subarray. The ith subarray has the ith element 
as its initial element. We use an M-element 

as the reference subarray. 
subarray centered at the origin 

Let 

denote the set of steering vectors for the reference subarray of length M, 

where 

(6.615) 

We define 
&@I j ,j@2 i . . . i &$D 

I 

. (6.616) 

Then the spectral matrix of the received signal at the ith subarray can 
be written as 

S (I kl =VfilD v+(d) Sf D-+(&l) H 1 
We refer to SC’) 111 as the forward spect(ra1 matrix of the ith subarray. 

The backward spectral matrix is 

(6.617) 

S Cl 
lk? =J S;*J, [ 1 (6.618) 
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(a> 

(b) 

w 

(4 

1 2 3 4 
0 0 0 0 

1 st subarray 
I 1 

I J 

2nd subarray i th subarray 

N-l 
0 

N 
0 

(N-M) th subarray 
I 1 

0 I 0 

‘I 

I  

0 0 reference subarray: M odd 

I 
0 I  0 0 reference subarray: M even 

origin 

Figure 6.102 (a) Linear array; (b) su b arrays; (c) reference subarray: M odd; 
(d) reference subarray: M even. 

where J is the exchange matrix. The backward spectral matrix can be 
writ ten aP 

s ( ‘1 
fbB = JVL [D v+(i-1) * S; 1 [ Dv+(i-1) 1 

*H 
V$ J + 0; I. (6.619) 

0 bserving that 

(7.543) reduces to 

JVT,=VM, (6.620) 

S R, = VM(D 0 v+(i-1) *S;: 
) [( 

Dy+(i-1) )I ‘kH V; + a;I. (6 621) . 
We now perform a weighted average across the subarrays and obtain a 

smoothed spectral matrix SSSFB: 

%SFB = &i{;(@+&)}. 

i=l 

(6.622) 

Tn Section 7.2.3, we develop FB averaging in more detail. Readers who have not 
encountered it previously may want to read that section at this point. 
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In most references (e.g., [RR92a], [SK85b]) the weighting is uniform. 
Takao et al. [TKY86] introduced the idea of non-uniform weighting. 

For uniform weighting, 

1 
SSSFB = 2 2 (sg + s&3). 

i=l 
(6.623) 

We derive the basic result using uniform weighting and then examine the 
possible advantages of non-uniform weighting. 

Since D* = D -I, we can write S~FB as 

SSSFB 
- - D v+(i-1) sf D-+(&l) 

I 
H 

+ LD 
v+(i--1) * s; 1 [ Dv+(i-1) *H 1 >I v,H, + $21. 

(6.624) 

We define the smoothed signal as the term in brackets, 

sf ,SSFB 
- - 

H 
- - ?+@-I) Sf D-+(&l) 

1 I 
. (6.625) 

Then we can write 

SSSFB = VM sf ,SS’l?B VE + CT; I- j (6.626) 

Note that , if we did not use FB averaging,17 

1 L 

Sf,SS = - 
M-N +(i-1) H 

L ‘T;7 D 
v+(i-1) Sf D2 1 1 (6.627) 

i=l 

and 

59s = vMsf,SSv~ + 021. (6.628) 

The first issue is to determine the number of subarrays need in order 
for the smoothed-signal covariance matrix to be non-singular. Evans et al. 

17This is the model used in [SK85a], [SK85b], and [RPK87a]. 
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[EJS82] indicated that L must be greater than O/2, but did not prove it. 
Williams et al. [WPMS88] and Pillai and Kwon [PK89] (apparently indepen- 
dently) have shown that, under mild conditions, that L > O/2 guarantees - 
that Sf,ssFB will be non-smgular. The reader is referred to either of these 

references for the proof. For the case when D = 2, the proof requires that 
the phase of [S& # 0. W e will use this criterion. However, if the phase of 

Is 1 f 12 is near zero, the FB averaging will provide a matrix that is close to 
singular. As IV > D + 1, and - 

N=L+Ik!-1, (6.629) 

we require 

N> 
D 

- ,+D, (6.630) 

or 
30 

N>-, - 
2 

(6.631) 

in order to have a nonsingular Sf,ssFB. 
Note that the nonsingularity of Sf SSFB allows us to use various algo- 

rithms, such as the MPDR beamformer: However, if Jp] is close to unity, the 
resulting performance will still be degraded. 

The second issue is how rapidly do Sf SSFB and Sf ss approach diagonal 
matrices as a function of L. This rate will depend on the phase of p, the 
separation in wavenumber space of the correlated plane waves, and the SNR. 

First, consider forward-only SS with uniform weighting. From (6.627), 

1J 
S CL) 1 1 1 

f,SS S 
ij = WE c D 

y+(M) 
ii 

[ 
D 

Jy+(E-1) * 
jj 

I=1 I 
. 

For i = j, 

However, for i # j, 

1 L 

c 
D 

ep+(l-1) - 
L ii 

I==1 

[ 1 S w f,SS ij = S ii* 

[ 
D 

Jy+(l-1) * 
jj 

I 

(6.632) 

(6.633) 

- - 
1 L 

- 
L c 

e3 '~(*i-$j) . e-j(l-l)(*im+j) 

I=1 
L-l 

- e3 
‘vA+ij 1 - - 

L c 
ejmA+i j . (6.634) 

m=O 

The sum on the right side of (6.634) is f amiliar as the conventional beam 
pattern for a standard L-element linear array. 



Spatial Smoothing and Forward- Backward Averaging 611 

Although it is convenient to recognize the right side of (6.634) as a beam 

pattern, there is no actual L-element array involved in the beamformer. The 
parameter L is the number of M-element subarrays used to construct the 

smoothed spectral matrix. 
For the case of two sources, 

Using (6.634) for the two-source case gives 

(L) 
PF 

- - 

- - 

P - 
L 

sin Ln+ 
( > 2 

sin +$ 
( > 

P sin LLkL 
( > 2 

- 
L sin y ’ 

( > 

(6.635) 

(6.636) 

where LQLJ = LY$J~~. 

In Figure 6.103(a), the magnitude of&Y) is plotted versus L for various 
values of k$. In practice, the value of L is constrained by N and D (N = 
M + L - 1 and M > D + 1). Thus, for N = 10 and D = 2, the maximum - 

CL) value of L is 8. In Figure 6.103(b), the magnitude of pF is plotted versus 
M for N = 10 and D = 2. 

A similar result can be obtained for Sf SSFB in (6.625). For the two-signal 
case and i # j, (6.625) can be written as,’ 

[sf ,SSFB]q = 
ej( v+(l-l))A$bij 1 7 (6.637) 

where 

a$ ij =+i-$Jj. (6.638) , 

For the two-signal case, (6.637) reduces to 

pgL - WI bin y)) -- 
L sin( $$ 

. (6.639) 

Thus, the effect of FB smoothing is to replace p with Re[p] in (6.636). 
Writing 

P = IPp! (6.640) 
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Figure 6.103 Magnitude of smoothed correlation coefficient for various A$, 
forward-only smoothing; (a) &)I versus L; (b) Ip$?I versus M for N=lO. 
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we see that the phase of C$ determines the difference between the effect of FB 
smoothing and forward-only smoothing. If 4 = 7r/2 or 3~/2, the correlation 
is completlely removed by the FB averaging and no smoothing is needed. If 
4 = 0 or X, these is no difference between FB and forward-only smoothing. 

The output of the spatial smoothing processing is the M x M spectral 
matrix in (6.626) or (6.628). The array manifold vector for the reference 
subarray is given by (6.614). The weight vector for the MPDR algorithm is 

if (6.626) is used, or 

(6.641) 

(6.642) 

if (6.628) is used. 

The behavior of the beamformer in (6.642) has been analyzed for the case 
of two correlated sources by Reddy et al. [RPK87a]. The result is identical 

to (6.600)-(6.605) with p replaced with ,c$? or pg’, N replaced by 111, and 
B~J defined for an M-element array. The modified equations are: 

Ass SNR, = - 
Bss ’ 

(6.643) 

where 

+M2a;~~)B12~21?s + MO;. (6.645) 

Parameters in (6.644) and (6.645) include 

r s = 1 - lPs12, (6.646) 

A, = M2 (1 - lB1212). (6.648) 
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The correlation coefficient, pS, denotes either Py) (L) 
Or PFB’ 

If Iv is fixed, there are two opposing effects. As M decreases, L increases 
and the correlation coefficient decreases. However, as M decreases, the array 
gain for the subarray decreases and its resolution capability decreases. Thus, 
for a given value of p, there will a value of M that maximizes the output 

SNR. 
We consi der two examples to illustrate the behavior. 

Example 6.12.3 
Consider a standard lo-element linear array. The input consists of two equal-power 

correlated plane-wave signals with Sf given by (6.588) with 

p = Ipl2! (6.649) 

The desired signal arrives from us = 0. The interfering signal arrives from UI = 0.30. The 
SNR and INR are both 20 dB. We let 

L=ll-&!. (6.650) 

We construct a smoothed spectral matrix using (6.626) or (6.628). We then use an MPDR 
beamformer with a symmetric M-element array manifold vector. We plot the array gain 
versus M. 

In Figure 6.104, we let 4 = 0 and plot the array gain versus k? for IpI = O,O.l, 0.5,0.95, 
and 1.0. We use forward SS. 

We see that the optimum M is 4 for p 2 0.50. For p = 0.10, M0 is 5. For p = 0, we 
do not need SS, so A& = 10 and L = 1. For the case when 4 = 0, FB smoothing produces 
the same result. 

In Figure 6.105, we let 4 = 4 and plot the array gain versus iV for IpI = O,O.l, 0.5,0.95, 
and 1.0 for FBSS. 

For forward SS, the performance does not depend on 4, so Figure 6.104 applies. For 
p 2 0.5, the optimum M is 5 and the array gain is 26 dB, compared to 30 dB when p = 0. 

In Figure 6.106, we let 4 = 5 and plot the array gain versus M for the same values 
as in Figure 6.98. FB smoothing decorrelates the signal for L = 1, so the optimum M for 
any value of IpI is 10. 

The smoothed correlation coefficient is sensitive to the value of A$ (see Figure 6.103). 
In Figure 6.107, A$ is treated as a uniform random variable of 0.27r < A$ < X. For each - 
realization, t’he array gain using FB smoothing is plotted versus M. -Then the result is 
averaged over 10,000 trials. For M = 4, 5, or 6, the array gain is slightly above 21 dB. 

We now revisit the case of non-uniform weighting in the subarray averag- 
ing and consider two possible techniques. First consider the case in which we 
do not use FB averaging. Repeating the steps in (6.632)-(6.636), we obtain 

[ 1 S w 
f,SS ij - - 

L-l 

S i j e3 
*E++ij 

c 
m=O 

L-l 
- - S ij e3 ‘~A$ij,j~A+ij 

x 
m=O 



Spatial Smoothing and Forward-Backward Averaging 615 

. . 
-*O-E 

\... ,. p = 0.00 \ --- p= 0.10 

-3o- '- - - 
p = 0.50 
p= 0.95 .' "" 

. . . . . \ 
x- - -x 

\  

I  -- v- v p= 1.00 

..e  

3 4 5 &array len& 8 9 10 
(M ) 

Figure 6.104 MPDR beamformer with forward spatial smoothing, us = 0, 
SNR = 20 dB, ~~~ = 0.3, INR = 20 dB, 4 = 0; array gain versus ILII (subarray 
length) . 

L-l 

- s 
- - 

ij e 3 
++qij 

c 
w* ,jmA+ij 

m . (6.651) 
m=O 

The sum is just the beam pattern of a standard L-element linear array 
with non-uniform weighting. Then, for the two-source case 

P cL) = phu(w), (6.652) 

where B,(A$) is the beam pattern associated with the weights. For exam- 
ple, we might use a Hamming or Dolph-Chebychev weighting to lower the 
sidelobes in the function in Figure 6.103. A similar result can be obtained 
for FBSS. 

This technique will be most effective when A+ and L are such that the 
interferer is the sidelobe region of an L-element standard linear array. 

Example 6.12.4 (continuation) 
Consider a standard lo-element array. The input consists of two equal-power coherent 

plane-wave signals with Sf given by (6.588) with 

p = exp(j+). 
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Figure 6.105 MPDR beamformer with forward spatial smoothing, u, = 0, 
SNR=20dB,u 
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I = 0.3, INR = 20 dB, cj~ = 2; array gain versus A4 (subarray 
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Figure 6.106 MPDR beamformer with FBSS, us = 0, SNR = 20 dB, UI = 
0.3, INR = 20 dB, 4 = 5; array gain versus A4 (subarray length). 
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Figure 6.107 MPDR-FBSS beamformer: average array gain versus IL& p = 

exP(j+q, us = 0, uI is a uniform random variable (0.2, I l), SNR = INR = 
20 dB, 10,000 trials. 

The desired signal arrives from us = 0. The interfering signal arrives from UI, where 
~1 is a uniform random variable (0.2, 1.0). The SNR = INR = 20 dB. A FB-smoothed 
spectral matrix is constructed using a Dolph-Chebychev weighting with -30-dB sidelobe 
level. The smoothed output is processed using an MPDR beamformer with a symmetric 
AT-element array manifold vector. In Figure 6.108, the average array gain is plotted 
versus AL The result from Figure 6.107 is shown for comparison. The Dolph-Chebychev 
weighting provides about a 3-dB improvement for M = 4, 5, 6, and 7 and gives an average 
array gain about 24.5-25 dB. 

A different approach suggested by Takao and Kikuma [TK87] is to choose 
the ‘wm to make the resulting smoothed matrix as close to Toeplitz as pos- 
sible. We rewrite (6.622) as 

k=l 

where 

(6.653) 

(6.654) 
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Figure 6.108 MPDR-FBSS beamformer with Dolph-Chebychev and uniform 
weighting: average array gain versus M, p = exp(j-/r/4), us = 0, UI is a 
uniform random variable (0.2, l), SNR = INR = 20 dB, 10,000 trials. 

We test how close B is to a Toeplitz 

M-2 M-l 

F=IE): 
i=o k=l 

where 
1 

Then, 

bk+i,k - 

r natrix by defining 

2 
bk+i,k - b(i) 1 

M-i 

b( > n i --- 
ML a 

. - c bk+i,k l 

k=l 

1 M-i 

b 0 i = bk+i,k - n c bk+i,k - 
k-l 

- - 
L 

[ 1 c WZHZ - 
I=1 k+i,k k+i,k 

(6.655) 

(6.656) 

1 
[HZ]k+i,k - E - 
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= t Wl hlk+i,k ’ (6.657) 

I=1 

where 

l [edk+i k e LHdk+i,k - n y LHdk+i,k l 

(6.658) 
! - 

k=l 

Now define the vectors, 

Then, 

and 

1 
T 

ek+i,k = [ 1 el k+i,k ’ l ’ [eL] k+i,k l 

bk+i,k - b(i) = w 
T 

ek+i,k, 

M-2 M-i 

(6.659) 

(6.660) 

(6.661) 

(6.662) 
i=O k=l 

Defining, 

M-2 M-i 

R ee = x x ek+i,ke:+i,k 
i=O k=1 

M-2 M-i 
- - x 1 ek+i,ke:+&k 

i=O k=l 
(6.663) 

we can write (6.662) as 
F = wTR,,w. (6.664) 

Minimizing F subject to the constraint 

WTl= 1, (6.665) 

gives 

(6.666) 

In an actual application, SE’ and SgJB will be estimated from the data so 

the weight in (6.666) will be data dependent. We refer to this technique 

as Toeplitz weighting. It is called adaptive spatial averaging in the 
literature [TK87]. 
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Figure 6.109 Average array gain using FBSS with Toeplitz weighting, p = 

exp(jd4) 7 us = 0, UI uniform (0.2~LO), SNR = INR- 20 dB, N = 10, 
10,000 trials. 

We consider the models in examples 6.12.3 and 6.12.4 to see the impact 
on this weighting. 

Example 6.12.5 (continuation; Example 6.12.4) 

We use the same model as in Example 6.12.4 and consider the case when 4 = 7r/4. 
The result is shown in Figure 6.109. We see that, in the case of known spectral matrices, 
there is significant improvementj. 

6.12.5 Summary 

In this section, we have considered the case in which the signal and in- 
terference are correlated (lpijl # 0) or coherent (lpij 1 = 1). We utilized 
a technique called spatial smoothing to reduce the correlation. After con- 
structing a smoothed spectral matrix, we could use any of the beamforming 
algorithms developed in earlier sections of the chapter. We used MPDR 
beamformers as examples, but similar results follow for other beamformers. 

We used a standard linear array as an example. Similar results hold for 
planar arrays that exhibit regularity under 2-D shifts. 
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6.13 Broadband Beamformers 

6.13.1. Introduction 

In this section we consider beamformers in which either the signal or the 

interference do not satisfy the narrowband assumption. The initial model of 
interest is shown in Figure 6.110(a) and (c). The signals and interferers are 

bandlimited around the carrier frequency wc (or 27&), which we refer to as 
the center frequency of the array. The dotted lines denote the spectral 
boundaries. 

As indicated in Figure 6.110(c), the spectrum does not have to be sym- 
metric around wc. In some applications, wc corresponds to an actual carrier 
frequency generated at some place in the environment. In other applications, 

it is chosen for analysis purposes. 
We use a quadrature demodulator at each sensor output so the input to 

the beamformer is a complex waveform that is bandlimited to IwI < 27rBJ2, 
as shown in Figure 6.110(b) and (d). We process the sensor outputs with a 
set of linear filters, as shown in Figure 6.111. The notation IV&(w) denotes 

the frequency-domain transfer function of the nth linear filter. The model in 
Figure 6.111 is the same model that we introduced in Chapter 2. However, 
in most of our subsequent discussion, we assumed w = wc and suppressed 
the frequency variable in our discussion. We now reexamine our results for 
frequencies in the region shown in Figure 6.110(b). 

We should observe at this point that we will not actually implement the 

beamformer as shown in Figure 6.111. We will either use frequency-domain 
snapshots and operate on discrete frequency bins or we will approximate the 

WfJw) using FIR filters. However, the structure in Figure 6.111 provide a 
useful reference. 

In the next several figures, we illustrate some cases in which a broadband 
beamformer may be useful. For simplicity, we assume a linear array so that 
we can represent the spatial dependence in u-space. We define 

f = fc + fn (6.667) 

and represent the frequency dependence in fn-space. 
In Figure 6.112, we consider the case of a single plane-wave signal whose 

frequency spectrum is flat over f&/2. The interference consists of white 

noise. From Section 5.5.3, we know that, as Bf = B,lf, increases, the 
signal will have multiple eigenvalues and we will need a frequency-dependent 
beamformer to achieve optimum performance. For this simple model, we 
need to approximate pure delays over the frequency band of interest. 
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In Figure 6.113, we consider the same signal model as in Figure 6.112. 
The interference consists of a set of plane-wave interferers whose frequency 
spectra are identical to the signal spectrum. In this case, our processing 
gain will come from the spatial filtering and a frequency-dependent MVDR 
or MPDR beamformer will be appropriate. 

From (6.14), the MVDR beamformer is 

vvH mvdr * = ( > 
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Figure 6.110 Signal spectra: (a) bandpass; (b) complex baseband; (c) band- 
pass; (d) complex baseband. 
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Figure 6.113 Broadband signal and interferers in U-fn space. 

From (6.71) the MPDR beamformer is 

Iv mpdr w = ( > 

The array manifold vector is 

V,,k(w, k) = [ e-jwro e-jwrl . . . &wrN-l IT ,  (6.669) 

where rn is given by (2.21). We assume the highest frequency of interest is 

wu(= WJ and refer to this as the design frequency of the array,Is 

f?.L = fc + B,p. (6.670) 

The corresponding design wavelength is A,. For a standard linear array 
with design frequency wU, 

-d,u 
ry-& = - 

c ’ 
(6.671) 

“Note that the subscript ‘W’ denotes upper and should not be confused with the di- 
rectional cosine, u = cos8. 
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and 

(see (2.53)). Then, 

d n =n--- ( 
N-l x, 

> . 
2 2 

[Vw,u(2~fr 4ln $qfc + fn>(n - 

n=O,...,N-1 

Defining 

b fn 
f 

- - 
f 

1 
C 

we can write (6.673) as 

[Vb&bf 1 u)] 
n 

jnu(l+ bf)(n- 

n = 0, l l . , N - 1. 

Defining 

(6.675) reduces to 

[Vbi,u(bf 7 u)], = exp 

B 
B S 

f 
- - 

f 7 
C 

1+ bf N-l . 
F-4 - n-- 

l+% 
>( 2 > 1 

(6.672) 

(6.673) 

(6.674) 

(6.675) 

(6.676) 

n = 0, l l l , N - 1. (6.677) 

The spectral matrix can also be written in terms of bf. 
1 l 

In the cases in Figures 6.112 and 6.113, the broadside beamformer acmeves 
gain through spatial discrimination. 

In Figure 6.114, we show a case in which the signal and interferers have 
different frequency spectra. The desired signal is a plane wave arriving from 

US = 0. The temporal waveform of the complex envelope is modeled as 
a complex AR(l) process centered at u = 0. The interfering signal is a 
plane wave arriving from us = 0.2. The temporal waveform of the complex 
envelope is modeled as a complex AR(l) process centered at 0.2. In this 
case, we want to exploit both spatial and frequency filtering, so we use the 
MMSE beamformer developed in Section 6.2.2.1. From (6.42)) 

vcL-&J) = GckJ) s,l(w)* (6.678) 
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For the plane-wave signal case in which the desired signal and the interference 

are uncorrelated, (6.43) applies and (6.678) reduces to 

wirrLsew = Sf ( w> vfk(w, k,) S,‘(w). ) (6.679) 

Using (6.668), we can partition WEmse(w), as shown in Figure 6.115, 
although this may not be the best implementation in practice. 

The purpose of the rest of Section 6.13 is to develop efficient tech- 
H niques for implementing the various beamformers: Wzpdr (w) , Wlcmp (w) , 
8 .a 

JvEnse (4 7 and wzmp dl@> l 

We must develop stiuctures that can be implemented adaptively based 
on the data inputs. In this chapter, we consider the solution assuming the 

necessary statistics are known. 
In the problems for Section 6.6, we discussed how frequency mismatch 

(Problem 6.6.11), broadband signals (Problem 6.6.12), and broadband inter- 

ference (Problem 6.6.13) degrade the performance of a narrowband beam- 
former. The reader may want to review those problems at this point. In this 
section, we are concerned with scenarios in which the degradation requires 

us to implement some form of broadband beamformer. 
In Section 6.13.2 we consider a DFT beamformer that obtains the frequen- 

cy-dependent weighting by taking an FFT and weighting each frequency 

component separately. This FFT beamformer is the discrete realization of 
our frequency-domain snapshot model. 

In Section 6.13.3, we consider a broadband beamform& that utilizes a 
tapped delay line or finite impulse response (FIR) filter at the output, of each 
sensor to achieve a frequency-dependent weighting. 

In Section 6.13.4, we summarize our results. 

6.13.2 DFT Beamformers 

In this section, we develop the DFT implementation of a frequency-domain 
beamformer. Because we have used a frequency-domain snapshot model in 
our earlier discussion, the structure of the frequency-domain bearnformer 
follows easily from Figure 6.111. We take the finite-time Fourier transform 

of x(t) over the time interval (k - 1)nT 5 t < kAT at a set of frequencies w, 
that are separated by WA = 27r/AT. We assume that AT is large enough 
that the snapshots are statistically independent. We then implement the 
narrowband beamformers at each of the 111 frequencies. 

In practice, we implement the frequency-domain beamformer by sam- 
pling x(t) every l/B, seconds and obtain M samples. We then perform a 
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Figure 6.114 Broadband signal and interferers in u - fn space; different 
frequency spectra. 
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Figure 6.115 Partitioned MMSE beamformer. 
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DFT to obtain M frequency samples. We accomplish the DFT operation 

with a FFT. The concept is straightforward, but there is a fair amount of 
detail that must be developed to do the implementation. The bulk of this 
section is devoted to developing some of the necessary detail. 

Frequency-domain beamformers have been discussed in a number of ref- 

erences. Most of these references focus on the adaptive behavior. 
We assume that the signals of interest are bandlimited, as shown in Fig- 

ure 6.110. The signal is a bandpass signal and the first step in the processing 
is to perform the quadrature demodulation to obtain a complex low-pass sig- 
nal that is bandlimited to IfI 5 B,/2. We divide our discussion into several 
steps. 

Step 1: Generation of frequency-domain vectors: An array with 

DFT processing is shown in Figure 6.116. The output of each sensor is 
passed through a quadrature demodulator and is sampled every TS seconds 
where 

T 
1 

s- . 
B S 

(6.680) 

We buffer 111 samples and take the DFT of the A4 samples. For the present 
discussion, we assume M is chosen to be a power of 2. The total observation 
interval on each snapshot is 

AT = MT,. (6.681) 

We discuss the case in which we have to add zeros to the actual samples to 
obtain a power of 2 later. There are other reasons for zero padding. 

The output of the DFT is a set of M frequency values (or bins) that are 
separated in frequency by l/MT,. Thus, the frequency resolution is 

nf = l/MT, = B,/M. (6.682) 

Many algorithms require high-frequency resolution, so M may be a large 
number. 

In the mth frequency bin there is an Iv x 1 complex vector, X{m}, m = 
0 7 ***&l-l. 

x(m) A [ &{m} Xl(m) -0 &v-l(m) IT, 

m = O,-, M-l. (6.683) 

The argument m represents the number of the bin. We will relate it to 
the corresponding frequency shortly. Recall that the continuous Fourier 

transform at frequency wm is denoted Xa~(w,) for a finite-time interval. 
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Figure 6.116 FFT processing. 
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We use X{rn} to denote the DFT in the mth bin. Using a different shape 
of the brackebs is an abuse of notation but should notI cause confusion due 

to the context. 
Normally, we process each frequency bin independently using one of the 

narrowband algorithms we have developed in this chapter.lg The result is a 
set of complex scalars, 

Y{m} = vP{m} x(m), m = 0, l l l , M-l. (6.684) 

The final step is to take an IDFT to obtain M output samples in the time 
domain. We refer to this procedure as block processing. 

We next develop the equations for the DFT beamformer with block pro- 

cessing. There is direct correspondence with the discussion of DFT in Section 
3.3.3. 

We denote the time of the most recent sample as to. The current sample 
from the nth sensor is X&O). The previous sample is zn (to - 7;). We 
introduce the notation 

G-$0) = x7%(0>, (6.685) 

xn(to - Ts) = &z(l), (6.686) 

z,(to - (M - l)T,) = ~~(111 - 1). (6.687) 

The subscript “n” denotes the sensor whose output is being sampled. The 
argument specifies the sample. 

We define a complex vector, X,, consisting of the time samples. To be 
consistent with conventional DFT notation, we reorder the time samples so 
that the most recent samrAe is at the bottom of the vector, 

xn(M - 1) 1 

xn n - 

I 

. x&o - (M - l)T,) 
. . . 

x&o) 

- - 
x&kI - 2) 

. 

I 

7 n=O,*g=,N-1. . 

Xn;O) 
(6.688) 

This is a vector of the time samples. We use a superscript “N” to distinguish 
it from the vector dowI the array. 

The DFT of XTL is 

M-1 

x,(m) = x xn(M - l- k) (&s)“” 
k=O 

lgWe discuss whether this technique is optimum later in this section. 
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M-l 

= x x&U-l--k)(F~)~~, m=O,l,-•-,M-1, 
k=O 

(6.689) 

where 
FM A e-j$f, - (6.690) 

In matrix notation, 
X n = FM iin, (6.691) 

where 

[F I M kl = (FM)kl = e-j3 Icl, 
( > 

(6.692) 

The vector Xn corresponds to the M frequency components at the output 
of sensor 72, 

I % ,  & [  Xn{O} l * *  X, (m) l ** Xn{M - 1) IT. (6.693) 

Recall that the frequencv samples are arranged in the following order,20 
J 

m 

0 
1 
. . . 

M 1 -- 
2 

M 
2 

4f+’ 

. 

. 

. 

M-l 

f 

0 

4f 

( F - 1)Af 
“nf = +nj 

(4$ + $Af = (-F + l)Af 

(M - 1)Af = -Af 

The weight vector is constructed in a similar manner. We define 

Wn n - 

m  

‘%,M- 

wn,M- 

Then, proceeding as in (6.690)-(6.693), 
- 
W n = FM wn7 

(6.694) 

(6.695) 

20For example, [OS89]. 
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where 

(6.696) 

In each frequency bin we construct a vector down the array 

X{nz}n [  x , ( m )  x , { m }  l ** XjjLl{rn} IT, m=o,**~,M-l~ 

(6.697) 

This vector consists of the frequency components of the array in frequency 

bin rn. We Drocess each of these vectors with a narrowband beamforming 
algorithm to obtain a set of lL4 scalar outputs 

Y{m} = wH{m} X(m), m = 0, l . l M - 1. 

We define the vector across frequencies as 

(6.698) 

Y = Y(0) Y(1) l ** 
[ 

Y{M-1) IT. 

We take inverse DFT (IDFT) to obtain &! output time samples, 

In matrix form, 

where 

T 
- n Y - 1 y(M - 1) y(M - 2) l 0. Y(O) ] 

T 
- - 

[ 
y(to - (M - l)Z-“) l 0. YW ] . 

- 1 . 

(6.699) 

(6.700) 

(6.701) 

(6.702) 

By using the weighting techniques in (6.698) we are treating eacn rre- 
quency component independently. Most DFT beamformers used in practice 
are implemented in this manner. 

We can also use a sliding window technique, in which the DFT is 

computed each time a new sample enters the buffer. In this case, we write 
(6.701) as 

I  y(M-l-k)=; ~y{mJ(&)“m, k=(),.-M-1, (6.703) 
m=O 
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and observe that the first sample is 

1 M-l 

y (to - (M - l)T,) = + c y(m), (6.704) 
m=O 

so that the output is obtained by summing the frequency samples. The 
result in (6.704) corresponds to the IDFT at t = to - (M - l)T,. We avoid 
doing the entire IDFT because we only want a single time sample. 

If we want to consider more general processing, we would define a com- 
posite NM x 1 data vector 

xn - 

and a composite weight vector, 

wn - 

Then 

(6.705) 

(6.706) . 

(6.707) 

The model in (6.705)-(6.707) 11 a ows us to use a wider class of constraints 
on the frequency domain beamformers.21 For the present, we utilize inde- 
pendent narrowband beamformers in each frequency bin and sum the output 

using (6.704) to obtain the output. 

Step 2: Array manifold vectors: In order to construct the weight- 
ing for the mth frequency bin, we need the steering vector and the spatial 

spectral matrix. 
The array manifold vector as a function of frequency is 

,-jznf 70 e-@?f71 . . . e+nfTN-l 
T 

v, = 1 7 
21The more general processing in (6.705)-(6.707) is not used in any actual systems that 

we are aware of. 
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where ~~~ is the delay to the nth sensor relative to the origin of coordinates. 
The subscript “~3 denotes that we retain the frequency dependence explic- 

itly. 
The frequency at the mth frequency bin is 

f 772 = 

where 

For simplicity, we consider a standard linear array. Then 

dn’ll 
Tn = --) 

C 

and 

d n = n- 
( 

y)d=(n-F)$, n=() ,..., N-1, (6.711) 

(6.709) 

(6.710) 

where X, is the wavelength corresponding to the highest (upper) frequency. 
Using (6.708), (6.710), and (6.711) in (6.705) g ives an expression for nth 

element of the array manifold vector for the mth frequency bin, 

b&41n = 

Using 

and 

we have 

exp {j2n(fc + mAf)(n - y)+$}, 

(6.712) 

M 
m= 2”“’ M-1, n=O,ae*,N-1. 

f 
C 

c----Y x (6.713) 
C 

B 
B S 

f 
- - 

f 
7 (6.714) 

C 

7 
exp(jrU& [(n - v) + (E)(n - y)Bf]}, 

mZ 0, -. . , + - 1, n = O,*** ,N - 1. 

h-d41, = 
exp{.@--h~- [(n - k& + (j$ - l)(n - v)Bf]}, 

1++ 
M 

m= 2”“’ hf - 1, n = O,..*,N - 1. 

(6.715) 
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as the desired result. The first term in the exponent is the familiar narrow- 

band result and the second term models the broadband effect. 

Step 3: Spatial spectral matrix: The next step is to compute the 
spatial spectral matrix in frequency bin m. We use a derivation similar to 
that given in Godard [God95]. The spectral spatial matrix in the mth bin is 

Sx{m) A E [X{m}XH{m}] . (6.716) 

We use the brace to distinguish this matrix from the usual (continuous in 
w) spectral matrix SX(W). 

The npelement of this matrix is 

Pdm>lnp = E [& {m)x ; {m} ]  l (6.717) 

From the DFT relationship, 

M-1 

Xn{m} = C xn(M - 1 - ii) (e-j%)km, 
k=O 

(6.718) 

where zn(k) is the time sample from the kth tap of the nth sensor. Using 
(6.718) in (6.717) gives 

[SdmH,, 

Now recall from (6.688) that 

r XyJ = 1 ( xn M-1) l *. 
xn(l> xn(O> 

(6.720) 

We also define a vector corresnonding to the kth row of the DFT matrix, 

(M-1-k (e-j$$)k”‘&&- 
q=o 

- l- q) pqqm}. 
(6.719) 

ecm 
1 

1 
* 2x 

e3 ( > -iEm . . 

> 
. - - 

e3 ( > ‘s km 7 m = 0, l l l , M - 1. (6.721) 
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Then, (6.719) can he written as 

where [Rx],p is the temporal correlation between the tap vector at sensor n 

and the tap vector atI sensor ;p. 
The next step is to derive an expression for [Rxlnp. The correlation 

function matrix of the complex baseband vector x(t) can be written as 

R,(t) (4 = s O” &(27rf4 ej2xfAT dfn, 
-00 

(6.723) 

where S,(2nf) is the spectral matrix of the complex baseband vector wave- 
form 

Then 

and 

Sx@rfn) = 2 [Sx,b,(2~fA + 2”f&p l 

xk (t> = x (t - (111 - 1 - k>T;> 

(6.724) 

(6.725) 

xi(t) = x* (t - (i&r - 1 - q)T,) . (6.726) 

The correlation matrix is, 

P 1 R xkq= x 
Using (6.723), 

PO 

(t) (VT - q)T,) - 

[Rx],, = 1 s,(27&) ,~2rfA[(k-q)T&-JfAa 
-cQ 

Now define 

e(fa> = [ 1 ej2*fATs . . . &&fATd . . . ,$hf&(M-1) IT 

Using (6.729), we can write (6.728) in matrix form as 

[RI J X= ‘00 s&nfn)e(f&H(fn)dfA. 
-00 

Using (6.730) in (6.722) gives 

PJ&41np = s O” Sx(2-irf~)eH{m}e(fn)eH(f~)e{m}df~. 
-00 

(6.727) 

(6.728) 

(6.729) 

(6.730) 

(6.731) 
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Now define 

a(fn,m> n (6.732) 

Using (6.732) in (6.731) gives 

sx{m} = Jcu sxkf~) a(fn, m))dfn. -00 (6.733) 

Then, 

M-l 

- - ,-jn(M-l)(fAl&$) sinr(fnTSM - m, , (6 734) 
sin$(fnTsM - m> ’ 

or 

a(fn,m> = 
sin2 (K(~~T~M - m)) - 
sin2 ($(f&M - m)) - 

sin2 nM 
( x(fn - - mAf 1) - 

l 2 
( 

7 
sin $-(fn - 

S mAf ,) 
(6.735) 

where 
B 

- 
T1 s- s (6.736) 

is the sampling frequency. The function a( fn, m) provides a window on 

Sx(2-ir fn> and reflects how power at frequencies unequal to fm (the fre- 
quency of the mth bin) affects Sx{m}. A normalized plot of a( fn, m) with 
r-n = 0 for M = 16 and M = 64 is shown in Figure 6.117 . The normalization 
constant is M2. 

For m = 0, the first zeros are at 

fn 1 -- - 
B 

IL-- 
M 

. 
S 

(6.737) 

The bin spacing is 
Af 1 --- - 
B M 

. 
S 

If &(2x f) is essentially constant over the interval, 

(6.738) 

1 <f” 1 -- <-7 2M - B, - 2M 
(6.739) 
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Figure 6.117 Normalized a(f,k) versus f/B,: (a)K = 16; (b)K = 64. 
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then 

Sx{m} = Ma sc(2TfA>, (6.740) 

where the A&to-u), correspondence is given in the table following (6.693) or 

through the relation in (6.708). 
For the special case in which the signal or interference component of x(t) 

consists of plane waves, the corresponding spectral matrix is 

[Sx(27&)],, = Sj(27rfn) e~2nf~(TJ+-nJ) (6.741) 

H W2Tfd = Sf (2Tfn> v,(u,) V,,(G), (6.742) 

where S,(2&) is the spectrum of the complex baseband signal, us is the 
signal direction in ‘li-space, and v&u) is defined in (6.715) (with m and Af 
correctly matched). 

For the case of a single signal and multiple plane-wave interferers with 
independent white noise, the spatial spectral rnatrix in the m,th bin is, 

+ x sfi(2rf*) H vm(“d v,(%) + Sw(wil) I]dfLl, (6.743) 
. . 

where Sw(2nf*) has a flat spectrum over (-B,/2, B,/2), 

Step 4: Narrowband processing: We now process each of the m 
frequency bins under the assumption that X{mi} is independent of X{mj}, 
rni # rnj (recall the discussion in Section 5.2.1). 

To find W,(m}, we use (6.715) and (6.733) in one of the wg equations 
defined earlier. For example, the MPDR beamformer for the mth frequency 

bin is 

‘(NH t 1 
v:(us> s,‘(m) 

mpdr 
*m = 

v~(Us) &‘(m> Vm(Us) ’ 
m=O,=*e,M-1. (6.744) 

If the desired signal arrives from broadside or if the array has been presteered 
to point at the signal, then 

WH mpdr m = 1 > q,M-1. (6.745) 
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The LCMP beamformer follows from (6.358) as 

w~m,(m} = g;; [c: S,'{m,Cm] -l c: s,l{m>, (6.746) 

corresponding to the constraint equation, 

WH{m} c, = g;* 

To evaluate the output SA?Ro or the array gain, we have . 

PO = E [lY(ta)12] = E [lY(o)12] l 

Substituting (6.704) into (6.719) gives 

P 0= 1 l 

(6.747) 

(6.748) 

If we assume the Y{m} are uncorrelated, this reduces to 

PO= $9 [pwl”) l 

(6.749) 

The signal component output of the mth bin is, 

q-g = w,H(m} F(m), (6.750) 

where F(m) is the DFT of the signal in the mth bin. Using (6.750) in 
(6.749) gives 

P so = (6.751) 

where Sf{m} is given by the first term on the right side of (6.743). 
If each weight vector contains a distortionless constraint, then 

P 2 
so = OS. (6.752) 

Similarly, the output due to interference and noise is 

P in,0 = (6.753) 

where S,(m) is given by the second and third term on the right side of 
(6.743). 
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, 

6 642 

Thus, the SNR0 is 

and the array gain is 

This completes our derivation. We now consider several examples. 

SNRO = + 
in,0 

0; PO 
A0 = - 

0: Pin,0 ’ 

(6.754) 

(6.755) 

Example 6.13.1 

Consider a lo-element uniform linear array with element spacing equal to X,/2. The 
desired signal is a plane-wave signal arriving from us with fractional bandwidth BJ. The 
signal spectrum is flat, as shown in Figure 6.112, with total power at. The interference is 
white noise. We use a conventional beamformer in each frequency bin. For white noise, 
the conventional beamformer is also the MPDR beamformer. The array gain would be 10 
if the signal were narrowband or if the signal arrived from broadside. 

In Figure 6.118, we plot the array gain versus u,/BWNN for 111 = 1,2,4,8, and 16. 
In part (a), we consider Bf = 0.2. In part (b), we consider Bf = 0.4. In part (c), we 
consider Bf = 0.6. In part (d), we consider Bf = 0.8. 

We see that, by increasing the number of frequency bins, we can approach the same 
performance as in t,he narrowband case. 

Example 6.13.2 

Consider a lo-element uniform linear array with element spacing equal to X,/2. The 
desired signal arrives from broadside. It has a flat spectrum with bandwidth B, and 
fractional bandwidth Bf . A single interfering plane-wave signal with the same spectrum 
arrives frorn UI. The SNR is 0 dB and the INR is 30 dB. We use an MPDR beamformer 
in each frequency bin. 

In Figure 6.119, we plot the array gain versus UI/BWNN for k! = 1,2,4,8, and 16. 
In part (a), we consider Bf = 0.4. In part (b), we consider Bf = 0.8. 

We see that there is marginal improvement with increasing AL However, this example 
is misleading because the array processor is not stressed by the single interferer and uses 
its temporal degrees of freedom to suppress the interferer. In the next example we consider 
a more complicated environment. 

Example 6.13.3 
Consider the same model as in Example 6.13.1, except we assume that there are N - 1 

uncorrelated plane-wave interferers. N - 2 narrowband interferers are fixed in orthogonal 
locations in u-space, 

Ui = kO.3, hO.5, zko.7, Ito. i = 1, ” * ,4. (6.756) 

The broadband interferer arrives from UI and we vary UI from -1 < UI < 1. Each - - 
interferer has a 30 dB INR. 

In Figure 6.120, we plot the array gain versus u~/BWNN for M = 1,2,4,8, and 16. 
In part (a), we consider Bf = 0.4. In part (b), we consider Bf = 0.8. 

If  we compare Figure 6.119(a) with Figure 6.120(a), we see that the array gain is larger 
with multiple interferers. The reason is that the total input of the interferers is larger by 
9 dB and the beamformer can place significant nulls of the eight narrowband interferers 
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Figure 6.118 MPDR beamformer; array gain versus u,/BW~~, broadband 
signal in white noise, M = 1,2,4,8, and 16; (a) Bf = 0.2, (b) Bf = 0.4, (c) 
B f = 0.6, (d) Bf = 0.8. 
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Figure 6.119 Array gain versus u1/B WNN: broadband signal in white noise; 
N = 10, SNR = 0 dB, INR = 30 dB, M = 1,2,4,8, and 16: (a)Bf = 0.4; 
(b)Bf = 0.8. 
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(a)Bf = 0.4; (b)Bf = 0.8. 
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that are in the sidelobe region. However, this leaves only one degree of freedom to null the 
broadband interferer. We see that increasing M causes a larger performance improvement 
than in Example 6.13.2. 

In Examples 6.3.2 and 6.3.3, the desired signal and the interfering sig- 

nal have identical (flat) spectra. Therefore, the array gain is due to spatial 
filtering. In the more general case, we have an environment in which the 
signal and interference have different spectral characteristics as well as dif- 

ferent spatial characteristics. In the next example, we consider environments 
where the interference has different spectral characteristics than the signal. 

Example 6.13.4 

Consider a lo-element uniform linear array with element spacing equal to X,/2. We 
implement an FFT beamformer with M frequency bins. 

Bf = B,lf, = 0.8. 

The input is sampled at l/B,, so the normalized frequency span is -X < w < x in - - 
radians. The signal of interest arrives from broadside and has a flat frequency spectrum 
over 0.57r 5 w < 1.0~ (a 25% bandwidth signal). 

There are four interfering signals with the following characteristics (all spectra are 
zero outside the indicated band): 

(i) SIl = i + cos(low - 0.87r) 0.67-r < w < 1.0~ - - 
elsewhere 

INR1 = 40 dB, u1 = 0.4 

(ii) S 12 = a; 0.67r < w < 0.9x - - 

INR2 = 30 dB, u2 = -0.2 

(iii) $3 = 0: 0.57r < w < 0.517r _ _ 

INR3 = 60 dB, u3 = -0.15 

(iv) s14 = 04” 0.997r < w < 7r _ _ 
INR4 = 60 dB, u4 = 0.7 

Note that the signal is only present in a subset of the frequency bins 

ms = 0.25M,. -  l ,  M/2 - 1, M = 4,8,16, l . . . (6.757) 

We use an MPDR beamformer in those frequency bins and set the output of the other 
frequency bins equal to zero. In Figure 6.121, we plot the SNR, versus ASNR for various 
M. In Figure 6.122, we plot the beam pattern for representative frequency bins. 

We see that the SNR, improvement in going from M = 16 to M = 128 is small. 
However, the narrowband nulls at u = -0.15 and u = 0.7 become deeper. 

These examples illustrate some of the properties of FFT beamformers. 

We are implementing a set of narrowband beamformers so all of the tech- 
niques that we developed in Sections 6.2-6.12 carry over in a straightforward 
manner. 
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Figure 6.121 MPDR FFT beamformers: S’NR, versus ASNR, four interferers. 

In this section we have analyzed the performance of DFT/FFT beam- 
former under the assumption that the relevant statistics about the signal 

and noise processes are known. 
In the next section, we develop beamformers in which the filter behind 

each sensor is implemented in the time domain. 

6.13.3 Finite impulse response (FIR) Beamformers 

In this section, we study broadband beamformers that are implemented by 
placing a tapped delay line or finite impulse response(FIR) filter at the 
output of each sensor. WC choose the irnpulse response (or tap weights) 

to achieve the desired frequency-wavenumber response. In practice, these 
weights are determined adaptively from the data. In this section, we assume 
that the statistics are known so the resulting beamformers correspond to the 
steady-state behavior. In Chapter 7, we develop the adaptive version of the 
FIR beamformer. An important advantage of the time domain implementa- 

tion is that we can update the beamformer when each new snapshot arrives, 
in contrast to the FFT beamformer, which requires a block of snapshots to 
perform the FFT. 

In Section 6.13.3.1, we develop the FIR model for a broadband beam- 
former. In Section 6.13.3.2, we analyze the performance. 
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Figure 6.122 Beam patterns at selected frequencies: (a) M = 16; (b) M = 
128 . 
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Quadrature 
Demodulate, 
and 
Sample 

Figure 6.123 FIR beamformer. 

6.13.3.1 FIR model 

The FIR model of interest, is shown in Figure 6.123. We assume that the 

output of each sensor has been quadrature demodulated so that the input 
to each of the FIR filter is a complex waveform. We are implementing the 
FIR at baseband.22 

In order to simplify our initial discussion, we assume that the array has 

been pre-steered so the desired signal is aligned at the various sensors in the 
array. 

We assume that the maximum frequency in the baseband signal is B,/2 

The tap spacing corresponds to the Nyquist sampling rate, 

The input to the first set of weights at time to is 

xo(to) = 

x0 (to) x00 
Xl (to) x10 

x2(to) n x20 - 
. . . . 

XIV-; (to) _ 

. 

. _ w-1,0 

T 
1 

s- . 
B 

(6.758 
S 

n x0. - (6.759) 

22A number of discussions in the literature (e.g., [ComSSa]) utilize a bandpass imple- 
mentation and a tapped delay line. 
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The first subscript denotes the sensor. 
delay from t = to measured in number 
vector is indexed Jith 0. Similarly, 

x0 (to - mT,) 
Xl (to - mT,) 

. 

The second subscript denotes the 
of delays. Thus, the sensor output 

. . 
XN-1 (to - mT,) 

7 m=O,*ea,M-1, (6.760) 

XN-l,m 

(6.761) 

We can stack the vectors x0, l l l , x~-r to form an NM x 1 comDosite vector. 
I  I  

.  (6.762) 

We refer to this vector as 
vectors are i ndexed across t 

a tap-stacked 
taps. 

vector because the component 

We can also specify the vector x with the double index, [xlnm, ~2 = 
0 •m,N-l,m=O,e-~ 

(;; 762) 

, M - 1, where the ordering is given by (6.761) and 
. . 

We can define an NM x 1 array manifold vector corresponding to the 
tap-stacked vector x. We define the spatial origin to be at the center of the 
array and the temporal origin to be at the sensor output. Then, the delay 
to a specific tap (for a linear array) is 

d,u 
Tnrn = -- + mT,. (6.763) 

C 

We first consider the case in which the quadrature demodulators are 
omitted. The NM x 1 array manifold vector is given by 

[ 1 Vf,” 73772 
= e-j2nf7nm . (6.764) 

The array manifold vector down the mth tap is just the mth component 

T 

[ 1 Vf,u m = 
e-j2~j(r~+mTs) i ,--j2rf(rl+mT,) i . . . i ,-jznf (rN-l+mTs) 

I I I 1 
(6.765) 
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If the linear array is uniformly spaced at 

d 
x U - -- 

2 
7 (6.766) 

where X, is the wavelength corresponding to the highest frequency, then 

N-l u 
(n - -)- - 

?f 

mT 
s l 

U I) (6.767) 

If we include the quadrature demodulators, then the appropriate frequency 
for the taps is fa. The array manifold vector is 

[vf*,u(fb u>1,, = exp j27r 
{ [ 

f(n - y$- - f*(l?b)]} J (6=768) 
U 

where 

fu= j-c++* (6.769) 

The result in (6.768) can be rewritten as 

[Vf,,u(fA7 41,, = exP , (6.770) 

where 
B 

BfAL. - 
f C 

(6.771) 

The conjugate of the complex weights at the mth tap are denoted by the 
N x 1 vector 

(6.772) 

The composite tap-stacked weight vector is denoted by the NM x 1 vector, 

(6.773) 
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The array output at to can be written as 

M-l 

y(t0) =I C W$%-m (6.774) 

or, equivalently, 
y(t()) = WH x. (6.775) 

The beam pattern of the TDL beamformer is obtained by replacing x in 
(6.775) by the array manifold vector in (6.770), 

B(fa,u) = WHVf,,u(fA,u)- (6.776) 

For a plane-wave signal coming from the look direction, the values down 
the sensor at each tap are identical, 

fo (to) = f(to> 1, 

fm(t()) = f(to-?7LTs) 1, m=0,*+W--1. (6.777) 

Thus, for “look-direction” signals, we can use the equivalent tapped delay 
shown in Figure 6.124. The equivalent weights are 

and the output 
M-1 

y(t0) = c h; f (to - ma ’ 

n=O 

In order to implement the beamformer, we need the covariance matrix of 
x in (6.762). In Section 6.13.2, we derived the covariance matrix of X, which 
contained the same elements arranged in a different order. 

Using the array manifold vector in (6.768), the NM x NM correlation 
matrix is given by 

R, = 
I 

%$hfA> #A = sx(fA,u)vf,,~(fA,u)v~,~(fA,u)dfdu, 

(6.780) 

where Sz (fA, u) is the source spectrum in (fA, u) space. For a single plane- 
wave signal arriving from us, (6.780) reduces to 

I 
h/2 

R, = 
-h/2 

% (2rfa)vfa,dfA~ u,v~,u(fA,u)dfA- (6.781) 

(6.778) 

(6.779) 
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Figure 6.124 Equivalent “look-direction” FIR filter. 

Figure 6.125 Flat signal spectrum (-&/2, +Br/2). 

Using (6.768), the nm, pq element is 

s 

B,/2 
[R 1 X nm,pq = 

Sf(2,fa)ejanf(r~-rn)~j2~fA(q-m)Tsdfa (6.782) 
-&I2 

In many cases, the signals or interferers will not occupy the entire band- 
width [G&/2, B,/2]. W e consider a signal with the flat spectrum shown in 

Figure 6.125, where 
B1 < B,. - (6.783) 

Then, 

s “I2 
2 

P 1 X nm,pq = 
Us ,jkf (r~-rn)ej2KfA(Q-m)Tsdfn 

-B1/2 B1 . (6.784) 

Writing 

f=fc+fn, (6.785) 
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(6.784) reduces to 

P I 
o2 

X nm,pq = $ sine [n-B1 ((rp - TJ + (q - m)T,)] ej2Rfc(r~-rnL 

The result in (6.787) is valid for an arbitrary array configuration. 

(6.786) 

(6.787) 

If we restrict our attention to a standard linear array along the z-axis, 
then 

rn = 
-ux (n - y) 

?f 
7 n=O,*e=,N-1. (6.788) 

U 

Then, 

rp - rn = 
-uz (P - n> U&-P) - - 

?f ?f 
7 

U U 

where 

fu= fc+$ 

(6.789) 

(6.790) 

If we let 

T 
1 

s- 
B 7 (6.791) 

S 

and define two fractional bandwidths, 

B 
B S 

fs- 7 f 
(6.792) 

C 

and 

B Bl 
fl 

- - 

f 7 
C 

(6.793) 

we can write (6.787) as 

P 1 o2 
x nm,pq = $- sinc (6.794) 

The first term in the sine function is due to the delay line and the second 
term is due to sensor location. 

We now have all of the quantities necessary to specify the optimum beam- 
former. All of our narrowband results can be extended by suitably defining 
the constraint matrices. 
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6.13.3.2 Linearly constrained beamformers 

In this section, we consider several types of broadband beamformers with 
linear constraints. In Section 6.13.3.2.1, we develop MVDR and MPDR 
beamformers. In Section 6.13.3.2.2, we develop LCMV and LCMP beam- 

formers. In Section 6.13.3.2.3, we develop the generalized sidelobe canceller 
implementation. In Section 6.13.3.2.4, we summarize our results. 

6.13.3.2.1 MVDR and MPDR beamformers 

We first consider MVDR and MPDR beamformers. In order to introduce 
a constraint on the look-direction response. we define the NlU x 1 vector 

Cm 7 7-n = O,-,M - 1 as 

cm = 

ON 

ON 
. 
. . 

1N 
. 
. . 

ON . 
-1 l 

(6.795) 

where the 1~ vector is in the mth positron. We next define an NM x M 
matrix, C, 

c * co Cl l * *  -  

[  

Thus, C is a sparse matrix, 

1 0 .‘. 0 

C 
01 : 

- - . . . 

0 0 0 

. . 

. . . 0 1 

The constraint equation is 

%G-1 ’ 1 (6.796) 

(6.797) 

#c- H - g J (6.798) 

where 

ghf-1 1 
T 

7 (6.799) 

is an M x 1 vector. 
If we impose the constraint in (6.797) on the weights, then the weight 

vector h in Figure 6.124 is 
h=g. (6.800) 
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The values of g will determine the temporal frequency response in the 
look direction. Consider a uniform linear array. If we denote the frequency 
response for the signal arriving from u as H(w, u), then the look-direction 

frequency response is 

H(W, o> = Mc1 lrn e-jwt gm b(t - mTs) dt. 
m=o -00 

(6.801) 

Performing the integration gives 

M-l 

H(w,O) = x gme-jmwTs. 
m=O 

(6.802) 

The MVDR and MPDR beamformers require that the look-direction 
response be distortionless. In this case, 

g *- - 
[ 

10 . . . 0 
I 7 (6.803) 

and 
H(w,O) = 1. (6.804) 

We minimize 

P 0 =WHRxVV, (6.805) 

subject to the constraint in (6.797). The result is 

H 
Wmpdr =g~ [CHR;W]%HR;T (6.806) 

Similarly, if R, is available, then 

WH mvdr =g~ [CHR;W]%R;T (6.807) 

Note that wgrnp and wEmv are N&f! x 1 complex vectors. We use A4 
constraints in both (6.806) and (6.807) so that there are (NiU - A4) degrees 
of freedom remaining. 

The results in (6.806) and (6.807) are due to Frost [Fro72], and the re- 
sulting beamformer is sometimes referred to in the literature as the Frost 
beamformer. In Chapter 7, we discuss adaptive implementations of this 

beamformer. Frost only considered the distortionless constraint in [Fro72], 
but he indicated that the addition of other linear constraints was straight- 
forward. We next consider broadband LCMV and LCMP beamformers. 
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6.13.3.2.2 LCMV and LCMP beamformers 

The extension to LCMV and LCMP beamformers follows easily. The various 

constraint sets that we discussed for narrowband processors can be extended 
to the broadband TDL case. For Nd derivative constraints, we define an 
NM x Nd matrix, 

cm = 

ON - 

ON 
. 
. . 

‘Nd 
. 
. 
. 

OIV . 

(6.808) 

where CN~ is the basic N x Nd constraint matrix, which is in the mth position. 

For three spatial derivative constraints, 

cNd = [ 
1 c(o) iqo) 

Then C is an NM x NdM constraint matrix, 

The g matrix is an NdM x 1 matrix, 

I . (6.809) 

= IM (8 c&j* (6.810) 

(6.811) 

where 
H- 

g1 
- 

[  1 92 93 ]  l 

(6.812) 

The result for derivative constraints is due to Er and Cantoni [EC85]. 

Just as in the narrowband case, it is necessary to check that the columns 

in the constraint matrix are linearly independent. 
The resulting weight vectors are 

H 
wlcrnp = gH [c~R;~c]%"R;~, (6.813) 
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and 
H 

wlc?n, =gH [c~R;w]%HR,I. (6.814) 

These are identical in form to (6.806) and (6.807). However, the gH and C 
matrices are different. 

The block structure in (6.797) and (6.810) will lead to important simpli- 
fications when we implement the beamformer adaptively. 

All of the linear constraints that we studied in the narrowband case 
can be extended to the broadband case. However, for constraints such as 

multiple-direction constraints, eigenvector constraints, or quiescent pattern 
constraints, the constraint matrix no longer has the block structure in (6.797) 
or (6.810). In the adaptive implementation, the computational complexity 
is increased. We do not discuss these constraints in the text. A discussion 

of eigenvector constraints is available in Van Veen (Chapter 4 in [HS92]). 
In order to improve robustness, we can also incorporate diagonal load- 

ing. We irnpose a quadratic constraint on the composite weight vector w in 

(6.798)) 

II w II25 To (6.815) 

and minimize the output power. Proceeding as in the narrowband case, we 
obtain 

H 
whnp,dl = gH [cHIRx+XI]-%]-kH [R,+XI]-l 7 (6.816) 

where X is chosen to satisfy (6.815). Alternatively, we can choose a fixed 
loading level based on the expected scenario. 

6.13.3.2.3 Generalized sidelobe canceller 

In this subsection, we develop the generalized sidelobe canceller form of a 

broadband MPDR beamformer using tapped delay lines. The GSC form 
was derived independently by Griffiths and Jim [GJ82] and Byun and Gangi 
[BG81]. 

We only consider the case in which the constraint matrix C has the 

sparse structure in (6.797) and (6.810). The broadband version of the gener- 
alized sidelobe canceller is shown in Figure 6.126. There is a preprocessing 
operation that steers the array in the desired direction, performs a quadra- 

ture demodulation, and samples the demodulated waveform at TS = l/B, 
intervals. The output is a sequence of complex vectors x(k). 

The upper path consists of an FIR filter of length n/l with fixed weights 
that generates the desired quiescent response. The composite Iv111 x 1 input 
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Quiescent 
FIR filter 

I I 

Figure 6.126 Time domain implementation of generalized sidelobe canceller. 

vector in the upper filter is x, as in (6.762). The NM x 1 weight vector in 
the upper path is designed to provide the quiescent response. From (6.813), 
letting R, = I, we have 

Iv% = gH[CHC]-v, (6.817) 

where gH and C are given by (6.810) and (6.811), respectively. The output 
of the upper path is denoted by yc (k) . 

The blocking matrix BH in the lower path is an (N - Nd) x N matrix 
that satisfies 

C&B = 0, (6.818) 

where CN~ is the basic N x Nd constraint matrix in (6.808) and 0 is a 
Nd x (N - Nd) matrix of zeros. Note that because the constraints are spatial 
constraints, the blocking matrix does not require an FIR filter. As in the 
narrowband case, we require 

BHB = I. (6.819) 

We note the output of the blocking matrix by x&c). At time to, the 
vector input to the mth taps in the adaptive FIR filter is 

Xb:m - n Xb(tO - mT,), (6.820) 

and we can define a composite (N - Nd) x M vector 

(6.821) 
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In order to relate xl> to the original input vector x in (6.819), we define 
a (N - N&M x NM composite matrix whose blocks are B”, 

Then, 
H 

xb = BcompX (6.823) 

The FIR filter in the lower path is chosen to minimize the output power. 
Following the same approach as in (6.373)-(6.375), we obtain the 1 x (N - 
N&M weight vector 

h WH a = $xJL?-lp ~EiompRxBcomp [ 1 
-1 

l 
(6.824) 

The advantage of the generalized sidelobe canceller structure will become 
more apparent when we implement the adaptive version in Section 7.13. We 
have replaced the constrained minimization problem with an unconstrained 
minimization problem. In this derivation, we have implemented the FIR 
filter in a direct form. In Section 7.13, we mention other implementations 
such as lattice filters that may exhibit better adaptive behavior. 

In the next subsection, we consider several examples. 

6.13.3.2.4 Beamformer performance 

We consider several examples to illustrate the behavior of finite impulse 
response beamformers. 

The first example uses the same signal and interference model as in the 
FFT beamformer discussion so we can compare performance. 

Example 6.13.5: MPDR TDL beamformer; no mismatch (continuation; Example 
6.13.2) 

Consider the same signal and interference model as in Example 6.13.2. The desired 
signal arrives from broadside and has a flat spectrum with bandwidth B, and fractional 
bandwidth Rf. A single interfering plane-wave signal with the same spectrum arrives from 
UI. The SNR = 0 dB and the INR = 30 dB. We sample the input at T, = B,‘. We 
implement an MPDR beamformer using an M-tap FIR filter. 

In Figure 6.127, we show the array gain versus u~/BWNN for Bf = 0.4 and M = 2,4, 
and 8. As we would expect from the FFT beamformer results, M = 2 provides all of the 
available performance improvement. 
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Figure 6.127 Time-domain MPDR beamformer: us = 0, INEZ = 30 dB, 
B f = 0.4, array gain versus u~/BWNN. 

Example 6.13.6: LCMP beamformer with derivative constraints; signal mis- 
match 

Consider a uniformly spaced lo-element array. The interelement spacing is X,/2, 
where X, is the wavelength of the highest frequency in the input signal. There is an 
M-tap FIR filter at the output of each sensor. 

The array is steered to broadside. We use the derivative constraint matrix in (6.809)- 
(6.812) with 92 = 0 and g3 = B,(O). Note that we are using 3M degrees of freedom. 

The signal actually arrives from ua = 0.05 and has a flat spectrum over the frequency 
band 0 < lfnl < 0.5B,. Rf = 0.4. The SNR varies from -10 dB to 30 dB. - - 

A single plane-wave interferer arrives from ~1 = 0.45 with the same frequency spec- 
trum. The INR = 30 dB. 

In Figure 6.128(b), we plot the average SNR, versus ASNR for M = 2,4, and 8. In 
Figure 6.128(a), we plot the array gain versus ASNR for M = 2,4, and 8. 

In Figure 6.129, we plot the beam pattern at fn = 0,0.2B,, 0.4B, for M = 8 and 
SNR = 10 dB. 

For A5’NR < 25 dB, the derivative constraints prevent signal nulling, and the array 
puts a null in the interferer direction across the frequency band. 

Example 6.13.7 (continuation; Example 6.13.4) 
Consider a uniformly spaced lo-element array. The interelement spacing is X,/2, 

where X, is tlhe wavelength of the highest frequency in the input signal. There is an 
M-tap FIR filter at the output of each sensor. 

Bf = Bslfc = 0.8. (6.825) 
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Figure 6.128 LCMP-TD beamformer with derivative constraints; us = 0, 

Ua = 0.05, UI = 0.45, INR = 30 dB, Bfs = 0.4, B@, = 0.4: (a) SNR, 
versus ASNR; (b) array gain versus ASNR. 
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Figure 6.129 Beam pattern at various frequencies; M = 8, fn = 0, 0.2B,, 
0.4B,. 

The input is sampled at l/B,, so the normalized frequency span is -- < w < 7r in - - 
radians. The signal of interest arrives from broadside and has a flat frequency spectrum 
over 0.57r 5 w 5 1.0~ (a 25% bandwidth signal). 

There are four interfering signals with the following characteristics (all spectra are 
zero outside the indicated band): 

(i) &I = 
1 + cos(lOw - O.&r), 0.67r < w < 1.0x, - - 
o 

7 elsewhere, 

INRl = 40 dB,ul = 0.4; (6.826) 

(ii) $2 = a: 0.67r < w < 0.9x, _ _ 

INR2 = 30 dB,u2 = -0.2; (6.827) 

(iii) $3 = 0: 0.57r < w < 0.517r, _ _ 

INR3 = 60 dB,us = -0.15; (6.828) 

(iv) s14 = 042 0.99x -c w =c 7r, _ _ 

INR4 = 60 dB,u4 = 0.7. (6.829) 

We implement a time-domain MPDR (MPDR-TD) beamformer using A&taps. In 
Figure 6.130 we plot the SNR, versus ASNR for various AL In Figure 6.131, we plot the 
beam pattern at selected frequencies. 

Comparing the results in Figures 6.121 and 6.130, we see that the time-domain im- 
plementation is about 4 dB better than the FFT implementation. 
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Figure 6.130 Average SNR, versus ASNR, MPDR-TD beamformer with A4 
taps; Bf = 0.8; ibl = 4; l ,64. 

6.13.3.2.5 Summary: Time-domain beamforming 

In this section, we have discussed time-domain beamforming. In Section 
7.11, we develop adaptive implementations of the time-domain beamformers 
that we have developed in this section. 

6.13.4 Summary: Broadband Processing 

In this section we have discussed two methods of implementing broadband 
beamformers. In Section 6.13.1, we developed the necessary background 
by reintroducing the frequency dependence in the array manifold vector. 

The result in (6.675) was for a uniform linear array, but the extension to 

an arbitrary array geometry is straightforward. If we replaced the complex 
weights in a narrowband beamformer with a complex linear filter, then the 
formulas for the MPDR, LCMP, and MMSE beamformers followed easily. 

In practice, we must estimate the appropriate statistics and implement 

these complex linear filters adaptively. The challenge is to find efficient 

implementations that have the capability to adapt. 
In Section 6.13.2, we developed frequency-domain implementations. We 

sampled the output of the quadrature demodulators at the sensors to ob- 
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Figure 6.131 Broadband MPDR-TD beamformer: SNR = 0 dB, Bf = 0.8; 
beam patterns at fa = 0.5B,/2, 0.75B,/2, B,/2: (a)M = 4; (b)M = 64. 



666 6.14 Summary 

tain a set, of complex time-domain samples. We then performed an FFT to 
obtain a set of complex frequency-domain samples. We chose the transform 

duration so that the frequency-domain samples at different frequency could 
be modeled as statistically independent Gaussian random vectors. We pro- 
cessed each frequency-domain sample using a narrowband beamformer. We 
then performed an IDE’T to obtain an output time-domain sequence. All 

of the results from our narrowband beamformer discussions can be applied 
directly. 

In Section 6.13.3, we developed time-domain implementations. We im- 
plemented the complex linear system using a complex FIR filter at the output 

of each quadrature demodulator. We restricted the constraint matrices to 
have a sparse block structure in order to restrict the comput,ational complex- 

ity. The frequency resolution of the beamformer is a function of the length 
of the FIR filter. 

The relative performance of the two implementations depends on the 

signal and interference environments. If we allow the beamformers in the 

various frequency bins in the FFT beamformer to be coupled, do not re- 
quire that the matrix in the time-domain beamformer have a sparse block 
structure, and set the number of frequency bins equal to the number of 
taps, then we can achieve identical performances in the two implementa- 

tions (e.g., Compton [Com88b] or Godara [God95]). Godara (e.g., [God951 
and [GJ99]) h as also developed frequency-domain techniques for computing 
the weights in the time-domain FIR beamformer. These techniques offer 
significant computational savings in certain cases. 

There are other approaches to broadband beamforming that rely on 
a technique called focusing. The technique can be implemented in either 
the time domain or the frequency domain. References that discuss focus- 

ing include Wang and Kaveh [WK85], Yang and Kaveh [YK90], Sivanand 
and Kaveh [SK90], S imanapalli and Kaveh [SK94], and Krolik and Swingler 
[KS90]. 

We revisit broadband beamformers in Section 7.13 and discuss their 

adaptive behavior. 

6.14 Summary 

In this chapter, we have developed a family of optimum beamformers. Our 
development and analysis assumed that the statistics of the environment, 
either S, or S,, were known. 

The discussion in Section 6.2 considered the MVDR and MPDR beam- 
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formers and demonstrated their optimality under a number of criteria. 

667 

Sections 6.3 and 6.4 analyzed their performance for discrete interference 

and spatially spread interference, respectively. We found that!, when the 
interference was in the sidelobe region, the beam pattern was well-behaved 
and the beamformer was effective in reducing the output due to the interfer- 
ence. When the interferer was inside the main-lobe region, the beam pattern 

degraded and the output SNR, decreased significantly. The resulting beam- 
former was also sensitive to the model assumptions. These problems of signal 
misma.tch and main-lobe interference motivated modifications to the MPDR 
and MVDR beamformers in order to provide main-lobe protection. 

Section 6.5 extended the results to multiple plane-wave input signals. 

We found that the MVDR and MPDR beamformers imposed a distortion- 
less constraint on the signal of interest and imposed perfect nulls on the 
remaining signals. The MMSE beamformers treated the other signals as 
interferers and adjusted the gain in their direction as a function of their 
SNR. 

Section 6.6 introduced the problems of mismatch between the model and 

the actual environment that are present in most applications. We studied 
the effects of DOA mismatch and array perturbations. We found that the 
MPDR bearnformer was sensitive to mismatch and tried to null the signal 
of interest. We introduced the technique of diagonal loading to combat the 
problem. We found that, when the SNR was less than the individual INRs, 
diagonal loading provided significant improvement. Subsequent discussions 
in Chapter 7 lead us to the conclusion that some form of diagonal loading 
is an important component of most beamforming algorithms. The disad- 

vantage of relying completely on diagonal loading to solve the mismatch or 
main-lobe interferer problem was that the beamformer lost its ability to form 
nulls on interferers with INRs less than the LNR. 

Section 6.7 introduced linear constraints to improve the performance 

in the presence of mismatch. Directional and derivative constraints tried 
to control the behavior of the beam pattern at specific points (or small 
regions) in frequency-wavenumber space. Eigenvector and quiescent pattern 

constraints tried to control the behavior over larger regions. The resulting 
LCMV and LCMP beamformers, coupled with diagonal loading, provided 

significant performance improvement. We also introduced the generalized 
sidelobe canceller that separated the constraints and the adaptive component 
of the bearnformer in an effective manner. 

Section 6.8 exploited the result that the plane-wave signal and D plane- 
wave interferers define a (D + 1)-d imensional subspace that provides a suf- 

ficient statistic for the waveform estimation (or detection) problem. By 
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projecting the incoming waveform into this subspace, we can implement 

eigenspace beamformers, which have improved performance and reduced 

computational complexity. In Chapter 7, we find that they have good adap- 
tive performance. 

Section 6.9 developed beamspace processing. In this technique, we trans- 
form the input from element space into a reduced-dimension beamspace us- 
ing a set of fixed beams (either conventional beams or one of the tapered 
beams developed in Chapters 3 and 4). We process the beam outputs us- 
ing one of the optimum processors developed in the earlier section of the 

chapter. Beamspace processing provides reduced computational complex- 
ity without significant loss in performance for interferers in the beamspace 
sector. In Chapter 7, we find that beamspace processors provide faster adap- 
tation to the opt,imum processor than the corresponding element-space pro- 
cessors. For conjugate symmetric array manifolds and conjugate symmetric 
beamspace matrix, we find that there is the additional advantage that we 

can use real computation to find the beamformer. The disadvantage is the 
loss of adaptive degrees of freedom. 

Section 6.10 revisited quadratically constrained beamforrners that were 

introduced in Section 6.6.4. The norm of the weight vector was constrained 
and the resulting level of diagonal loading was computed. The QC formula- 

tion in this section also leads naturally to a data-dependent variable loading 
in Chapter 7. 

Section 6.11 revisited the problem of approximating a desired beam pat- 
tern over some region of frequency-wavenumber space that we first encoun- 

tered in our discussion of eigenvector constraints in Section 6.7.1.5. We 
developed an algorithm that is a generalization of diagonal loading. The re- 
sulting algorithms are referred to as soft constraint algorithms and provide 
performance improvements in several application areas. 

Section 6.12 considered the problem in which the signal and interference 
are temporally correlated. This model occurs in a multipath environment 
and other scenarios. We introduced a technique called spatial smoothing to 
reduce the correlation prior to beamforming. 

Section 6.13 considered broadband beamformers and developed frequency 
domain and time domain implementations. 

In this chapter we have assumed that the necessary statistics are known. 

In Chapter 7, we develop adaptive beamformers that rely on the observed 
data to develop the beamformer. If the environment is stationary, we would 

anticipate that the adaptive beamformers would approach one of the opti- 
mum beamformers developed in this chapter. We will develop various adap- 
t ive techniques and explore their adaptive behavior, computational complex- 
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ity, and numerical stability. 

6.15 Problems 

P6.2 Optimum Beamformers 

Problem 6.2.1 

Assume that we have a sequence of statistically independent frequency-domain snap- 
shots 

X(w) = F(w) + N(w), (6.830) 

where F(w) and N(w) are statistically independent with spectral matrices S&) and 

s-&+ 
Find the linear filter that maximizes the SAUL 

Problem 6.2.2 

Show t,hat, if V&I/J) = V&/J), the MPDR beamformer in (6.71) is identical to the 
MVDR beamformer in (6.14). 

Problem 6.2.3 

Consider the case where 

X(w) = F&+(h) + Fz(+(k2) + W(w), (6.831) 

where 

sF~ cw>, Sk (w>, SF1 Fz (w), and S,(w) = &I, (6.832) 

are known, and 
D(w) = Fl(w). (6.833) 

(a) Find the optimum MMSE matrix processor to estimate D(w). 

(b) Assume the signals are narrowband around wc. Plot &U as a function of S’F~ FZ (wc) 
and pr2(wc), the spatial correlation. 

Problem 6.2.4 

Consider a standard lo-element linear array. The signal is a plane wave arriving from 
broadside. The interference consists of a plane wave arriving from UI with an IIW = a;/~$ 
and white noise with spectral height at. 

(a) Plot the array gain versus U@WNN for an MVDR beamformer. Consider IIV..s=O, 
10, 20, and 30 dB. 

(b) Plot 11 ~,,cirl(~ versus ZL@WNN for the same Inks. 

Problem 6.2.5 (continuation)- 
Consider a standard N-element linear array. The rest of the model is the same as in 

Problem 6.2.4. 
Define the normalized array gain as 

AG, k AGIN, (6.834) 
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the array /NR as 
AINR = N - INR, (6.835) 

and 
UIn = UI/wNNe (6.836) 

(a) Plot, the normalized array gain versus UI/mNN for AZNRs = 10, 20, 30, and 40 
dI3, for N = 4, 8, 10, 32, and 64. 

(b) Discuss your results. Are the normalized plots essentially the same after some value 
of N? 

Problem 6.2.6 
Consider a standard lo-element linear array. Assume v$,~, corresponds to broadside. 

Assume S, = I and at is the signal strength. The signal actually arrives from ua, where 
]ua( < 0.1. Plot Am - vs ua for the interval [0, -0.11. Indicate the points where 

Arrqrb-(Ua) = 0.5Aw(0). (6.837) 

Problem 6.2.7 (continuation) 
Repeat1 Problem 6.2.7 for the interference model in Problem 6.2.4. 

Problem 6.2.8: MVQR Beamformers 
In many applications, we want to have a quiescent pattern with low sidelobes. We 

define the weight vector of the desired quiescent pattern as w:~. We define a normalized 

version of wdHq as, 

(6.838) 

We impose the constraint 

on the weight vector and minimize 

subject to the constraint. 

( > a Show that 

where 

The resulting beamformer is called the minimum variance quiescent response 
(MVQR) beamformer. 

(b) 

( > C 

Derive an expression for the array gain. 

What is the array gain when 

-H 
wdqw = 1, 

WHS,W 

(6.839) 

(6.840) 

H 
W mvqr = Rqwyqs;l, 

A, = [ii$$,lifdq]-l. 

(6.841) 

(6.842) 

S, = &)I? 

Problem 6.2.9: MPQR Beamformers (continuation) 
Define 

-H WdHq 
wdq = ilwdq 

(6.843) 

(6.844) 
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and impose the constraint on the weight vector 

-H 
wdqw = 1. (6.845) 

Minimize 
WHSxW (6.846) 

subject to the constraint. The resulting beamformer is called the minimum power 

quiescent response (MPQR) beamformer. 

(a) Show that 
H 

W mpqr = AClpw$sXl, (6.847) 

A qP 
-1 

1 . (6.848) 

(b) Derive an expression for the array gain. 

P6.3 Discrete Interference 

Problem 6.3.1 

Consider a standard lo-element linear array. Compare the performance of a least 
squares Dolph-Chebychev beamformer (-40-dB sidelobe) with a zero-order null at UI (see 
Section 3.7) with the MVDR processor with a single plane-wave interferer at UI plus white 
noise (a:). 

(a) Compute the array gain of the two beamformers and plot their beam patterns for 
UI = 0.3 and 0.50 and a; = 10 dB and 50 dB. 

(b) Compute the array gain of the two beamformers and plot their beam patterns for 
UI = 0.09 and 0.18 and 012 = 10 dB and 50 dB. 

(c) Compute the array gain of the two beamformers and plot their beam patterns for 
UI = 0.02 and 

Problem 6.3.2 
Repeat Problem 

inal weighting. 

Problem 6.3.3 
Repeat Problem 

Problem 6.3.4 
Repeat Problem 

Problem 6.3.5 

0.0433 and a; = 10 dB and 50 dB. 

6.3.1 using the Villenueve fi beamformer of Section 3.4.4 as the orig- 

6.3.1 using the Kaiser beamformer (p = 6) as the original weighting. 

6.3.1 using the Hann beamformer as the original weighting. 

Consider a standard lo-element linear array that uses the MVDR beamformer with a 
single plane-wave interferer plus white noise. Assume the MVDR beamformer is designed 
assuming the plane wave is at 2~1. 

The actual location of the plane wave in u-space is a Gaussian random variable, 
N(wd). 

(a) Assume UI is in the sidelobe region and CJ U is small. Find E[A,(u~)]. Plot your 
result for UI = 0.30, crU = 0.05,~; = 10 dB and 20 dB. 

(b) Repeat part (a) for UI = 0.18. 
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Problem 6.3.6 

(a) Repeat P ro bl em 6.3.5 for the Villenueve fi beamformer in Problem 6.32. 

(b) Compare your result to the result in Problem 6.3.5. 

Problem 6.3.7 

Consider a standard lo-element linear array with d = X,/2 where X, is the wavelength 
corresponding to fc” The frequency spectrum of the single plane-wave interferer is uniform 
from fc - k/2 < f  < j-c+ h/2. D _ _ enote the fractional bandwidth as Bf = BS/fc 

(a) We design an MVDR bearnformer assuming that the interferer is at fc. Assume 
that 

INR & a;/& = 30 dB. (6.849) 

Plot, the array gain versus UI/BWNN over the range 

0.5 5 UI/~NN 5 2.5, (6.850) 

for Bf = 0, 0.1, 0.2, and 0.4. Plot the beam patterns for several values of UI. 

(b) Repeat part (a) for the case in which the MVDR beamformer is designed using the 
correct frequency spectrum of the interferer. Plot the beam patterns for several 
values of us. 

(c) We want to show that a frequency-spread interferer has the same effect as a cluster 
of narrowband interferers. Derive a formula that allows us to replace a single 
frequency spread interferer with A,! interferers clustered around UI. Show how the 
number of interferers and their spacing is related to UI and Bf. 

(d) Discuss the results in part (c) in terms of degrees of freedom available to the beam- 
former. 

Problem 6.3.8 

Consider a standard lo-element linear array. We implement the MPDR beamformer 
in (6.71), <assuming the desired signal arrives from broadside. The interference consists 
of two plane-wave interferers at UI = 0.30 and 0.50 with an INR = 20 dB (each). The 
additive white noise has spectral height ai. The signal actually arrives from ua. 

(a) Plot the array gain versus ‘&/~NN over the range 0 < ‘&/~NN 5 0.25 for 
SNR = -10 dB, 0 dB, 10 dB, and 20 dB. 

(b) Plot the beam patterns for ua = 0.02, 0.05, and 0.1. 

(c) Discuss your results. 

Problem 6.3.9 (continuation; Problem 6.2.8) 
Consider a standard lo-element linear array. We implement1 the MVQR beamformer 

derived in Problem 6.2.8. 
The desired quiescent bcarn pattern is a Dolph-Chebychev beam pattern with -40-dB 

SLL. The signal arrives from broadside. The interference consists of a single plane-wave 
interferer with an INR = 10 dB or 20 dB. 

Plot the array gain versus ‘UI/~NN for the two INR levels. 
Plot the beam patterns for UI = 0.50, 0.30, 0.18, 0.09, 0.0433, and 0.02. Compare 

your results to the results in Figures 6.13-6.16. 
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Problem 6.3.10 (continuation; Problems 6.2.9 and 6.3.8) 
Consider t’he same signal and interference model as in Problem 6.3.8. We use the 

MPQR beamformer in Problem 6.2.9 with a Dolph-Chebychev quiescent beam pattern 
with -40-dB SLL. Repeat Problem 6.3.9. 

Problem 6.3.11 (continuation; Problem 6.2.10) 
Consider the MPQR beamformer in Problem 6.3.10. We add a second constraint, 

(6.851) 

where PG~,~, is the projection matrix onto wdq. 

( 1 a 

(b) 

Derive the optimum 

Repeat Problem 6.3. 

beamformer. Verify that the quiescent pattern is unchanged. 

10 and compare your results. 

Problem 6.3.12 

As a modification to the MVDR beamforrner, we can require both a distortionless 
out#put at k = k, and a zero-order null at k = kr. Assume that the noise spectral matrix 
is S,. 

( > a 

0 

Find the minimum variance beamformer subject to the two constraints. Find the 
expression for the array gain A,,. 

Specialize your result to a lo-element standard linear array. The desired signal 
arrives from broadside. Assume that the interference consists of a single plane wave 
at ~1 with an INR that is a parameter. The additive white noise has a spectral 
height ai. Plot A,, versus UJ/RM/NN for INRs = 0 dB, 10 dB, 20 dB, and 30 dB. 
Compare your result to (6.28). Plot A,,/A o versus UI/~NN for the above IN&. 
Discuss your results. 

Problem 6.3.13 

Consider a standard 19-element hexagonal array in the zy-plane. The desired signal 
arrives at 0, = 0”. Two plane-wave interferers arrive at 

Uf = 0.5, cp = 0, 

Ur = 0.54 = 30”. (6.852) 

Each interferer has an INR = 20 dB. Design an MPDR beamformer. Compute the array 
gain. Plot a contour plot of the beam pattern and pattern cuts through 4 = O”, lo”, 20”, 
and 30”. 

P roblem 6.3.14 

Repeat Problem 6.3.13 for a standard 3 7-elemen .t h .exagonal 

Problem 6.3.15 

Repeat E’roblem 6.3.14 for a standard 61-element hexagonal array. 

Problem 6.3.16 

Consider a standard lo-element linear array. The noise consists of three plane-wave 
interferers located in u-space at UI, UI + Au, UI - Au plus additive sensor noise of height 
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(a) The three plane waves are uncorrelated and have equal power, af/3. Assume that 
the three plane waves are in the sidelobe region. Find the MVDR beamformer 
(signal is at us = 0) and compute the array gain as a function of UI and AU. 

(b) Plot the beam pattern for ~1 = 0.3 and Au = 0.03 and Au = 0.003. 

(c) Discuss the behavior as AU -+ 0 in terms of the condition number of [$vI]. 

(d) Compare the result in parts (b) and (c) to a constrained MVDR beamformer with 
zero-order, first-order, and second-order null at ~1. 

(e) Repeat parts (a) and (b) for ~1 = 0.2 and A = 0.04. 

Problem 6.3.17 
Consider a standard 37-element hexagonal array in the zy-plane. The interference 

consists of 10 plane-wave interferers distributed uniformly on a circle in u -space with radius 
URI = ,/s. The interferers are uncorrelated equal power sigr rals (0: = UT/lo) 

and the additive noise has variance a$ 

(a) Derive the MVDR beamformer and compute the array gain. 

(b) Plot pattern cuts for ?&I in the sidelobe region and a;/& = 20 

(c) Repeat part (b) for the outer main-lobe region. 

dB. 

(d) Assume we have A,! uncorrelated equal power interferers with spectrum uF/AL 
Analyze the MVDR beamformer as M -+ 00. 

P6.4 Spatially Spread Interference 

Problem 6.4.1 

Consider a vertical standard lo-element linear array. Assume the noise consists of 
the surface noise model in Problem 5.3.1 with a = 0.25 plus additive white noise with 
spectrum height a:. 

Calculate the array gain as a function of 8 T, the target signal’s angle of arrival mea- 
sured from the vertical for INR values of 10 dB and 20 dB. 

Problem 6.4.2 

Repeat Problem 6.4.1 for the case of high surface noise: Q, = 1. 

Problem 6.4.3 
Repeat Problem 6.4.1 for the layer noise model in Problem 5.3.2. Assume low layer 

noise: o = 0.25. 

Problem 6.4.4 
Repeat, Problem 6.4.3 for the case of high layer noise: a = 1. 

Problem 6.4.5 
Consider the sector noise model in Figure 5.8. Denote the angle of the cone boundary 

with the xg-plane as B,, S,(w) = S,. Assume that we have standard lo-element linear 
array along the x-axis and the signal is a plane wave arriving from [&, & = O]. In addition, 
there is additive white noise (a$). 

(a) Find the MVDR beamformer. Plot the resulting beam pattern for (i) 0, = 30”, & = 
75”, INR = 20 dB; (ii) 0, = 30”,& = 60”, INR = 20 dB; (iii) 8, = 45”,& = 
75”, INR = 30 dB. 



6.15 Problems 675 

(b) Compute the array gain for the above cases. 

Problem 6.4.6 

Repeat Problem 6.4.5 for a standard 10 x 10 rectangular array in the zy-plane. 

Problem 6.4.7 

Consider a standard 21-element linear array. Assume the noise spectrum corresponds 
to a complex AR(2) process plus additive white noise with spectral height a$ 

(a) Find the MVDR receiver for a signal located at us = 0.4. 

(b) Find the array gain for AR spectrum in Figure 6.19, assuming a: = 0. Plot the 
beam pattern. 

(c) Repeat part (b) for AR spectrum in Figure 6.20, assuming a$ = 0. 

(d) Repeat1 part (b) for &/& = 20 dB. 

(e) Compare your result in part (d) to the case of two plane-wave interferers located 
at u11 = O,u12 = 0.8. 

Problem 6.4.8 

Consider the same linear array and noise model as in Problem 6.4.7. Assume us = 0 
and z1 = Izllexp(-0.15~) and x2 = Iz2Iexp(+O.l57r). Assume the INR is 20 dB. 

(a) Plot the beam pattern of the MVDR receiver for (~11 = 1x21 = 0.5,O.g and 0.99. 

(b) Find the array gain for the above cases. 

Problem 6.4.9 

Consider a standard lo-element linear array. The signal is at u = 0. The interference 
has a flat spatial spectrum in one dimension: 

SI SI(U) = - 
274A 

U[-UA<U<UI+U& - - (6.853) 

The additive white noise has spectral height a:. Find the optimum beam pattern and 
compute the array gain for 

( > a 
UI = 0.3, UA = 0.1, SI/& = 20 dB. (6.854) 

UI = 0.2, UA = 0.1, i&/o; = 20 dB. (6.855) 

( > C 

W = 0.5, UA = 0.2, &/a; = 40 dB. (6.856) 

Problem 6.4.10 

Consider a 32-element uniformly spaced linear array with d = %. Assume that 

S&k) = CT; (w,)sinc (6.857) 

which is a mixture of isotropic and white noise. The signal and noise are narrowband. 

(a) Find t#he array gain as a function of us. 
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(b) Plot the magnitude of the beam pattern for us = 0,0.5 and 1.0 and various INR. 

(c) Plot th e sensitivity function for the same values as in part (b). 

P6.5 Multiple Plane-wave Signals 

Problem 6.5.1 

Consider the case of D plane-wave signals impinging on the array from kl, k2, l l l , ko. 

The noise consists of a single plane wave at kJ plus white noise with spectral height ai. 
Thus, 

s, = vH(k+%v(kr) +&I. (6.858) 

(a) Find the D x N MVDR processor. Interpret your result. 

(b) Is the result in part (a) the same as the (D + 1) x N MVDR processor for D + 1 
plane-wave signals impinging on the array from kl, k2, l . l , ko, kJ? Justify your 
answer. 

Problem 6.5.2 

Assume there are two signals impinging on an array in the presence of noise that is 
uncorrelated with the signals and has a spectral matrix S&J): 

X(w) = VF(w) + N(w). (6.859) 

Create a 2-D signal subspace 
X,(w) = V”X(w). (6.860) 

(a) Find the MMSE processor to estimate F(w) using X,(w) as the input. 

(b) Compare your result with (6.181). 

Problem 6.5.3 

Consider a standard lo-element linear array. The frequency-domain snapshots are 

X(w) = W(w) -I- W(w), (6.861) 

where F(w) is 2 x 1 source-signal vector, 

(6.862) 

with spectral matrix 

S(w) = d hap 
~s~Ip* 4 I 

. (6.863) 

The array manifold matrix V is known. The source signal F(w) and additive-noise vector 
qw) (svv(w) = 021) are uncorrelated. 

(a) Find the MMSE processor to estimate F,(w). 

(b) Assume the signal arrives from broadside with an SNR = 10 dB. Plot the output 
SNR, and the normalized MSE versus $1 for INRs = 10, 20, and 30 dB. Discuss 
your result. 
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Problem 6.5.4 
Derive a ‘Lpure” eigenbeam receiver. In this case the D + 1 sufficient statistics are the 

D + 1 eigenbeams. 

Problem 6.5.5 
Consider the problem of finding the MMSE estimate for multiple plane-wave signals 

(D signals) 
SIC = v&V* + s,, (6.864) 

- 
v [ 

- Vl ’ v2 ’ l l *  ’ VD 1 .  (6.865) 
I  

The resulting MMSE filter is 

H, = (I + SfVHS,y-~ SfVHS,‘, (6.866) 

which reduces to 

( 
Sf 

> 

-1 
HO= I+--Z-VHV Sf 

OW 
-+*I (6.867) 
0-W 

for white noise. 
Now consider the problem of finding the MMSE estimate of the first signal in the 

presence of D - 1 interfering signals plus white noise. This will result in a 1 x N filter that 
is denoted as HI. 

(a) Find HI. 

(b) Prove &t) = yr(t). 

Problem 6.5.6 
The received waveform is an N x 1 vector, 

X&J 
Kl K2 

) = xv(w : kf)F,(w) + cv(w : kjN>N3(w) + W(w), ( 6.868) 

Fl@> F(w) = : [ 1 ) . FK1 cw> 
and Sf(w) is the corresponding signal spectral matrix 

(6.869) 

Nl (4 
N(w) = : [ 1 , (6.870) . 

NK2 cw> 

and S,(w) is the corresponding noise spectral matrix and W(w) corresponds to a white 
random process with spectral matrix &I. 

Assume Kr + K2 < N. Define 

and 

vF= [ v(w:kf) i a.0 i v(w:k&) ] 

VN = [ v(w : ky) i .*. ; v(w:kg,) 1. , 

(6.871) 

(6.872) 
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(a) Find Hw(w), th e whitening filter. Hw(w) whitens the total noise input. 

(b) Define S,(w) as the total output of the whitening filter when the input is signal 
plus noise. Find the spectrum of S,(w). 

(c) What is rank of signal-component spectral matrix? 

(d) Does the result in part (c) generalize to an arbitrary S,(w)? 

Problern 6.5.7 

Consider the case of a scalar Gaussian process propagating along v(w : k,). Then 

Sf(w) = v(w : k,)Sf(w)vH(w : k,). 

(a) Show that HI(W), the MMSE processor is 

(6.873) 

HI(W) = v,Sf(W)V~ [ai1 + v,sf(w)vq --I. (6.874) 

(b) Show that HI(W) reduces to 

Sketch the optimum processor. Note that the optimal 
former followed by the optimum scalar processor. 

Ww) =Vs { ;g;~;(w)}v:. 

processor is an MVDR beam- 

(6.875) 

Problem 6.5.8 

The frequency-domain snapshots at a standard lo-element linear array are 

x(w) = F(w)vdh > + azF(454$2) + ~3F(4~&3) + W(w), (6.876) 

where F(w) is the Fourier transform of the signal whose spectrum is Sf (w), 0~2 and QI~ are 
known complex parameters, and W(w) is spatially white noise with spectral height a$ 
The signal is narrowband so w can be suppressed. 

(a) Find the linear processor that provides a MMSE estimate of F(w). 

(b) The array SNR is defined as 

/pjlNR= NSfo, 
GW 

(6.877) 

Assume I/I = 0, $3 = -4~2, and CQ = 0.5~3. Plot the the output SNR, and the 
MMSE error versus ASNR for several a2 and $2. 

P6.6 Mismatched MVDR and MPDR Beamformers 

Problem 6.6.1 
Consider a standard lo-element linear array with white noise interference. Assume 

that the optirnum MPDR beamformer is steered to broadside (vm = 1 and urn = 0). 

(a) Assume that the desired signal actually arrives from ua. The input SNR is a:/&. 
Plot &+r versus ua for various SNR (-10 dB to 30 dB). 

(b) Plot Ampdr versus SNR for ua = 0.25Bw~~ and ua = 0.0433BW~~. 
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(c) Assume that ua is a random variable whose probability density is uniform [-u1 < 
ua < ul]. Plot E[Ampdr] versus SNR for u1 = 0.0433BWN~, and 0.25Bw~~. 

(d) Assume ua is a zero-mean Gaussian random variable whose standard deviation is 
given by (6.237). Repeat part (c). 

Problem 6.6.2 (continuation; Problem 6.6.1) 
Consider a standard lo-element linear array. The interference consists of two plane- 

wave interferers at u = 0.29 and 0.45, each with an INR = 20 dB. We design an optimum 
MPDR beamformer steered to broadside. 

(a) Repeat part (a) of Problem 6.6.1. 

(b) Repeat part (b) of Problem 6.6.1. 

(c) Add a third interferer at UI = 0.25BWNN(ur = 0.1). Repeat part (a) for ua < 0.05. 

(d) Add diagonal loading with various LNR. Repeat part (c) for representative LNR. 

Problem 6.6.3 

Consider a standard lo-element linear array. Consider the multiple plane-wave MPDR 
beamformer. (It corresponds to the MVDR beamformer in (6.158), with S, replaced by 

SW) 
There are four plane-wave signals impinging on the array plus white noise. The beam- 

former is designed assuming the signals arrive from 

us1 = 0, us2 = 0.3, us3 = 0.5, us4 = -0.7. (6.878) 

Each signal has t,he same SNR. The actual signals arrive from 

U(Jl = U(1, U& = 0.3 -I- u(-J, ua3 = 0.5 - ua, ua4 = -0.7 + ua, (6.879) 

where 1~~1 < 0.05. 

(a) Plotthe output SNR, versus ua for signal 1 for SNR = -10 dB, l . l , 30 dB in lo-dB 
steps. 

(b) Add diagonal loading. Repeat part (a) for representative LNR. 

Problem 6.6.4 (continuation; Problem 6.3.13) 
Consider the same model and environment as Problem 6.3.13. The signal actually 

arrives from (&, &J. 

(a) Plot the array gain versus u,.~ = sin 8, for & = O”, lo”, 20”, and 30” and SNR = 
0, 10, and 20 dB. Assume (uTal < 0.5 - 

(b) Add diagonal loading. Repeat part (a) for various LNR. 

Problem 6.6.5 (continuation; Problem 6.3.13) 
Consider the same model and environment as Problem 6.3.13. The plane of the array 

rotates slightly around the y-axis so that the angle between the plane of the array and the 
x-axis is yZ degrees. 

Plot the array gain versus yZ for 0 < ya: < 5”. Consider SNR = 0, 10, and 20 dB. 

Example 6.6.6 (continuation; Example 6.6.4) 
Consider the same model as in Example 6.6.4. 
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Figure 6.132 Towed array. 

(a) Assume the position perturbations are only in the x-direction. 
6.6.4. 

(b) Assume the position perturbations occur only in the y-direction 
6.6.4. 

Repeat Example 

Repeat Example 

In both parts, compare your results to the results in Example 6.6.4. 

Problem 6.6.7 
Consider a standard lo-element linear array. The signal arrives from broadside and 

two equal-power uncorrelated interferers arrive from UI = 0.30 and 0.50 with an INR = 
20 dB (each). Design an MPDR beamformer and calculate the array gain. 

( > a 

0 

Assume the nth sensor fails. When the sensor fails, its output is set to zero. Cal- 
culate the resulting array gain for two cases: 

(i) The remaining N - 1 weights remain the same. 

(ii) The MPDR weights are recomputed for the N - 1 operational sensors. 
Consider different values of n. 

Repeat part (a) for two sensor failures. Consider various sensor pairs. 

Problem 6.6.8 
Consider a standard 4%element towed linear array. The signal is a plane-wave signal 

arriving from broadside. There are two plane-wave interferers arriving from ur=3/48 and 
5148 with a 30-dB INR (each). 

When the vehicle towing the array turns, the array shape can be approximated as a 
segment of a circle in the zy-plane, as shown in Figure 6.132. The diameter of the circle 
measured in wavelengths is d,. 

Plot the array gain versus dp (measured in wavelengths under two assumptions): 

(a) The MPDR weights do not change from their values calculated assuming a linear 
array. 

(b) The positions of sensors are known and the MPDR weights are recalculated. 

Problem 6.6.9 
Consider a standard lo-element linear array along the z-axis. The signal arrives from 

broadside and two plane-wave interferers arrive from UI = 0.30 and 0.50. We use the array 
perturbation model in (6.242)-(6.247). 

(a) Consider independent gain and phase perturbations with standard derivation a9 
and 04, respectively. Plot the array gain versus SNR for various CQ and a+. For 
Sn’R = -10 dB, 0 dB, 10 dB, and 20 dB, plot a contour map showing array gain 
versus g9 and op. 
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(b) Compare your results to those in Example 6.6.5. Discuss the relative importance 
of gain versus phase variations. 

Problem 6.6.10 
Consider a standard lo-element linear array with d = X,/=2 and white noise interfer- 

ence. 

( > a 

w 

( > C 

Assume that the optimum MPDR beamformer is steered to 8, = 30”. 

Assume that the desired signal arrives from 30”, but its frequency is fc + fa. The 
input SNR is a:/~:. Plot Am+ versus fa for various SNR (- 10 dB to 30 dB). 

Plot Ampdr versus SNR for fa = 0.2fc and fa = 0.4f,. 

Assume that fa is a random variable whose probability density is uniform [-fl < - 
fa < fl]. Plot E[Ampdr] - versus SNR for fl = O.O4f,, O.lOfc, 0.20fc. 

Problem 6.6.11: Frequency mismatch 

Consider a standard lo-element linear array designed for frequency fc. A narrowband 
plane-wave signal at frequency f  arrives from direction us. The interference is white noise. 
We define 

f  =fc+f& (6.880) 

and 
fA bf=---. 
f  

(6.881) 
C 

(a) Show that the array manifold vector v f  can be written as 

h In 
N-l 

= exp jn(n - p 
2 % (6.882) 

with 

Uf A(1 + bf)U. (6.883) 

(b) Design a MVDR beamformer for frequency fc. Plot the array gain (normalized by 
the array gain when fA = 0) versus us for bf = 0.2, 0.4, 0.6, and 0.8. 

(c) Repeat part (b) for a MPDR beamformer. 

Problem 6.6.12: Broadband signal (continuation) 
Consider a standard lo-element linear array designed for frequency fc. A plane-wave 

signal arrives from direction us. The signal has a flat frequency spectrum over the band 
fc - B,/2 < f  < fc + B,/2. The interference is white - - 

BS 
Bf n -. - 

f  C 

(a) Design a MVDR beamformer for frequency fc 
Bf=O.l, 0.2, and 0.4. 

(b) Repeat part (a) for a MPDR beamformer. 

Problem 6.6.13: Broadband interference 

noise. Define 

(6.884) 

Plot the array gain versus us for 

Consider a standard lo-element linear array designed for frequency fc. A narrowband 
plane-wave signal arrives from direction us. 
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There are two plane-wave interferers arriving from UI = 0.30 and 0.50 with an INR = 
20 dB (each). Each interferer has a flat frequency spectrum over the band 

fc - h/2 5 f I fc + BrI’L. (6.885) 

Define 
BI Bfr A -- 
f C 

(6.886) 

(a) Design a MVDR beamformer using the assumption that the interferers are nar- 
rowband. Evaluate the array gain for Bp = 0, 0.1, 0.2, and 0.4. Plot the beam 
patterns. 

(b) Let the DOA and the INR of the second interferer be a variable. Plot the array 
gain versus ~12 for various INR. 

( > C Design a MVDR beamformer usi ng the actual spectral m .atrix S, ( w) corresponding 
to the actual interferer spectra. The beamformer can only use complex weights 
(not complex filters). Evaluate the array gain for Bfr=O, 0.1, 0.2, and 0.4. Plot 
the resulting beam patterns. Explain your results. 

Problem 6.6.14 
Consider a standard lo-element linear array whose input is given by (6.589). The vari- 

ous output powers P&,, I& and Pno are given by (6.593), (6.597), and (6.598), respectively. 
The input SNR is at/a:. The input INR is a;/&. 

(a) Assume UI = 0.3. Plot pdo, Pie, Pno, and SNR, versus IpI for various SNR and 
INR. Does the phase of p affect any of the results? 

(b) Now assume that diagonal loading is used with ai added to ai for purposes of 

computing Si”. Use Si” to determine the Wmp&.&. Repeat part (a) for various 
a~/&,. Note that, S, is still given by (6.587). 

Problem 6.6.15 (continuation) 
Repeat Problem 6.6.14 for UI = 0.18. 

P6.7 LCMV and LCMP Beamformers 

Problem 6.7.1 
Consider a standard lo-element linear array with white noise interference. Compare 

the performance using directional, derivative, and eigenvector constraints in a LCMP 
beamformer. In each case, utilize three constraints and add diagonal loading. The LNR is 
a design parameter. Show the MPDR-DL results for comparison. 

(a) Consider two sets of directional constraints. The first set is at u1 = 0, 2~2 = 0.0433, 
and u3 = -0.0433. The second set is u1 = 0, u2 = 0.1, and u3 = -0.1. For each set 
we use the g given by (6.292) and (6.294). Plot SNR, versus u,/BWNN for various 
SNR (0 dB, 10 dB, 20 dB). Plot the corresponding beam patterns. 

(b) Repeat part (a) for the derivative constraints in (6.312). Utilize the g given by 
(6.313) and (6.314). 

( > C Repeat part (a) for three eigenvector constraints where we try to 
tional beam pattern between kO.10. 

a conven- 

(d) Compare your results and develop some design guidelines. 
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Steering direction: u, = 0 

Signal direction: u c1 

Element location 

Figure 6.133 Planar dual array. 

Problem 6.7.2 (continuation) 
Repeat Problem 6.7.1 for the case of a single plane-wave interferer (III? = 0, 10, 20 

dB) in the sidelobe region (~1 = 0.3). 

Problem 6.7.3 (continuation) 
Repeat Problem 6.7.2 for the case in which the DOA of the interferer is a variable. 

Study the behavior as ZLI moves from the sidelobe region into the main-lobe region. 

Problem 6.7.4 (continuation; Problem 6.7.1) 
Repeat Problem 6.7.1 for the case case of two uncorrelated plane-wave interferers at 

u11 =0.30 and u12 = -0.50. The interferers are equal power (INR = 0, 10, 20 dB each). 

Problem 6.7.5 (continuation) 
Repeat Problem 6.7.4 for the case of correlated interferers. Consider IpI = 0, 0.5, 0.9, 

0.95, and 1.0. 

Problem 6.7.6 [Ste83] 
Consider the lo-element planar dual ring array shown in Figure 6.133. Compare the 

performance using directional and derivative constraints. The array is steered to 4 = 0. 
The signal arrives at &. The interference consists of isotropic noise. 

(a) Use three directional constraints at 4 = -5”, 0, and +5”. Use a g vector corre- 
sponding to a flat response and a conventional response. Plot the SNR, (in dB) 
versus 4 for input SNR = -12 dB, -6 dB, 0 dB, 6 dB, and r/X = 0.2. Discuss your 
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Use three derivative constraints, 

c = [ v(o) ddO) 44m ] 7 (6.887) 

where d4 denotes the derivative with respect to 4 and d+#, denotes the second 
derivative. 

In the first case, 
gH = [ 1;0;01, , . (6.888) 

so the first two derivatives are constrained to equal zero at & = 0, the steering 
direction. 

In the second case, match the derivatives of a conventional beamformer. 

gH = $yY(O) ’ ~&WW ) , 
N I 

(6.889) 

Repeat the plot in part (a). Compare the results with part (a). 

(c) The irnplementation of directional and derivative constraints requires the calcula- 
tion of [C” S, Cl-‘. The condition number of a matrix is 

x max Condition number = - 
x l 

(6.890) 

min 

Plot the condition number versus r/X (0 < r/X < 0.30) for three directional con- - - 
straints at lo, 3”, and 5” and derivative constraints. Discuss the implication of your 
results. 

Problem 6.7.7 [Jab86a],[Jab86b] 
For directional and derivative constraints, an easy technique for constructing B is to 

treat each column of C successively. Consider a standard N-element linear array and 
assume that C is given by (6.291). First pass X(w) through the bidiagonal (N - 1) x N 
rnatrix By, 

Br = 

Then, 

-1 
1 -1 

1 
0 

-1 

0 
1 - 

(6.891) 

X,(w) = BrX(w) (6.892) 

will not contain any components along V(+m). 

Then pass X,(w) through the bidiagonal (N - 2) x (N - 1) matrix By, 

B; = 

1 -,-Hl 

1 ++fh 0 
1 -,-j+l 

. . 0 . . . 

1’ -,-+A 

7 (6.893) 
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Then, 
X2(4 = B%(w) 

will not contain a’ny components along ~($1). 
Finally, pass X2(w) through the bidiagonal (N - 3) x (N - 2) matrix B? 

r 1 -,-+b2 

1 -,-j+z 0 
H B3 = 1 _,--M2 

> 
. . 

0 . . . 

1’ -e-jti2 

where $9 = qbrn - A+. 
Then, 

Z(w) = B3HX2(w) = B;B;BFX(w) (6.896) 

will be orthogonal to the constraint subspace. 
The advantage of this approach is that the matrices are sparse, which saves computa- 

tion. A possible disadvantage is that 

7 

(6.895) 

BHB # I. (6.897) 

(a) Consider a standard lo-element linear array. Implement a LCMP beamformer using 
three directional constraints with A$ = 0.25BVv~~. Assume there is a single plane- 
wave interferer at UI = 0.3 (INR = 0, 10, 20 dB). The signal arrives from ua. (SNR 
= 0, 10, 20 dB). Plot the array gain versus U@WNN for 0 5 ua/13VV~~ 5 0.25. 

(b) Discuss the implications of (6.897). 
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(6.894) 

Problem 6.7.8 (continuation) 
The same technique can be used for derivative constraints. Pass Xl(w) through the 

tridiagonal (N - 2) x N matrix BF, 

H B2 = 

Then 

-1 2 -1 -7 

-1 2 -1 0 
-1 2 -1 . (6.898) 

0 l ., ‘., ‘., 

-1 2 -1 

X2(w) = BrByX(w), (6.899) 

where By is defined in (6.891), contains no components in the constraint space. 
To include the second derivative constraint in (6.310) with $J = 0, use the (N - 3) x N 

matrix By, 

BF = 

-1 3 -3 
-1 3 

-1 

0 

1 
-3 

3 
1 

-3 1 

-1 3 

0 

-3 

. 

1 

(6.900) 
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Then, 
Z(w) = B,HBFByX(w), (6.901) 

contains no components in the constraint space. 

(a) Consider a standard lo-element linear array. Repeat part (b) of Problem 6.7.2. 

(b) Discuss the implications of (6.897). 

Problem 6.7.9 
Analyze the behavior of a LCMP-GSC beamformer in which fixed nulls are placed in 

the direction of strong interferers whose direction has been previously determined. Imple- 
ment the beamformer as a GSC. 

Consider a standard 20-element linear array. The nominal signal direction is broadside. 
There are four uncorrelated plane-wave interferers at u11 = 0.30 (INR = 40 dB), 2~12 = 0.50 
(INR = 30 dB), u13 = 0.70 (INR = 50 dB), uI4 = -0.50 (INR = 10 dB). 

There is an additional interferer at UI = -0.3 (variable INR). 

( > a Design a LCMP-GSC beamformer in which the second through fifth columns of C 
force perfect nulls on the four interferers. Calculate the array for various INR of 
the additional interferer. Compare your results to a single distortionless constraint 
MPDR beamformer. 

Assume that the location of the interferers has been estimated and that the error 
in the estimate is a zero-mean Gaussian random variable with standard deviation 
Q (in u-space). The estimate associated with each interferer is independent. Use 
a Monte Carlo procedure to evaluate the loss in array gain for several Ok. How can 
you make the beamformer more robust to estimation errors? 

Problem 6.7.10 
Consider a standard 21-element linear array. The desired quiescent pattern is a Dolph- 

Chebychev pattern with -40-dB SLL. 
The nominal signal ‘DOA is broadside. The actual signal arrives from ua where ua 

is a uniform random variable, (ua 1 2 0.1. Implement a LCMP-DL beamformer using a 
quiescent pattern constraint and diagonal loading. 

There are two uncorrelated interferers arriving from u11 and ~12. Consider INRS of 
10, 20, and 30 dB. 

(a) Assume u11 = 3121 and u12 = -3/21. Plot the array gain versus SNR for the three 
INR. Use appropriate loading. Plot the beam patterns. Explain the behavior of 
the beamformer. 

(b) Repeat part (a) for UII = 3121 and u12 = -5121. 

Problem 6.7.11 (continuation; Problem 6.7.10) 
Consider a standard 21-element linear array. The desired quiescent pattern is a Dolph- 

Chebychev pattern with -40-dB SLL. Use the same signal and interference model as in 
Problem 6.7.10. 

Consider the following constraints: 

6) wdII wdq 11 2 is the only constraint. 
(ii) wdq/l~wdql12 plus first- and second-order derivative constraints. Use an appropriate 

diagonal loading level. 
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(a) Repeat part (a) of Problem 6.7.10. 

(b) Repeat part (b) of Problem 6.7.10. 

(c) Compare your results to those in Problem 6.7.10. 

Problem 6.7.12 
Consider a standard 21-element linear array. The nominal signal arrival angle is 

US = 0. The actual signal arrival angle is ua, where ua is a random variable with uniform 
probability density, 0 5 Iua 1 5 0.1. The desired quiescent beam pattern is a Dolph- 
Chebychev beam pattern with -40-dB SLL. 

Use the constraints in (6.416)and diagonal loading. 

(a) Assume there are four plane-wave interferers: 

u11= 0.3, INR = 50 dB, 
UI2 = -0.4, INR = 40 dB, 
u13 = 0.5, INR = 30 dB, 

(6.902) 

u14 = -0.6, INR = 20 dB. 

Use a total of three constraints, Wdq, and two eigenvectors. Choose an appropriate 
LNR. Plot the expected value of the array gain versus SNR. 

(b) Let the number of eigenvectors constraints be a design parameter. Repeat part (a). 

Explain your results. 
changed. 

How would they change if the number of interferers or their strength 

Problem 6.7.13 (continuation; Problem 6.7.12) 
Consider a standard 21-element linear array. Use the quiescent pattern technique and 

investigate how the choice of the quiescent pattern affects the performance. Consider the 
following quiescent patterns: 

(i) Hann 
(ii) Hamming 
(iii) Blackman-Harris 
(iv) Dolph-Chebychev (-20-dB SLL) 
(v) Dolph-Chebychev (-30-dB SLL) 
(vi) Taylor (-30-dB SLL, 72 = 6) 
Repeat Problem 6.7.12. 

P6.8 Eigenvector Beamformers 

Problem 6.8.1 
Consider a standard lo-element array. The nominal signal direction is broadside. The 

actual signal arrives from ua, where lual 5 0.1 with an SNR = -10, 0, 10, or 20 dB. There 
are two equal-power uncorrelated interferers at UI = 0.29 and 0.45. Consider INRS of 0, 
10, 20, and 30 dB. 

Use an eigenspace beamformer and plot the array gain versus ua/BW~~ for three 
scenarios. 

(a) The dimension of the S + I subspace is correctly estimated at 3. Plot the array 
gain versus uJBWN~T. Note that the eigenspace space is based on the actual ua. 
Consider the SNR and INR values specified above. 
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(b 

( c 

) The di mension of t,he S+I subspace is underestimated at 2. The eigenspace consists 
of the eigenvectors with the two largest eigenvalues. Repeat part (a). 

) The dimension 
the white noise 

of the S + I subspace is overestimated at 4. One eigenvector 
is added to the eigenspace in part (a). Repeat part (a). 

(d) Compare your results in parts (a)-(c). 

Problem 6.8.2 (continuation; Problem 6.81) 
Consider the same model as in Problem 6.81 except there are four interferers: 

Wl = 0.29, INR = 30 dB, 
uI2 = 0.45, INR = 20 dB, 
w3 = 0.55, INR = 10 dB, 
UI4 = -0.50, INR = 10 dB, 

(6.903) 

The SNR various from -10 dB to 30 dB in lo-dB steps. Consider eigenspace dimensions 
of 4, 5, and 6. Repeat Problem 6.81. Discuss your results. 

Problem 6.8.3 (continuation; Problem 6.8.2) 
Consider the model as in Problem 6.8.2. Impose second-order derivative constraints 

in (6.464). Repeat Problem 6.8.2 for the case in which the eigenspace dimension is 5. 

Problem 6.8.4 

Consider a lo-element uniform linear array with d = X/4. The nominal signal direction 
is broadside. The interference consists of isotropic noise and white noise. Define 

IN&so = c&o /a;. 

(a) Assume the signal arrives from broadside. Consider INRI~ = 0, 10, 20, and 30 
dB. Plot the array gain versus the dimension of the eigenspace for the indicated 
INRI~. 

(b) Now assume the signal arrives from ua where ]ua ] 5 0.1. Plot the array gain versus 
ua/BW~~ for the indicated INR em. Choose the dimension based on the results in 
part (a). 

(c) Repeat parts (a) and (b)‘for the cross-spectral beamformer in Section 6.8.2. 

Problem 6.8.5 (continuation) 
Consider the same model and isotropic noise environment as in Problem 6.8.4. There 

are also two equal-power uncorrelated plane-wave interferers at UI = -0.25 and 0.3 with 
INRs that vary from 0 dB to 30 dB in IO-dB steps. 

Repeat Problem 6.8.4. 

Problem 6.8.6 
Consider a standard lo-element array. The steering direction is broadside (u, = 0). 

The interference consists of three plane waves, 

UIl = 0.30, INR = 20 dB, 
uI2 = -0.50, INR = 25 dB, (6.904) 
~13 is variable, INR = 30 dB. 

The SNR is 10 dB. We use D, = 4 and 15 dB of diagonal loading. Read [CP97] or 
[CPL98]. Implement the robust DMR algorithm. 
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Plot the output SNR, versus ~13. 

Problem 6.8.7 
Consider a standard 32-element linear array. 
The signal is a plane wave arriving from ua = 0.01. There are four interferers at: 

UIl = W, INR = 20 dB, 
UI’L = fw, INR = 30 dB, 
UI3 = 13132, INR = 20 dB, 

uI4 = -17132, INR = 30 dB. 

(6.905) 

(a) Design an eigenspace beamformer and plot the array gain versus SNR. Plot the 
beam pattern for SNR = 10 dB. 

(b) Assume there are eight interferers. The location in u-space of the ith interferer 
is a uniform random variable (-1 5 ui < l), i = 1, l l . ,8. The location random 
variables are statistically independent. The INR of each interferer is one of five 
values, 0, 10, 20, 30, 40 dB with equal probability. The INR is independent of the 
location. 

Design an eigenspace beamformer. Specify the assumptions you use in the design. 

Find the array gain and plot the beam pattern for a single trial. 

(c) Run 50 trials of part (b) and compute the average array gain. 

P6.9 Beamspace (BS) Beamformers 

Problem 6.9.1 (continuation; Example 6.9.1) 
Consider a standard 32-element linear array and a 7 x 32 beamspace matrix using 

conventional beams. The signal iS a plane-wave signal arriving from us where lusl < - 
0.25m~~. The signal arrival direction us is known to the beamformer. The interferers 
consist of two equal-power uncorrelated plane-wave interferers at UI = 3/32 and 5/32. 

(a) Find the optimum beamspace MPDR beamformer. Compute the array gain and 
compare it to the result in Example 6.9.1. Discuss your results. 

(b) Discuss various ways to improve performance and evaluate one of them. 

Problem 6.9.2 (continuation; Example 6.9.2) 
Consider the same model and environment as in Example 6.9.2. Design a LCMP 

beamformer using second-order derivative constraints and diagonal loading. 

(a) Plot the array gain versus u a and compare the results to those in Figure 6.84. 

(b) Add three out-of-sector interferers at UI = -H/32, 9/32, and 15/32, each with an 
INR of 20 dB. Plot the array gain versus ua and compare the results to part (a). 

Problem 6.9.3 (continuation; Example 6.9.2) 
Consider the model in Example 6.9.2 except we use Dolph-Chebychev beams with 

-4O-dB SLL to form B,H, and orthonormalize them to form BE. 

(a) Repeat Exarnple 6.9.2 and compare your results to Figure 6.84. 

(b) Repeat Problem 6.9.2 and compare your results. 
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Problem 6.9.4 (continuation; Example 6.9.6) 
Consider a standard 32-element linear array and a 7 x 32 beamspace matrix. Assume 

there are 10 uncorrelated interferers at 3/32, 7/32, H/32, 15/32, 19/32 and -5/32, -9/32, 
-13132, -17132, -21/32. Each interferer has a 20-dB INR. 

Consider various beamspace matrices such as: 

(i) Conventional beams. 

(ii) Dolph-Chebychev (-30-dB SLL, -40-dB SLL) beams. 

(iii) Taylor beams. 

Design an MPDR beamformer for a signal arriving from us = 0. Evaluate the array 
gain for the various beamspace matrices. Compare the result to the array gain for element- 
space MPDR. 

Problem 6.9.5 (continuation; Example 6.9.2) 
Consider a standard 32-element linear array and the 7 x 32 beamspace matrix given 

in Example 69.1. The interference environment is the same as in Example 6.9.2. Use 
an LCMP beamspace beamformer with a quiescent pattern constraint and fixed diagonal 
loading. The desired quiescent beam corresponds to cos”(~n/N) weighting. 

(a) Plot the array gain versus ua/13W~~ for an SNR =0 and 10 dB and several levels 
of diagonal loading. 

(b) Compare your results to those in Figure 6.84. Suggest some design guidelines. 

Problem 6.9.6 

Consider a standard 32-element linear array and a 6 x 32 beamspace matrix. The 
bearn sector is centered at broadside. The rows of the beamspace matrix are conventional 
bearns with steering directions, 

us = H/32, f3/32, f5/32. (6.906) 

The interference consists of two equal-power uncorrelated plane-wave interferers at 
4/32 and 6/32. Consider INRs of 10, 20, and 30 dB. Consider SNRS of 0, 10 dB, and 20 
dB 

(a) Evaluate the performance of an MPDR beamformer. Assuming no signal mismatch. 
Plot the beam pattern and evaluate the array gain. Compare your result to the 
results in Example 6.9.1. 

(b 

( C 

) Consider the case of signal mismatch where 1~~1 5 l/32. Use an appropriate level of 
fixed diagonal loading. Plot the array gain versus u,/w/y,,. Compare your result 
to the results in Example 6.9.2. 

) Assume the signal arrives from ua where [ual 5 l/32. We estimate ua. We assume 
that the estimate Ga is unbiased and its standard deviation is given by (6.237) 

1 1 - 
ASNR + ASNR2 l- l/N2 1 1 3 

’ 
(6.907) 

We construct a MPDR beamformer steered at &‘a, Evaluate the performance. Plot 
the array gain versus ua for representative SNR. Plot the array gain versus SNR 
for representative ua. Use K/N = 2 and K/N = 10. 
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Problem 6.9.7 (continuation; Problem 6.9.6) 
Consider the same model as in Problem 6.9.5. Define a quiescent beam corresponding 

to a cos”(G/N) weighting. We construct a beamformer that satisfies the constraint 

-H 
w&w= 1. (6.908) 

(a) Repeat part (a) of Problem 6.9.6. 

(b) Repeat part (b) of Problem 6.9.6. 

(c) Design a beamspace LCMP beamformer using the quiescent pattern constraint and 
appropriate fixed loading. Plot the array gain versus uJM/I/NN. Compare your 
result to the results in Elxample 6.9.2 and Problem 6.9.6. 

Problem 6.9.8 

Consider a standard 32-element linear array and a 5 x 32 beamspace matrix centered 
at broadside. The rows of the beamspace matrix are conventional beams with steering 
directions, 

us = O,f2/32, f4/32. (6.909) 

The interference consists of two equal-power uncorrelated plane-wave interferers at 
3/32 and 5/32. Consider INRs of 10, 20, 30 dB. Consider SNRs of 0, 10, and 20 dB. 

(a) Evaluate the performance of a MPDR beamformer assuming no signal mismatch. 
Plot the beam pattern and evaluate the array gain. Compare your result to the 
result in Example.6.9.1. 

(b) Repeat part (a) for signal mismatch. 

Problem 6.9.9 (continuation; Problem 6.9.8) 
Consider the same model as in Problem 6.9.8. Consider two quiescent beam patterns: 
(i) Blackman-Harris 
(ii) cos”(mx/N) 

(a) Construct a beamformer that satisfies the constraint, 

-H 
w&w= 1 (6.910) 

and uses fixed diagonal loading with appropriate LNR. Consider the signal mis- 
match problem where lual 5 l/32. Plot the array gain versus uJW/VNN. Compare 
your results to the results in Example 6.9.2. 

(b) Design a beamspace LCMP 
Repeat part (a). 

beamformer using the a quiescent pattern constraint. 

(c) Discuss your results and suggest design guidelines. 

Problem 6.9.10 
Consider a standard 32-element linear array and a 4 x 32 beamspace matrix centered 

at broadside. The rows of the beamspace matrix are conventional beams with steering 
directions, 

us = fl/32,f3/32. (6.911) 

The interference consists of two equal power uncorrelated plane-wave interferers at 
2132 and 4132. We consider INRS of 10, 20, 30 dB. We consider SNRS of 0, 10, and 20 dB. 
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Evaluate the performance of a MPDR beamformer assuming no signal mismatch. 
Plot the beam pattern and evaluate the array gain. Compare your result to the results in 
Example 6.9.1. 

Problem 6.9.11 
Consider the same model as in Problem 6.9.10. Consider a quiescent beam pattern of 

cos3 (mx/N). 

(a) Construct a beamformer that satisfies the constraint, 

-H 
w&w=1 (6.912) 

and uses fixed diagonal loading with appropriate LNR. Consider the signal mis- 
match problem where lual < l/32. Plot the array gain versus ua/AV~~. Compare 
your results to the results in Example 6.9.2. 

(b) Discuss your results. What are the limitations of this low-dimensional beamspace? 

Problem 6.9.12 
As an alternative to eigenspace processing, consider the following beamspace algo- 

rithrn. 
In order to construct the beamspace matrix, scan a conventional beam over u-space 

with a scan step size of 2/N. Detect the presence or absence of the a signal (or interferer) at 
each scan location and estimate its power. If  the SNR exceeds 10 dB, form a conventional 
beam steered at it and use that beam as a row in the beamspace matrix. For the beamspace 
sector centered at us = 0, always include a beam centered at us = 0. Then form a MPDR 
beamformer in beamspace. 

Consider a standard 32-element linear array and a Nbs x N beamspace matrix. The 
signal is a plane wave with an SNR = 10 dB arriving from ua = 0.01. 

(a) Assume that the scan detects four interferers at: 

w1 = 5132, INR = 20 dB, 
UI2 = w2, INR = 30 dB, 
uI3 = 13132, INR = 20 dB, 

(6.913) 

w4 = -17132, INR = 30 dB. 

Form a 5 x 32 beamspace matrix and then use an MPDR beamformer in beamspace. 
Find the array gain and plot the beam pattern. Compare your result to the result 
in Problem 6.8.7 and to an element-space beamformer. 

(b) Assume there are eight interferers. The location in u-space of the ith interferer 
is a uniform random variable (- 1 5 ui 5 l), i = 1, . . l ,8. The location random 
variables are statistically independent. The INR of each interferer is one of five 
values; 0, 10, 20, 30, 40 dB with equal probability. The INR is independent of the 
location. (Note that a 0-dB interferer will not be detected.) Find the array gain 
and plot the beam pattern for a single trial. Compare your result to the result in 
Problem 6.8.7 and to an element-space beamformer. Use the same data set. 

(c) Run 50 trials of part (b) an compute the average array gain. d 

Problem 6.9.13 (continuation; Example 6.9.1) 
Consider a standard 32-element linear array and a 7 x 32 beamspace matrix. The rows 

of the beamspace matrix are determined adaptively. 
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Each row of the beamspace processor is an MPDR beamformer with a distortionless 
constraint in its steering direction. Assume that the beamspace beams can be formed 
during a period in which there are no signals or interferers arriving in the beamspace 
sector. 

There are eight interferers at: 

u = 11/32, -13/32,19/32 : INR = 40 dB, 

u = 15/32,23/32, -17132 : INR = 30 dB, 

u = -21/32,27/32 : INR = 20 dB, (6.914) 

present during the beamspace matrix construction. After the beamspace matrix is estab- 
lished, two interferers, each with an INR=20 dB, arrive from 3132 and 5132. The eight 
interferers remain. 

(a) Design a beamspace MPDR processor for a signal arrival direction us = 0. Evaluate 
its array gain and plot its beam pattern. 

(b) Compare the performance in part (a) to an element-space MPDR beamformer. 

Problem 6.9.14 (continuation; Problem 6.9.13) 
Consider the same model as in Problem 6.9.13. In order to construct the beamspace 

matrix, scan a conventional beam over u-space with a scan step size of 2/N. Detect the 
presence or absence of a signal (or interferer) at each scan location and estimate its power. 
If  the SNR exceeds 10 dB and it is outside the beamspace sector, place a null on it in each 
of the beamspace rows. 

After the beamspace matrix is established, the two interferers appear at 5132 and 7132 
(INR = 20 dB each). 

(a) Repeat Problem 6.9.13. Compare your result to the results in Problem 6.9.13. 

(b) How does the scan step size affect performance? 

Problem 6.9.15 
Consider a standard 32-element linear array and a 5 x 32 beamspace matrix using 

conventional beams centered at u = 0, 52132, and f4/32. The desired quiescient beam is 
the Blackman-Harris beam. 

The nominal signal arrival direction is us = 0. The actual signal arrival angle is ua, 
where (~~1 5 l/32. There are four uncorrelated plane-wave interferers: 

Ul = 5132, INR = 20 dB, 

u2 = 13132, INR = 50 dB, 

u3 = 19132, INR = 50 dB, 

ud variable: 3132 < INR = 20 dB. - UJ < 21132, - (6.915) 

Design a beamspace LCMP-DL beamformer using a quiescent pattern constraint. Evaluate 
the performance for various ua, 2~4, and SNR. Discuss the trade-offs between low out-of- 
sector sidelobes and the ability to null in-sector interferers. 

Pg.10 Quadratically Constrained Beamformers 

Problem 6.10.1 (continuation; Example 6.10.1) 
Consider a standard lo-element linear array. The array is steered to broadside. The 



694 6.15 Problems 

interference consists of two uncorrelated equal-power interferers at u = 0.29 and 0.45. The 
signal arrives at ua. The SNR, INR, and To are parameters that we want to investigate. 

(a) The SNR is 0 dB. Consider INRs of 0, 10, 20, and 30 dB. Plot the output SNR, 
versus /ua/BVV~~ for various To, where l/N 5 To 5 2/N. Explain your results. Use 
the optimum ,0. Plot ,0 versus u,/BWNI+ 

(b) Repeat part (a) for an SNR = 10 dB. 

(c) Repeat part (a) for an SNR = 20 dB. 

(d) Based on the results of parts (a)-(c), suggest guidelines for choosing To. 

Problem 6.10.2 (continuation) 
Consider the same model as in Problem 6.10.1 with ua = 0. Add a third interferer 

with an INR3 = 20 dB whose location ~13 is a parameter. 

(a) Consider INRs of 0, 10, 20, and 30 dB for the original two interferers. Plot the 
output SNR, versus UI@VVNN for various To, where l/N 5 To < 2/N. Use the 
optimum p and the approximate ,0. 

(b) Suggest guidelines for choosing To. 

Problem 6.10.3 (continuation) 
Consider the same model as in Problems 6.10.1 and 6.10.2. Investigate the sensitivity 

to the choice of /?. Use these sensitivity results to develop criteria for how accurate the 
value of p should be in order to preserve almost optimum performance. 

Problem 6.10.4 (continuation; Example 6.10.1) 
Consider the same model as in Example 6.10.1. Implement an LCMP-QC beamformer 

with second order derivative constraints, 

C = [ 1 d(0) d(O) ] , (6.916) 

gH = [ 1 0 m% ] 9 (6.917) 

and 
vvHvv <To - (6.918) 

(a) The SNR is 0 dB. Consider INRs of 0, 10, 20, and 30 dB. Plot the output SNR, 
versus ~L~/BVVNN for various To. Explain your results. Use the optimum ,0. Plot ,0 
Versus ua /.Bki$w. 

(b) Repeat part (a) for an SNR = 10 dB. 

(c) Repeat part (a) for an SNR = 20 dB. 

(d) Based on the results of parts (a)-(c), suggest guidelines for choosing To. 

(e) In Example 6.10.1 and Problems 6.10.1-6.10.3 the beamformer relied on QC to 
provide main-lobe protection. In Example 6.10.2 and Problems 6.10.4-6.10.5, the 
beamformer relied on both linear constraints and QC to provide main-lobe pro- 
tection. Discuss the advantages and disadvantages of the two approaches in the 
context of the environment. 

Problem 6.10.5 (continuation; Problem 6.10.4) 
Consider the same model as in Problem 6.10.4 with ua = 0. Add a third interferer 

with an INR3 = 20 dB whose location ~13 is a parameter. 
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(a) Consider INRs of 0, 10, 20, and 30 dB for the original two interferers. Plot the 
output SNR, versus U&WNN for various T,. Use the optimum p. 

(b) Suggest guidelines for choosing T,. 

Problem 6.10.6 (continuation; Problem 6.10.1) 
Consider a standard lo-element linear array and the signal and interference environ- 

ment described in Problem 6.10.1. Use the quiescent pattern constraint technique in Sec- 
tion 6.7.5 to determine the linear constraints. Consider two quiescent patterns: Hamming, 
and Dolph-Chebychev with -40-dB SLL. Impose a quadratic constraint. 

Repeat the analyses in Problem 6.10.1. 

Problem 6.10.7 (continuation; Problem 6.7.5) 
Consider a standard 21-element linear array. Use the quiescent pattern constraint tech- 

nique in Section 6.7.5 to determine the linear constraint. In addition, impose a quadratic 
constraint. Consider the six quiescent patterns in Problem 6.7.13. The nominal signal 
direction is broadside and ua is a uniform random variable (-l/21 < ua < l/21). There 
are six interferers in the sidelobe region (3/21, 5/21, 11/21, -7/21, x9/21: -15/21). 

(a) The SNR is 0 dB. Consider INRs of 0, 10, 20, and 30 dB. Plot the output SNR, 
versus uJLJWNN for various To. Consider up to five constraints. Do not simply 
generate a large set of plots. Determine the important factors and illustrate them. 
Use the optimum ,8. Plot ,0 versus ua/m~~. Explain your results. 

(b) Repeat part(a) for an SNR = 10 dB. 

(c) Repeat part(a) for an SNR = 20 dB. 

(d) Based on the results of parts (a)-(c), suggest guidelines for choosing the quiescent 
pattern, the number of constraints, and To. 

Problem 6.10.8: Beamspace-QC algorithms 
Consider a standard 32-element linear array and a 7 x 32 beamspace matrix using 

conventional beams. Use the signal mismatch and interference model in Example 6.9.2. 
Consider two quadratically constrained beamformers. 

(i) MPDR (see Example 6.9.2). 

(ii) LCMP using a quiescent pattern constraint, with cos”(G/N) the quiescent pattern. 

(a) Plot the array gain versus ua/BW~~ for the two beamformers (consider various 
values of To). Plot the resulting beam patterns. Compare your results to those in 
Example 6.9.2 and Problem 6.9.5. 

(b) Discuss your results and suggest design guidelines. 

Problem 6.10.9 (continuation; Problem 6.9.6) 
Consider a standard 32-element linear array and the 6 x 32 beamspace matrix described 

in Problem 6.9.6. Consider two quadratically constrained beamformers: 

(i) MPDR (see Example 6.9.6). 

(ii) LCMP-QP-QC with cos”(&/N) quiescent pattern (see Problem 6.9.7). 

The signal and interference environment is the same as Problem 6.9.6. 
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(a) Plot the array gain versus ZLJBWNN for the two beamformers (consider various 
values of T,). Plot the resulting beam patterns. Compare your results to those in 
Problem 6.9.6 and 6.9.7. 

(b) Discuss your results and suggest design guidelines. What are the advantages and 
disadvantages of this beamspace processor compared to the 7 x 32 processor in 
Problem 6.10.8. 

P6.11 Soft Constraint Beamformers 

Problem 6.11.1 (continuation; Example 6.11.1) 
Consider the same signal and interference model as in Example 6.11.1. Study the 

effect of the choice of wd in (6.567). Consider Dolph-Chebychev beam patterns with SLLs 
of -20, -30, and -40 dB. Use $0 = O&r and c\r = 0.03. 

(a) Plot the normalized SNR, versus UJBWNN for the MPSC beamformer. Consider 
SNR = 0 dB and 10 dB. Compare your results to the results in Figures 6.94 and 
6.95. 

(b) Vary CY, and study the effect on SNR,. 

Problem 6.11.2 
Three of the algorithms developed in this chapter use the Q matrix in (6.571) as a 

starting point: 

(i) Eigenvector constraints in Section 6.7.4.3. 

(ii) Quiescent pattern constraints in Section 6.7.5. 

(iii) Soft constraints in Section 6.11. 

Consider several signal-and-interference scenarios and compare the performance of 
the three algorithms. Based on these analyses, discuss the trade-offs involved and suggest 
design guidelines. 

Problem 6.11.3 

A general formulation of the Q matrix is given in (6.412). For a linear array, Q can 
be written as 

Consider a lo-element u niform linear array with spacing d= x,/a where 
wavelength corresponding to the design frequency fc. Assume the interval is 

Q - - ++kf)~~(hf)d’lC,df. 
fc - O*Zfc I f L fc + 0.2fc. 

(6.919) 

A, is the 

(6.920) 

Use the signal and interference model in Example 6.11.1. Consider different frequencies 
for the signal. Denote the frequency of the signal as fs. (8) A ssume ua = 0.5. Plot the normalized SNR, versus Af/fc, for the MPSC beam- 

former where 
Af = fs - fc* 

Consider various a. 

(b) Assume /\ f = 0. Plot the normalized SNR, versus ‘Z&/~NN. Compare your 
results to those in Figures 6.94 and 6.95 and in part (a). Does the addition of a 
soft-frequency constraint impact the performance? 
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(c) Plot a contour plot of the normalized SNR, versus @f/f,, uJBWNN). Discuss 
your results. 

Problem 6.11.4 
In some applications, it is easier to specify Q as a sum of points in the (f, 8,+) space 

rather than an integral. Then, 

Q=>: cm vLfm,em7 bn)VH(fm7 em, 47-n) (6.921) 
m=l 

where cm is a weighting function to allow emphasis on certain points. 
As a special case, consider a standard lo-element linear array and the signal-and- 

interference model in Example 6.11 .I. There is no frequency mismatch. Thus 

Q=C Cm v(*m) VH ($m>- (6.922) 

m=l 

(a) Choose /k& in order to achieve equivalent performance to Example 6.11.1. 

(b) NOW assume that Mc = 3 and that $m = 0, ztO.1. Plot the normalized SNR, versus 
U@WNN. Compare your results to an LCMP beamformer using three directional 
constraints and diagonal loading. 

Problem 6.11.5 
Consider an algorithm in which both a soft constraint and a quadratic constraint are 

(a) Show that t’he resulting optimum weight vector is 

;sp = [[s, + x2 I] + X1 &l-l [Sx + A:! I]% (6.923) 

where Xr and X2 are chosen to satisfy the two constraints, 

(6.924) 

and 
(wd - Wp)” (wd - wp) 5 T, .  (6.925) 

(b) Consider various signal-and-interference scenarios and see if there are cases in which 
the added complexity leads to a significant performance improvement. 

Problem 6.11.6 (continuation; Example 6.11.1) 
Consider the same model as in Example 6.11.1. As an alternative to the approach in 

Problem 6.11.5, define 

Q au =yQ+(l-y)I, 0ly-W - (6.926) 

where Q is defined in (6.571). Plot SNR, versus Ua/BWNN for various values of y  and a. 
Compare your results to the results in Example 6.11.1 

Problem 6.11.7 (continuation; Example 6.7.10) 
Extend the technique of soft constraints to derivative constraints. Derive the optimum 

wP- 
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Consider the signal-and-interference model in Example 6.7.10. Plot the array gain 
versus u,/BWNN and compare your results to the results in Figure 6.59. 

Problem 6.11.8: Beamspace soft constraints (continuation; Example 6.9.2 and Prob- 
lem 6.10.15) 

Consider a standard 32-element linear array and the 7 x 32 standard beamspace ma- 
trix given in Example 6.9.1. Use the same signal-and-interference model as in Example 
6.9.2. Consider two desired beam patterns (conventional and cos?(&/N)). Utilize soft 
constraints over the interval -l/32 < u 5 l/32. 

( > a 

(b) 

Plot1 the array gain versus ua/BW~~ and compare your results to those in Example 
6.9.2. 

Discuss your comparison. How dependent is it on the specific signal-and-interference 
model? 

P6.12 Beamforming for Correlated Signal and Interferences 

Problem 6.12.1 

Consider the spatial smoothing approach in which the subarray spectral matrices are 
averaged with different weights. Then, from (6.622), 

SSSFB = (6.927) 

where the weights are real and 
L 

x 
Wi= 1. (6.928) 

i=l 

(a) Derive the equation corresponding to (6.637). 

(b) Assume the wi are chosen to correspond to an L-element Hamming weighting. Plot 
the results analogous to those in Figure 6.104 for this weighting 

(c) Discuss your results. Is the UI = 0.30 case representative? 

Problem 6.12.2 (continuation) 
Consider a standard 32-element linear array. Repeat Problem 6.12.1 for the following 

sub-array weightings: 
(i) Uniform 
(ii) Hamming 
(iii) Dolph-Chebychev 
Test various UI in the sidelobe region. 

Problem 6.12.3 

Consider a standard rectangular array with N = M. Extend the technique of spatial 
smoothing to the rectangular array. 

(a) Derive the necessary equations 

(b) Develop plots similar to Figure 6.104 for several interference scenarios. 
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P6.13 Broadband Beamformers 

Problem 6.13.1 
Consider a uniformly spaced lo-element array. The interelement spacing is X,/2, 

where X, is the wavelength of the highest frequency in the input signal. Implement an 
FFT beamformer with M frequency bins. 

Bj = Bs/,fc = 0.6. (6.929) 

The input is sampled at l/B, so the normalized frequency span is -7r < w < 7r in - - 
radians. The signal of interest arrives from us = 0.3 and has a flat frequency spectrum 
over -0.25~ < w <: - -- 0.25~ (a 50% bandwidth signal). 

There are three interfering signals with the following characteristics (all spectra are 
zero outside the indicated band): 

Sr1 
2 

= 01, 

$2 = a;, 

sI3 = $, 

-0.25~ < w < 0, UI = 0, INRl = 40 dB. (6.930) 

-0.01 < w < 0.01, = 60 dB. - - UI = 0.5, INR2 (6.931) 

0 < w < 0.25~, - uI = -0.2, INR2 = 30 dB. (6.932) 

Consider M = 4, 8, 16, 32, and 64. Use an MPDR beamformer in the appropriate bins 
and set the output of the other frequency bins equal to 0. 

Plot the SNR, versus ASNR for the various M. Discuss your results. 

Problem 6.13.2 (continuation) 
Consider the same model as in Problem 6.13.1, except the signal spectrum is 

-0.25~ < w < 0.25x, - - 
elsewhere. 

(6.933) 

Repeat Problem 6.13.1. 

Problem 6.13.3 (continuation) 
Consider the same model as in Problem 6.13.1, except there is a single narrowband 

interferer, 

2 
SIl =q, Wl - 0.01 < w < wr + 0.01, - - 

INR1 = 50 dB. (6.934) 

Investigate the behavior as a function of UI, ~1, and M. Plot the SNR, versus ASNR for 
various combinations. Discuss your results. 
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Chapter 7 

Adaptive Beamformers 

7.1 Introduction 

In this chapter we develop techniques for implementing the algorithms devel- 
oped in Chapter 6 using the incoming data. In Chapter 6, we assumed that 
we knew the signal directions and the various spatial spectral matrices (S, 
or S,>. In actual applications, we must estimate these quantities (or appro- 
priate surrogates) from the incoming data. The resulting beamformers will 
adapt to the incoming data and are referred to as adaptive beamformers. 
In this chapter we develop the theory and practice of adaptive beamformers. 

The adaptive beamformers that we develop can be divided into three 
general categories: 

(i) Beamformers that estimate the spatial spectral matrix S, or S, (or 
the correlation R, or R, if the implementation is in the time do- 
main) and use the estimate in the appropriate formula from Chapter 6 
(e.g., (6.14), (6.71)). Th is implementation requires the inversion of the 
sample covariance matrix and is frequently referred to as the sample 
matrix inversion (SMI) technique. It is also referred to as the direct 
matrix inversion (DMI) technique (e.g., [MM80]) or the estimate-and- 
plug technique (e.g., [Hay85]). It is a block data processor. 

(ii) Beamformers that implement the inversion recursively are the second 
category. We reformulate the algorithm as a least squares algorithm 
and develop a recursive version. These recursive least squares (RLS) 
implementations potentially have performance that is similar to the 
SMI beamformer. 

(iii) A third approach is to adapt classical steepest descent algorithms to 
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the optimization problem in order to find W,pt. This approach leads 

to the least mean square (LMS) algorithm. These algorithms require 
less computation, but converge slower to the optimum solution. 

In Section 7.2, we discuss various techniques for estimating the covariance 
matrix (or spectral matrix) of the array output. The eigenvalues and eigen- 

vectors play a key role in several subsequent discussions. We show how they 
can be derived directly from the data using a singular value decomposition 
(SVD). 

In Section 7.3, we implement the MVDR and MPDR beamformers using 
a technique called sample matrix inversion (SMI). As the name implies, 
we use C,, the sample correlation matrix in place of S, and invert it to 

obtain the MVDR or MPDR beamformers. We show how the use of a finite 
amount of data affects the performance. 

In Section 7.4, we reformulate the problem using a least squares formula- 
tion and introduce an exponentially weighted sample spectral matrix a. We 
find that the resulting MPDR beamformer is identical to the MPDR beam- 
former of Chapter 6, with the ensemble spatial spectral matrix S, replaced 
by ip. We then develop a recursive implementation of the algorithm which 
is denoted as the recursive least squares (RLS) algorithm. We compare 

its performance to the SMI algorithm and develop various diagonal loading 
methods. 

In Section 7.5, we develop more efficient recursive algorithms that have 
better numerical stability and are computationally simpler than the algo- 
rithms in Section 7.4. We show how these algorithms can be put in a struc- 

ture that can be implemented efficiently in VLSI. 

In Section 7.6, we begin discussion of a group of algorithms that rely on 
the quadratic characteristic of the error surface and utilize gradient tech- 
niques to find the optimum weight vector. Section 7.6 discusses steepest 
descent algorithms. These algorithms are deterministic and provide back- 
ground for the stochastic gradient algorithms that we actually employ. 

In Section 7.7, we develop least mean-square (LMS) algorithms and 

investigate their performance. The LMS algorithms are computationally 

much simpler than the SMI and RLS algorithms, but they converge much 
more slowly to the optimum solution. 

In Section 7.8, we study the important problem of detecting the number 
of plane-wave signals (including both desired signals and interfering signals) 

that are impinging on the array. In this chapter, we need this information 
in order to implement the adaptive version of the eigenspace beamformers 
that we developed in Section 6.8. In Chapters 8 and 9, we will need this 
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information for parameter estimation. 
In Section 7.9, we study adaptive eigenvector beamformers. We first 

utilize an SMI implementation and find that we obtain faster convergence 
to the optimum beamformer because of the reduced degrees of freedom. 

In Section 7.10, we study beamspace adaptive beamformers. In Section 
6.9, we found that (in rnost scenarios) we could achieve performance similar 
to element-space beamformers with reduced computational complexity. In 
the adaptive case, we find that we can obtain faster convergence to the 
optimum solution because of the reduced dimension. 

In Section 7.11, we study the adaptive implementation of the broadband 
beamformers that we developed in Section 6.13. We restrict our discussion 
to time-domai n implementations. 

In Secbion 7.12, we summarize our results and discuss some open issues. 
The structure of the chapter is shown in Table 7.1. 

7.2 Estimation of Spatial Spectral Matrices 

In the discussion up to this point in the book, we have assumed that the 
second-order statistics of the input process were known. In practice, we 
usually have to estimate these statistics from a finite amount of data. We 
have available a sequence of snapshots, X1, X2, l l l , XK, where XI, is an Iv- 
dimensional vector corresponding to the frequency-domain snapshot at time 
k. We process these snapshots to obtain an estimate of S,, which we denote 
as 9,. 

The two issues of interest are: 

(i) What is the appropriate estimator? 

(ii) How well does it perform? 

We will find that, as we assume more prior information about the process, 
the estimators become more accurate. However, they also become more 
computationally complex and dependent on the prior assumptions. A par- 
ticular problem of interest to us is the case in which S, has the structure in 
(6.173) but C,, the sample spectral matrix defined in (7.3), does not have 
that structure. Thus, our minimization depends on how much structure we 
impose on Sx. 

A logical measure of estimator performance is the fiobenius norm of the 
error matrix, 
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Estimation of 
Spectral Matrices 

Adaptive 
Beamformers 

Reduced 
Dimensions 

Table 7.1 Structure of Chapter 7 

7.2 Estimation of Spatial Spectral Matrices ---------------------------------------~--------------------------------------. 

Sampling matrices 
Wishart distribution 
Asymptotic behavior 
FB averaging 

[ Unitary transformation 
: Structured matrices 
: Parametric matrices 

7.3 SMI -------------------- 

SMI 
GSC-SMI 
LCMP-SMI 
Diagonal loading 

7.4 RLS --------------------_ 

RLS 
GSC-RLS-FL 
GSC-RLS-VL 
RLS-FB 

7.5 QRD --------------------- 

QRD 
Givens rotation 
Triangular array 

_ _ _ 7:8- DeJection ---------- 

AIC 
MDL 
AIC-FB 
MDL-FB 

7.10 Beamspace ------------- ------- 

DFT 
Taylor series 
DPSS 

7.9 Eigenspace and DMR Beamformers ------------------------------------------------ 

MPDR-ES-SMI 
Subspace errors 
Subspace tracking 

Broadband 
Beamformers 

7.11 Broadband Beamformers ------------------------~------------------------ 

Direct form TDL 
SMI 
LMS 

!  
: GSCTDL 
!  Lattice filters 

7.6 Gradient Algorithms -------------------- 

Steepest descent 

7.7 LMS --------------------- 
MMSE LMS 
MPDR LMS 
MPDR-LMS-FL 
MPDR-LMS-VL 
MPDR-LMS-SP 
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However, we find that the appropriate measure of the quality of the estimate 
depends on how we are going to use it and that choosing an estimator to 
minimize (F may not be the best approach. 

In this section, we develop several methods for estimating S, and its 
eigendecomposition. 

In Section 7.2.1, we utilize the sample spectral matrix as an estimator. 
It applies to arbitrary array geometries and is the mostly commonly used 
technique. 

In Section 7.2.2, we discuss the asymptotic behavior (1 
eigenvalues and eigenvectors of the sample spectral matrix. 

In Section 7.2.3, we restrict our attention to arrays with 

arge K) of the 

conjugate sym- 
metric array manifolds and derive an estimator that uses FB averaging of the 
data. This leads to improved performance and computational advantages. 

In Section 7.2.4, we consider the case of uniform linear arrays. If the input 
signals are uncorrelated, then the ensemble spectral matrix is Toeplitz. In 
this section, we discuss an estimate of the spectral matrix subject to the 
Toeplitz constraint. 

In Section 7.2.5, we introduce the idea of parametric spectral estimation, 
but do not pursue it at this point. 

In Section 7.2.6, we review the singular value decomposition (SVD). This 
is a technique in which we operate directly on the data matrix to obtain the 
eigenvalues and eigenvectors of the sample spectral matrix. This technique is 
widely used in practice as an alternative to conventional eigendecomposition. 

In Section 7.2.7, we summarize our results. 

7.2.1 Sample Spectral Matrices 

In this section we discuss the use of the sample spectral matrix as an estimate 
of the spectral matrix S,. 

We have available a sequence of snapshots, X1, X2, . e l , XK, where XI, is 
an N-dimensional vector corresponding to the frequency-domain snapshot at 
time k. The snapshots are modeled as statistically independent, identically 
distributed, complex Gaussian random vectors. 

The joint probability density is 

K exp [-XFS$Xk] 
Px(&, x2, ’ l l , XK) = n 

i=l 
T det [S,] ’ (7 a> . 
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We define the sample spectral matrix C, as1 

C 
1 K H l 

x=- K x 
k=l 

&x, = jf 

We can also write C, in terms of a N x K data matrix, X, 

or 
x0(1> 

X 
1 x1 (1) - - 

a 
. . . 

XN-l(1 

and 

:Xo(Z)i i XdEo I 
:X1(2)i i x1 CEO 
I  I  I  

.  .  .  
I  I  I  

I  

i &l-l(2) i f XN-~(K) > 

C X = XX? 

(7 3) . 

(7 4) . 

7 (7 5) . 

(7 6) . 

Substituting C, into (7.2)) taking the logarithm and dropping constant 
terms, we have 

L s,’ 
( > 

= lndet [sL’] - tr [SxlCx] , (7 7) . 

so C, is a sufficient statistic to estimate S$. Taking the matrix gradient 
of L (S$) (using (A.397) and (A.393)) and setting the result equal to zero 
gives 

[ 
ST T cl - 

X- 
x s,&, -  

0 
l 

(7 8) 

.  

If we do not impose any structure on S,, then 
h 

S x- X’ C (7 9) . 

Thus, the maximum likelihood estimate of the spectral matrix is the sample 
correlation matrix. We observe that C, is Hermitian, and if K > N, it is 
positive definite. 

The elements of the sample spectral matrix have a probability density 
given by the complex Wishart density (e.g., Goodman [Goo63], [Hay96], 
[And63], [And84], or [Mui82]) .2 

IWe use both XI, and X(k) to denote the kth snapshot vector. The second version is 
more appropriate when we write the components of the vector. 

20ur discussion is based on Kelly and Forsythe [KF89). The appendices of [KF89] 
contain an extensive discussion of techniques for multivariate statistical analysis. 
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Defining 

CK = KC,, (7.10) 

one can show that 

IC I K 
K-N 

PC, cCK) = rN(K)IS,IKetr [-s;‘cK] , (7.11) 

where 

etr[A] n exp[trA] 1 (7.12) 

and IN(K) is a generalization of the Gamma function, 

N-l 

r,(K) = nN(N-1)‘2 n r(K -j). (7.13) 
j=O 

Note that I’@) = I’(K). 
The probability density in (7.11) is referred to as the complex Wishart 

density and denoted by W&K, S,> and is defined over a space of non- 
negative definite Hermitian matrices. 

It is a generalization of the complex chi-squared density. If N equals one 
(a single element), then X is a scalar, X, and 

CK = e 1x(k)i2, 
k=l 

(7.14) 

and S, = 0~ 2. Defining 
CK 

x2(K) = - 
0x2’ 

and using (7.11)) the probability density of x2(K) is 

w K-l 

P,z(y> = r(K) exp(-Y), y 2 0, 

(7.15) 

(7.16) 

which is familiar as the complex chi-squared probability density with K 
degrees of freedom. Several properties of the complex chi-squared probability 
density are derived in the problems. 

The complex Wishart density has several properties that we use in the 
sequel (e.g., [KF89], [Hay96], [Mui82], [And84]). 

We assume that CK has a complex Wishart density VVN(K, S,). Then: 



Asymptotic: Behavior 717 

1. Let a be any N x 1 random vector that is independent of CK and the 

da) = 0 = 0. Then: 

n aHCKa 
Yl 

- - 
aHSxa’ 

(7.17) 

is chi-square distributed with K degrees of freedom and is independent 
of a, and 

Y2 
n aHSG1a - - 

aHC$a’ 
(7.18) 

is chi-square distributed with K - N + 1 degrees of freedom. 

2. Let B be a N x M matrix of rank M, then: 

(a) BHC~B is VVM(K, BHS,B). (Th’ is could correspond to a beamspace 
processor .) 

(b) [B~c~B]%w~ (K-N,,, [BW~~B]-'). 

We can also show that, if b is a fixed non-zero vector, then 

E [bHcklb] = (bHciilb) E x2(1( YN + l)] [ 
- - 

This result implies 

bHCt;lb 

K-N-1’ 
K>N+l. 

E:c+ x [ 1 s l 
K-N-1’ 

K>N+l. 

(7.19) 

(7.20) 

The statistical properties of CK as an estimator are discussed in various 
statistics texts (e.g., Anderson [And84]). W e are normally interested in the 

statistical behavior of functions derived from CK, so we focus our attention 
on their behavior. In the next section, we consider the statistical behavior 

of the eigenvectors and eigenvalues. 

7.2.2 Asymptotic Behavior 

In many applications we do an eigendecomposition of the estimated spectral 
matrix SXr 

N 
h 
S X- x 

ii & 4;. (7.21) 
i=l 
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We want to investigate the properties of the ,& and &i for large E(. 
The original results are due to Anderson [And631 and were extended to the 
complex case by Gupta [Gup65] (e.g., [BriSl], [Wi165], [KW91]). 

One can show that the eigenvalues & are asymptotically Gaussian and 
independent of the eigenvectors & for i = 1,2, l l l , N. In addition, 

E [ii] = Ai + 0 (K-l) ) (7.22) 

cov Ai, & = 6ij c 1 g+O(r2). (7.23) 

The following results concerning the estimated eigenvectors can be de- 
rived (e.g., [KW91]). Define 

h 
Qi, i = @i + 7& (7.24) 

Then 

k#i 

N 

E [~)il?jl] = 2 k51 (x ““, )2 @I, @f&j, (7.26) 
i- k 

k#i 

E [Vi TIT] = -K (hhiAjA )2 @j +T(l - Sij). 

i- j 

(7.27) 

We use these results later in the text to analyze the asymptotic behavior 
of various processing algorithms. 

7.2.3 Forward-Backward Averaging 

The sample correlation matrix is widely used as an estimate of S,. When 
the array manifold vector is conjugate symmetric, 

then we can introduce constraints in the estimator to improve performance. 
We discuss this technique in this section. 

To illustrate the procedure, we use a linear array with an even number of 
elements placed symmetrically about the origin. We index the 
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elements from 1 to N. We do not require that they be uniformly spaced. 
Thus, 

d i=- dN+l-ie (7.29) 

The kth snapshot from the array when the input is a plane wave from DOA 
0 s i 7 

x(k) = f(k) [ ,-li$%cose i . . . i e-jFdNcose IT + W(k), (7.30) 

where f(k) is a zero-mean complex Gaussian variable and w(k) is a complex 
Gaussian noise vector. 

The spectral matrix is 

S, = E [X(k)XH(k)] . (7.31) 

The ij element is, 

[s I 
2 

X ij = gs 
[ 
e-3 X +(di-dj) cost9 1 + Oi6ij. (7.32) 

Using (7.29) in (7.32) we have 

P 1 X N+l-i,N+l-j = { LsXjij}* ’ (7.33) 

Thus, S, is a centrohermitian matrix (A.138). It is also a Hermitian 

matrix, 
SH - s x- x- (7.34) 

Therefore, it is also persymmetric (A.134). As an example, for N = 4, 

S X- . (7.35) 

The centrohermitian-Hermitian property implies that 

S x = JS;J, (7.36) 

Where J is the exchange matrix (e.g., (A.125) and (A.141)). Similarly, 

Sll s12 s13 s14 

ST2 s22 s23 s13 

63 G3 s22 s12 

ST4 Si3 ST2 Sll 

- s l x = JS *-1J 

x l 

(7.37) 
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The left J reverses the rows and the right J reverses the columns. 
We want to find the maximum likelihood estimate of S, subject to the 

centrohermitian-Hermitian constraint. 
The sample spectral matrix C, is defined in (7.3). We refer to the con- 

We now define a technique called struction of C, as forward averaging. 
backward averaging. The technique is implemented by reversing and conju- 
gating the snapshot vector X[lc]. Define 

XJ JX * - - . (7.38) 

We define a backward averaged sample spectral matrix as 

C n 1 K T 
x,b - - 

K c JX;X, J = JC:J, (7.39) 
k=l 

and FB averaged sample spectral matrix as 

1 K 

C x,fb = 2K 
c (x,x; + JX;xfJ) = ; (C, + JCZJ). 
k=l 

(7.40) 

The joint probability density function was given in (7.2). We repeat (7.7) 

as, 
L s,l 

( > 
= lndet [sx’] - tr [S$x] . (7.41) 

We maximize L (S$) subject to the constraint, 

h 

S x = JS;J. (7.42) 

0 bserve that 

tr [SGICx] = tr [ [JS;-lo] cx] 

- - tr [[SC]-’ JC,J] 

= tr S$JC,J , 
i 1 (7.43) 

where the last equality follows because the trace is real. Using (7.43), the In 
likelihood function in (7.41) can be written as 

L s,l 
( > 

= lndet [Q] - tr [iSi1 [C, + JCGJ]] 

= lndet [sG’] - tr [S$Cx,fb] . (7.44) 
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This equation has tlhe same form as (7.7). Thus, the unconstrained maximum 
of (7.44) is C,,fb which is a centrohermitian-Hermitian matrix. Therefore, 

h s x,jb = C X,f be (7.45) 

is the constrained maxirnum likelihood estimate.3 
We can also write (7.45) using the data matrix in (7.5) as 

s x,fb - - 
1 - 
2 ( XX -H + Jx’xTJ) . (7.46) 

The result in (7.46) can also be written as 

h 

S -H 
x jb = SfbXfbl 7 (7.47) 

where 

X fb 
- - ; [ % i Jiir* ] (7.48) 

is an N x 2K data matrix. 
Although a linear array was used as an example, it is important to note 

that an array manifold vector for a large class of arrays can be written so 
that it is conjugate symmetric. The symmetry requirement on the array 
geometry is that for every element located at pn, there must be an identical 
element at -pn. Arrays that satisfy this condition include: 

0 i Standard rectangular array; 

( > ii Standard hexagonal array (N = 7,19,37,61, l 9 l ); 
. . . 

( > 111 Uniform circular array (N even); 

( > iv Uniform cylindrical array (N, M even); 

( > V Concentric circles array (Ni even). 

The exploitation of centrohermitian-persymmetric matrices for commu- 
nication problems was introduced by Cantoni and Butler [CB76]. They were 
used by Nitzberg [Nit801 for adaptive arrays and by Evans et al. [EJS82] for 
DOA estimation using arrays. Nuttall [Nut761 utilizes FB averaging in the 
context of linear prediction techniques. 

3An early derivation of the result is due to Nitzberg [Nit801 who references Rao [Rao46] 
and Cantoni and Butler [CB76]. 0 ur d erivation is due to Jansson and Stoica [JS99]. 
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h 
s X fb has properties that will be important in our signal processing dis- > 

cussion. We discuss three of these properties in this section and develop 
others at appropriate points in the text.4 

Property 1: Complex FB spectral matrices can be transformed into real 
spectral mat.rices. 

One of the operations that we will use frequently is 

&2 = BFSx $32, ) (7.49) 

where B1 and B2 are N x M matrices. As an example, $12 is the spectral 
matrix at the output of a beamspace transformation with 

BH BH BH bs= 1 = 2’ (7.50) 

If B1 and B2 are both column conjugate symmetric, 

B1 = JBT, B2 = JB;, (7.51) 

or both column conjugate asymmetric, 

B1 = -JB;, B2 = -JB;, (7.52) 

then $12 is real. 
This result follows directly from the definitions, 

( 
h 

Bf% ) 
* 

s * 12 = x,fb B2 = B$; fbB; ) = BT (J9xDJ) 5 (7 53) 
. 

= (JBdT gx,fb (JB;) = B$x,fbB2 = S12. 

As !& and ST2 are equal, $12 is real. 

Property 1A: If the beamspace matrix Bbs has columns that are either 
conjugate symmetric or conjugate asymmetric, then 

Therefore, we can map the data Z into beamspace and compute, 

(7.55) 

4The first part of our discussion follows Linebarger et al. [LDD94] with somewhat 
different notation. 
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and take the real part, h 
s O%fb = ~e(%c,bs) 7 (7.56) 

to obtain FB averaging in beamspace. The result in (7.54) follows by sub- 
stituting the various matrices into (7.54) and using the conjugate symmetry 
properties. 

The implication of this is that if we process the data using FB averag- 

ing and then use beamspace processing (Section 3.10), the resulting spectral 
matrix in beamspace will be real. Alternatively, we can process the data 

in beamspace without FB averaging and then take the real part of the esti- 
mated spectral matrix. The advantage of this result is that we can use real 
arithmetic for subsequent operations, which gives a computational saving of 
up to 75%. Computational advantages for various operations are discussed 
in detail in [LDD94] (see also [ZKS93]). 

A particular beamspace processor of interest is the eigenvector beamspace 
processor in Figure 5.19. If 9, fb is a centrohermitian-persymmetric matrix 
(e.g., a linear array), then 9 eigenvectors will be conjugate symmetric and $ 
eigenvectors will be conjugate asymmetric (see Section A.4.2.2 in Appendix 

A). Therefore, the beamspace spectral matrices will be real. 
We also observe that the elements of 9, fb will not have a complex 

Wishart probability density. In [PK89], the probability density and vari- 
ous asymptotic properties are derived. 

In many cases, we process the data in element space. Here we use a 
unitary transformation to obtain the advantage of real processing. The next 
two properties develop this technique. 

Property 2: Eigenvalues and eigenvectors: Consider the product, 

s Q = &Hk,fd& (7.57) 

where Q is unitary and column conjugate symmetric. If gx,fb has even 
dimension, then 

Q - - (7.58) 

where I and J have dimension N/2, is computationally attractive because 
of its sparse structure. If 8, fb has odd dimension 1 

I 0 
. 

Q 
1 31 

- - 
a [ 

OT Jz OT 
J 0 

. - JJ 
(7.59) 
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is used. Because S,,J~ is centrohermitian and Hermitian, SQ is symmetric. 
We consider the even-dimension case in the text. The eigenvector de- 

composition of SQ can be written as, 

s Q = UC&~:, (7.60) 

where UC is an N x N matrix of the eigenvectors 

(7.61) 

and A, is the diagonal matrix of eigenvalues, 

~,*~~~~{X,~,~C~,~~~,~CN}~ - (7.62) 

We can partition UC into an upper and lower half: 

U 
U cl 

C- [ 1 U 
. 

c2 

Then (7.60) can be written as 

S 
U cl 

Q 
- - 

U c2 

(7.63) 

1 . (7.64) 

Since Q is unitary, the eigenvalues of S, fb 9 will be the same as the eigenvalues 

of SQ. Thus, we can write the eigendecomposition of SX,fb as 

h 

S T 
x fb = hAJJR* 7 (7.65) 

The eigenvectors of Sx,fb follow directly from the unitary property of Q. 
The relation (7.57) can be written as 

QSQQ~ = QQHsx,fbQQH = S^x,p (7.66) 

Thus, h 
S x,fb = QUcMJ:QH, (7.67) 

UR=QUc=--- UC1 + juc2 1 J(Uc1 -j&2) l 

(7.68) 

Note that the transformation Q has a block identity-exchange matrix 
structure. Therefore, both the transformation in (7.57) and the inverse 
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transformation (7.65) involve only additions rather than general matrix mul- 
tiplication. 

Property 3: Efficient construction of gX fb: The FB sample correlation 1 
matrix is given by (7.46) as 

s x,fb 
- - 

1 - 
2 ( ii;X -H + Jx*RTJ = 

> 
- -H 

xfbxfb, 

where %fb is defined in (7.48). We now write, 

where 
Z fb = QHRfbL, 

and L is a unitary transform defined as 

L 
1 

[ 

I j1 - - 
z/z 1 31 

and zfb is real. 
For N even, we partition % into two (N/2 

X - - 

- - 
Xl _^ 1 x2 

. 

7 (7.72) 

X K matrices, 

Using (7.73) along with (7.69)-(7.72), we obtain 

Z fb 
- Re (Xl + J%) 
- 

Im Xl-- 
( Jx ) -2 

(7.69) 

(7.70) 

(7.71) 

(7.73) 

(7.74) 

which is real. 
The steps to construct 9, fb can be summarized: 7 

1. Construct zfb using the forward-only data matrix in (7.74) [2NK real 
additions]. 

2. Construct SQ using (7.70) [2N2K real multiplications and 2N2K real 
additions]. 

3. Construct &fb using (7.66) [N2 real additions]. 

Note that, in this case, we use the unitary transformations to get a real 
data matrix before performing any operations. We will find these techniques 
to be useful in many applications. 
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7.2.4 Structured Spectral Matrix Estimation 

The deriva 
symmetric 

tion in the previous section exploited the 
structure of S, in order to find a maximu 

centrosymmetric per- 
.m likelihood estimate. 

For a uniform linear array, S, is also Toeplitz. We would like to exploit that 

structure to find a maximum likelihood estimate of S,. 
This problem was introduced by Burg et al. [BLW82] and has been 

studied extensively in the literature (e.g., [And73], [Deg87], [Cad88], [WH88], 
[VVWSS], [FM88], [Fuh88], [FTM88], [DMS89], [MFOSSl], [FuhSl], [WJ93], 
[TM94], [FM97], [LSL98] ). Li et al. [LSL99] derive a computationally 
efficient technique that provides an asymptotic ML estimate of a structured 
spectral matrix. In most of our applications, we use either SX or sX,fb as 
the estimate, so the reader is referred to this literature for a discussion of 

the issues. 

7.2.5 Parametric Spatial Spectral Matrix Estimation 

In many applications, we can construct a parametric model of S, and then 
estimate the parameters in order to construct the estimate S,. We consider 

two parametric models that are widely used. 
In the first model, we assume the input consists of D uncorrelated plane 

waves plus additive white noise. Then, 

S X = V($J)SfVH(lCt> + 0; I, (7.75) 

where V(e) is an N x D matrix composed of the array manifold vectors, 

and Sf is a diagonal matrix of signal powers, 

(7.76) 

(7.77) 

We find a maximum likelihood estimate of the 2D + 1 parameters, 

We use these estimates in (7.75) to obtain 

h 

S X = v(q$&vH(?JJ) + 6; I. (7.79) 

We discuss this technique in Chapter 8 after we have studied parameter 
estimation. 
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The second type of parametric model is the parametric wavenumber 
model introduced in Section 5.6. It is applicable to standard linear arrays. 
Here we estimate the parameters in the model and use these estimates to 
construct S,. This problem is the dual of the temporal spectral estimation 
problem, and the techniques are discussed extensively in the literature (e.g., 
books by Kay [Kay88], Marple [Mar87], and Stoica and Moses [SM97]). We 
do not develop this general approach in the text. A few simple cases are 
covered in the problem section of Chapter 8. 

7.2.6 Singular Value Decomposition 

A significant portion of our subseauent development will deal with the spatial 
spectral matrix of the received waveform 
the spatial spectral matrix, we form the 

A 
s C 

1 
x- x=- 

K 
k=l 

A 

at the sensors. In order 
sample spectral matrix 

to estimate 

X(k)XH(k). (7.80) 

If the array manifold vector is conjugate symmetric, we can use the FB 
averaging technique in (7.46)-(7.48) t o construct the sample spectral matrix. 

In many applications, we want to find the eigenvalues and eigenvectors 
of 9, or !&b. The SVD technique enables us to find the eigenvalues and 
eigenvectors directly from the data matrix % in (7.4) or i;;fb in (7.48). The 
technique is developed in Section A.5. 

There are important computational reasons for working directly with 
the data matrix rather than the sample spectral matrix. The dynamic range 
required to deal with gx is doubled. Thus, for a specified numerical accuracy, 
the required word length is doubled. 

There are several efficient computational schemes for computing the 
SVD. All of the various computational programs such as LINPACK, EIS- 
PACK, and MATLAB have SVD algorithms included. SVD is widely used in 
a number of signal processing applications, and there is extensive literature 
on the topic (e.g., Deprettere [Dep88], in particular the tutorials in Part I; 
the discussion in Chapter 11 of Haykin [Hay961 and several of his references; 
Klema and Laub [KL80]; and Eckhart and Young [EY36]). 

7.2.7 Summary 

In this section, we have developed techniques for estimating the spectral 
matrix of the snapshot vector at the sensor output. 
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In Section 7.2.1, we introduced the (forward-only) sample spectral matrix 
and showed that, if we did not impose any structure on the spectral matrix, 
then C, is the maximum likelihood estimate of S,. The statistics of the 
sample spectral matrix are described by the complex Wishart probability 
density in (7.11). 

In many applications, we use the eigenvectors and/or eigenvalues of the 
sample spectral matrix. Even when we do not use the eigenvectors and eigen- 
values directly, they are often the key to the performance. In Section 7.2.2, 
expressions for the asymptotic behavior of the eigenvectors and eigenvalues 
were given. Later these results will be used to evaluate the performance of 
various array processing algorithms. 

In Section 7.2.3, the property that many of the arrays that are used 
in practice have array manifold vectors that are conjugate symmetric was 
exploited. This property leads to a centrosymmetric Hermitian spectral 
matrix. In this case the maximum likelihood estimate is given by a FB 
averaged sample spectral matrix C,,J~. This property not only provides 
performance improvement but allows the use of real computation. 

In Section 7.2.4, the idea of structured spectral estimation was introduced 
but not developed. 

In Section 7.2.5, the idea of parametric spatial spectral matrix estimation 
was introduced but not developed. 

In Section 7.2.6, we discussed the SVD technique that is developed in 
detail in Section A.5. This technique allowed us to find the eigenvalues and 
eigenvectors of the sample covariance matrix directly from the data. 

This section provides the foundation for the adaptive beamforming al- 
gorithms that are developed in the remainder of the chapter. In some al- 
gorithms, we will utilize g, or the eigenvalues and eigenvectors explicitly. 
In other algorithms, they are used implicitly. However, they always have a 
major influence on the performance of the algorithm. 

7.3 Sample Matrix Inversion (SMI) 

In adaptive beamformers, the sample 
the data samples. We recall from Section 7.2, that the maximum likelihood 
estimate for an unstructured matrix is just the sam.ple spectral matrix. From 

spectral matrix 
h 
s X iS estimated from 

(7 9) . J 

h 

S X- (7.81) 
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In some applications,we can observe the input without the signal being 
present. For example, in the interval between returned pulses in an active 
radar. Then, we can construct an estimate of S, in the same manner, 

h 

S n= (7.82) 

If Sn is available, we use it in place of Sn in the MVDR beamformer (see 
(6.14) and (6.15)) to obtain 

I I 

WH 
n - 

mvdqsmi - A srniV,H~$7 (7.83) 

and 

A smi = l 
(7.84) 

The presence of gil gives rise to the name sample matrix inversion (SMI) 
for this approach. 

If only !3G1 is available,we use (7.81) in (6.71) to obtain 

WH 
n vfiS,l 

mpdr,smi = VHi&lVm 7 
m  x 

(7.85) 

where vm is the nominal signal direction. 
If the array is conjugate symmetric, we can use gX fb as an estimate of ) 

In Figure 7.1, we show a diagram of the SMI beamformer. In this con- 
figuration, we are processing the data in blocks of size K. In Figure 7.2, we 
show a diagram of the SMI beamformer in the generalized sidelobe canceller 
configuration. 

The equations specifying the SMI GSC implementation are 

8,(K) = $ E Z(k)ZH(k) = BHs,(K)B, 
k=l 

LJ; (K) = $ c Z(k)Y,*(k) = BH&(K)w,, (7.87) 
k=l 

and 

%(K) = S,1(~)9,,E(~) 

[B~S,(K)B]~ BH&(K)w,. (7.88) 
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Y(k) k=l,-,K 
b 

1 estimation 1 S, (i x ) 

( > a 

X(k) k=K+l ,.-a, 2K Y(k) k=K+l;-,2K 
A VH? - smi s n 

+ 

X(k) k = l,- ,K 

Spectral 
matrix 

estimation 
Wx) 

Figure 7.1 Diagram of the SMI beamformer: (a) use of same data vector; 
(b) use of new data vector. 

Estimate 

% 

Figure 7.2 Diagram of the SMI beamformer in GSC configuration. 
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In Section 7.3.1, we discuss the statistical behavior of the SINRspni as 
a function of the number of samples K. This behavior will indicate how 

quickly the performance of MVDR beamformer converges to the results in 
Chapter 6, which assumed perfect knowledge of either S, or S,. 

In Section 7.3.2, we discuss how the SMI MVDR beamformer can be 
implemented in a recursive manner. 

In Section 7.3.3,we introduce the technique of diagonal loading in which 
we add a constant diagonal matrix to S, or $n before utilizing them in the 
weight vector computation. This technique is called regularization in the 
statistical literature. 

In Section 7.3.4, we revisit the case of conjugate-symmetric array man- 
ifold vectors and show how the implementation can be simplified when we 
use FB averaging. 

7.3.1 SINRsmi Behavior: MVDR and MPDR 

In this section we discuss the SINR behavior of MVDR and MPDR beam- 
formers as a function of K. 

We first consider the beamformer in (7.83). We denote the weight vector 
using K samples as 

(7.89) 

When the context is clear, we suppress the subscript and use ti( K). We 
want to investigate the SINR behavior as a function of K. We assume that 
v, is known. The signal, interference, and noise inputs are sample functions 
of discrete time random processes so the SINR, is a random variable. The 
SINR, on the Ith trial at sample K is 

SINR,(1) = 
~H(Eov,fi(E()f,H(K)V,H~(K) 

GH(K) [nz(K)nlH(K)] e(K) ’ 
(7.90) 

where fi (K) and nl(K) are the sample values on the Lth trial. The vector 
nl(K) contains the interference and the white sensor noise. 

In Chapter 6, the “noise” was assumed to contain both the white sensor 
noise and the interference. Even though the noise vector n contains both 
the white sensor noise and any additional interference, we use SINR, in 
several sections in Chapter 7, to be consistent with the adaptive beamformer 
literature. 
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We also define a 

replaced by S n7 

SINRsmi in which the q(K)n~(K) term in (7.90) is 

(7.91) 

The expression in (7.91) has a smoother behavior and is the definition that 
is normally used in the literature. We define a random variable p(K), 

(7.92) 

which is the ratio of the SINR due to the use of Sn to the SINR using Sn. 
For simplicity, we suppress the K dependence and write 

(7.93) 

We want to find the probability density of p and its mean and variance. 
The solution is given by Reed et al. [RMB74]. They indicate that their 
development is based in part on Capon and Goodman [CG70], Goodman 

[Goo63], and unpublished work by Goodman. 
The development is lengthy, so we quote the result. Using the properties 

of the complex Wishart density (see Section 7.2.1), they show that p has a 
beta probability density, 

K’ 
P(p)= (N-2)!(K’+1-N)!(1-P) 

N-2 K+l-N 
p ) o’p’l* (7mg4) 

This probability density is valid for N > 2 and K > N. In (7.94), N is - - 
the number of elements. The probability density is shown in Figure 7.3 for 
various values of K. 

We observe that the probability density does not depend on the signal 

strength or the noise and interference environment. 
The mean of p is 

E[Pl 
K+2-N - - 

K+l ’ 
(7.95) 

and the variance is 

vur[p] = 
(K+2-N)(N-1) 

(K+l)2(K+2) l 

(7.96) 

Therefore, 

E [SINR,,,] = K ; 1; N SINRmvdr . (7.97) 
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25 

O- 
- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -7 

P 

Figure 7.3 Probability density of p. 

If we desire that E[SINR,,J = aSINR,,d,, then we require, 

K - - (7.98) 

Thus, K = 2N - 3 obtains an E[SINR,,J that is 3 dB lower. To achieve 
a! = 0.95 requires K = 20N. In practice, a common rule of thumb is that 
K = 2N samples are required for “satisfactory” performance. 

When K = 2N - 3, p(p) is symmetric about 0.5, so Pr[p < 0.51 equals 

0.5. Boronson [Bor80] suggests that a useful measure is to determine the 
value of K such that 

P[p < 1 - S] < 6. (7.99) 

One can show [AS651 that 

N-2 

P[p < 1 - 61 = x b(m; K, S), 
m=O 

(7.100) 

where 

b(m; K, s> = (7.101) 
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Then, assuming N > 3, K > 3N implies - 

P(p < 0.5) < 0.0196, (7.102) 

and K 2 4N implies 
P(p < 0.5) < 0.0032. (7.103) 

We simulate the behavior of the MVDR beamformer using a Monte Carlo 
procedure. We denote the average of p over the trials by p, 

where 

(7.104) 

(7.105) 

and SINRsrn$) is the value of (7.91) on the Zth-trial. 
We illustrate the behavior with a simple example. 

Example 7.3.1 
Consider a standard lo-element linear array. The signal arrives from us = 0, and 

there is a single interferer at UI = 0.15 with an IA!. = 10 dB. In Figure 7.4, we plot p for 
200 trials for both 3, = C, and S, = C, fb. For the S, = C, case we show E[p] as given 
by (7.95). For modest K, the use of 3, ‘= C,,J~ halves the number of required samples 
to achieve a given value of p. Note that, although we specify a signal and interference 
environment, the result does not depend on it. 

Monzingo and Miller [MM801 extended the result to include the case of 
the signal present, and the beamformer is given by (7.85). We define q to 
be the ratio of the SINRs, 

SINR 
rl 

- mpdr, smi 
- 

SINRmpdr 

P 
/ 

- - 
SINRmpdr (1 - P’) + 1’ 

(7.106) 

where p’ has the same probability density as p. The expectation of v can be 
written as an infinite 

@II - - 

(7.107) 
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Figure 7.4 MVDR SMI beamformer: p and E[p] versus K. 

where 

a=K-N+2, (7.108) 

b=N-1. (7.109) 

We can approximate the sum in the brace to obtain an approximate expres- 
sioq5 

EM 
a 1 

= a + b l 1 + SINRmpd, . 
(7.110) 

We illustrate the results with the same signal and noise model as in 
Example 7.3.1. 

Example 7.3.2 

Consider a standard lo-element linear array. The signal arrives from us = 0. The 
SNR is varied from 0 dB to 30 dB in lo-dB steps. Two equal-power interferers arrive from 
UI = 0.29 and 0.45, each with an INR = 20 dB. 

In Figure 7.5 we show the results of a Monte Carlo simulation. We plot the average 
SINR, versus K for both g, = C, and 3, fb = C, fb. We also show the analytic results 
using (7.97) and (7.110). We see that the dresence of the signal in S, causes a significant 
degradation in the performance of the SMI beamformer. 

In Figure 7.6, we plot q, which is the normalized quantity. This plot shows the effect 
of the signal level. 

52. Tian, private communication. 
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Figure 7.5 MVDR-SMI and MPDR-SMI beamformers: average SINR, versus 
K: (a) SNR = 0 dB; (b) SNR = 10 dB; (c) SNR = 20 dB; (d) SNR = 30 
dB . 
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Figure 7.6 MPDR-SMI beamformer: normalized SINR,,i(v) versus K for 
various SNR. 

Feldman and Griffiths also develop an approximate expression for 

E [SINR~~~r,smi] (see p.871 of [FG94]). The result is 

smNRmpdr - K 
E {srnrRmpdr) N” K + SINR 

mpdr ’ (N - 1) ’ 
(7.111) 

This expression is valid when 

N >> 1, 

K >> N, 

As K increases from N to 00, the E [%NRmpdr smi] increases monotonically 9 
to %NRmpdr. 

From (7.111), we see that to be within 3 dB of the optimum value, we 
require 

K = (sIN%npdr)(N - I), (7.112) 

which will be significantly larger than the previous K = 2 N result in most 
cases of interest. 
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7.3.2 LCMV and LCMP Beamformers 

In the LCMV and LCMP beamformers developed in Section 6.7.2, we irnpose 
additional conskaints on the beamformer and reduce the adaptive degrees 
of freedom. Monzingo and Miller [MM801 argue that we can use the results 
in (7.94) by defining (N - 1) as the number of adaptive degrees of freedom 
instead of the number of elements minus one. Van Veen ([VVgla], [VVSlb], 

[HS92]) obtains a similar result (e.g., Reed et al. [RMB74], Capon and 
Goodman [CG70], M onzingo and Miller [MM80], Baggeroer [Bag76], Ganz 
et al. [GMW90], Kelly [Ke186]! and Kelly and Forsythe [KF89]). 

We consider a simple example to illustrate the behavior. 

Example 7.3.3 (continuation, Example 7.3.2) 
Consider a standard lo-element array. The signal-and-interference model are the 

same as in Example 7.3.2. We use an LCMP beamformer with derivative constraints (see 
Examples 6.7.2 and 6.7.10). The C and gH matrices are given by (6.312) and (6.314), 
respectively: 

C = [ 1 ; d(0) : d(O) ] , (7.113) 

gH= [ 1 I 0 I ( ) B,(O) ] . (7.114) 

In Figure 7.7(a), we show p obtained from a Monte Carlo simulation for an LCMV beam- 
former. We also show E[p] obtained from (7.95) with N = 8. Comparing these results to 
those in Figure 7.4, we see that, by reducing the available adaptive degrees of freedom, 
we have improved the normalized SMI performance. In Figure 7.7(b), we plot q, the nor- 
malized average SINR, versus K for an LCMP beamformer. Comparing these results to 
those in Figure 7.6, we see an improvement. 

7.3.3 Fixed Diagonal Loading 

The concept of diagonal loading is straightforward. We use, 

S x,L = (7.115) 

in place of the estimated spectral matrix in order to design +. We use SQ h 
instead of S, because it is not used as an estimate of S,. We have added 
a diagonal matrix of level aL. 2 We encountered diagonal loading in Sections 
6.6.4 and 6.10 in the context of quadratically constrained beamformers. In 

this section, we use it for three purposes: 

(i) To improve the SINR smi performance of the MPDR beamformer; 

(ii) To implement beamformers when K < N; 



7.3 Sample Matrix Inversion (SMI) 

I 
2 

Number d~snapshots (K) 
lo3 

( > a 

: 
-&- : 

1: 

-45 ’ 
10' 

2 

Number d~snapshots (K) 
lo3 

Figure 7.7 LCMV-SMI and LCMP-SMI beamformers: us = 0, UI = 0.29, 
and 0.45, INR = 20 dB, SNR = 0, 10, 20, 30 dB; normalized SINR, versus 
K: (a) LCMV-SMI; (b) LCMP-SMI beamformers. 
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Figure 7.8 MPDR-SMI beamformer: INR = 20 dB, (T;/& = 20 dB; nor- 
malized SINR, versus K. 

(iii) To achieve better sidelobe control and main-beam shaping in the SMI 
algorithm. 

To demonstrate how diagonal loading improves the SINRsmi behavior, 
we consider the same model as in Section 7.3.1. 

Example 7.3.4 (continuation, Example 7.3.2) 
Consider a standard lo-element linear array. The desired signal arrives from us = 0 

and two equal power interferers arrive from UI = 0.29 and 0.45, each with an INR = 20 
dB. We use 

SIC L 9 = c, + &I, (7.116) 

or 
sxr, = 9 Cx,fb + &,I- (7.117) 

in (7.85). In Figure 7.8, we plot the normalized average SINR, versus K for ai = 20 
dB. We see that there is significant improvement for all SNR. In Figure 7.9, we show the 
MVDR behavior. There is also improvement, but it is less significant. 

When we use diagonal loading we can implement the beamformer for 
K < N because the ai1 term makes S, L non-singular. 

Several references (e.g., Hudson [Hud81], Gabriel [Gab85], and Brookner 
and Howell [BH85]) show that if there are D strong interferences and N >> D, 
the beamformer can achieve effective nulling with K = 20 samples. With 
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Figure 7.9 MVDR-SMI beamformer: INR = 20 dB, $/a& = 20 dB; nor- 
malized SINR, versus K. 

FB averaging, K = D. We revisit Example 7.3.4 and explore the behavior 
for K = 2,4, and 6. 

Example 7.3.4 (revisited) 
Consider the same model as in Example 7.3.4. In Figure 7.10, we plot the normalized 

average SINR, versus K for K 2 D for an MPDR-SMI beamformer with fixed diagonal 
loading. 

We see that there is significant improvement in the SINR, due to diagonal loading 
with a small number of samples. However, it is also important to examine the beam 
pattern behavior. In Figure 7.11, we show the beam pattern for the two-interferer case 

h = 0.29,o. 15) with a high INR (20 dB), a modest SNR (10 dB), for K = 4 using 
FB averaging. We vary &a: from -10 dB to 20 dB in lo-dB steps. We observe that, 
although the nulls are deep and close to the interferer, a typical beam pattern has an 
undesirable sidelobe structure unless we use diagonal loading. 

The same problem continues when K > N. 
Kelly [KelS7a], [Ke187b] h s ows that the expected value of the sidelobes 

of the adapted pattern 

E[SU] = *. (7.118) 

We consider a simple example to illustrate this effect. 
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Figure 7.10 MPDR-SMI beamformer with fixed diagonal loading: normalized 
SINR, versus K, UI = 0.29,0.45, INR = 20 dB, ,WR = CT;/& = 20 dB. 

Example 7.3.56 
Consider a standard lo-element linear array. A Dolph-Chebychev weighting on the 

steering vector v(I,&) provided a quiescent beam with -30-dB sidelobes. We use the 
constraint wH wq = 1. The beam is steered to broadside. A single plane-wave source with 
an INR of 30 dB inpinges on the array at ~1 = 0.29. There is no diagonal loading. 

The results of a simulation for K = 2N and K = 6N are shown in Figure 7.12. 

To understand the behavior we write the weighting vector using the eigen- 
vector expansion of &7 We assume that ai = 0 and that there are D 
plane-wave interferers. The estimated eigenvalues are ordered, 

A1 > i:! > l l ’ irnin. 
-  -  

The eigenvalues can be written as 

h 
x i- 

i 
j$+imin, i=D+l,D+2,-•,N-1 (7.120) h 
x min 7 i = N, 

‘This example is adapted from Carlson [Car88]. 
7We discuss the behavior forS, and MVDR beamformers. A similar discussion follows 

for S, and MPDR beamformers. 
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Figure 7.11 MPDR-FL-SMI beamformer: beam pattern for two interferers, 
K = 4: (a) LlVR = -10 dB; (b) LA?R = 0 dB; (c) LNR = 10 dB; (d) LZVR = 
20 dB. 

where Xmin is the smallest (minimum eigenvalue) of Sn; Q is the difference 
between the other N - D - 1 noise eigenvalues and imin; and A{ is the 
estimate of the interference eigenvalues. Note that if Sn equaled S,, then 
the N - D noise eigenvalues would be equal and if would be zero. 

The inverse of Sil can be written as 

or 
h 1 - 
s l n =A 

x 
(7.122) 

min 



Fixed Diagonal Loading . 

0 \ v - ,: \ / --\, 7 \ ’ ‘\ \ -_ \ ,’ \ I’ I ’ 4 \ I I I 
Figure 7.12 MPDR-SMI beamformer with Dolph-Chebychev quiescent beam 
pattern; adapted beam pattern with 2N and 6N samples: /us = 0, UI = 0.29, 
INR = 30 dB. 

Using (7.120) in (7.83), the optimum weight vector can be written as 

NA h 

wH 
H 

c 

x i- x 
0 

=wq - h 
x i i=l 

(7.123) 

where wq is the weight vector in a white noise, or quiescent, environment.’ 
The resulting beam pattern is 

BOW 
‘Iv ii - Amin 

= B4($) - x i PqiBeig,i ($) 
i=l i 

D h 
AI 

= Bdti) - x ++i&ig,i(+) 
i=l i 

PqiB eig,i w> 7 
min 

where 

Pqi = WrGi, 

(7.124) 

(7.125) 

‘We have not normalized wq and wO, in order to simplify the notation. 
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is the correlation between the quiescent weight vector and the ith eigenvector 
and, 

(7.126) 

is the ith eigenbeam. Recall that the eigenbeams are orthogonal. 
The psi term in (7.124) scales the interference eigenbeam to be equal to 

the quiescent beam in the direction of the interference. Therefore, the value 
of B,(/$Ii)T i = 1, l l l , D, can be written as 

(7.127) 

Therefore, the beam pattern in the direction of the interference is equal to 
twice the eigenvalue spread in dB. 

For large eigenvalues, this term approaches zero so the interferers are 
almost completely nulled, which is the desired behavior. However, the noise 
eigenvalues will cause a problem. 

Assuming there are D interferers, then there are N - D eigenvalues 
corresponding to noise. If we knew their values exactly, then they would all 
be equal, 

x i= x i+l = “’ = AD = Amin i>N-D. (7.128) 

Then, the spread in (7.127) would be unity and the white noise would have 
no impact on the quiescent pattern, which is the desired behavior. However, 
we are estimating the Xi from the sample spectral matrix and, for small K, 
there will be a significant spread around the correct value. This means that 
the beamformer will be subtracting noise eigenbeams (which are random 
in nature) from the quiescent beam pattern. From (7.124), we see that the 

^E noise eigenbeams would not be added if Xi were zero. We show this behavior 
for the model in Example 7.3.5. Note that this is an MPDR example. 

Example 7.3.6 (continuation) 
In Figure 7.13, we show the noise eigenvalue spread as a function of the number of 

snapshots. We see that there is significant improvement between K = N and K = 2N, 
but the subsequent improvement is gradual. 

In Figure 7.14, we show the highest sidelobe in the adapted pattern as a function of the 
number of snapshots. The level is similar to that predicted by (7.118) (which corresponded 
to the average level). 

In Figure 7.15, we show the reduction in array gain as a function of the number of 
snapshots. This behavior is consistent with the result in (7.110). 

This behavior leads to the conclusion that the noise eigenvalues and 
eigenvectors can create a significant problem. Once again, we use diagonal 
loading. 
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Figure 7.13 Noise eigenvalue spread (ratio of largest noise eigenvalue to small- 
est) as a function of the number of independent snapshots included in the 
spectral matrix; SNR = 20 dB, UI = 0.29, INR = 30 dB, eight noise eigen- 
values. 

Figure 7.14 MPDR-SMI beamformers: highest sidelobe in adapted patterns 
as a function of the number of independent snapshots included in the spectral 

matrix. Dolph-Chebychev (-30 dB SLL) quiescent beam, SNR = 20 dB, 
INR = 30 dB. 
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Figure 7.15 MPDR-SMI beamformer: array gain reduction in adapted main 
beam as a function of the number of independent snapshots included in the 
covariance matrix. 

If we use (7.115) to construct the weight vector, then the coefficient on 
the noise eigenbeams in (7.124) is 

x ̂E i. (7.129) 

Thus, by choosing a ai greater than Amin (e.g., 10 dB) we can essentially 
eliminate the noise eigenbeams. 

The technique is simple. We add a diagonal matrix a21 to $n or S, 
before we utilize it to construct the weighting vector. We illustrate typical 
behavior with a simple example. 

Example 7.3.7 (continuation) 
Consider a SLA 10. The signal arrives from us = 0 with an SNR = 20 dB. The quies- 

cent beam pattern is a Dolph-Chebychev pattern with -30-dB SLL. The single interfering 
signal arrives from UI = 0.29 with an INR = 30 dB. The LNR ( 6 &c& is 10 dB. In 
Figure 7.16, we show representative beam patterns for K = 2N and K = 6N with and 
without loading. We see that the sidelobe behavior is improved significantly. 

In Figure 7.17, we show the noise eigenvalue spread as a function of && for various 
values of K. In Figure 7.18, we show the highest sidelobes in the adapted pattern as a 
function of 02/a; for various values of K. In Figure 7.19, we show the reduction in array 
gain as a function of ai/& for various values of K. We see that, for all of the performance 
metrics of interest, loading offers significant improvement. 
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Figure 7.16 MPDR-SMI beamformer: adapted beam pattern with 6N snap- 
shots and diagonal loading; us = 0, SNR = 20 dB, UI = 0.29, INR = 30 dB, 
LNR = 10 dB. 

60 I I 1 I I I 1 1 1 

Ll- - - 3N 1N 

6N 

Figure 7.17 MPDR-SMI beamformer: noise eigenvalue spread (ratio of larg- 
est noise eigenvalue to smallest) as a function of the loading level for 1 N, 
3N, and 6N independent snapshots in spectral matrix; us = 0, SNR = 20 

a UI = 0.29, INR = 30 dB. 
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Figure 7.18 MPDR-SMI beamformer: highest sidelobes in adapted pattern 
as function of loading level for IN, 3N, and 6N independent snapshots in 
spectral matrix. 
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Figure 7.19 MPDR-SMI beamformer: array gain reduction as a function of 
loading level for lN, 3N, and 6N independent snapshots in spectral matrix. 
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The disadvantage is that the beamformer loses its ability to adapt against 
small eigenvalues. These can occur if there are small power interferers or if 
there are two or more large interferers close together. From Figure 5.14, 

we see that as the interferer separation becomes smaller than the H&VAT, 
the second (and higher) eigenvalues become quite small. Depending on the 
scenario, this may or may not be a problem. 

Because of its simplicity and potential performance improvement, di- 
agonal loading is an attractive modification to the SMI algorithm in most 
applications. The disadvantage of fixed diagonal loading is that we need 
to have prior knowledge of the signal and interferer levels in order to se- 

’ lect the appropriate value for aL. In many applications of interest we have 

enough prior information about the anticipated environment to choose an 
appropriate loading level. 

Another technique for dealing with the errors in estimating the noise 

eigenvalues is to replace the estimates of the (N - 0) smallest eigenvalues 
by their average value, 

1 N h 
aA- x - N - D i=D+l 

x 
” 

(7.130) 

This approach is used in the dominant mode rejection (DMR) beamformer 
that was discussed in Section 6.8.3. We study its adaptive behavior in Section 

79 . . 

7.3.4 Toeplitz Estimators 

In Section 7.2.4, we indicated that there are techniques for estimating S, 

that exploit the Toeplitz structure of S,. Fuhrmann [FuhSl] has shown that 
these techniques lead to a significant performance irnprovement in the SMI 
beamformer. The reader is referred to this reference for a discussion of the 
technique. 

7.3.5 Summary 

In this section, we have studied the SMI implementation of the MVDR and 
MPDR beamformer. 

For MVDR beamformers, we defined a random variable p, which is the 
ratio of the SINRsrni to the steady state SINRml,+ The probability density 
of p does not depend on the interference environment. For S, = C,, E[p] 
was -1 dB for K = 4N. If we use FB averaging, E[p] = -1 dB for K = 2N 
and we effectively double our sample support. 
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The performance can be improved by using diagonal loading. This tech- 

nique, which consists of adding a diagonal matrix to either A, or gn, works 
best in a strong interferer environment. Diagonal loading reduces the side- 
lobe level, improves the SINR smi performance, and allows K < N sample 
support. Diagonal loading plays an important role in most beamformer im- 
plement ations. 

Similar results were obtained for the MPDR beamformer. However, in 
the presence of a strong signal the convergence was much slower. Diagonal 
loading provided more dramatic improvements for the MPDR model. 

The SMI technique is effective in many applications. However, its com- 
putational requirement is a function of N3, and it is a block algorithm. In 
the next section, we develop a recursive algorithm. 

7.4 Recursive Least Squares (RLS) 

In this section, we develop a recursive implementation of the sample matrix 

inversion algorithm. In order to do this efficiently, we first reformulate the 
MPDR beamformer and the MMSE beamformer as least squares problems. 
We do that in Section 7.4.1. 

In Section 7.4.2, we develop a recursive algorithm for the MPDR beam- 
former. In Section 7.4.3 we develop a recursive algorithm for the least squares 

estimation (LSE) beamformer. Our discussion is adapted from the develop- 
rnent in Chapter 13 of [Hay96].’ 

We should observe th .at the recursive algorit #hms that we develop in this 
section are adequate for our present pu .rposes. In Sect ion 7.5, we revisit 
the implementation problem and develop algorithms that are 
tati onally efficient and have better numerical stability. 

more compu- 

7.4.1 Least Squares Formulation 

The method of least squares estimation was invented by Gauss in 1795 in his 
studies of motion of heavenly bodies. lo In 1912 Fisher [Fisl2] introduced 
the maximum likelihood method, which leads to the same result if the obser- 
vation noise is assumed to be Gaussian. Kolmogorov [Kol4la], [Ko14lb] in 
1941 and Wiener [Wie49] independently invented MMSE filter theory that 

‘An alternative method to develop the RLS algorithm is start with a deterministic 
Newton-type algorithm and find the stochastic version of it. We discuss this approach 
briefly in Section 7.7. 

“Sorenson [Sor70] has provided a good discussion of the history of LSE and its evolution 
from Gauss to Swerling and Kalman. Our historical discussion is based on this reference. 
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we have studied in DEMT I [VT68], [VTOla]. In our study of the MMSE 

filter we utilized ensemble averages. By contrast, LSE utilizes time aver- 

ages. We find that the least squares beamformers have the same form as 
the MPDR and MMSE beamformers, with the ensemble averages replaced 
by time averages. c 

In the middle 1950s there was a sequence of papers dealing with recur- 

sive implementations of LSEs. These include Follin [CF56], Swerling [Swe58], 
[Swe59], Kalman and Bucy [KB61]. The culmination was the discrete time 
Kalman filter [Kal60], which has been applied to a wide range of applications 

in the last four decades. As Sorenson points out, Swerling’s recursive algo- 
rithm predates Kalman’s work and is essentially the same algorithm. We 
now derive the least squares estimator. 

The output of a distortionless response beamformer is 

Y(k) = D(k) + N(k), k = 1,2,. 9 l , K, (7.131) 

where D(k) is the desired signal. The estimation error is N(k). In the least 

squares approach, we minimize a weighted summation of the squared error 

K 

IN(K) = x ~K-klN(k)12, 
k=l 

(7.132) 

where ,Q is a positive constant less than 1. It provides an exponential weight- 

ing factor of the error so that the importance of past errors decrease as their 
distance from the current sample time K increases. This factor allows the 

beamformer to accommodate possible non-stationarities in the input. Typ- 
ically p is close to unity. 

Due to the distortionless constraint, the minimization of <N(K) is equiv- 
alent to minimizing 

K 

<Y(K) = x PK-kly(iq 12* 
k=l 

(7.133) 

As in Chapter 6, 

Y(k) = wH(K)X(k), (7.134) 

and the distortionless constraint is 

wH(K)vs = 1. (7.135) 

Note that WH(K) is a function of K because it will adapt as we receive more 
data. We minimize <y(K) subject to the constraint in (7.135). Define 

F 
A - - 

lE P K-kwH(K)X(k)XH(k)w(K) 
k=l 
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+A [wH(K)vs - l] + A* [v,Hw(K) - I] , (7.136) 

or 

F = wH(K)+(K)w(K) + X [w”(K)v, - 1 + VFW(K) - l] , (7.137) 

where 
K 

w-q=~I-L K-kx(lc)xH(k). 

k=l 

(7.138) 

The matrix <P(K) is introduced to denote the exponential weighted sample 
spectral matrix, in contrast with the conventional sample spectral matrix 

G(K). 
Substituting (7.138) into (7.136) gives 

F = wH(K)+(K)w(K) + X [wH(K)vs - l] + A* [v;vv(K) - l] . (7.139) 

Taking the complex gradient with respect to WH(K), setting the result 
to zero, and solving for the Lagrange multiplier gives 

timpdr(K) = $+ = A(K)+-1(K)vs, 

s vs 
(7.140) 

where 

A(K) 2 [vfiP’(K)v,] -I. (7.141) 

Note that 

&(K) = [v;@(K)v,]-’ = A(K). (7.142) 

We see that the least squares distortionless response beamformer is the 

MPDR beamformer of Chapter 6 with the ensemble average replaced by a 
weighted time average. 

Note that 

E[@(K)] = x&, - 

which is approximately 

(7.143) 

(7.144) q*(K)] = +., - 
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for large K, so @(K) provides an asymptotically biased estimate of S,. 
An alternative definition that provides an unbiased estimate is 

K 

a’(K) = $-$ c pK-kX(k)XH(k), 
k=l 

(7.145) 

which, for large K, reduces to 

K 

G’(K) = (1 - p) c pK-“X(k)XH(k). 
k=l 

(7.146) 

Using (7.145) in (7.140) gives the same result as before because it appears 

in both the numerator and denominator. However, when we add diagonal 
loading we have to take the (1 - p) factor into account,. 

The least squares solution analogous to the MMSE beamformer follows 

in a similar manner. We assume there is a desired response D(k). The error 
at time k is 

e(k) = D(k) - wH(K)X(k), k = l,.. l , K. (7.147) 

Note wH (K) is the weight vector at K. We minimize 

K 

I,(K) = x PK-kle(Jc)12 
k=l 

K 

= c ,uK-k (D(k) - wH(K)X(k)) (D(k)* - XH(k)w(K)) . \ 
k=l 

(7.148) 

Taking the gradient with respect to wH(K) and setting the result to zero, 
gives 

PI,, = f@(K)@?cd* (K), 

where a(K) is defined in (7.138) and 

(7.149) 

(a,,+(K) fi cfxl pK-“X(k)D*(k)e (7.150) 

This result is the MMSE beamformer of Chapter 6, with the ensemble aver- 
ages replaced by weighted time averages. 

The output Y (EC) is 

Y(K) = C&(K)X(K). (7.151) 

In order to implement (7.149), we must generate axd* (K). We discuss 
techniques for doing this later in this section. 
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7.4.2 Recursive Implementation 

In order to implement Gmpdr(E() recursively, we need an algorithm to find 

*-l(K) from a-l (K - 1). From (7.138), 

a(K) = @(K - 1) + X(K)XH(E(). (7.152) 

The desired iteration follows directly from the matrix inversion formula 
in (A.49)11 

W(K) = j!dD-‘(K - 1) - 
/r2W1(K - l)X(K)XH(K)W’(K - 1) 

1+ /J-=~(K)@-~(K - l)X(K)(7 153) 
. 

We now define 
P(K) = (a-l(K), (7.154) 

and 
p-lP(K - 1)X(K) 

g(K) = 1 + p-lXH(K)P(K - 1)X(K)’ 
(7.155) 

The choice of notation is deliberate because of the relationship between 
recursive least squares and Kalman filtering. 

Using (7.154) and (7.155) in (7.153) gives 

P(K) = p-lP(K - 1) - p-‘g(K)XH(K)P(K - l), (7.156) 

which is known as the Riccati equation. 
Post-multiplying both sides of (7.156) by X(K) and using (7.155), one 

can show that 
g(K) = P(K)X(K) = tl+(K)X(K). (7.157) 

The vector g(K) is referred as the gain vector. 
We now develop a recursive equation for ti,pdr( K). Suppressing the 

subscript on ;t( K), (7.140) can be written as 

G(K) = A(K)P(K)v,. (7.158) 

Using (7.156) in (7.158) gives 

G(K) = A(K) [p-‘P(K - 1) - p-‘g(K)XH(K)P(K - l)] v, 

A’K) - - /-4K - 1) [I - g(K)X”(Ic)]} ti(K - 1). (7.159) 

‘lThis approach is due originally to Baird [Bai74]. It is discussed in Hudson’s book 
[Hud81], pp. 124-125, Compton’s book [Com88], pp. 318-326, and Haykin’s book [Hay96], 
pp. 566-571. 
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The term in curly brackets is an N x N matrix used to update ti(K - 1). 
The last step is to initialize the algorithm. Haykin [Hay961 suggests 

augmenting * (K) with a white noise term. Thus, 

K 

*(Eo=&J K-kx(k)xH(k) + &LKI, (7.160) 

where a: is a small positive constant. This augmentation is just exponen- 

tially decaying diagonal loading. Then, for K = 0 (no snapshots received) 

w> = c& (7.161) 

and 

We can choose G(O) to be any vector satisfying the distortionless con- 

straint. We refer to this vector as the quiescent weight vector, wq. 
In the time-domain case (equalizers), it is normal to make a: very small 

and let G(O) = 0. However, a small 0: gives very poor beam patterns 

(distorted main lobes and high sidelobes) for small K. If we assume the 
array is in operation prior to adaption, then G(O) = 0 is not a useful initial 
weighting. We normally initialize the algorithm -with 

h 

w(o) 

VS - -- 

N 
J (7.163) 

or a wq with a better sidelobe pattern that satisfies the distortionless crite- 
rion. 

The effect of the diagonal loading term, Q~I, decays rapidly,. Taking the 

expectation of (7.160) gives 

s, + pKa,21. (7.164) 

Defining, 

(7.164) can be rewritten as 

E [&(K)] = S, + $$ pKa,21. [ 1 

(7.165) 

(7.166) 
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n- r igure 7.20 Diagonal loading decay in RLS algorithm. 

In Figure 7.20, we plot the diagonal loading term as a function of K. 
Note that as p approaches unity, we can approximate the fraction as 

1-P [ 1 1 

l-/AK Q-1. (7.167) 

Because of this rapid decay, we may have to add additional diagonal 
loading to maintain robustness. We will revisit that issue later. 

Sayed and Kailath [SK941 pointed out that, with this choice of P(O), we 
are actually minimizing 

i 

K 

2 min a,p 
w(K) K II w(K) II2 + c PK-“lw412 7 

k=l 1 (7.168) 

where Y(k) is given by (7.134). Note that the first term is the norm of the 
weight vector multiplied by an exponentially decreasing constant. We will 
encounter the first term in various contexts. 

The steps can be summarized as: 
Initialize the algorithm with 

W) 
1 - -- 

o2 
I 7 

0 

(7.169) 
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h 

w(o) 

VS - -- 

N 7 (7.170) 

or a wq with a better sidelobe pattern that satisfies the distortionless crite- 
rion. Note that’ (7.169) provides the initialization for A(0) by using (7.169) 
in (7.173). 

At each snapshot, K = 1,2, l . ., compute 

p-lP(K - 1)X(K) 

g(K) = 1 + /+XJyK)P(K - 1)X(K) 

P(K) = /,?P(K - 1) - p-‘g(K)XH(K)P(K - l), 

A(K) = [v;P(K)v,]-l, 

%npdr = w A(E() 
PA(K - 1) 

[I - g(K)XH(K)] ‘1;L,,&K - 1) 

Then, 

y(K) = \;IT~pdr(K)X(K)~ 

We can also write (7.174) as 

, 
%npdr = VO 110 

I-JACK - 1) 
%npdr(K - 1) - g(K)Y’cK)] 7 

where 

(7.171) 

(7.172) 

(7.173) 

(7.174) 

(7.175) 

(7.176) 

(7.177) 

The expressions in (7.174) and (7.176) are identical in the absence of 

numerical errors. In practice, we normally use (7.176) so that the RLS 
algorithm is operating as a closed-loop system, as shown in Figure 7.21. 

This implementation is due to Baird [Bai73] (e.g., [Hud79] and p.127 in 
[HudSl]). 

We consider the following example to illustrate the behavior. 

Example 7.4.1 (continuation, Examples 6.3.2-6.3.5, 7.3.2) 
Consider a standard lo-element linear array in which the desired signal arrives from 

us = 0, and two equal-power interfering signals arrive from UI = 0.29 and 0.45 with an INR 
= 20 dB. We use a recursive LSE to implement the MPDR beamformer ((7.169)-(7.177)). 

In Figure 7.22, we plot the average output SINR, versus K for p = 0.99 and p = 0.999. 
We also show the SMI beamformer performance with no diagonal loading for comparison. 
In Figure 7.22(a), the initial loading, CT:/&, equals -10 dB. For p = 0.999, the behavior 
of RLS and SMI is essentially equal. For p = 0.99, the RLS performance levels off because 
we are effectively using about (( 1 - p)-l = 100) snapshots. In Figure 7.22(b), the initial 
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v 
I 

Update g(K) 

Update P(K) 
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- I I  
W mpdr (0 

Figure 7.21 MPDR-RLS algorithm: closed-loop implementation. 

loading is 0 dB. The increased loading causes RLS to be better for K < 40. For larger 
K, it has decayed and the performance of RLS with b = 0.999 and SM.1 are the same. In 
Figure 7.22(c), the initial loading is 10 dB. Now RLS is better for K < 200. 

In Figure 7.23, we compare the performance for various SAX with a:/& = 10 dB. 

We observe that the RLS algorithm does not perform as well as the 
diagonally loaded SMI algorithm. The reason is that the diagonal loading in 
the RLS algorithm decreases exponentially. This suggests defining a different 
augmented matrix, 

K 

(a,(K) = c pK-lcX(k)XH(k) + & 
k=l 

(7.178) 

To illustrate the behavior we use an algorithm that accomplishes (7.178)) 
but is not practical to implement in practice. 

We replace @(K) in (7.152) with 

*a(K) = @,(K - 1) + X(K)XH(K> + (1 - p)&, 

and write (7.156) as 

(7.179) 

P@) = jclP(K - 1) - p-lg(K)xH(K)P(K - 1). (7.180) 
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( > C 

Figure 7.22 MPDR-SMI and MPDR-RLS beamformers: SN’ = 10 dB, UI = 
0.29 and 0.45, INR = 20 dB, p = 0.99 and 0.999; SINR, versus K: (a) 
o,“/o; = -10 dB; (b) 0,2/a; = 0 dB; (c) a;/~; = 10 dB. 

Now define A(K) as 

A(K)=P@) [PI(K)+-& (7.181) 

Then, 

P(K) = PI - A(E 
- - p-l [I - A(K)] [I - g(K)XH(K)] P(K - 1), (7.182) 

with 

PWK) 
* = A(K - 1) 

[I - A(K)] [\̂ N(K - 1) - g(K)XH(K)iG(K - l)] . (7.183) 

The algorithm is not practical because the inverse in (7.181) is required at 
each iteration. However, it provides a performance reference. An alternative 
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Figure 7.23 MPDR-SMI and MPDR-RLS beamformers: UI = 0.29,0.45, 
INR = 20 dB, ,Q = 0.999, a,2/0; = 10 dB, SNR = 0, lo,20 dB; SINR, versus 
K . 

approach is to use a moving window of length l/ (1 - p). The moving window 
counterpart to (7.178) is easy to update12 (see Problem 7.4.24). 

In the GSC structure, we can utilize an approximate procedure. We 
develop it in Section 7.4.4. 

7.4.3 Recursive Implementation of LSE Beamformer 

Using a similar approach one can derive a recursive implementation of the 
LSE beamformer discussed in (7.149) and (7.150). The equations specifying 

%e(K) are 

%e(K) = *-1(K)@x,* (K) = P(K)d& (K) (7.184) 

and 
K 

ax&K) = c ,u”-“X(k)D*(k) 
k=l 

= X(K)D*(K) + /A&&K - 1). (7.185) 

12This alternative was suggested by P. Stoica (private communication). 
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The results in (7.169)-(7.172) still apply. Using (7.185) and (7.172) in (7.184) 
gives 

%e (K) = +,,(K - 1) + g(K) [D*(K) - x~(K)+Q~(K - l)] l (7.186) 

Now define 
e,(K) = D(K) - Gi&(K - 1)X(K). (7.187) 

The subscript p in e,(K) denotes prior. The quantity ep(K) is the error 
between the desired output D(K) and the beamformer output when the 
current input sample X(K) is applied to the prior weight vector iif&,(K - 1). 
The prior error can also be written using 

Y(K) = G&K - 1)X(K), (7.188) 

to provide a closed-loop implementation. Using (7.187) in (7.186) gives 

and 
Y(K) = G&(K)X(K). 

The algorithm can be summarized: 

1. Initialize the algorithm with 

- - 
1 

I 2’ 
0 

h 

w(o) 

VS - -- 

N 
7 

or a wq with a better sidelobe pattern. 

2. At each snapshot, K = 1,2, l l 0, compute 

/+P(K - 1)X(K) 
g(K) = I+ ,rlXH(K)P(K - 1)X(K)’ 

and 

P(K) = /x?P(K - 1) - p-‘g(K)XH(K)P(K - 1) 

3. Compute e,(K) using (7.187). 

4. Compute G&(K) using (7.189). 

(7.189) 

(7.190) 

(7.191) 

(7.192) 

(7.193) 

(7.194) 
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Figure 7.24 Implementation of LSE beamformer. 

5. Compute the output Y(K) using (7.190). 

Note that in the direct form implementation of the LSE beamformer, 
the desired signal D(k),k = 1,2, -0, K must be known at the receiving 
antenna. In a typical communications system implementation, the desired 

signal D (k) could be supplied by a training sequence transmitted at the 
beginning of a frame. We can then switch to a decision directed mode for 
continuing operation. 

Note that, in contrast to the MVDR and MPDR beamformers, the re- 
ceiver does not need to know the direction of arrival of the signal. Figure 
7.24 shows the implementation of the algorithm. 

In our discussion in the text, the emphasis is on MPDR and MVDR 
beamformers. When we implement these beamformers as generalized side- 
lobe cancellers (see Section 6.7.3 and Figure 6.46), the LSE beamformer is 

the adaptive element in the lower path and the desired signal is the out- 
put of the quiescent vector processor in the upper path. We discuss this 
implementation in detail in the next section. 
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(Iv-i&)x1 

Figure 7.25 Generalized sidelobe canceller . 

7.4.4 Generalized Sidelobe Canceller 

The generalized sidelobe canceller was shown in Figure 6.46 and is repeated 
in Figure 7.25 for convenience. 

In most applications we will implement w, using recursive LSE from 
Section 7.4.3 or an LMS algorithm that we will discuss in Section 7.7. The 
adaptive processor WE is a least squares estimator (Section 7.4.3), with 
Y,(lc) as the desired signal and Z(k), the output of the blocking matrix, as 
the input. 

From (7.138), 
K 

fPx(K) = c pK-lcX(k)XH(k). 
k=l 

(7.195) 

Then, 
K 

aa = &.A~-’ Z(k)ZH(k) = BH@,(K)B, 
k=l 

(7.196) 

and 
K 

@z&q = c pK-k Z(k)Y,*(k) = BH+,(K)w,. 
k=l 

(7,197) 

We define 
P,(K) = +,l(K). (7.198) 

For this case the RLS algorithm is adapted from (7.193)-(7.194) and (7.187)- 
(7.190): 

p-lP,(K - l)Z(K) 
gz(K)= l+p-lZH(K)Pz(K- l)Z(K) 

(7.199) 

P,(K) = p-lP,(K - 1) -p-'gZ(K)ZH(K)Pz(K- 1). (7.200) 
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e,(K) = Y,(K) - %,H(K - l)Z(K). 

cL(K> = ti,(K - 1) + g,(K)eG(K). 

The result in (7.202) can also be written as 

(7.201) 

(7.202) 

%IL(K) =iGa(K- 1) + gz(K) [Y,‘(K) - ZH(K)tiu(K - l)] , (7.203) 

or 

%(K> = G,(K - 1) + g,(K) [Y;(K) -- p;(K)] . 

The initial conditions are 

P,(O) = -$ [B"B]-~= --$I~,~~~~. 
0 0 

G,(O) = 0. 

(7.204) 

(7.205) 

(7.206) 

Note that we are operating on an 1v - MC vector which provides a com- 
putational advantage. 

In order to include fixed loading, note that 

g,(K) = PZ(K)Z(K)- (7.207) 

Then we can write 

%x(K) = &,(I( - 1) + Pz(K)Z(K)Y;(K) - Pz(K)Z(K)ZH(K)tia(K - 1). 

(7.208) 

At each iteration, there is a term of the form Z(K)ZH(K) to which a diagonal 
matrix can be added. The fixed diagonal loading RLS update becomes 

%2(K) = G,(K - 1) + PZ(K)Z(K)Y,*(K) - Pz(K) x 

[z(K)z~(K) + &I] ;t,(K - I). (7.209) 

This update equation can be written as 

%2(K) = i+,(K - 1) + g,(K)eg(K) - aiPz(K)tia(K - I), (7.210) 

or 
Ga(K) = [I - oZp,(~)] G,(K - 1) + g,(K)ei(K). (7.211) 

Note that this approach is ad hoc in that it does not actually add loading 
to the sample spectral matrix. 

We consider two examples to illustrate the performance. 



768 7.4 Recursive Least Squares (RLS) 

Example 7.4.2 (continuation, Example 7.4.1) 
Consider the same model as in Example 7.4.1. We repeat the simulation using the 

same data set and parameter values. We incorporate diagonal loading using (7.209). We 
also show the results using the diagonal loading technique in (7.179)-(7.183) (denoted by 
RLS, FLz). The results are shown in Figure 7.26. 

For p = 0.999, the (impractical) fixed loading scheme has the same performance as 
the diagonally loaded SMI algorithm. The GSC implementation in (7.211) is only slightly 
worse and is straightforward to realize. For p = 0.99, the results have the same behavior 
for K 5 100. They diverge for K > 100 because of the smaller p. 

Example 7.4.3 (continuation, Example 7.3.3) 
Consider a standard lo-element linear array. We use an LCMP beamformer with 

derivative constraints. Assuming the signal impinges from us = 0, 

c = [ 1 I i&(o) ; ii,(O) ] (7.212) 

and 
gH = [ 1 : 0 ; B,(O) ] . (7.213) 

We use a blocking matrix consisting of the first seven columns of orth [P&I. We 
implement the recursion given in (7.199)-( 7.206). 

There are two equal-power uncorrelated interferers impinging on the array from UI = 
0.29,0.45. We consider the following parameter values: 

(i) SNR = 10 dB 

(ii) INR = 20 dB 

(iii) a~/~~ = 10. 

The results are shown in Figure 7.27. We see that the SMI and RLS implementations have 
essentially the same performance. The ad hoc fixed loading technique works well in envi- 
ronments where the SNR < INR and LNR(&a~) is chosen properly. The disadvantage is 
that some prior knowledge of the environment is required to choose the appropriate value 
of a;. In the next section, we revisit the quadratic constraint approach in Section 6.10 
and derive a data-dependent variable loading algorithm. 

7.4.5 Quadratically Constrained RLS 

The RLS algorithm is implemented using a GSC configuration. A quadratic 
constraint is imposed. From (6.559) 

*a = [s, + PI]-1 pz, (7.214) 

and ,O is chosen so that 
-H- W,W,<Q. (7.215) 

We develop an approximate technique so that the constraint equation (6.564) 

does not have to be solved at each step. 
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Figure 7.26 MPDR-GSC beamformer using RLS algorithm: SNR = 10 dB, 
INR = 20 dB, uI = 0.29,0.45, $/at = 10 dB, 0:/o; = 10 dB; average 
SINR, versus K. (a) p = 0.999; (b) p = 0.99. 
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Number of snapshots (K) 

Figure 7.27 LCMP-GSC beamformer using RLS algorithm: SNR = 10 dB, 
INR = 20 dB, uI = 0.29,0.45, /A = 0.999, +; = 10 dB, o;/o; = 10 dB; 
average SINR, versus K. 

Rewrite (7.214) as 

WQ, = 
[ 
I (7.216) 

and recall that 

cl n S,lPz, - (7.217) 

which is the optimum solution in the absence of a quadratic constraint (p = 

0) . 
Then 

Wa = [I + ps,‘]-‘Gir,. (7.218) 

Now expand the [I + PS,‘] -‘t erm in a Taylor series about ,0 =O. The terms 
are 

f(P) = [I + Ps;‘]-’ ) (7.219) 

f (0) = I, (7.220) 

and 

f’(P) - -- [I + ps,l] -2 s,l, (7.221) 
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/ 
f (0) 

- -- - s l 
z l 

Retaining the first two terms, 

[I + ps,l] -l N I - /!?s,l. 

Using (7.223) in (7.218) gives 

w, N [I - ps,‘] 6$, = ii& - ps,liG,. 

Defining 
v n S,%ca, - 

(7.224) becomes 

Wa =Gir,-/3V. 

Using (7.226) in the constraint equation (7.215) gives 

-H- 
W, Wa = (i%a - @V) 

H 
(sa - pv) = a 

2 
j 

which is a quadratic equation in p2, 

Define 
a = VQ, 

b - -- 2Re(vHGa) = -2iG,HS,‘Ga, 

and 
C AHA 

= W, Wa - Cl! 
2 

. 

Then, using the equality sign in (7.228), 

P 
-b&d- - - . 

2a 

(7.222) 

(7.223) 

(7.224) 

(7.225) 

(7.226) 

(7.227) 

(7.228) 

(7.229) 

(7.230) 

(7.231) 

(7.232) 

we observe the following characteristics: 

(i) If Gftia < CY2, no diagonal loading is needed and we set ,0 = 0. There- 
fore, c > 0 for the cases where a non-zero p is needed. 

(ii) b < 0. - 

(iii) a > 0. 

(iv) (b2 - 4ac) may be positive or negative. 
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(v) If b2 - 4ac > 0, there are two real positive solutions. 

(vi) If b2 - 4ac < 0, there are two complex conjugate solutions whose real 
part (-b/2a) is positive. 

If condition (v) applies, choose the smallest value. This choice causes *a to 
be closest to Ga. The resulting solution meets the constraint. 

If condition (vi) applies, choose the real part, 

- 
P 

b - - . 
2a 

(7.233) 

In this case, the solution does not meet the constraint but, for a vector of 
the form in (7.226), it is the closest. It is convenient to write p as 

P 
-b - Re(dm) - - 

2a 
7 (7.234) 

which applies to both conditions (v) and (vi). 
We refer to this algorithm as the variable loading algorithm. The next 

step is to apply the variable loading algorithm at each step in the RLS 
iteration. The basic RLS algorithm is given by (7.199)-(7.206). When the 
quadratic constraint is imposed, the output of (7.204) is denoted by \jSla(K) 
because we try to force it to satisfy the constraint in (7.215). 

The steps in the variable loading algorithm can be summarized: 

1. Compute 

Wa(K) = \iCTa(K - 1) + g,(K) [Y;(K) - zH(K)%(K - l)] . (7.235) 

2. Test the norm of G,(K). If /[ T,&(K) (I21 a2, then 

*a(K) = G&(K). (7.236) 

3. If 11 Wa(K) iI2 > cy2, define 

vaO = Pz(K)Ga(K), 

a = II Va(K> II27 
b - - -2Re{V,H(K)w,(K)} 1 

c = 11 Wa(K> II2 -Q!2~ 

-b- Re 
1 

@TG 
P(K) = 

> 
2a 

. 

(7.237) 

(7.238) 

(7.239) 

(7.240) 

(7.241) 

(7.242) 
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Then, 

G,(K) = Wa(K) - /?(K)v,(K). (7.243) 

Note that’ ib,(K - 1) is used on the right side of (7.235). 

A more detailed discussion on the RLS-VL algorithm is given in Tian et 

al. [TBVOl]. A simpler technique would be to simply scale Wa, 

h 

Wa 
= Wa/IWa 

(7.244) 

This technique was suggested by Cox et al. [CZOS7] in conjunction with 
the LMS algorithm. Note that Wa is in a space that is orthogonal to v,, so 

scaling %a does not affect the distortionless constraint. In Section 7.7, we 
find it to be effective for that application. It does not appear to be effective 
with the RLS algorithm. 

7.4.6 Conjugate Symmetric Beamformers 

All of the discussion to this point applied to arbitrary arrays, although we 
frequently used linear arrays as examples. Recall that, whenever the array 
is symmetric about the origin, the array manifold vectors are conjugate 
symmetric and S, (and Sx) are Hermitian persymmetric. In Section 7.2, 

we observed that the constrained ML estimate of S, was obtained by FB 
averaging of the data. 

s x = ; [c, + JC:J] 

- - & 5 [X(k)XH(k) + JX*(Ic)XT(k)J] . 
k=l 

(7.245) 

In our discussion of SMI algorithms in Section 7.3.1 (e.g., Example 7.3.2 

and Figure 7.5) there was significant improvement obtained by using FB 
averaging. We demonstrate a similar improvement for RLS beamformers 
and show how to implement the algorithm. 

Note that “forward-backward” was used to be consistent with the tempo- 
ral literature. We are really averaging across the array in opposite directions. 
The corresponding weighted average is 

6(K) 
1 -- - 
2 

K 

x P K-k [X(k)XH(k) + JX*(k)XT(lc)J] . 
k=l 

(7.246) 
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Historically, conjugate symmetry was first utilized in the parameter es- 
timation problem (e.g., Evans et al. [EJS82]). We discuss this application 
in Chapters 8 and 9. The application to adaptive beamformers is due to 

Huarng and Yeh [HY91], and our discussion follows that reference. 

Consider the direct form implementation of the MPDR beamformer using 
(7.245). Then, 

\;iTmp& = RK1vs, (7.247) 

and the weight vector ti,p& is conjugate symmetric. 
We manipulate the data into a form where real computlations can be 

utilized. We use the unitary transformation defined in (7.58) and (7.59) to 
accomplish this goal. Q is defined as 

1 

-[ 
d 

I 
J 

. 
JI . - JJ 

[ 

I 0 
A- OT fi 
Jz 

J 0 

for even N, 

. 
JI 
OT 

. - JJ 1 
(7.248) 

, for odd N. 

Note that the I and J matrices have dimension N/2 x N/2. Q has two 
important features, 

Q H - Q-1 - 7 (7.249) 

and 

Q * - - JQ . (7.250) 

The transformed quantities are given by 

- 
vs = Q H 

VS, (7.251) 

6 = QHibQ, (7.252) 

H- 1 
c = Q w = ii&- V,, (7.253) 

(7.254) 

One can show easily that V, is a real vector and G is a real symmet- 
ric matrix. Therefore (7.253) can be solved using real computation. The 
complex weight vector % is given by 

iG=QW. (7.255) 
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The weight vector W is used to process the input data. We now discuss 
how to compute 6-l iteratively using real computation. The approach is 

analogous to t’he iterative procedure in Section 7.3. We can write g(K) at 
the Kth snapshot as 

&(K) = pib(K - 1) + ;QH [ X(K)XH(K) 

+ JX*(K)XT(K)J] Q. (7.256) 

There are various ways to update C1 (K) from V(K - 1). We first 

manipulat~e &(K) into a form that will only utilize real calculation. We 
rewrite the tern1 in the brackets of (7.256) as 

X(K)X”(K) + JX*(K)XT(K)J = ; { Pw~ + Jx*wIl 
l [X(K) + Jx*(K)lH 
+ [-jX(K) + jJX*(K)] 

l [+X(K) + jJX*(K)iH} ,  

(7.257) 

and define 

Xl(K) = iQH [X(K) + JX*(K)] = Re [&Hx(K)] , 

and 

X2(K) = iQH[-jX(K)+JJX*(K)]= Im[&H~(rl)]. 

(7.258) 

(7.259) 

Now (7.256) can be written as 

G(K) = ,G(K - 1) + [x~(K)xT(K) + x~(K)x~(K)] . (7.260) 

We can now update F1 (K) using any convenient recursive formula. A 
straightforward approach is to do two rank-one updates using the matrix 
inversion lemma. We can modify the recursion in (7.153)-(7.159). The first 

update is 

&(K)=/,d?(K- 1)- p-'&(K)xT(K)P(K- l), 

gl(q = 
p+(K - 1)x1(K) 

l+ p-%y(K)P(K- l)&(K)’ 

(7.261) 

(7.262) 
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) 
bQHs + 

RECURSION 

ALGORITHM 

Figure 7.28 Recursive algorithm with FB averaging. 

and 

ml(K) = ‘lcK) 
pii(K - 1) 

[I - &(K)Xy(K)] w(K - 1). 

The second update is 

i?(K) = &(K) - g(K)x;(K)&(K), 

iz(Eo = 

and 

m(K) = - A(K) 
fb(K - 1) 

[I - g(K)X;(K)] WI(K). 

After the recursion in (7.261)-(7.266) at a particular K, we find 

(7.266) 

%-npdr(K) = Q*(K), (7.267) 

and the output is 

Y(K) = w:pd,(K)X(K)a (7.268) 

The beamformer is shown in Figure 7.28. 

(7.263) 

(7.264) 

(7.265) 

We consider a simple example to indicate the performance improvement 
that can be achieved. 
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Figure 7.29 MPDR beamformer using RLS algorithm with FB averaging: 

IUS =O,SNR = 10 dB, uI = 0.29, 0.45, INR = 20 dB each, ~Z/G; = 10 dB, 
,Q = 0.999,200 trials; average SINR, versus K. 

Example 7.4.4 (continuation, Example 7.4.1) 
Consider a standard lo-element linear array. We use the same signal and interference 

model as in Example 7.4.1. We implement an MPDR beamformer using the RLS algorithm 
with FB averaging. The results are shown in Figure 7.29. 

We see that RLS-FB with K snapshots has the same performance as RLS 
with 2.K snapshots. The advantage is somewhat greater at small values of 
K . 

7.4.7 Summary 

In this section, we have developed the least squares estimation version of the 
adaptive beamformer problem. We then developed a recursive least squares 

implementation of the beamformer and compared its performance to the 
SMI beamformers in Section 7.3. We found that by the use of appropriate 
diagonal loading, the RLS and SMI beamformers have comparable perfor- 
mance. 

We developed the generalized sidelobe canceller implementation and com- 
pared the RLS implementation to the SMI implementation. 

We considered the case of conjugate symmetric arrays and developed an 
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algorithm that utilized real arithmetic. The result provided a computational 
saving and improved performance. 

In the next section, we develop more efficient recursive algorithms. 

7.5 Efficient Recursive Implementation A 

7.5.1 Introduction 

In Section 7.4.2, we developed a recursive implementation c 

gorithms 

the sample 
matrix inversion algorithm. The implementation corresponded to a rank-one 
updating of +-l(K). In this section, we focus on algorithms that operate on 

the exponentially weighted data matrix A,(K), which is a K x N complex 
matrix, 

A/-L(K) i I.LA(K), (7.269) 

where 

and I3 

p(K) % diag [ $? p? . . . 11 7 (7.270) 
L 

A(K) b 

From (7.138), we observe that 

x*(1> 
XT 0 . . 
X*(K) 

(7.271) 

a*(K) = A;(K)A,(K). (7.272) 

The development of efficient numerically stable recursive algorithms has 
received significant attention over the last several decades because of their 
widespread application in the areas of adaptive filtering, adaptive beamform- 

ing, and system identification. 
The topic is treated extensively in most textbooks on adaptive filters; 

e.g., Haykin ([Haygl], [Hay96]), Proakis et al. [PRLN92], Widrow and Sterns 
[WS85], Orfandis [Orf88], Kalouptsidis and Theodoridis [KT93], Honig and 
Messerschmitt [HM84], Alexander [Ale86], and Treichler et al. [TJL87]. 

There are numerous papers dealing with specific algorithms that we will 
indicate as we develop the various algorithms. Various other papers (e.g., 

13The A(K) data matrix is related to the data matrix R(K) defined in (7.4) by AT(K) = 
a%. The A(K) notation is more commonly used in the QR decomposition (QRD) 
literature. 
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Yuen [YueSl] and Sayed and Kailath [SK94]) show how the various algo- 
rithms are related. Godara [God741 h s owed the relationship to Kalman 

filtering. 
As we discuss the various algorithms, it is useful to remember that, if we 

had perfect numerical precision and no perturbations in the model, then the 
performance of the various implementations would be the same. The issues 

of interest are: 

(i) Numerical stability; 

(ii) Computational complexity; 

(iii) Capability of parallel computation to improve speed and allow real- 
time implementation. 

In Section 7.5.2, we develop a recursive algorithm that is referred to as 

the QR decomposition (QRD) or square-root algorithm. It provides an 
efficient implementation for both LCMP and LSE narrowband beamformers. 
In the text, the LSE version is developed. It can be used in the lower branch 
of the GSC beamformer to implement LCMP beamformers. 

7.5.2 QR Decomposition (QRD) 

In this section, we show how the QR decomposition in Section A.6 can be 
utilized in a recursive algorithm. Our discussion follows McWhirter and 

Prouder’s chapter in [KT93] (see Chapter 7, pp. 260-321). We should 
note that the authors of that chapter developed many of the original results 

in the application of QRD techniques to adaptive beamforming and the 
implement at ion of those techniques. 

We formulate the problem as a least squares estimation problem (see 
Section 7.4.1). Using the transpose of (7.134), we can write the output of 
the beamformer at time k as14 

Y(k) = X’(k)w*(K), (7.273) 

and, from (7.147), the error is 

e(k) = D(k) - XT(k)w*(K), k = 1, l *. , K. (7.274) 

As in (7.148), we minimize a weighted residual error 

&drc) = ll%FN2 7 (7.275) 

‘“We use this form rather than wHX(K) f  or convenience in presenting the final 
processor. 
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where 
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e,(K) = p(K) [ e(1) e(2) 9.. e(K) IT. 

The error vector in (7.276) can be written as 

e,(K) = d,(K) - Ap(Eow*(Eo, 

(7.276) 

(7.277) 

and 

A,(Eo = PW) 

d,(K) = P(K) 

XT (1) 
XT (21 . . 
XT(K) 

D(l) 
DC4 

. 

. 

1 
(7.278) 

. (7.279) 

The subscript LL$’ denotes the inclusion of the exponential weighting. 
The solution to the minimization problem was given in (7.184), which 

can be rewritten as 
@*(K)+,*,,(K) = G&(K). (7.280) 

Using (7.272) and (7.4) in (7.280) gives 

We now develop an alternative approach to the recursion algorithm in 
Section 7.4 based on the QRD, which has good numerical properties. As 
discussed in Section A.6, we can find a K x K unitary matrix, Q(K) such 
that 

Q(K)A/.i(Eo = RbK’ 7 [- 1 (7.282) 

where R(K) is an N x N upper triangular matrix and 0 is a (K - N) x N 
matrix of zeros. Because Q(K) is unitary, R(K) is just the Cholesky factor 
of the data covariance matrix +(K). Using (7.249), (7.281) can be written 
as 

~~(fo~Jf~~~oi;~~ (Eo = A;(K)QHQc~(K). 
Substituting (7.282) into (7.283) gives 

(7.283) 

[ “b”‘]” [ ‘LK)]B5,(K)= [ ‘LK)lHQdP(K). (7.284) 
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The K x 1 vector, Qd,(K) can be partitioned as 

Qd,(E() = $; 7 
[ I 

(7.285) 

where p(K) is an N x 1 vector. Then, (7.284) reduces to 

fi(K)*;se(Io = P(Eo7 (7.286) 

which is straightforward to solve because of the upper triangular structure 
of R(K). The minimum weighted error can be written as 

50(K) = llv(KN2* (7.287) 

In order to use (7.286), the QRD in (7.282) must be implemented. 
As discussed in Section A.6, the triangularization can be accomplished 

with either a Givens rotation (see Section A.6.2) or a Householder trans- 
formation (see Section A.6.3). We shall find that the Givens rotation is 
particularly suited to adaptive beamforming because it leads to an efficient 
algorithm for recursive updating. 

To develop the recursive algorithm, we assume that A,(K - 1) has al- 
ready been reduced to a triangular form by the unitary transformation, 

Q(K - l)A,(K - 1) = [“‘K~“l* 
First, define a K x K unitary matrix, 

Q(K-l)= 
QW- 1) 0 1 ()T 1 ’ 

and write A,(K) as, 

A,(Eo = 
$A,(K - 1) 1 XT(K) ’ 

Then, 

Q(K - l)A,(K) = Q(K - 1) 1 
p&(K - 1) 

- - [ 1 0 . 

XT(K) 

(7.288) 

(7.289) 

(7.290) 

(7.291) 
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The required triangularization can be completed by using a sequence of com- 
plex Givens rotations to eliminate XT(K). We demonstrate the procedure 
with a simple example. 

Example 7.5.1 
We assume N = 3 and K = 5. Then, the right side of (7.291) can be written as 

The ?ii are real and the Fij (i # j) and the xi are complex. The first Givens rotation uses 
the first and last rows to eliminate xl (5). Thus, 

I 
Cl OT 6 

1 
Gl = 0 1 0 

1 

-81 OT Cl 

where 
lc112 + JSlJ 

2 = 1, 

and cl can be real without loss of generality. 

i, 
c1 = &&) 

and 

(7.293) 

(7.294) 

(7.295) 

(7.296) 

where we have suppressed the K = 5 argument. Multiplying Ml by G1 and using (7.295) 
and (7.296) gives 

1 
Cl/.LGll + $x1 I c&12 + s;x:! 

0 i 

’ Cl&l3 + s;x3 

p r22 j  
+ + 

p r23 

GIMl = 0 i 0 I p4 733 
I I 

0 I 0 I 0 

i 
I 

0 
+- I 

-SIP r12 + ~1x2 1 -s1&53 + ~1x3 

61 62 63 

0 /L+F22 /L+T^23 

0 - 0 - /A+ T”33 

0 0 0 
------------_---_-___ 

(7.297) 

Note that the first element in the bottom row is eliminated and the elements in both the 
first row and the last row are changed. 
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The second Givens rotation uses the second row and the last row to eliminate x’,: 

G2 = 

1 I OT 1 ----c------------------- 
I 

010 c2 0 100 0 s; (7.298) 

1 0 0 1 0 I 
1 -s2 0 0 c2 

Choosing c2 and s2 in a manner analogous to (7.295) and (7.296), we obtain 

Note that the first row is unchanged and the second and bottom rows are changed. Simi- 
larly, 

G3 = 1 0 1 1 -s3 c3 0 0 0 0 1 3; c3 0 I 7 (7.300) 

and 

G3G2G1M1 = WY [ 1 0 ’ 
(7.301) 

which is the desired result. Note that the G3 operation only changes the third row and 
the bottom row. 

In general, we can write 

Q(K) = @K)Q(K- 1>, (7.302) 

where 

@K)=GN--GzG~, (7.303) 

and 

(7.304) 

which is the desired result. Note that each Givens rotation only changes the 
row corresponding to its subscript and the bottom row. 
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The term in (7.285) must also be computed recursively. The same Q(K) 

can be used to perform the recursion on p(K). At the (K - 1) iteration, 

Q(K - l)d,(K - 1) = 
[ 1 

;;; - ;; 1 - (7.305) 

where p(K - 1) is Iv x 1 and v(K - 1) is (K - 1 - IV) x 1. The matrix 

Q(K - 1) is defined in (7.289). Write 

L 
Q(K - l)d,(K - 1) = Q(K - 1) P2d;(&,- ‘) 1 l 

(7.306) 

Substituting (7.289) into (7.306) gives 

Q(K-l)d,(K-1) = I[ $d,(K - 1) 

D(K) I 

$p(K - 1) 
- - [ 1 $v(K - 1) l 

(7.307) 

D(K) 

Now apply Q(K) from (7.303)) 

Multiplication by G1 updates [p(K)], and changes the last element in the 

overall vector. Multiplication by G2 updates [p(K)], and changes the last 
element in the overall vector. Continuing, multiplication by GN updates 
[P(K)]~ and generates e(K) ( w h ose significance is discussed shortly). The 
other elements of v(K) do not need to be computed. 

This discussion shows that by applying Q(K) recursively to AP( K) and 

d,(K), the R(K) and p(K) required to solve (7.286) can be generated. 

However, actually using Q(K) is inefficient. First, observe that the right 

side of (7.291) is already available from the (K - 1) step, so the Q( K - 
1) multiplication is not necessary. Now, examine the Givens rotation in 

Example 7.5.1: 

(i) The G1 operation consists of computing cl and sl and then computing 
three new elements in the top row and two new elements in the bottom 
row. The left element in the bottom row becomes zero, and all other 
elements are unchanged. 
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(ii) The G2 operation consists of computing c2 and s2 and then computing 

two new elements in the second row and one new element in the bottom 

(iii) The G3 operation consists of computing c3 and s3 and then computing 
one new element in the third row. 

The formulas for each of these calculations are given in Section A.6.3. These 
formulas are implemented instead of the complete matrix multiplication. A 
similar discussion applies to p(K) updates. 

At this point, ;tl,,(K) can be obtained by solving (7.286). The solution is 

straightforward because of the upper triangular structure of R,(K). However, 

J(K) can be generated without finding an explicit expression for C&(K). 
The error at time K is 

e(K) = D(K) - XT(K)iCl*,,(K). (7.309) 

Write Q(K) as a partitioned K x K matrix 

[ 

w-q oT qw 

Q(K) 
- - 0 I 0 1 7 

aT(K) OT G(K) 
(7.310) 

where X(K) is N x N, q(K) and a(K) are N x 1, and a! 
The first step is to find C(K). 

From (7.303)) 

N 

) is a scalar. 

Q(K) = pi, 
i=l 

(7.311) 

where the Gi are the Givens rotation matrices. They have two elements on 
the diagonal equal to ci, and the remaining elements are one. They have only 

two non-zero off-diagonal elements sr and -si. The model from Examlole 1 

7.5.1 illustrates their structure. 

Example 7.5.2 (continuation) 

Q(5) - - 
10 0 00 
010 00 
0 0 c3 0 s; 

00 0 10 
0 0 -s3 0 c3 

1 0 0 0 0 
0 c2 0 0 s; 

0 0 10 0 
0 0 0 1 0 
0 -s2 0 0 c2 

Cl IO 0 0;s; ------+----------c---- 
I 1 
I 
I I I 

0: I :o . I I 
I I  

------+,-----,,,,L,,-- 
I 

-s1 i 0 0 0 I Cl 1 

(7.312) 
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Thus, 
h(5) = ClC2C3. (7.313) 

In general, 
N 

C(K) = nci, (7.314) 
i=l 

where the ci are the cosine factors in the Givens rotations. 

Next, multiply both sides of (7.304) by QH(K) and use the unitary 
character of Q(K) to obtain 

XT(K) = @(K@(K). (7.315) 

Repeating the process with (7.308) gives 

D(K) = qH(K)p(K) + h(K)e”(K). (7.316) 

Substituting (7.315) and (7.316) into (7.309) gives 

e(K) = -q”(K)R(K)w*(K) + qH(K)p(K) + al(K (7.317) 

However, (7.286) implies that the first two terms on the right side of (7.317) 
sum to zero. Thus, 

e(K) = &(K)e”(K), (7.318) 

and 

B(K) = D(K) -e(K). (7.319) 

The significance of the result in (7.318) is that the quantities G(K) and 
E(K) are generated by the recursive algorithm and we do not need to find 

%Qq* 
The last step in the development is to show how the Givens rotation 

algorithm may be implemented in parallel with a triangular processor array. 

The triangular processor array is shown in Figure 7.30, for the case of 

N = 4. 

The input snapshots XT(K) and the desired signal D(K) enter the array 
from the top. Each of the internal cells is performing a part of Givens 
rotation as shown in Figure 7.31 and Table 7.2. 

At time (K - l), the left boundary cells and the internal cells have the 
elements of g(K - 1) stored. The right boundary cells have the elements of 
p(K) stored. 



QR Decornposit%on (QRD) 787 

X3, x32 X33 X34 d3 

X2, X22 X23 '24 d 2 

w- I2 w- I3 kc + I4 PI 
c 

I I I 

Y-9 
s 44 P4 

Figure 7.30 Triangular processor array. 

(CT 4 * f ’ (v) 

li OUl 

Residual 

Figure 7.31 Processing elements for triangular QRD array: internal cells and 
right boundary cells. 
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Figure 7.32 Left boundary cells. 

Table 7.2 Functions of Internal and Right Boundary Cells 

Uout = -S~/.L+i: + ClUin 

r new = C+ r + S;Uin 
+” 

At time K, the new snapshot vector XT(K) and D(K) are sent to the 
cells in the first row. The first row of cells is performing the GlMl rotation 
of (7.297) ( as adapted for N = 4). Note that each cell in the row is using the 
same cl and sr values. These values are computed by the left boundary cell 
using (7.295) and (7.296) ( we will discuss the left boundary cell in the next 
paragraph). As indicated in (7.297), the data output of the left boundary 
cell is zero. The second row of cells carries out the Gz rotation in (7.298). 
The third and fourth rows complete the rotation. The right boundary cell 
is using the same rotation with an input of D(K). 

The functions in the left boundary cell are described in Figure 7.32 and 
Table 7.3. 

The output of the E cell is E(K) from (7.308). Then b(K) is obtained 
from (7.319). 

We initialize the matrix R(0) equal to zero. Therefore all of the ? in the 
boundary cells are real and we only perform real arithmetic. 

We can improve on the efficiency of the Givens QRD algorithm by de- 
vising a version that does not require the square-root operation. Gentleman 
[Gen73] and Hammarling [Ham741 have developed efficient algorithms using 
a modified Givens rotation that does not require square-root operations. The 
algorithm is discussed in Section 7.2.4 of McWhirter and Prouder’s chapter 
in [KT93] and in Section 7.3.2 of [PRLN92]. The reader is referred to these 
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references for a discussion of the square-root-free Givens algorithm. 

Table 7.3 Description of Element Functions in Figure 7.32 

If Uin = 0 

C =1 

s=o 

Qout = Ck!in 

1, T 
mew = p’rold 

If Uin # 0 

aout = CCl!in 

mew = 

In this section, we have developed the QRD implementation of the least 
squares estimation problem. It can be used in the lower branch of a GSC 
beamformer. A direct form LCMP or LCMV beamformer can also be im- 
plemented using a QRD. The MVDR version is derived in McWhirter and 
Shepherd [MS891 (see pp. 619-621 of Haykin [Hay961 for a discussion of 
MVDR beamformer). 

The QRD technique is important because it is numerically stable and 
can be implemented in triangular processor arrays. A disadvantage is that 
it is not clear how to efficiently incorporate diagonal loading. 

7.6 Gradient Algorithms 

7.6.1 Introduction 

In Sections 7.6 and 7.7, we discuss a group of algorithms that rely on the 
quadratic characteristic of the error surface and utilize gradient techniques to 
find the o ptimum weight vector. In Section 7.6, we assume that the ensemble 
statistics are known. We can use deterministic gradient techniques to find 

the optimum weight vector. In Section 7.7, we consider stochastic gradient 
algorithms, in which the statistics must be estimated from the 

The two deterministic gradient techniques that are most 
data. 
widely used 

are the Newton algorithm (and various quasi-Newton algorithms) and the 
steepest descent algorithm. These techniques are discussed in a number of 
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texts dealing with classical optimization theory, as well as books on adaptive 
filtering (e.g., Widrow and Stearns [WS85] and Haykin [Hay96]). 

We will discuss the Newton algorithm in Section 8.6 in the context of 
parameter estimation. In Section 7.6, we only consider the steepest descent 
method. Our motivation is that the stochastic version of the steepest descent 
algorithm is the least-mean-square (LMS) algorithm, which is widely used 
in practice. 

The major advantage of steepest descent and LMS algorithms is their 
computational simplicity, which is O(N) in the narrowband model, where 
N is the number of sensors. For broadband processors, the complexity is 
O(NM), where 111 is the number of discrete frequencies or taps that are 
utilized. Their major disadvantage is that their rate of convergence depends 
on the eigenvalue spread in S, and may be slow in a multiple interference 
environment. 

The LMS algorithms are due to Widrow et al. [WMGGG’I]. Widrow 
references earlier papers by Shor [Sho66] and Mermoz [Mer65]. In addi- 
tion to adaptive antennas, the LMS algorithm has been applied in a num- 
ber of other areas including adaptive equalization, adaptive deconvolution, 
adaptive noise cancelling, and adaptive line enhancement (e.g., Widrow and 
Stearns [WS85] and Haykin [Hay96]). 

At the same time, Howells and Applebaum were developing narrowband 
adaptive antennas that were equivalent to the LMS narrowband arrays, but 
their work was not publicized to the same extent (e.g., [App66], [App76], 
and [How76]). 

In Section 7.6.2, we develop deterministic gradient algorithms for the 
MMSE beamformer using the method of steepest descent. In Section 7.6.3, 
we develop the steepest descent version of the LCMP beamformer. In Section 
7.6.4, we summarize our results. 

In Section 7.7, we develop various versions of the LMS algorithm, which 
is a stochastic gradient algorithm. For notational simplicity, Sections 7.6 
to 7.7 consider narrowband arrays. In Section 7.11, we show how the LMS 
algorithm is applied to broadband arrays. 

Although we do not discuss it in detail, we should note that if we uti- 
lized a Newton-type algorithm for the deterministic gradient algorithm, the 
stochastic version is called the LMS-Newton algorithm (e.g., Glentis et al. 
[GBT99] or Diniz et al. [DCA95]). Th e most common version of this algo- 
rithm is identical to the RLS algorithm in Section 7.4. 
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7.6.2 Steepest Descent: MMSE Beamformers 

The simplest way to motivate the stochastic gradient algorithms that we uti- 
lize in the next section is to first consider deterministic gradient algorithms. 

These deterministic gradient algorithms are discussed in most books or 
tutorial articles on adaptive filtering or beamforming (e.g., Widrow and 
Stearns [WS85], Chapter 8 of [Hay96], Monzingo and Miller [MM80], Comp- 
ton [Com88], Proakis et al. [PRLN92]). 

We consider two algorithms. In Section 7.6.2, we consider the MMSE 
beamformer and develop a steepest descent algorithm to find GO. These re- 

sults apply to LCMP beamformers if we use the generalized sidelobe canceller 
implementation of Figure 6.46 and can be adapted easily to accomodate 
quadratic constraints. In Section 7.6.3, we consider a direct form implemen- 

tation of the LCMP beamformer and derive a steepest descent algorithm to 
find tilcmp. 

From Section 6.2, the MSE is15 

a > W = E (D-wHX)(D*- 
[ 

H x w,] 
2 - - Od - wHp - pHw + WHSxW, (7.320) 

where 

p e E[XD*] = &d*. 

In the discussion in this section, we assume p is known. 
The gradient with respect to wH is 

(7.321 

P ,H = -p + s,w. (7.322 

Setting the gradient equal to zero gives the familiar equation for the 

Wiener-Hopf beamformer, 
sxwo = p. (7.323) 

The resulting MMSE is 

2 
0 = ad - w,Hsxw, = a; - pHwo. (7.324) 

Instead of solving (7.323) directly by inverting S,, we solve it by a gradi- 
ent search technique. The error surface is quadratic so the search procedure 
should converge to the unique minimum < point. 

We should observe that there are other search techniques, such as the 

Newton or quasi-Newton algorithm for minimizing t(w). We use the steepest 

150ur discussion is similar to that in [WS85] and Haykin [Hay96]. 
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descent technique because of its computational simplicity. The cost will be 
slow convergence. 

We define 

w(K) = w(K - 1) + Q! (-V&-I), (7.325) 

where Q! is a real parameter, which we refer to as the step size parameter. 
In most cases, we use a variable step size parameter a(K). Using (7.322) in 
(7.325) gives 

w(K) =w(K-l)+ai[p-S,w(K-l)], K=1,2,-0.. (7.326) 

In order to examine its behavior, it is convenient to define the weight- 
error vector, we(K), 

we(K) : 

Using (7.323) and (7.327) in (7.326) 

we(K) = (I- 

The next step is to rotate (7.328) 
Using (5.237), we write 

S X- 

Substituting (7.329) in (7.328)) 
unitary nature of U, gives 

w(K) - wO. (7.327) 

gives 

as,) we(K - 1). (7.328) 

into an orthonormal coordinate system. 

UAUH. (7.329) 

multiplying by UH, and utilizing the 

UNw,(K) = (I - aA> UHwe(K - 1). (7.330) 

We now definer6 

v(K) 5 UHw,(K). 

Using (7.331) in (7.330) gives 

v(K) = (I - cxn>v(K - 1) 

Assuming w(0) = 0, then 

vo = -uHw,. 

(7.331) 

(7.332) 

(7.333) 

The coefficient of v(K - 1) in (7.332) is diagonal so the components of v(K) 
can be treated independently, 

v,(K)=(l-c&)v,(K-l), n=l,2,ae*,N. (7.334) 

I’Note that v(K) is not related to the array manifold vector. 
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The solution to (7.334) is 

vn(K) = (l--d~,)~v~(O), n= 1,2,9m*,N. (7.335) 

All of the eigenvalues are real and positive, so vn(K) is a geometric series. 
In order for the sequence to converge, we require 

11 - c&I < 1, n = 1,2,***, N, (7.336) 

which implies 

2 
O<a<r, 

max 
(7.337) 

where Xmax is the maximum eigenvalue of S,. The condition in (7.337) is 
necessary and sufficient. 

We can fit a continuous envelope to the geometric series (e.g., p. 347 of 

1 
l-aX,=exp -- , ( > 52 

where Tn is the time constant, 

-1 
Tn = 

ln(1 - Ckxn) 

or, for very small step sizes, 

(7.338) 

(7.339) 

(7.340) 

The transient behavior of the weight vector follows easily. Pre-multiplying 
(7.331) by U, using the unitary nature of U, and adding w(O), we obtain 

w(K) = w, + Uv(K). (7.341) 

The beam pattern at iteration K can be written as 

Bd+) ’ WH(K)Va(@) 

= WrVa($) + VH(K)UHVa(+)7 (7.342) 

where va(+) is the array manifold vector. Using (7.335), we can write (7.342) 

a% 
N 

BK(@) = Bo(@) + x Vn,(O) (1 - aXn)K Beig,n(+), (7.343) 
n=l 
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where 

&iy,n(+) = *,Hva(+), n = 1,2, l .  l ,  N, (7.344) 

is the r2th eigenbeam. The steady state solution can also be written as a 
sum of eigenbeams. Replacing S, with its eigenvector expansion in (7.329) 
gives 

Thus, 

(7.345) 

(7.346) 

The size of Q. will be limited by the largest eigenvalue. The corresponding 
eigenbeam will converge with a time constant c11X,,~. However the eigen- 
beam corresponding to the smallest eigenvalue converges with a time con- 
stant Of Q!Xmin. If Xmaz/Xmin is large, then the convergence time to the 
optimum pattern may be unacceptably long. 

All of the discussion up to (7.340) is applicable to an arbitrary MMSE 
filtering problem. Before proceeding, it is important to show how we use 
steepest descent for beamforming. We first consider a representative example 
and then generalize the results. 

Example 7.6.1 
Consider an N-element array. The desired signal has power ai and arrives along a 

plane wave from vs. There is a single plane-wave interferer arriving along VI with power 
a;. There is additive white noise with variance a$. 

Therefore, the input correlation matrix is 

s, = &v~ + &Ivy +&I. (7.347) 

The input is, 
X(k) = G'(k) + m%(k) + N(k), (7.348) 

because the desired s ignal is uncorrelated with the inter 
We first expand S, in an eigenvector expansion. 

p% xd* = E[X(k)F*(k)] = v,a,2, (7.349) 

fering signal and the additive noise. 

The first two eigenvectors are linear combinations of vs and VI. The remaining eigenvectors 
are the noise eigenvectors and are orthogonal to 4er and a2 and, therefore, vs and VI. We 
can rewrite (7.345) as 

w(-) = s,lp. (7.351) 
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Substituting (7.349) and the inverse of (7.350) into (7.351) gives 

CT2 S 
w()=- 1 

Xl * P 
H CT2 
lb + > p2 (Q%)) (7.352) 

where we have used the orthogonality of a,, n = 3,. . . , N and vs 
then, using (7.352) in (7.333) gives, 

v(0) = --UH 
[ 
$* (a? H 

> 

CT2 
1 lb + p-2 (*z”vs) 

and 

vn (0) = 0, n = 3, l l l , N. (7.356) 

Thus, there are two natural modes in the steepest descent algorithm, and the algorithm 
behavior can be studied in a 2-D space (the signal-plus-interference subspace). 

Note that the noise power enters into the beamformer through X1 and X2, 

. Assuming w(0) = 0, 

(7.353) 

(7.354) 

(7.355) 

Xl =x’, +a;, (7.357) 

x2 = X’,+&, (7.358) 

where X’, and A; are the eigenvalues due to the signal and interference. Therefore the 
eigenvalue behavior will be a function of both the signal and interference characteristics 
(geometry and power levels) and the white noise level. 

A more realistic initial condition is to assume 

w(o) 

VS - 
- -. 

N 
(7.359) 

This weighting corresponds to uniform quiescient weighting. We consider 
this case in Example 7.6.2 

Example 7.6.2 (continuation) 
We consider the same model as in Example 7.6.1 with the initial weight-error vector 

given by (7.359). The optimum weight vector w0 is still given by (7.352). The initial 
weight-error vector is 

We(O) = s - :a1 (revs) - $a2 (*~vs) ) (7.360) 

(7.361) 

Then, 

0 
. (7.362) 
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Using the orthogonality of the eigenvectors, 

1 CT2 
w(O) = 3 - f  cpyvs, ( > 1 

1 o2 
vz(0) = N - < gv,, 

( > 

(7.363) 

(7.364) 

and 

vn (0) = 0, n = 3,. l 8, N. (7.365) 

Thus, once again there are two natural modes in the steepest descent algorithm. We 
only get a non-zero vn(O) for n 2 3 when w(0) has components outside of the a?, %y 
subspace. This behavior occurs if we use a quiescient weighting such as Dolph-Chebychev 
to obtain lower sidelobes in the quiescient beam pattern. 

The results in Examples 7.6.1 and 7.6.2 generalize directly to the general 
case of a plane-wave desired signal and D interfering plane-wave signals. In 
this case, the steepest descent algorithm is operating in a D + 1 subspace. 

We next investigate the transient behavior of the MSE. We then return 
to Examples 7.6.1 and 7.6.2 and consider its behavior for various signal-and- 
interference environments. 

The performance is determined by the transient behavior of the MSE. 
Using (7.320), (7.324), and (7.331), we have 

(7.366) 

where t(K) is defined to be the MSE at sample K? Substituting (7.335) 
into (7.366), we obtain 

N 

t(K) = <O + C b2 (1 - dx)2K IV9(0)12 7 (7.367) 
n=l 

and the transient MSE is 

N 

= x An (1 - d2)2K 1%(0>12 7 (7.368) 
n=l 

where the subscript “sd” denotes steepest descent. The transient behavior 
of the error is a sum of geometric series, each one corresponding to a mode 

r7Note that c(K) is an ensemble average at iteration K and is not the same as the 
weighted residual error t(K) in (7.275). 
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of the algorithm. 
Example 7.6.1. 

We illustrate the behavior with the same model as in 

Example 7.6.3 (continuation) 
We consider t,he same model as in Example 7.6.1. One can show that 

c 0 1 + N (INR) 

z = 1 + N (SNR + INR) + N2 (SNR) (INR) (1 - IpsIi2) 

INR= g, 
OW 

(7.369) 

(7.370) 

SNR= +. 
g’w 

(7.371) 

Using (7.354) and (7.355) in (7.368), we see that the normalized transient error is 

(7.372) 

From the above discussion we see that the behavior of the algorithm will 

be determined by 

(i) The step size c\/; 

(ii) The eigenvalue spread &&&in in S,. 

We now consider two simple examples to illustrate the behavior. From 
Chapter 5, we know how the plane-wave spatial distribution will affect the 

eigenvalues. When looking at the results, it is important to remember that 
we are using ensemble averages. By contrast, in Sections 7.3 to 7.5, the 
recursions used time averages. In Section 7.7, we will use time averages and 
obtain a more valid comparison. 

In the next two examples, we consider a standard lo-element linear ar- 
ray. We assume that there is a 10 dB SNR plane-wave signal arriving from 

broadside and interfering plane-wave signals arriving from various UI. By 
varying the power of the interfering signal and its location we can see how the 
eigenvalue spread affects the algorithm performance. We use w(0) = v&V 

as the initial condition. 
In each example we show two figures. The first is a representative beam 

pattern for various K, and the second is a plot of the transient MSE versus 
K . 

We have chosen the parameters to show the effect of different eigenvalue 

spreads. We have used a scenario with a single signal to keep the plots 
reasonably simple. 
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Figure 7.33 Steepest descent beamformer; beam patterns for various K; 

US = 0, SNR = 10 dB, uI = 0.24, INR = 10 dB, w(0) = v,/N, cx = 0.001. 

Example 7.6.4 

In this example, we use the following parameters: 

SNR = 10 dB, us = 0, 
INR = 10 dB, uI = 0.24. 

The resulting eigenvalues are 

We use o = 0.001. 

x1 = 117 

x2 = 85. 

In Figure 8.2, we show the beam patterns for various K for w(0) = v,/N. In Figure 
8.3, we show the transient mean square error &. 

In this case the eigenvalue ratio is 1.376 and the two orthogonal modes behave in a 
similar manner. 

The steepest descent beamformer has reached steady state by K = 30. The small 
eigenvalue spread is a favorable scenario for the SD algorithm. 

Example 7.6.5 
In this example, we use the following parameters: 

us =0 SNR = 10 dB, 
UI1 = 0.29 INRl = 20 dB, 
UI2 = -0.45 INR2 = 40 dB. 
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Figure 7.34 Steepest descent beamformer; &d(K) versus K. 

The resulting eigenvalues are 

Xl = 1.0001 x 105, 
x2 = 0.01 x 105, x3 = 0.0009 x 105. 

We use QI = 4.9995 x 10-C 
In Figure 7.35, we show the beam patterns for various K for w(0) = v,/N. In Figure 

7.36, we show the transient mean square error &. 
In this case, the dominant eigenvector is highly correlated with the array manifold 

vector for the 40 dB interferer at ~12 = -0.45, so it is nulled quickly. The convergence of 
the beam pattern at u11 = 0.29 is much slower and, by K = 100, the beam pattern has 
not started to form a null. 

This completes our initial discussion of the steepest descent algorithm 

for solving the MMSE problem. We return to it in the next section in the 
context of generalized sidelobe canceller . 

7.6.3 Steepest Decent: LCMP Beamformer 

In this section, we derive a steepest descent algorithm to find the LCMP 
beamformer that we originally studied in Section 6.7. The result is due to 
Frost?’ [Fro72], and ou r derivation follows that reference. 

‘*[Fro72] actually considers a gain-only constraint, but points out that the extension to 
multiple constraints is straightforward. He also considers the broadband model using a 
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Figure 7.35 Steepest descent beamformer: us = 0, SNR = 10 dB, ~11 = 
0.29, INR1 = 20 dB, u12 = -0.45, INR2 = 40 dB, w(0) = v,lN, CI = 
4.9995 x lo- 6; beam patterns for various K. 

Figure 7.36 Steepest descent beamformer: &d(K) versus K. 



Steepest Decent: LCMP Beamformer 801 

From (6.353), we want to minimize 

J 2 wHSxw + [wHC - gH] X + AH [C”w - g] . (7.373) 

The gradient with respect to wH is 

&H = s,w + CA. (7.374) 

In Section 7.6.2, we set the gradient equal to zero and found that 

WO = s,lc [CHsq g (7.375) 

(see (6.358)). 
To find w  using a steepest descent algorithm, we follow the same proce- 

dure as in Section 7.6.2. 

w(K) = w(K-1) - av,H (J(K - 1)) 

= w(K - 1) - cx [S,w(K - 1) + CA(K - l)]. (7.376) 

We require w(K) to satisfy the constraint. 

g = CHw(K) = CHw(K-l)-aCHS,w(K-l)-&HCX(K-l). (7.377) 

Solving for X(K - 1) and substituting into (7.376) gives 

W(E() = w(K-l)- n(I-C(CHC)-lCH)S,w(K-l) 

+C (C”C)-’ [g - C*w(K - l)] . (7.378) 

Frost [Fro721 points out that one should not assume that the term in the 
last brackets is zero. By retaining it we improve the numerical stability 
compared to previous algorithms ([RosGO], [BOBH69]). 

From (6.367), 

wq = c (c”c)-l g, (7.379) 

where 

P,‘= [I-c(c”c)-Ic”]. (7.380) 

tapped-delay line. We study that case in Section 7.11. 
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(N-i&)x1 

Figure 7.37 Generalized sidelobe canceller . 

We can write (7.378) as 

w(K) = P; [w(K - 1) - aS,w(K - l)] + wq, 

or 

(7.381) 

I wK ( ) =P:[I-&]w(K-l)+wq,I (7.382) 

with 

/w(o) (7.383) 

Before we analyze the error behavior of the steepest descent LCMP al- 
gorithm we want to develop the generalized sidelobe canceller version of the 
algorithm. 

The GSC implementation was developed in Section 7.4.4 and is shown 
in Figure 7.37. 

Recall that 
BHC = 0. (7.384) 

In addition, we assume that the columns of B are orthonormal, 

BHB = I. (7.385) 

We denote the total weight vector in Figure 7.37 by wgsc, 

wgsc = wq - Bw,. (7.386) 

The steepest descent algorithm for w, is just the MMSE-SD algorithm 
in (7.326) with the desired signal equal to Ye(k). The result is 

l%(K) = wa(K - 1) + Q! [PB - S,w,(K - I)] ) ) (7.387) 
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where 

/S, (7.388) 

and 

/ PB fl E[zD*] = BHS,C (CHC)-1 g. / (7.389) 

One can show that if we use identical initial conditions in the direct form 

LCMP-SD beamformer and the GSC version of the LCMP-SD beamformer, 

wgsc (0) = wcmp(o) = wq7 (7.390) 

which implies 

Wa(0) = 0, (7.391) 

then the behavior of the two SD algorithms will be identical ((7.385) must 
be satisfied). 

We can analyze the weight-error vector of the LCMP-SD beamformers 
in exactly the same manner as Section 7.6.2. Define 

w&K) = wa(K) - wao, (7.392) 

where wao is the optimum weight vector given by 

PB = Sz;Wao- (7.393) 

Substituting (7.392) into (7.387) gives 

Wae(K) = [I - asz] wae(K - I>, (7.394) 

which has the same form as (7.328). To analyze the behavior, rotate into an 
orthogonal coordinate system, 

S Z = BHS,B = U,X,U;. (7.395) 

Then 

v,(K) = U;we(K) = [I - a&] vc(K - 1). (7.396) 

If there are A4 constraints, then S, will have IV-A4 eigenvalues and eigen- 

vectors. One can show that 

(7.397) 
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-0.8 -0.6 

Figure 7.38 MPDR-GSC-SD beamformer, beam patterns for various K; us 
= 0, SNR = 10 dB, uIl = 0.29, INRl = 10 dB, u12 = 0.45, INR2 = 30 dB, 
a! = 0.5/x,,,. 

(see [Fro72]). Th ere ore f the convergence depends on fewer modes, and the 
rates are between the slowest and fastest MMSE modes. 

We consider a simple example to illustrate the behavior. The eigenvalues 
of S, determine the convergence rate, so we need a scenario with multiple 
interferers in order to have an interesting example. 

Example 7.6.6 

Consider a SLAlO array and the same signal-and-interference model as in Example 
7.4.1. The desired signal arrives from us = 0 with an SNR = 10 dB. Two uncorrelated 
interferers arrive from UI = 0.29 and UI = 0.45. The INR for the interferer at 0.29 is 10 
dB. The INR for the interferer at 0.45 is varied from 10 dB to 60 dB in 10 dB steps. We 
implement an MPDR beamformer with a single distortionless constraint at us = 0. The 
initial condition is wa = 0 and wq = v,/N. We use a = 0.5/X,,,. 

In Figure 7.38, we show representative beam patterns for various K with INR2 = 30 
dB. We see interferer 2 is nulled by K = 10, but interferer 1 is not nulled until K = 1000. 
In Figure 7.39, we plot the SINR, versus K. As the eigenvalue spread increases, the 
convergence to steady state slows dramatically. 
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Figure 7.39 MPDR-GSC-SD beamformer, SINR, versus K; us = 0, SNR = 
10 dB, uIl = 0.29, INR1 = 10 dB, u12 = 0.45, INR;! = 10 dB, .a l ,60 dB, 

cl! = 0.5/x,,,. 

7.6.4 Summary 

In this section, we have discussed the steepest descent algorithm for the 
cases of most interest in adaptive beamforming, the MMSE beamformer 
and the LCMP beamformer. We have demonstrated that they converge to 

the optimum beamformer if the step size Q is chosen appropriately. 

As we pointed out in the introduction, there are other deterministic 
gradient algorithms. Various Newton-type algorithms are most widely used. 
A discussion of them is available in Chapter 4 of [WSSS] in the context of 

adaptive filtering. 

In the next section we develop the stochastic gradient version of these 
algorithms and analyze their performance. 

7.7 LMS Algorithms 

In this section we develop the least mean-square (LMS) algorithm. It was 

originated by Widrow and his colleagues at Stanford University (e.g., [WS85], 
[WMGG67]). We develop two versions of unconstrained MMSE-LMS algo- 
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rithms and two versions of linearly constrained LMS algorithms. The first 
unconstrained algorithm is Widrow’s original algorithm. This algorithm has 
been the foundation for a significant amount of adaptive array research and 
irnplcmentation in the last three decades. The second unconstrained algo- 
rithm in the LMS category is due to Griffiths [Gri69], and is referred to as 
the modified LMS algorithm or the Griffiths algorithm. Both algorithms are 
based on minimizing the MSE using gradient techniques. The two algorithms 
differ in the u priori knowledge they assume about the signal environment. 

Both algorithms are stochastic gradient algorithms, as contrasted to the 
deterministic steepest descent algorithm in Section 7.6. Their primary ad- 
vantage is computational simplicity. The computations behave as O(N), 
as contrasted to O(N”) of the QRD-RLS algorithms. Their primary dis- 
advantage is a slower convergence in a complicated signal and interference 
environment. 

The LMS algorithm is discussed in a number of articles and textbooks. 
Early articles include Widrow et al. [WMGG67], Griffiths [Gri69], and Frost 
[Fro72]. A recent tutorial article is Glentis et al. [GBT99], which has an ex- 
tensive reference list. Book references include Compton [Com88], Monzingo 
and Miller [MM80], Widrow and Stearns [WS85], Sibul [Sib87], and Haykin 
[Hay96]. 

In Section 7.7.1, we derive the LMS algorithms. In Section 7.7.2, we 
study the statistical properties of the LMS algorithms. In Section 7.7.3, we 
demonstrate the algorithm behavior for several interesting cases. In Section 
7.7.4, we consider LMS algorithms with quadratic constraints. In Section 
7.7.5, we summarize our results. 

7.7.1 Derivation of the LMS Algorithms 

The LMS algorithm is the stochastic version of the steepest descent algo- 
rithm. In this section, we derive several versions of LMS algorithms. 

7.7.1.1 Widrow LMS algorithm 

The first LMS algorithm of interest is due to Widrow et al. [WH60], [WMGG67], 
and is the stochastic version of the steepest descent algorithm in (7.322). 

The gradient in the SD algorithm was given by (7.322), which we repeat 

ol ,H = -p + s,w. (7.398) 

In the LMS algorithm, we must estimate p and S,. 



Derivation of the LMS Algorithms 80'11 

A simple choice for estimates is 

i(K) = x(K)D*(K), (7.399) 

and h 
S X = X(K)XH(K). (7.400) 

In other words, the instantaneous values are used as estimates. Better esti- 
mates could be obtained by time averaging, 

5 x(w*(k), 
k=K-NI 

and 
h 

S X- & 5 X(k)XH(k). 
k=K-NI 

(7.401) 

(7.402) 

Use of (7.401) and (7.402) leads to an LMS algorithm that is referred to as 
a sliding window LMS (SW-LMS) algorithm in the literature. 

We could also use exponential weighting in the averages, as in Sections 
7.3 and 7.4. 

We use (7.399) and (7.400) in our present discussion. We find that the 
LMS algorithm provides an averaging effect. Then, the estimate of the 
gradient is 

v<(K) = -X(K)D*(K)+ X(K)XH(K)ti(K), (7.403) 

and the LMS algorithm is 

~(W = G(K - l)+a(K)X(K)[D*(K)-XH(K)ti(K-l)] . (7.404) 

We use the notation k(K) because the algorithm is using an estimate of the 
gradient instead of the actual gradient. When we write the algorithm as in 
(7.404), it is a,n open-loop algorithm and its structure is similar to the RLS 
algorithm in Section 7.4. We will discuss the similarities in more detail in 
Section 7.7.1.5. 

We can also write (7.404) as 

+cK) 
I 

= iG(K - 1) + a(EoX(K) [D*(K) - p;(K)] 

= ti(K - 1) + a(K)X(K)ez(K), 
(7.405) 

where 
p;(K) e XH(K)%(K - 1). (7.406) 
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I ) ti(K-1) 

k(K) 

Figure 7.40 Block diagram of LMS algorithm. 

A block diagram is shown in Figure 7.40. 

If we were dealing with infinite precision arithmetic and perfect compo- 
nents, then (7.404) and (7.405) are identical. However, in an actual system 
there will be errors, so the LMS algorithm uses the actual output P;(K) 
shown in Figure 7.40 and operates as a closed-loop system. The closed-loop 
operation tends to compensate for errors. 

The initial condition, G(O), will depend on the model. Common choices 
are G(O) = 0, G(O) = v,/N, or G(O) = wq. 

At each iteration, X(K), D(K), and G(K) are required. The estimates 
at a particular time may have large variances, and they introduce what is 
referred to as gradient noise. The result in (7.404) is the complex narrowband 
version of Widrow’s original LMS algorithm (see [WMB75]). 

Just as in the RLS case, introducing diagonal loading can provide im- 
proved performance in many cases. To include diagonal loading, modify 
(7.404) to 

G(K) = ti(K - 1) + a(K)X(K)D*(K) 

-a(K) { [,;I + X(K)XH(K)] G(K - l)} , (7.407) 
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which can be rewritten as, 

C(K) = (1 
\ 

- HO;) G(K-l)+a(K)X(K) [D*(K) - f’j;(K)] ) (7.408) 

or 

/*(K) = pL(K)*(K - 1) + c~(K)x(K) [D*(K) - P;(K)], 1 (7.409) 

where 
pL(K) = 1- o(K)& 

We can also write (7.409) as 

(7.410) 

G(K) = ,&(K)ti(K - 1) + a(K)X(K)eE(K). (7.411) 

We can also let the diagonal loading vary as a function of K by replacing 
0; with o;(K). 

Due to its simplicity, the LMS algorithm can also be implemented using 
analog techniques. Analog implementations are discussed in [Com88]. 

7.7.1.2 GrifEths LMS algorithm 

A second version of the LMS algorithm is due to Griffiths ([Gri68], [Gri69]), 
and is referred to as the modified LMS algorithm, the Griffiths algorithm, 
or the steered direction algorithm. It assumes that 

S xd* = E [x(lc)D*(k)] 7 (7.412) 

is known. In the narrowband case, 

X(k) = v,F(lc) + N(k), (7.413) 

and 
D*(k) = F*(k), (7.414) 

so 
S 2 

Xd* = O&. (7.415) 

Thus, the Griffiths algorithm assumes the signal direction of arrival and the 
signal power are known. However, the desired signal D(k) is not required. 

The modified LMS algorithm is 

*cK) = ti(K - 1) + Q(K) [+s (7.416) 
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The result in (7.416) is due to Griffiths [Gri69]. It is important to note that, 

although vs appears in (7.416), it is not imposing a hard constraint. 

If we utilize diagonal loading, (7.416) becomes 

G(K) = ,&(K)++(K - 1) + a(K) [& - X(K)p;(K)] . (7.417) 

7.7.1.3 Frost LMS algorithm 

The third version of the LMS algorithm imposes a linear constraint. This 
algorithm is the stochastic gradient version of the steepest descent algorithm 
in Section 7.6.3. Using (7.400) in (7.382) gives 

G(K) = P,I 
[ 
iG(K - 1) - cY(K)X(K)p;(K)] + wq, (7.418) 

where 

y,(E() = iCH(K - 1)X(K), (7.419) 

and 
h 

w(o) = wq. (7.420) 

For the simple case of the MPDR beamformer, 

and 

P,I = I-v, vfvs 
( > 

-1 
vfc (7.422) 

For the general LCMP case, 

w9 = c (CHC)l g, (7.423) 

and 

P; = I - c (cHc)-lcH. (7.424) 

This is the narrowband complex version of the linearly constrained beam- 
former which was originally derived by Frost [Fro72]. Frost derived the real 
wideband version for a gain-only (i.e., distortionless) constraint, but indi- 

cated the extension to multiple constraints would be straightforward. 
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If 
wq 

Y,(K) Y(K) 
+ 1 

/ b BH’ ) Yb(K) 
(Iv-M,)xl 

Figure 7.41 Generalized sidelobe canceller. 

7.7.1.4 Generalized sidelobe canceller LMS algorithm 

The fourth version of the LMS algorithm is the GSC version, which is shown 
in Figure 7.41. Recall that Ye(k) corresponds to D(k) in the MMSE algo- 
rithm. Adapting (7.405), 

fia(K) = Ga(K - 1) + a(K)Z(K)el,(K), (7.425) 

where 

epdK) = Y,(K) - C&K - l)Z(K) 

= Y,(K) - p&,(K). (7.426) 

The total weight vector is 

G(K) = Wq - BiGa( (7.427) 

and 

Y(K) = GH(K)X(K). (7.428) 

The initial condition is 

*a(O) = 0. (7.429) 

The result in (7.425)-(7.429) is the narrowband complex version of the GSC 
beamformer derived by Griffiths and Jim [GJ82]. 

If we choose B so that 

BHB = I, (7.430) 

the adaptive performance of GSC implementation will be identical to the 
adaptive performance of direct form implementation. Diagonal loading can 
be included. 
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7.7.1.5 Comparison of RLS and LMS algorithms 

It is useful to compare the LMS algorithm in (7.404) with the RLS algorithm 
of Section 7.4.l’ 

From (7.189) 

%ls(K) = iCrls(K - 1) + W(K)X(K) [D*(K) - x~(K)+~,(K - I)] 
(7.431) 

and, repeating (7.404) 

%7-ls (Eo = tilms(K - 1) + a(K)X(K) [D*(K) - XH(K)Glms(K - l)] . 

(7.432) 

We see that the difference between the two algorithms, as expressed by 
(7.431) and (7.432), is that the error term is multiplied by +-l(K) in the 
RLS algorithm and a(K)1 in the LMS algorithm. 

The multiplication by V1 (K) causes each mode to converge at the same 
rate in the RLS algorithm so that the eigenvalue spread does not limit the 

convergence rate. The disadvantage is that computing W(K) requires 
more computation. Recall that 

g(K) = P(K)X(K) = @(K)X(K), (7.433) 

is the Kalman gain. 

Our approach to deriving the LMS algorithm started with the deter- 
ministic steepest descent algorithm in Section 7.6. We replaced the deter- 
ministic quantities with estimated quantities to obtain the LMS algorithm. 
If we had started with a deterministic Newton algorithm and replaced the 

deterministic quantities with estimated quantities, we would have obtained 
the LMS/Newton algorithm or LMSN algorithm. This approach is 
discussed in Chapters 4 and 8 of [WS85]. Their discussion leads to an al- 
gorithm referred to as the sequential regression algorithm (SER algo- 
rithm) which they attribute to Graupe [Gra72], Ahmed et al. [ASHP77], 

Parikh and Ahmed [PA78], Ahmed et al. [AHUS79], and Lee [Lee66]. How- 
ever, if the various parameters are chosen appropriately, the algorithm is 
identical to the RLS algorithm. The relation between the two algorithms is 

also discussed in Diniz et al. [DCA95]. 
In the next section, we derive the statistical properties of the LMS algo- 

rithms derived in Sections 7.7.1.1-7.7.1.4. Then, in Section 7.7.3, we simulate 
the algorithms for typical scenarios. 

lgThe relationship between the RLS and LMS algorithms is discussed in a number of 
texts (e.g., Section 6.2.4 of [PRLN92] or Sections 13.6 and 13.7 of [Hay96]). 
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7.7.2 Performance of the LMS Algorithms 

In order to understand the behavior of the LMS algorithms, we consider the 

following six questions: 

1. Under what condition, and in what sense, does the weight vector con- 
verge to the optimum weight vector? 

2. Assuming the weight vector converges, 
How long does it take to converge? 

what is its transient behavior? 

3. As we are dealing with an estimate of the gradient, there may be some 
residual error in the weight vector. How large is this error and what 
does it depend on? 

4. How complex is the computation required to implement the algorithm? 

5. How is the desired signal derived? 

6. How does the system behave for some typical examples? 

We discuss the first five questions in this section and look at examples in 
Section 7.7.3. Most of these questions were answered in the original paper by 
Widrow and his colleagues [WMGG67]. Haykin [Hay961 has added several 
new arguments that we will utilize. There is a good tutorial discussion of 
the LMS algorithm and other algorithms in Glentis et al. [GBT99]. The 
article also contains extensive references. 

In our discussion, we assume the input vectors X(l), X(2), . l 0, X(K) are 
statistically independent. We assume that X(K) is statistically independent 
of all previous samples of the desired response D( 1)) l l l , D(K - 1). At time 
K, the desired response D(K) is dependent on X(K), but it is statistically 
independent of all previous samples of the desired response. The input X(K) 
and the desired response D(K) are assumed to be jointly Gaussian for all 
K . 

7.7.2.1 Weight-error vector mean 

We define the weight-error vector in the LMS algorithm as 

%(K) = i+(K) -w,. 

Using (7.434) in (7.404) gives 

%(K) = viTe(K - 1) + a(K)X(K [D’(K) - XH(K) (%(K - 1) + wo)] . 
(7.435 
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Taking the expectation of both sides, using the independence assumption, 
and using (7.323), we obtain 

E [ice(K)] = [I - cy(K)S>(] E [ti#C - l)] . (7.436) 

We see that (7.436) and (7.328) have identical form. Since E [J&(O)] = 

we(o) 7 
E [%(K)] = we(K), (7.437) 

so that the mean of the LMS weight-error vector is the weight-error vector 
in the steepest descent algorithm. 

We also observe that we could obtain the same result for the Griffiths 
LMS algorithm (7.416). 

7.7.2.2 Weight-error correlation matrix 

The correlation matrix of Cc(K) is20 

R~(K) = E [G,(K)GF(K)] . (7.438) 

To analyze (7.438), we rewrite (7.435) as 

%(K) = G,(K - 1) + a(K)X(K) [e;(K) - XH(K)ti,(K - I)] 

- - [I - n(K)X(K)X”(K)] %(K - 1) + a(K)XH(K)e,(K), 

(7.439) 

where 
e,(K) = D(K) - wfX(K), (7.440) 

is the estimation error using the MMSE weight vector. If a(K) is small, 
then the coefficient of iG,(K - 1) in (7.439) is close to I and the behavior of 
G,(K - 1) may be approximated by the stochastic difference equation:21 

I&(K) = [I - a(K)!&] ;t,(K - 1) + a(K)X*(K)e,(K). (7.441) 

Substituting (7.441) into (7.438) gives 

R,(K) = [I - @g&c] Re(K - 1) [I - @qSx] 
+a2(K)E [ez(K)X(K)XH (K)e,(K)] . (7.442) 

20This discussion is similar to Chapter 9 of [Hay96]. 
21This approach is due to Kushner [KU&~] and is described on p. 396 of [Hay96]. 
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Using the mornent factorization of jointly Gaussian random variables and 
the independence assumption, 

E [e~(IoXoXH(K)e,(K)] = to% (7.443) 

where 

50 = E [ l~oW)12] 1 (7.444) 

is the MSE using the optimum weight vector. Then, (7.442) can be written 

as 

R,(K) = [I - cr(K)S,] R,(K - 1) [I - a(K)!&] + a2(K)&. (7.445) 

We can use (7.445) to compute the excess MSE. The LMS error can be 
written as 

elms(K) = D(K) - tiH(K)X(K). (7.446) 

Using (7.434) and (7.440) in (7.446) gives 

elms(K) = e,(K) - iif(K)X(K). (7.447) 

The mean-square LMS error at iteration K is 

b-ns (K) = E e,(K) 

= &, + E [fiF(K)X(K)XH(K)%(K)] 

= to + tr {E [X(K)XH(K)] E [%(K)+:(K)]} 
= so + t r  {%cR,(K)) l 

(7.448) 

Now define an excess MSE, 

Lx (Eo = bns (K) -  to = t r  {  wb( K)} l 

(7.449) 

The matrix inside the trace is positive definite so, at each value of K, the 
excess error is positive. The Re(K) t erm in (7.448) can be evaluated using 
(7.445). Using results by Macchi [Mac95], Haykin (pp. 399-402 of [Hay96]) 

analyzes the transient behavior. As K -+ 00, the excess MSE approaches a 
constant value if 

2 
0 < a(K) < x, (7.450) 

max 
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where A,,, is the largest eigenvalue of S,. If (7.450) is satisfied, the steady 
stat,e excess error is 

(7.451) 

(e.g., pp. 397-400 of [Hay96]). Th e misadjustment is defined as the ratio of 
the excess error &x(oo) to to: 

M &-&) 2 a(K)Xi - - - - - 
t0 i = 1 2 - a(K)Ai 

(7.452) 

(e.g., p. 400 of [Hay961 or [WMGG67]). 
In their original work, Widrow et al. [WMGG67] provide several useful 

approximations. 
Instead of using the condition in (7.450), we use a more conservative 

upper limit, 

0 < a(K) < 
2 2 2 2 

C,N_lAi =m= E [Ii x(K) 112] = E [z;z; IX(n, K)I”] ’ 

(7.453) 

The motivation for this step is that E[]] X(K) I]“] can be estimated without 
an eigendecomposition. The denominator on the far right side of (7.453) is 
the expectation of the sum of the square of the received waveforms at each 

of the sensors at sample K. If 

Q(K)Xmax -4z 2, (7.454) 

then (7.452) can be written as 

M rv 4Eo N x -- - 
2 c ix 

i=l 

sp [II WI0 II”] l 

Defining the average eigenvalue as 

1 N 

x I 
au = -- 

N c 
x n, 

n=l 

(7.455) 

(7.456) 

and assuming that a(K) is constant, the transient MSE curve can be ap- 
proximated with a single exponential with time constant rmse avt ? 

1 
rmse,av ” - 

2CkXav ’ 
(7.457) 
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MN QNXav N - - - - 
2 47 

. 
mse,av 

(7.458) 

Therefore, a small M requires a long setting time and vice versa. 
In practice, the denominator in (7.453) is approximated by an estimate 

obtained from the data. In most cases, we use a sample dependent a(K): 

a(K) = Y 
p + XH(K)X(K)’ 

(7.459) 

with p > 0 and 0 < y < 2, is referred to as the normalized LMS algorithm. 
(e.g., Goodwin and Sin [GS84] or Sijderstrijm and Stoica [SS89]) 

A second version, 

where 
4Eo = &JY (7.460) 

X 

o;(K) = Da;(K - 1) + (I- P)XH(K)X(K), (7.461) 

with 0 < p < 1, is referred to as the power normalized LMS (PNLMS) 
algorithm. 

Note that ,0 is providing exponential weighting of XH(k)X(k), just as p 
did with the sample covariance matrix. Normally, ,B will be close to one (e.g., 
p > 0.99). The constant y in the numerator satisfies 0 < y < 2. Typical - 
values are .005 < y < 0.05. If y is too small, the step size leads to slow 
convergence. If y is too large, the algorithm will have a large excess error or 
have stability problems. 

All of the examples use the PNLMS algorithm. 

7.7.2.3 Performance of the linear constrained algorithms 

The statistical performance of the linear constrained LMS algorithm is ana- 
lyzed in a similar manner to the unconstrained LMS algorithm. Frost [Fro721 
derives a number of useful results and the reader is referred to that reference 
for details. 

7.7.3 LMS Algorithm Behavior 

In this section, we simulate the behavior of the LMS algorithm for various 
signal and interference scenarios. In Section 7.7.3.1, we study the LMS 
version of the MMSE beamformer. In Section 7.7.3.2, we study the LMS 
version of the LCMP beamformer. 
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‘7.7.3.1 MMSE-LMS beamformers 

We consider two examples to illustrate the behavior of the Griffiths LMS 
algorithm in (7.416) and (7.417). 

Example 7.7.1 (continuation, Example 7.6.4) 
Consider the same model as in Example 7.6.4. The signal arrives from us = 0 with an 

SNJ? = 10 dB. A single interferer arrives from UI = 0.24 with an 1NR = 10 dB. The trace 
of S, is 210 and the eigenvalues are: 

Xl = 117 

x2 = 85 

x3 
- - . . . = Xl0 = 1. 

The average eigenvalue, X,, , equals 21. We use the PNLMS algorithm from (7.460)- 
(7.461), wit’h a! = 0.01 and p = 0.99. 

In Figure 7.42, we plot the average squared error and the average SINR, versus K. 
We also show the steepest descent results from Example 7.6.4. In Figure 7.43, we plot the 
beam patterns at K = 20,100,500, and 1000. 

We see that the PNLMS algorithm approaches the steady state result by K = 100. 
The beam pattern has placed a significant null on the interferer by K = 200. The single 
interferer case with no signal mismatch is not a challenging scenario for the LMS algorithm. 

Example 7.7.2 (continuation, Example 7.6.5) 
Consider the same model as in Example 7.6.5. The signal arrives from us = 0 with 

an SNR = 10 dB. The first interferer arrives from u11 = 0.29 with INRl = 20 dB. The 
second interferer arrives from ~12 = -0.45 with INR2 = 40 dB. The PNLMS algorithm 
is implemented with a = 0.01 and p = 0.99. In Figure 7.44, the average squared error 
versus K and the average SINR, versus K are plotted. In Figure 7.45, representative beam 
patterns at K = 20,100,500, and 1000 are plotted. 

7.7.3.2 LCMP-LMS beamformers 

In this section, we analyze the LMS implementation of the LCMP beam- 
former behavior for the same signal and interference model that we studied 
for SMI and RLS beamformers. 

We consider a standard lo-element linear array. There is no signal mis- 
match or array perturbation. We do not use diagonal loading. We consider 
an example with two interferers in order to have two eigenvalues in the LMS 
algorithm. 

Example 7.7.3 
Consider a standard lo-element linear array. The desired signal arrives from us = 0. 

The interfering signals arrive from uI = 0.29 and 0.45, each with an INR = 20 dB and 
40 dB, respectively. The SNR = 10 dB. We implement the GSC version of the LMS 
MPDR beamformer. We use the PNLMS algorithm with y  = 0.01, p = 0.9 and y  = 0.01, 
,0 = 0.99 In Figure 7.46, we plot the average SINR, versus K. We also show the SMI with 
no diagonal loading result and the RLS result with &a; = 10 dB. 
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Figure 7.42 Griffiths MMSE-LMS beamformer using PNLMS algorithm: 

US = 0,SNR = 10 dB, uI = 0.24,INR = 10 dB, CY = 0.01, ,0 = 0.99, 
200 trials: (a) average squared error versus K; (b) average SINR, versus K. 
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Figure 7.43 Griffiths LMS-MMSE beamformer using PNLMS algorithm: 

US = 0,SNR = 10 dB, uI = 0.24, INR = 10 dB, Q! = 0.001, ,0 = 0.95; 
representative beam patterns; K = 20,100,200,500. 

. 
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K 

Figure 7.44 Griffiths MMSE-LMS beamformer using PNLMS algorithm: 

US = 0,SNR = 10 dB, uI1 = 0.29, INR1 = 20 dB, u12 = -0.45, INR2 = 
40 dB, a = 0.001, ,0 = 0.99; average SINR, versus K. 
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Figure 7.45 Griffiths MMSE-LMS beamformer using PNLMS algorithm: 

us = 0, SNR = 10 dB, uI1 = 0.29, INRl = 20 dB, u12 = -0.45, INR;! = 40 dB, 
a! = 0.001, ,8 = 0.99; representative beam patterns; K = 20,100,200,500. 
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PNLMS,pO.Ol,P=0.9 

Figure 7.46 MPDR beamformer implemented using PNLMS, RLS, and 
SMI algorithms: us = 0, SNR = 10 dB, UI~ = 0.29, INRI = 10 dB, 

UI2 = 0.45, INR2 = 40 dB, y = 0.01, p = 0.9 and 0.99, $/o$ = 10 dB; 
average SINR, versus K. 
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7.7.4 Quadratic Constraints 

In this section, we discuss quadratically constrained LMS beamformers. The 

discussion is parallel to the RLS discussion in Section 7.4.5. The original 
reference for LMS beamformers is Cox et al. [CZO87]. We develop three 
algorithms. 

The first case utilizes fixed diagonal loading. The basic LMS-GSC algo- 
rithm is 

%(h’) = tia(K- 1) + a(K)Z(K) [Y;(K) - ZH(K>*@ - l)] 

= ti,(K - 1) + a(K)&(K) - sZ(K)G,(K - 1). (7.462) 

We replace 
&(K) = Z(K)ZH(K) (7.463) 

with 
s,(K) = Z(K)Z"(K)+ a;I. (7.464) 

Then, (7.462) becomes 

%x(K) = ti,(K- 1) (1 - a(K)o;) + a(K)Z(K) 

[Y,‘(K) -ZH(K)tia(K- l)]. (7.465) 

We refer to this algorithm as the LMS-FL (fixed loading) algorithm. It is 

discussed in Cox et al. [CZO87] and derived by Winkler and Schwarz [WS74] 
and Takao and Kikuma [TK86]. 

The second case is analogous to the RLS algorithm in Section 7.3.4. We 
update tia( K) using 

K(K) = ti,(K - 1) +a(K)Z(K) [Y;(K) - ZH(K)iGa(K- l)] . (7.466) 

We test the norm of G&(K). If 22 

w,H(+%#q < Y2, - (7.467) 

we set 

%(K> = Wa(K). (7.468) 

If 

*,H(K)%(K) > Y2, (7.469) 

22 We use y2 instead of a2 to avoid confusion with the LMS step size parameter D(K). 
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we add a diagonal loading term to W&Y), 

+kL(K) = W,(K) - a(K)p(K)ca(K - 1) 

= Wa(K) - P(K)%ns(lo* (7.470) 

where 
i+,,(K) = a(K)G,(K - 1). (7.471) 

We then solve the quadratic equation 

-2Re iiH [ 177h,0w,(K)] PCK> 

+W,H(K)G,(K) - y2 = 0. (7.472) 

We solve (7.472) and use the results in the following manner. The two roots 
of (7.472) are denoted by ,01(K) and ,82(K). 

If there are two positive real roots, we use the smallest root. In this case 
we meet the constraint. If there are two negative real roots, we set ,81(K) 

and /32(K) = 0 and do not meet the constraint. Simulations indicate that 
this result happens infrequently. If there are two complex roots, they have 

the same real part. We use the real part as the diagonal load. We refer this 
algorithm as the LMS-VL (variable loading) algorithm. 

The third case is the LMS-SP (scaled projection) algorithm due to Cox 
et al. [CZOS7]. 

Once again, we require 

II Wu 1121 y2 (7.473) 

We update Ga( K) recursively using (7.466)) 

c-l(K) = iGa(K- 1) + c++(K) [Y;(K) - ZH(K)*a(K - l)] 

= iG,(K - 1) + a(K)Z(K)ec(K) 

= Gr,(K - 1) + gZ(K)elr(K). (7.474) 

Note that Gf(K - 1) satisfies the constraint in (7.473). The next step is 
shown graphically in Figure 7.47. 

If W&K) satisfies (7.473), we use it as G,(K). Otherwise we scale it to 

satisfy (7.473). Thus, 

G,(K) = cL(E(>, II %2(K) II21 Y2, 
c(K)%(K), II %-L(Eo 112> Y2, (7.475) 
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Figure 7.47 Scaling the tentative update vector. 

where c(K) scales W&C) so that G,(K) satisfies (7.473), 

cCK) Y - - 
II WdK> II’ 

(7.476) 

We see that all of the constraints are satisfied at each step in the recursion. 

We consider an example to show the performance of the three diagonal 
loading algorithms. 

Example 7.7.4 
Consider a standard lo-element array. The nominal signal direction is us = 0. We 

implement an MPDR beamformer using LMS-FL, LMS-VL, and LMS-SP. There is a single 
interferer at UI = 0.29 with an INR = 20 dB. 

The signal arrives from ua = 0.03 with a SNR = 10 dB. We use To = 0.2 in the 
LMS-VL and LMS-SP algorithms. We use ai/& = 10 dB in the LMS-FL algorithm. 

In Figure 7.48, we plot the average SINR, versus K. The SINR, behavior of the three 
algorithms is identical. Note that the steady state value is 20 dB, so the LMS is converging 
slowly. 

In Figure 7.49, we plot representative beam patterns. The three algorithms are similar. 
A significant null does not appear until K = 1,000. Due to the slow convergence and 
diagonal loading there is no signal nulling. 

The general conclusion is: 

(i) The LMS-VL and LMS-SP behave in an almost identical manner under 
most scenarios. In most applications, the LMS-SP algorithm will be 
used. 

(ii) The LMS algorithm convergence will be slow in many cases of interest. 
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Figure 7.48 MPDR-LMS beamformer with signal mismatch using fixed load- 
ing, variable loading, and scaled projection: us = 0, ua = 0.03, SNR = 10 

dB, UI = 0.29, INR = 20 dB, T, = 0.2, &Qoi = 10 dB; average SINR, 
versus K. 
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Figure 7.49 MPDR-LMS beamformer with signal mismatch using fixed load- 
ing, variable loading, and scaled projection: u, = 0, ua = 0.03, SNR = 10 
dB, UI = 0.29, INR = 20 dB, To = 0.2, a;/~: = 10 dB; representative beam 
patterns at K = 10,100, and 1,000. 
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7.7.5 Summary: LMS algorithms 

In this section, 
summarize our 

we discuss a parallel approach to adaptive arrays and then 
results. 

7.7.5.1 Howells-Applebaum Algorithms 

In this section, we have discussed various LMS algorithms. They represent 
one of the paths along which adaptive arrays have evolved. The other path 
originated with the work of Howells and Applebaum at General Electric in 
the early 1960s. The first practical electronic steering of an antenna null in 
the direction of a jammer was invented by Paul Howells at General Electric 
in Syracuse, NY. His 1959 U.S. Patent, number 3,202,990, was titled “Inter- 
mediate Frequency Side-Lobe Cancellor.” Their original work was published 
as a Syracuse University Research Corporation report [App66]. Because the 
circulation was limited, [App66] was republished as [App76]. Several subse- 
quent papers (e.g., [AC76]) d iscuss the original work and extensions. 

In their original work, Howells and Applebaum considered a narrowband 
array and used the criterion of maximum SNR. They also introduced the 
idea of quiescent pattern control. They implemented the resulting adaptive 
processor with a closed-loop analog system. The feedback path contained 
an integrator that they approximated with a low pass-filter. The resulting 
system is the analog version of the Griffiths LMS beamformer with DL. 

Additional historical information is given in Tufts [Tuf98]. 

7.7.5.2 Summary 

In Section 7.7, we have developed LMS algorithms for implementing adaptive 
beamformers. Although they are characterized by slow convergence in many 
situations, they are widely used in practice because of their computational 
simplicity. 

Our discussions of the LMS algorithm has been reasonably brief because 
a number of comprehensive discussions are available in the literature. 

For further discussion of LMS algorithms for adaptive beamforming and 
adaptive filtering, the reader is referred to Widrow and Stearns [WS85], 
Haykin [Hay96], Compton [Com88], Monzingo and Miller [MM80], and Glen- 
tis et al. [GBT99]. 
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7.8 Detection of Signal Subspace Dimension 

In Section 6.8, we derived several eigenvector beamformers and saw that 
they offered an improvement in performance when the statistics are known. 
In practice, we must estimate the eigenvalues and eigenvectors using the 
incoming data and then select an appropriate subspace. In the case in which 
the desired signals and interferers are plane-wave signals we can refer to this 
subspace as the signal-plus-interference subspace. For simplicity, we consider 
all of the plane-wave signals to be signals of interest and refer to this subspace 
as the signal subspace. 

The eigenvector beamformers provide motivation for our current discus- 
sion of detecting the subspace dimension. However, when we study parame- 
ter estimation in Chapters 8 and 9, we find that almost all of the estimation 
algorithms assume that the number of signals are known. Therefore, we de- 
velop the detection problem in a general framework, so that the results are 
useful in both the adaptive beamforming problem and the parameter estima- 
tion problem. We apply the results to the adaptive eigenspace beamformer 
in Section 7.9. 

The techniques that we develop in this section are non-parametric tech- 
niques. Although we model the received vector as 

X(k) = V(+)F(k) + W(k), k = 1,2, l -9, K, (7.477) 

we do not exploit the structure of V(q) in our algorithms. In (7.477), F(k) 
is a d x 1 source vector that is a complex Gaussian vector. V(+) is an 
N x d array manifold matrix and W(k) is a complex Gaussian vector with a 
diagonal spectral matrix @;I). The number of signals d is unknown and we 
want to estimate its value. Because d is an integer, we refer to the problem 
as a detection problem. 

If none of the signals are coherent with each other, then the rank of the 
subspace equals the number of signals. 

However, we recall from (5.252) that if 

I Pij I= 1, (7.478) 

for some value of ij, then we will have one or more zero eigenvalues and 

d’ < d. (7.479) 

As 1 pij 1 approaches one, the algorithms have a harder time correctly esti- 
mating the number of signals. 
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All of the approaches in this section perform an eigendecomposition of 

that sample spectral matrix or a singular value decomposition of the data 
matrix to find a set of estimated eigenvalues. The algorithms test some 
function of these eigenvalues to determine d or d’. 

In Section 7.8.1, we develop the set of detection algorithms that are most 
widely used in the array processing. All of the tests in Section 7.8.1 utilize 
some function of the eigenvalues of 9, as the data component of the test. 

The performance of the various algorithms is analyzed for a sequence of 
examples. 

In Section 7.8.2, we develop a detection algorithm that utilizes the eigen- 
vectors of S,. 

7.8.1 Detection Algorithms 

We use the familiar frequency-domain snapshot model in (7.477). We assume 
the columns of V are linearly independent. 

The spectral matrix is 

s X = VSfVH + a;1. (7.480) 

WC estimate d, the rank of Sf. 
If V Sf VH is of rank d, the eigendecomposition of S, can be written as 

S H H 
X = USASUS + UNANUN, (7.481) 

where 

AN = diag ai 9 l l ai , 
[ 3 

is a diagonal matrix with N - d elements. 
In practice, we have gx available and we compute 

(7.482) 

via an eigendecomposition of 9, or an SVD of the data matrix. We want to 

detect the value of d. 
The first category of tests are referred to as sequential hypothesis (SH) 

tests or sphericity tests. They originated in the statistical field (e.g., [Mau40], 
[And63], or [Mui82]). 

We want to find the likelihood ratio between the hypothesis that the 
(N - d) smallest eigenvalues are equal versus the hypothesis that only the 
(N - d - 1) smallest eigenvalues are equal. We use d as the variable in our 
test. 
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Anderson [And631 showed that, for K >> N, if V is of rank d, the N - d 

smallest eigenvalues cluster around a:. Specifically, & - 0; = 0 (K-3) for 
k = d + 1,. l l , N. 

Anderson [And631 1 a so showed that a sufficient statistic is 

Ld(d) = K (N - d) In 

I 

I  

1 
c 

N 
N-d k=d+l ik 

1 

rI 
N-d 

. 

(7.484) 

The term in braces is the ratio of the arithmetic mean of the (N-d) smallest 
eigenvalues to the geometric mean of the (N - d) smallest eigenvalues. We 
now have a 1-D optimization problem to find $. Note that, if the N - d 
smallest eigenvalues are equal, then Ld(d) = 0. 

One can show that asymptotically (2L(d)) corresponds to a chi-squared 
random variable x2 ((N - d)2 - 1) (e.g., Gupta [Gup65]). Thus, if 

u = 2Ld(d), (7.485) 

(7.486) 

We choose an arbitrary confidence interval (e.g., 99%). We assume Ho (i.e., 

d = 0) is true and compute yg9 Co) (x%2-J* If 

(0) 
49 5 Ygg ‘) (7.487) 

we set d = 0. If v(O) > ?A”,‘, we compute 7::’ (xfN-1)2-1). Then, if 

(1) w L 7gg 7 (7.488) 

we set B = 1. If v(1) > & we continue the process until we find 

(4 

u(d) 5 799 
2 

X(N-d)2-1 > l 

(7.489) 

Bartlett [Bar541 and Lawley [Law561 developed tests based on (7.484). 
Simkins [Sim80] applied these results to the direction-of-arrival estimation 
problem. 

One of the problems with the above approaches is the choice of the 
threshold. In addition, a sequence of tests is required. We do not pursue 
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sequential hypothesis tests further in the text. The reader is referred to the 
references and the problems for represent ative results. 

The second category of tests utilize Ld(d) and add a penalty function 
related to the degrees of freedom. The result is a function of d that we then 

minimize. The two resulting tests were obtained using different approaches. 
Akaike [Aka74] introduced an information-theoretic criterion, which is re- 

ferred to in the literature as the Akaike Information Criterion (AIC). He con- 
sidered a parameterized family of models with probability densities p,(x]e). 
He proposed to choose the model that has the minimum AIC where 

MC= -2 lnp,(x@) + 2kp, (7.490) 

where 6 is the ML estimate of 8 and lo, is the number of freely adjusted 

parameters in 8. 23 The first term is the log-likelihood for the ML estimate 

of 8. The second term is a correction term. Akaike introduced it so that the 
AIC is an unbiased estimate of Kullback-Liebler distance between pX(x]O) 
and p,(x@). 

Two different approaches were taken by Schwartz [Sch78] and Rissanen 

[Ris78]. Schwartz [Sch78] utilized a Bayesian approach, assigning a prior 
probability to each model, and selected the model with the largest a posteri- 
ori probability. Rissanen used an information theoretic argument. One can 
think of the model as an encoding of the observation. He proposed choosing 
the model that gave the minimum code length. In the large sample limit, 
both approaches lead to the same cri .terion 

MDL = - lnp,(x@) + Ic, In E(, (7.491) 

where MDL denotes minimum description length. 
In [WK85] the AIC and MDL criteria were applied to the array problem.24 

The starting point is to define a family of spectral matrices, 

dd) = SPcd) +o;I, 
X 

d = O,l,~~*,N- 1, (7.492) 

where XP@) is a non-negative definite matrix of rank d and ai is an unknown 
(4 scalar. We write Sx as 

(7.493) 

230 will be defined in t,he context of the array problem in (7.494). 
240ur discussion in the next part of this section follows Wax and Kailath [WK85]. 
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The parameter vector 0@) of the model is 

Note that 8 does not include +. Also observe that we are estimating the 

parameters in the eigendecomposition of Sid) without imposing any structure 
on it. 

The In likelihood function was derived in (7.7), 

L e(d) = ( ) -K lndet S$$ - Ktr [[ x 1-l cx] d=O,l,***,N-1, Scd) 

(7.495) 
where C, is the sample spectral matrix. From (7.9), the maximum likelihood 

estimate of Sid’ is 
~~‘=c,,d=o,l,*~~,N-l. 

Now expand C, using an eigendecomposition, 

(7.496) 

(7.497) 

where & and ii are the eigenvalues and eigenvectors of the sample covari- 
ante matrix C,. Substituting (7.493) and (7.497) into (7.496) gives the 
maximum likelihood estimate of the components of Ocd): 

h h 

0 > x 

. 
i ml= i, z= 1 d ,*-, ) (7.498) 

1 N 
A2 

( > 0~) ml = - 
N-d i x x 

- - d+lAi- 

Thus, the maximum likelihood estimate 

(7.499) 

(7.500) 

(7.501) 

where the ml subscript is dropped for simplicity. Substituting (7.501) and 
(7.500) in (7.495) gives 

Ld(d) = K (N - d) ln 

1 

I 

1 
N-d c 

N i\. 
i=d+l 2 

rI 
L 

(7.502) 
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where we have dropped terms that do not depend on d. This is the same 
expression as Anderson’s sufficient statistic in (7.484). 

It is convenient to write the AIC test as 

Ld(d> + p(d), (7.503) 

where p(d) is a penalty function. The penalty function is determined by the 
number of degrees of freedom in the model (the number of free parameters 
in 0(d)). 

The parameter vector Ocd) consists of d+l eigenvalues and d eigenvectors.2’ 
The eigenvalues are real and hence count as d + 1 real parameters, whereas 
the eigenvectors are complex, of unit norm and mutually orthogonal. To 
count the number of degrees-of-freedom (DOF) required to describe the d 

eigenvectors, observe that because the eigendecomposition of a complex ma- 
trix is invariant to multiplication of each eigenvector by a pure phase factor, 
we can describe an eigenvector with 2N - 1 real parameters, say by fixing 
the first element to be real. Since the eigenvectors obey certain constraints, 
we have to deduct d DOF due to their unit norm and 2(1/2(d(d - 1))) due 
to their mutual orthogonalization. Therefore, the total number of degrees of 
freedom is 

k P = d+1+2Nd-2d-d(d-1) 

= d(2N - d) + 1. 

We can drop the one, so 

p(d) = d(2N - d), 

and the AIC test is 

NC(d) 6 {Ld(d) + [@N - d)]} 7 (7.506) 

and 
2~1, = argmjn{AE(d)} . 

(7.504) 

(7.505) 

(7.507) 

For the MDL test, 

MDL(d) = Ld(d) + ip(d) 1nK 

= Ld(d) + i [d(2N - d) + l] lnK, (7.508) 

25This explanation is due to M. Wax (private communication). 
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and 
(7.509) 

In [WK85], it is shown that the MDL estimate is consistent.26 In other 
words, as K goes to infinity, JMDL approaches d. It is also shown that the 
AIC is inconsistent and, asymptotically, tends to overestimate the number 
of signals. However, we will find that, for a small E(, the AIC generally has 
a higher probability of a correct decision. 

We have seen the benefit of FB averaging in a coherent or correlated 
signal environment. We now discuss how the above detection tests must be 
modified to account for the use of C, fb instead of C,, the forward-only ) 
sample spectral matrix. 

The problem is solved by Xu et al. [XRK94]. They derive sequential 
hypothesis (SH), MDL, and AIC tests that are closely related to the above 
tests. Their key result is that the tests have the same structure; the only 
change is in the penalty function. 

The FB-MDL and FB-AIC functions are 

1 
m&&d) = &j(d) + Zd (2N - d + I), (7.510) 

1 
MDLFB(d) = Ld(d) + ;d (2N - d + 1) lnE(. (7.511) 

where Ld(d) is given by (7.502) where the & are the eigenvalues of C,,J~. 
The effect of the FB averaging is to reduce the free adjustable parameters 
by a factor of 2. We find the value of d that minimizes (7.510) or (7.511) and 
denote it by d^. Xu et al. [XRK94] also shows that FB-MDL is consistent. 

Wong et al. [WZRYSO] derive an alternative approach to detecting the 
number of signals. They argue that the number of signals is independent 
of the orientation of the array, so the eigenvectors provide little informa- 
tion. They derive a modified likelihood function consisting of the marginal 
probability density function of the eigenvalues. They derive two modified 
criteria using this modified likelihood function and the penalty functions of 

AIC and MDL. One of the criteria offers improved performance in a number 
of scenarios and should be considered as a candidate solution. Wu and Tam 
([TW96], [WTOl]) 1 d a so iscuss this approach. The reader is referred to the 
above references for details. 

Another category of tests is due to Tufts and his colleagues (e.g., Shah 
and Tufts [ST94]) and focuses on scenarios with short data records. The 

26See subsequent discussion by Zhao et al. ([ZKB87], [ZKB86]). 
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method consists of sequential constant false alarm rate tests on the sums of 
the eigenvalues of &. In several scenarios, it offers improved performance 
compared to AIC and MDL. The reader is referred to the above reference 
for details. An approach that deals with unknown correlated noise fields is 
derived in Stoica and Cedervall [SC97]. 

As pointed out in the introduction to this section, all of the algorithms 

in this section are nonparametric. In Chapter 8, we revisit the detection 

problem and discuss parametric detection algorithms. 
We now consider a sequence of examples in which we simulate the per- 

formance of AIC and MDL algorithms. 
The examples are chosen to illustrate how the following factors affect the 

performance: 

(i) Number of signals; 

(ii) Signal strengths; 

(iii) Signal separations; 

(iv) Signal correlation; 

(v) Number of snapshots. 

There are three possible outcomes of the tests:27 

(i) d^ = d, which is the desired result. We denote the probability that 2 = d 

as PO (the probability of correct detection). 

(ii) 2 < d. In this case, we have underestimated the signal subspace. We 
denote the probability as PM (probability of miss). In almost all ap- 
plications, we want to avoid this event because it causes us to lose one 
or more signals. 

(iii) 2 > d. In this case, we have overestimated the signal subspace. We 
denote the probability as PF (probability of false alarm). In most 

applications this event causes some degradation in performance. How- 
ever, the extra eigenvector(s) is due to noise. If we try to track the 
eigenspace as additional data arrive, the subspace tracker drops it and 
reduces the dimension. If we do block processing, the next block of data 
will put the extra eigenvector(s) in a different place (or omit them). 

We rely on this subsequent processing to correct overestimation. 

270ur comments on the outcomes are in the contex 
effects on parameter estimation algorithms later. 

.t of beamforming. We discuss the 
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We now consider a sequence of examples to explore the behavior. In all 
of the examples, we consider a standard lo-element linear array. 

In the first four examples, we consider a standard lo-element linear array 

with two equal-power signals impinging on it. The two-signal case has been 
studied in detail by Kaveh and Wang (see Chapter 5 of [HaySl]). They derive 
analytic expressions for P~/s and PF based on the asymptotic properties of 
the eigenvalues and also provide simulation results. We use the simulation 
approach. 

In this case, the outcomes are: 

PM:d^=Oorl 

PF:b3 - 

We consider four algorithms: AIC, MDL, AIC-FB, and MDL-FB. 

Example 7.8.1 
In this example, the signal DOAs are symmetric about u = 0 and the signal separation 

corresponds to 0.5 HPBW. The signals are uncorrelated. We assume K = 100. We vary 
the SNR. 

In Figure 7.50, we plot PO versus LLS’NR~~ for the four algorithms. In Figure 7.51, we 
plot PM versus ASNR for the four algorithms. In Figure 7.52, we plot PF versus ASNR for 
the four algorithms. 

We see that the AIC algorithm provides correct detection with an ASNR that is 3-4 
dB lower than the MDL algorithms in the 0.2 < PO < 0.9 range. However as the ASNR 
increases, the PD levels off at about PD = 0.92and the PFA is about 0.08. Above ASNR 
= 6 dB, PM for AIC is zero. The AIC-FB has a higher PD for low ASNR, but levels off at 
about 0.83 as the ASNR increases. 

The PD for the MDL algorithm is 1.0 for ASNR > 9 dB (7 dB for MDL-FB). - 

These results suggest that, for this particular scenario, if we can be cer- 
tain that the ASNR will be greater than 10 dB for the signals of interest, 
then we would use MDL or MDL-FB. However, if we are interested in signals 
whose ASNR may be as low as 0 dB, then we use AIC or AIC-FB and try 
to eliminate false alarms by subsequent processing. 

Example 7.8.2 (continuation, Example 7.8.1) 
Consider the same model as in Example 7.8.1 except K, the number of snapshots is 

allowed to vary. The signal separation is 0.5 HPBW. 
We plot the required ASNR versus K to achieve PD = 0.2, 0.5, and 0.8. In Figure 

7.53, we consider the AIC algorithm. In Figure 7.54, we consider the MDL algorithm. 

28The ASNR is defined as N(SNR). It is useful to plot results versus ASNR, because, in 
most cases, for N > 10, the result will not depend on N. 
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Figure 7.50 Performance of AIC and MDL algorithms versus ASNR: two 
equal-power signals, au = 0.5 HPBW, K = 100, 1,000 trials, p0 versus 
ASNR. 

We see that the AIC curves are parallel with a decrease in the detection 
threshold of about 5 dB/decade. The MDL curves are parallel with a similar 
slope. 

Example 7.8.3 (continuation, Example 7.8.1) 
Consider a standard lo-element array. The signals have equal power and are uncorre- 

lated. The signals impinge on the array from &AU/~. 
In Figure 7.55, we plot the SNR required to achieve PD = 0.2, 0.5, and 0.8 versus 

Au/HPBW for the AIC-FO algorithm. In Figure 7.56, we plot the same results for the 
MDL-FO algorithm. 

We see that the threshold decreases at a rate of about 20 dB/decade. The MDL curves 
have a similar slope, but are about 4 dB higher. 

Example 7.8.4 (continuation, Example 7.8.1) 
In this example, we study the behavior as the number of signals, d, is varied. Consider a 

standard lo-element linear array. We assume that there are d signals placed symmetrically 
about u = 0. We consider two spacings. In case 1, the spacing between the signals is 0.5 
HPBW. In case 2, the spacing between the signals is 1.0 HPBW. The number of snapshots 
is 100. The signals are equal power and uncorrelated. 

In Figure 7.57, the signal separation is 0.5 HPBW. We plot PD versus the ASNR for 
each signal for the AIC-FO and MDL-FO algorithms. If  we examine the ASNR required 
for PD = 0.5, we see that the additional ASNR required is about (d + 4) dB for each 
additional signal up to d = 7, and then it is about 11 dB for d = 8 and 9. 
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Figure 7.51 Performance of AIC and MDL algorithms versus ASNR: two 
equal-power signals, Au = 0.5 HPBW, EC = 100, 1,000 trials, ph/l versus 
ASNR. 

In Figure 7.58, the signal separation is 1.0 HPBW. We plot the same results as in 
Figure 7.57. We see that the effect of increasing d is significantly less. 

In this subsection, we have studied AIC and MDL tests for detecting the 
number of plane-wave signals. We first considered the familiar case of two 
equal-power uncorrelated signals separated by 0.5 HPBW and K = 100. We 
then considered the effects of: 

(i) K, the number of snapshots; 

(ii) Au, the signal separation; 

(iii) d, the number of signals. 

In all of these case, the AIC algorithm performed better than the MDL 
algorithm in the 0.2 < p0 < 0.9 range. However, as the ASNR (or K) - - 
increased, the & of the AIC algorithm did not approach unity and the 
AIC algorithm overestimated the number of signals. The p0 of the MDL 
algorithm approached unity as the ASNR (or K) increased. 

The choice of the algorithm will depend on the anticipated scenario and 
the subsequent signal processor that uses the estimate of d. In Section 
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Figure 7.52 Performance of AIC and MDL algorithms versus ASNR: two 
equal-power signals, Au = 0.5 HPBW, K = 100, 1,000 trials, PF versus 
ASNR. 
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Figure 7.53 AIC algorithm; two equal-power signals, Au = 0.5 HPBW, 
p0 = 0.2, 0.5, and 0.8; ASNR detection threshold versus K. 
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Figure 7.54 MDL algorithm; two equal-power signals; Au = 0.5 HPBW, 

PD = 0.2, 0.5, and 0.8, ASNR detection threshold versus K. 
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Figure 7.55 AIC-FO algorithm; two equal-power signals, K = 100; detection 
threshold versus Au/HPBW. 



840 7.8 Detection of Signal Subspace Dimension 

25- 

.\ “% .: : .: \’ \ :\ ‘,\ : : 

i -TX 

\ ‘. 
\ ‘: \ ‘\.’ 

\: >. 

-1 

A” (Fra$on of HPBW) 
loo 

Figure 7.56 MDL-FO algorithm; two equal-power signals, II = 100; detection 
threshold versus &/HPBW. 

-90 0 10 20 30 

ASNR (ii) 
50 60 70 80 

Figure 7.57 AIC-FO and MDL-FO algorithms; uniformly spaced, equal- 
power signals, au = 0.5 HPBW, p0 versus ASNR for each signal, D = 
2 . . . I 9 

I  l 



Eigenvector Detection Tests 841 

ASNR (dB) 

Figure 7.58 AIC-FO and MDL-FO algorithms; uniformly spaced, equal- 
power signals, au = 1.0 HPBW, P D versus ASNR for each signal, D = 
2 . . . 1 9 

7 l 

7.9, we study the model in which we use B to determine the dimension of 
an eigenspace beamformer. In Chapters 8 and 9, we use 2 as an input to 
various parameter estimation algorithms. 

In this subsection, we used tests that utilized the estimated eigenvalues. 
In the next subsection, we develop tests that utilize the estimated eigenvec- 

tors. 

7.8.2 Eigenvector Detection Tests 

The tests in Section 7.8.1 utilized the eigenvalues of S, in their detection 
tests. When the signal separation is small or (p] is close to one, some of 
the signal eigenvalues are small enough that the tests are not reliable. Xu 
et al. [XPK92] introduced the idea of eigenvector tests. Lee and Li [LL94] 
developed an efficient technique that is useful for closely spaced signals. It 

exploits Lee’s earlier work on eigenvalues and eigenvectors of closely spaced 
signals [Lee921 that we discussed in Section 5.5.4. We develop the eigenvector 
detection technique (EDT) in this section. Our discussion follows [LL94]. 

We assume that we have done a preliminary beamscan using a conven- 
tional beamformer or an MPDR beamformer. Several locations in u-space 
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where one or more signals appear to be present have been detected.2g We 
refer to each of these locations as a cluster and denote the beam locations 
where we detected the clusters at &I, $c2, l l ., $JCL. We focus our attention 

of a single cluster and want to develop a test to detect the number of signals 
in the cluster. 

Denote the reference direction as $0 (this corresponds to one of the 
$JC~). If there are d signals in the cluster, we denote their location by 

$1 < $2,“‘: < ?,b& To emphasize their close spacing, we write 

+i = @o + wi, (7.512) 

and 

Ati i = A$ ’ qi, (7.513) 

where the qi are real distinct constants, q1 < q2 < 9 l 0 < qd, with q1 = --l/2 
and qd = +1/2, and AT/J is the scale factor that defines the width of the 
cluster in +-space. 

We define <PI, 9 l l , ad as the limiting value of the eigenvectors as A$J -+ 0. 

We calculate the spatial derivatives of v(q) evaluated at $0, 

and define . 
V = v($Q) vl(?+!$) l l ’ 

[  

vN-l 

w > ]  

0 .  

(7.514) 

(7.515) 

Then [Lee921 shows that the eigenvectors, @I, l l l , +d, are the first d columns 

of the matrix obtained by the left-to-right Gram-Schmidt orthonormalization 
of V. 

We next compute 
trix. We denote these 

the ordered 
eigenvectors 

eigenvectors 

a4,$2,** 

eigenvectors, &, for closeness to +i, 

of the 

4N* 

sample covariance ma- 
We then test successive 

If 
i& > T, - (7.517) 

where T (T < 1) is a threshold, we say that the eigenvector corresponds to a A 
signal eigenvector. Thus, d corresponds to the largest value of i that passes 
the threshold. 

2gWe discuss detection algorithms in Chapter 10. However, in this case, the detection 
algorithms in DEMT III [VT71], [VTOlb] are applicable. 
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Figure 7.59 EDT, MDL, and AIC algorithms; two equal-power signals, Au = 
0.1 HPBW, K = 100, 1,000 trials; p0 versus ASNR. 

We consider a sequence of examples to illustrate the behavior of the EDT 
algorithm. The examples are similar to those in [LL94]. 

Example 7.8.5 
Consider a standard lo-element linear array. Two equal-power uncorrelated signals 

impinge on the array from &A$J/~, where A@ is 0.1 HPBW (0.022 radians for this array). 
We use qo = 0 and T = 0.5. We assume K = 100. 

In Figure 7.59, we show PD versus ASNR for the EDT algorithm. We also show the 
AIC and MDL results. 

We see that the EDT is about 2 dB better then the AIC algorithm and 
its p0 approaches unity for ASNR > 20 dB. - 

However, the EDT algorithm was given additional prior information. In 
the next example, we utilize that information to modify the AIC and MDL 
algorithms. 

Example 7.8.6 (continuation) 
The EDT algorithm assumed that a beamscan provided prior information regarding 

the centroid of the cluster. With this prior information we could utilize AIC or MDL in 
beamspace. We first define3’ 

BE3 = v,, (7.518) 

3oWe motivate this choice when we study parameter estimation in Chapter 8. 
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Figure 7.60 EDT, BS-AIC, and BS-MDL algorithms; two equal-power sig- 
nals, au = O.lHPBW, K = 100, 1,000 trials, p0 versus ASYNR. 

where vg is an N x 3 matrix containing the first three columns of v. Then, using (6.518), 

(7.519) 

In Figure 7.60, we plot PD versus RSNR. We see that beamspace AIC performs better 
than EDT for PD 5 0.6 and then the two algorithms have similar performance. 

Example 7.8.7 (continuation, Example 7.8.5) 

Consider the same model as in Example 7.8.5. We repeat the test for Au = 0.5 
HPBW. The results are shown in Figure 7.61. For clarity, we show the results for the 
EDT, BS-AIC, and AIC algorithms. We see that, even with the larger spacing the EDT 
test performs better than the AIC tests. 

The EDT algorithm provides an alternative approach to detecting the 
number of closely spread plane-wave signals that are present. It requires 
a preliminary processing step to detect the location of signal clusters. It 
appears that, if we utilize this preliminary processing, then beamspace AIC 
will have a similar performance. 
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Figure 7.61 EDT, AIC, BS-AIC algorithms, two equal-power signals, au = 
0.5 HPBW, K = 100, 1,000 trials, p0 versus ASNR. 

7.9 Eigenspace and DMR Beamformers 

In Section 6.8, we discussed several beamformers that utilized an eigende- 
composition to implement the beamformer. We assumed that the spatial 
spectral matrix, S,, is known. In this section, we consider the case in which 
S, is estimated from the data. We focus our attention on two beamformers, 
the principal-component (or eigenspace) beamformer of Section 6.8.1 and 
the dominant-mode rejection beamformer of Section 6.8.3. We restrict our 
discussion in the text to the model in which the desired signal and interfer- 
ence are linearly independent plane waves. For the eigenspace beamformers, 
(6.449) applies if we introduce the estimated quantities in place of the en- 
semble statistics. The MPDR eigenspace beamformer is 

H 1 
Wrnpdr,es 

^H 
= Yes VE %+I Ai+1 Us+I, (7.520) 

where 

(7.521) 
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For the DMR beamformers, (6.491) applies if we use estimated quantities, 

H 
Wdm = (7.522) 

In this section, we study the adaptive versions of these two beamform- 
ers. In Section 7.9.1, we study SMI implementations of adaptive eigenspace 
beamformers. In this case, we receive a block of data, compute the eigenval- 
ues and eigenvectors, and implement the beamformers in (7.520) and (7.522). 
We compare their performance to the MPDR-SMI beamformer in Section 
7.3 and the known-statistics results in Sections 6.8.1 and 6.8.3. In Section 
7.9.1, we assume that the dimension of the S + I subspace is known. 

In Section 7.9.2, we consider the SMI implementation when the dimen- 
sion of the S+ I subspace must be estimated from the data. In Section 7.9.3, 
we discuss the implement ation in which we track the S + I subspace as new 
data arrive at the array. In Section 7.9.4, we summarize our results. 

7.9.1 Performance of SMI Eigenspace Beamformers 

There are several performance questions that are pertinent to the eigenspace 
beamformers: 

(i) SMI performance. How quickly do eigenspace beamformers converge to 
the asymptotic solution? 

(ii) How well do the eigenspace beamformers perform with signal mismatch 

(va # Y-r-l>? 

(iii) How well do eigenspace beamformers perform in the presence of array 
perturbations? 

(iv) How well do eigenspace beamformers perform when the dimension of 
the signal subspace must be estimated? 

We consider the first two questions in this section under the assumption 
that the dimension of the signal plus interference subspace is known. We 
consider the fourth question in Section 7.9.2. 

Several analyses for the eigenspace beamformer have been developed 
using various series expansions and approximations. One approximation, 
which is derived by Chang and Yeh [CY92] (e.g., [FG94] and [YL96]), is 

E[SINR,] = 
SINR,K 

K + SINR, 9 (Neig - 1) 
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SINR,K - - 
K + SINRO(NI) ’ 

(7.523) 

where SINR, is the output SINR when S, is known, Neis is the number of 
eigenvalues used, and NI is the number of interferers. 

In order to have the E[SINR,] within 3 dB of SINRO, we require 

K = NI l SINR,. (7.524) 

This result can be compared to (7.111) from Section 7.2.1, 

K = (SINRmpdr ) (N - 1) E sINR,,d,N. (7.525) 

Thus, the eigenspace algorithm has reduced the multiplier from N, the num- 
ber of degrees of freedom to NI, the number of interferers. 

We can also use (7.110) with N replaced with Neig, 

Ebll - 
K - N,ig + 2 1 

- 
K+l 1 + sINRmpdr-es N$,,l I ’ 

(7.526) 

We consider a simple example to illustrate the behavior. 

Example 7.9.1: Eigenspace beamformer (continuation, Example 7.3.2) 
Consider a standard lo-element linear array. The signal arrives from us = 0. The 

SNR is 0 dB and 20 dB. Two equal-power uncorrelated interferers arrive at UI = 0.29 and 
0.45, each with an INR = 20 dB. 

In Figure 7.62, we plot the average SINR, versus K for the SMI-eigenspace beamformer 
with and without FB averaging. The horizontal line denotes the steady state value. We 
also show the MPDR results from Figure 7.5. We see that the eigenspace beamformer 
offers significant improvement. For low SNR, the analytic expression is accurate. As the 
SNR increases, the analytic expression underestimates the performance. 

In this case, the improved performance is due to the reduced dimension- 
ality of the subspace. 

Example 7.9.2: DMR beamformer (continuation) 
Consider the same model as in Example 7.9.1. In Figure 7.63, we plot the average 

SINR, versus K for the SMI-DMR beamformer using D, = 3 with and without FB aver- 
aging. The SNR = 0 dB in Figure 7.63(a) and 10 dB in Figure 7.63(b). The performance 
is several dB worse than the eigenspace beamformer. The estimates of the three dominant 
mode eigenvectors have some inaccuracy due to the finite data set. This mismatch causes 
some nulling of the signal. 

In the next two examples, we consider the case of signal DOA mismatch. 

Example 7.9.3: Eigenspace beamformer with mismatch (continuation) 
Consider the same nominal model as in Example 7.9.1. The beamformer assumes that 

the desired signal is arriving from us = 0. In practice, the signal arrives from ua = -0.05. 
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Figure 7.62 Eigenspace and MPDR beamformers using SMI algorithm: us = 
0, ‘UI = 0.29,0.45, INR = 20 dB. 200 trials: (a) SNR = 0 dB; (b) SNR = 20 

dB, average SINRO versus K. 
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Figure 7.63 DMR beamformer with known subspace dimension using SMI 
algorithm: u, = 0, UI = 0.29 and 0.45, INR = 20 dB: (a) SNR = 0 dB; (b) 
SNR = 10 dB, average SINR, versus K. 
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In Figure 7.64, we plot the performance of the eigenspace and MPDR beamformers. 
We see that there is dramatic improvement over the element space results. This improve- 
ment is because the algorithm is projecting the steering vector onto the eigenspace. 

Example 7.9.4: DMR beamformer with mismatch (continuation) 
Consider the same model as in Example 7.9.3. In Figure 7.65, we plot the same 

results as in Figure 7.64 for a DMR beamformer with fidrn = 3. Because of the mismatch, 
a significant portion of the signal power is rejected. 

In Figure 7.66, we plot the same results for a DMR beamformer with fidrn = 2. The 
performance is much better because most of the signal power is not contained in the DM 
subspace when the SNR is much smaller than the INR. For SNR 2 INR, the performance 
is poor because a large portion of the signal is in the DM subspace and only a small portion 
of the interferer is in the DM subspace. 

These results assume that the dimension of the eigenspace is known. 
In the next subsection, we consider the more realistic case in which the 
dimension of the eigenspace must be estimated. 

7.9.2 Eigenspace and DMR Beamformers: Detection of Sub- 
space Dimension 

In an actual application, the eigenspace or DMR beamformer must detect the 
dimension of the eigenspace as part of the implementation. We assume that 
the beamformer processes the input using one of the detection algorithms 
in Section 7.8 (e.g., AIC, MDL, AIC-FB, or MDL-FB). It assumes that the 
estimate, J, is correct and implements the eigenspace or DMR beamformer 
in (7.520) or (7.522). 

We illustrate the behavior by revisiting Example 7.9.1. 

Example 7.9.5 
Consider the same model as in Example 7.9.1. We implement the four tests from 

Section 7.8, AIC-FB, MDL-FB, AIC, and MDL. We then implement the MPDR-ES-FB or 
the MPDR-ES eigenspace beamformer. In Figures 7.67-7.69, we plot the average SINR, 
versus K for SNR = 0, 10, and 20 dB in part (a). In part (b) of each figure we plot 
PO, PFA, and PM versus K. 

For the FB algorithms, the performance is essentially the same as the “known sub- 
space dimension” result (from Example 7.9.1) for K 2 10. For the FO algorithms, the 
performance is essentially the same as the “known subspace dimension” result for K 2 20. 

For the above values of SNR (0, 10, and 20 dB), the detection perfor- 
mance does not change significantly when the signal DOA is mismatched. 
Therefore, the results in Example 7.9.3 apply to the case of signal mismatch 
when the subspace dimension must be estimated. 

In order for the detection algorithm to degrade the eigenspace beam- 
former, the SNR must be low enough to cause PM to be significant. This 
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Figure 7.64 Eigenspace beamformer with signal mismatch: us = 0, ua = 
-0.05,UI = 0.29,0.45, INR = 20 dB, 200 trials: (a) SNR = 0 dB; (b) SNR = 
10 dB; average SINR, versus I(. 
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Figure 7.65 DMR beamformer with known subspace dimension and signal 
mismatch: & = 3, us = 0, ud = -0.05, UI = 0.29 and 0.45, 1NR = 20 dB, 
SNR = 0 dB; average SINR, versus K. 

result occurs when one of the eigencomponents that should be in the signal- 
plus-interference subspace is mistakenly assigned to the noise subspace. This 
result may be caused by a low SNR, but it can also be caused by the signal 
geometry. The impact of losing an eigencomponent depends on how closely 
it is correlated with the signal vector. We consider a case that stresses the 
algorithm in the next example. 

Example 7.9.6 (continuation, Example 7.9.5) 

Consider the same model as in Example 7.9.5. We assume that SNR = -10 dB. We 
repeat the same tests as in Example 7.9.5. In Figure 7.70 we plot the average SINR, versus 
K for the MPDR-ES-FB beamformer. In Figure 7.71, we plot PD, PM, and PpA versus 
K. 

We see that there is significant performance degradation because, on many of the trials, 
we fail to detect the eigenvalue that is most correlated with the signal. The performance 
without FB averaging is much worse. 

We next consider DMR beamformers. In Example 7.9.5, for SNR=O, 10, 
and 20 dB, the performance when the dimension is estimated is essentially 
the same as the known dimension case. Therefore, the case of most interest 
is the SNR = -10 dB case in Example 7.9.6. 
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Figure 7.66 DMR beamformer with known subspace dimension and signal 
mismatch: bm = 2, us = 0, ud=-0.05, UI = 0.29 and 0.45, IniR = 20 dB, 
SNR = 0 dB; average output SINR, versus K. 

Example 7.9.7 (continuation) 

Consider the same model as in Example 7.9.6. The detection algorithm results in 
Figure 7.71 also apply to this case. We implement the DMR beamformer with ddm = J 
where d̂  is the dimension estimate from one of the four detection algorithms. We use both 
FB and forward-only averaging. The results in Figure 7.71 show that, for small K, the 
detection algorithms are underestimating the dominant-mode subspace. Our results in 
Example 6.8.4 (see Figure 6.79) indicate that DMR should work well in this region. For 
K>lOO, AIC-FB either correctly estimates ddm or overestimates ddm. For K>200, MDL- 
FB correctly estimates ddn. However, there is no signal mismatch, so the degradation due 
to having the signal in the DM subspace should be minimal. 

In Figure 7.72, we plot the average SINR, versus K for the four detection algorithms. 
We see that the MDL-DMR-FB algorithms are close to steady state by K = 20. The DMR 
algorithm using MDL-DMR-FO detection is close to steady state by K = 30 because of its 
underestimation behavior: The DMR algorithm using AIC-FO converges much more slowly 
because of its overestimation behavior. For K<lOO, the MPDR-DMR-FB algorithms 
perform better than the MPDR-FB algorithm. 

For higher SNR, the detection results in Figures 7.67, 7.68, and 7.69 
are applicable. We see that, for K>20 (2N), the MDL-FB P’ is close to 
one. Therefore, the results in Example 7.9.2 should be close to the actual 
performance. Including the signal in the DM subspace causes performance 
degradation. When the SNR is less than the INR, we try an approach with 
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Figure 7.67 Eigenspace Beamformers using AIC and MDL detection algo- 
rithms; us = 0, SNR = 0 dB, uI = 0.29,0.45, INR = 20 dB, 200 trials: (a) 
average SINRO versus K; (b) P” and &A versus K. 
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Figure 7.69 Eigenspace beamformers using AIC and MDL detection algo- 
rithms: us = 0, SNR = 20 dB, uI = 0.29,0.45, INR = 20 dB, 200 trials: (a) 
average SINR, versus K; (b) P” and &A versus K. 
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Figure 7.70 Eigenspace beamformers using AIC and MDL detection algo- 
rithms: us = 0, SNR = -10 dB, UI = 0.29,0.45, INR = 20 dB, 500 trials: 
average SINR, versus K. 

ddm = d - 1 to improve performance. 

Example 7.9.8 (continuation) 

Consider the same model as in Example 7.9.5 with SNR = 10 dB. We implement the 
DMR algorithm with ddm = & 1 (and ddm = J for comparison). To simplify the figure, we 
only show the results for MDL-FB and AIC-FB. In Figure 7.73 we plot the average SIN-R, 
versus K for an SNR = 10 dB. We see that, for K<500, deliberately underestimating the 
dimension of the DMR subspace improves the performance. For K<lOO, the improvement 
in this example exceeds 3 dB. 

In this section, we have studied the performance of eigenspace and DMR 
beamformers for the case in which we had to detect the dimension of the 
signal-plus-interference subspace. We used the AIC and MDL tests that 
were derived in Section 7.8 to detect the dimension. 

For adaptive eigenspace beamformers, it is essential that the signal be 
included in the eigenspace. Therefore, for low SNIP and small sample support 
we use the AIC-FB algorithm because it tends to overestimate, and the 
degradation in performance due to overestimation (false alarm) is less than 
the degradation due to underestimation (miss). 

For higher SNR, AIC-FB still performs better, but the probability of 
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Figure 7.72 DMR beamformer with AIC and MDL detection algorithms, 
d m = 2: us = 0, SNR = -10 dB, uI=O.29 and 0.45, IN-R = 20 dB, 500 
trials; average SINR, versus K. 

correct detection increases. As the SNR increases, the convergence is slower 
because of the signal presence, but the performance is always better than 
MPDR. 

For adaptive DMR beamformers, it is better to have the signal excluded 
from the DM subspace whenever the DM subspace is inexact (e.g., due to the 
signal mismatch or finite data estimates). For low SNR, MDL-FB performs 
slightly better than AIC-FB because of its tendency to underestimate in the 
low sample support region. Cox and Pitre [CP97] and Cox et al. [CPL98] 
have developed a robust version of the DMR beamformer. These use an 
auxiliary test to decrease signal rejection. 

These results indicate that the eigenspace algorithm is the best choice 
when the SNR is high enough that most of the signal power is included 
in the eigenspace. For low SNR, the DMR beamformer performs better. 
The detection algorithms in Section 7.8 that we use in this section used 
block processing. In the next section, we consider algorithms that track the 
subspace as new data arrives. 
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Figure 7.73 DMR beamformer with AIC and MDL detection algorithms, 
d ?-T-L =2-l: us=O,SNR= -10 dB, ul=O.29 and 0.45, INR = 20 dB, 500 
trials; average SINR, versus K. 

7.9.3 Subspace tracking 

7.9.3.1 Introduction 

In Sections 7.9.1 and 7.9.2, the signal subspace is computed using a batch 
eigenvalue decomposition (ED) of the sample covariance matrix or using a 
SVD of the data matrix. 31 There are two disadvantages to this approach. 
The first is that the computational complexity is O(N3), where N is the 
number of sensors. In most cases of interest to us, we are only interested in 
the D signal eigenvalues and eigenvectors. Techniques have been developed 
to reduce the computational complexity. A discussion of these techniques is 
given in Tuft,s and Melissinos [TM86]. 

The second disadvantage is that, in adaptive beamforming (or parameter 
estimation) we would like to update the signal eigenvalues and eigenvectors 
of the sample covariance matrix (or the eigenvalues and singular vectors of 
the data matrix) each time a new data vector arrives. This updating is 
important because: 

31This section is based on a research paper by one of my doctoral students, Zhi Tian 
[Tia99] 
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(i) Each additional snapshot will improve the accuracy of our subspace es- 
timate; 

(ii) In many applications of interest, the signal and/or interferers are moving 
so the subspace changes; 

(iii) New interfering signals may appear. 

Any of these effects will cause the estimate of the subspace to change. 
For these reasons, we would like to develop algorithms that track or 

update the eigendecomposition as new data vectors arrive. For adaptive 
eigenspace beamforming we need to track both the eigenvalues and eigen- 
vectors. In Chapter 9, when we study parameter estimation, we will discuss 
algorithms (e.g., MUSIC) that utilize the subspace (defined by the eigen- 
vectors), but do not need the eigenvalues. In this section, we restrict our 
attention to algorithms that track both the eigenvalues and eigenvectors. 

We focus our attention on the case in which we have a signal and in- 
terference environment that is fixed over the observation interval. However, 
the algorithms can adapt to an additional interfering signal arriving or an 
existing interfering signal departing. 

A second scenario of interest is the case in which the desired signal and 
interfering signals are moving and we want to track the subspace. 

A number of adaptive algorithms for subspace tracking have been devel- 
oped in the literature. A survey of work through 1990 is available in a paper 
by Comon and Golub [CG90]. More recent results are discussed in Dowling 
et al. [DAD94]. Most techniques can be put into three categories: 

(i) Variation of rank-one updating; 

Golub [Go1731 developed an eigenvector (EV) updating scheme. Bunch 
et al. [BNS78] and Bunch and Nielsen [BN78] develop an algorithm 
that is guaranteed to converge. Karasalo [Kar86] provides an alterna- 
tive implementation. DeGroat and Roberts [DR90] developed a nu- 
merically stable algorithm (ROSE) that provides good performance. 
MacInnes [Mac1981 develops an update algorithm based on operator re- 
striction (OPERA). Schreiber [Sch86] has developed implementations 
that use real operations. The FAST algorithm of Tufts et al. [TRC97] 
is another efficient example. 

(ii) Variations of QR factorizations; 

This category includes various rank revealing decompositions, such as 
Stewart’s URV algorithm [Ste92] and the TQR SVD of Dowling et al. 
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[DAD94]. Strobach [Str96] developed a low rank adaptive filter (LO- 
RAF) based on sequential orthogonal iteration (suggested by Owsley 
[Ows78]). 

(iii) Constrained or unconstrained optimization problem: 

The eigenvector decomposition (EVD) or SVD can be formulated as an 
optimization problem and various techniques, such as gradient-based 
methods, Gauss-Newton iteration, and conjugate gradient techniques, 
can be applied to seek the largest or smallest eigenvalues and their cor- 
responding eigenvectors adaptively. Yang and Kaveh [YK88] developed 
an algorithm using an LMS-type gradient estimator. Yang [Yan95a], 
[Yan95b] developed an RLS estimator called PAST. 

From the computational point of view, we may distinguish among meth- 
ods requiring O(N2d), O(N2), O(Nd2), O(Nd) arithmetic operations every 
update, where N is the dimension of the input data vector and d is the 
dimension of the subspace that we are tracking. The O(N2d) and O(N2) 
techniques are of little practical interest in applications where N is much 
larger than d. The wide range of the computational complexity is mainly 
due to the fact that some algorithms update the complete eigenstructure, 
whereas others track only the signal or noise subspace. 

We looked at a number of algorithms, but only studied three algorithms 
in detail: 

(i) Rank-one signal eigenstructure updating (ROSE), [DR90]; 

(ii) Low rank adaptive filter (LORAF), [Str96]; 

(iii) Projection approximation subspace tracking (PAST). [Yan95a], [Yan95b] 

All of these algorithms are suitable for array processing32 and are of com- 
plexity O(Nd2) or O(Nd). 

In each case, we required the algorithm to estimate the dimension of 
the subspace and estimate the eigenvalues and eigenvectors. We found that 
ROSE and a slightly modified version of LORAF had the best performance. 
The reader is referred to the above references and [Tia99] for a detailed 
discussion. There are a number of other algorithms that may be useful in a 
particular application. These include: 

(i) Operator restriction algorithm (OPERA) : [MacI98], [MV96]; 

32Some adaptive filter algorithms require a serial data input. 
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(ii) Fast approximate subspace tracking (FAST): Tufts et al. [TRC97] and 
Real et al. [RTC99]; 

(iii) Prony-Lanczos algorithm: Tufts and Melissinos [TM86]; 

(iv) PC method: Champagne [Cha94]; 

(v) Data-domain signal subspace updating algorithm (DDSSU): Youn and 
Un [YU94]. 

The reader is referred to the references for further discussions of these 
algorithms.33 

A different approach uses a geometric entity referred to as a Grassmann 
manifold. Early work in this area is by Bucy [BucSl] and Smith [Smi93]. 
Further work is contained in Fuhrmann [Fuh98], Fuhrmann et al. [FSM96], 
and Srivastava [SriOO]. The reader is referred to these references for further 
discussion. 

7.9.4 Summary 

In this section, we have discussed adaptive eigenspace and adaptive DMR 
beamformers. The first two sections utilized block processing. In Section 
7.9.1, we assumed that the dimension of the signal-plus-interference sub- 
space was known and demonstrated that the reduced dimension of the sub- 
space resulted in improved adaptive performance compared to a full-rank 
(N) beamformer. This improvement was significant if the ratio N/Neis was 
large. 

In Section 7.9.2, we considered the more realistic case in 1 
mension of the subspace must be estimated. Guidelines for 
eigenspace or DMR beamformer were suggested. 

The algorithms in Sections 7.9.1 and 7.9.2 are block algoritl 
tion 7.9.3, we identified several subspace tracking algorithms. 

-11 11 .  1 -1 l .  1 1 1 1 1 ’ 

ims. In Sec- 
In these al- 

goritnms, tne eigenaecomposition is upaatea eacn time a new data vector 
arrives. For a stationary environment, some of the algorithms provided the 
same performance as the block EVD or SVD. More importantly, they en- 
abled us to track changes in the eigenvectors and eigenvalues. 

rhich the di- 
choosing an 

Eigenspace and DMR algorithms provide effective performance in many 
scenarios and should be considered as a candidate design in many cases. In 

33We recognize that our discussion of subspace tracking algorithms is too brief for the 
reader to understand the issues without extensive outside reading. In an earlier draft we 
derived the three algorithms, but the necessary discussion was long and not comprehensive 
enough. 
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the next section, we discuss adaptive beamformers operating in beamspace. 
This approach provides an alternative way to achieve the benefits of reduced- 
rank processing. 

7.10 Beamspace Beamformers 

We introduced beamspace beamformers in Section 3.10 in the context of 
classical array design. In Section 6.9, we developed optimum beamspace 
processors. In this section, we develop the beamspace versions of the various 
adaptive beamformers that we have developed in the earlier sections of the 
chapter. We use the model in Section 6.9. 

The central result of this section is that, because of the reduced degrees 
of freedom in beamspace (Nbs versus N), the adaptation will be faster. The 
performance will have a K/Nb, dependence in beamspace versus a K/N 
dependence in element space. 

The basic relation of interest is 

xbs =BtX, (7.527) 

where 
H 

B,, Bbs = I. (7.528) 

The beamspace array manifold vector is 

Vbs(“h) = B$#+ 

The beamspace spatial spectral matrix is 

s H 
x,bs = B,, sx Bbs. 

(7.529) 

(7.530) 

If the array manifold vector is conjugate symmetric and the columns of 
Bbs are conjugate symmetric then, if we take the real part of the estimated 
beamspace matrix, it is equivalent to FB averaging of the data. 

We define an Nbs x K beamspace data matrix %bs, which has the same 
structure as (7.4). Then 

h 

S d-%f b = Re[%bs%E] = BE &,fb &se (7.531) 

In addition, vbs is real in the conjugate symmetric case. 
The requirement for conjugate symmetry of the rows of BE is satisfied 

by many beamspace matrices used in practice. Therefore, we can use real 
arithmetic to implement the adaptive beamspace beamformer, which offers 
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significant computation savings. Note that Xbs is complex so that we have to 
reformulate our algorithms in a manner similar to the algorithm in Section 
7.4.6 in order to actually implement the processors using real arithmetic. 

In Section 7.10.1, we consider SMI algorithms. In Section 7.10.2, we 
consider RLS algorithms. In Section 7.10.3, we consider LMS algorithms. 
In Section 7.10.4, we summarize our results. 

7.10.1 Beamspace SMI 

The SMI algorithms apply directly in beamspace with suitable notational 
changes. The examples parallel those in Section 7.3. In some cases, we in- 
clude the element-space result for comparision. We first consider an MVDR 
beamformer with no diagonal loading. 

The first example is beamspace SMI and is analogous to Example 7.3.1. 

Example 7.10.1: Beamspace MVDR 
Consider a standard 32-element linear array. The beamspace matrix is 7 x 32 and uses 

conventional beams spaced at 2/N intervals in u-space. The array is aimed at broadside. 
There is a single interferer with an INR = 10 dB at UI = 3/32. 

We use an MVDR beamformer. In Figure 7.74, we plot the output SINR, versus K, 
the number of snapshots. We also plot the analytic result for E[p] from (7.95) with N 
replaced by Nbs. In Figure 7.74(a) we plot versus K/Nb,. 

In Figure 7.74(b), we plot SINR, versus K/N and show the element-space results for 
comparison. As expected, the beamspace SMI converges more quickly to the steady state 
value. 

In the next 
beamformer. 

example, we consider the same model and study the MPDR 

Example 7.102: Beamspace MPDR (continuation) 
Consider the same model as in Example 7.10.1. In Figure 7.75(a), we plot the 

beamspace and element space results for an SNR = 0 dB. In Figure 7.75(b), we plot 
the same results for an SNR = 10 dB. In Figure 7.75(c), we plot the same results for an 
SNR = 20 dB. 

We see that there is a significant improvement in the performance. For 
the same level of SINR, loss the ratio in the number of required snapshots 

We next consider the use of fixed diagonal loading. 

Example 7.10.3 (continuation) 
Consider the same model as in Example 7.10.1 except the INR is increased to 20 dB. 

We consider two cases: 

(1) SNR = 0 dB, INR = 15 dB 

(2) SNR = 10 dB, INR = 15 dB 
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Figure 7.74 Beamspace MVDR with and without FB averaging: N = 
32, Nbs = 7,~~ = 0, uI = 3/N, INR = 10 dB, 200 trials; normalized SNR: 
(a) versus K/NbS; (b) versus K/N. 
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In Figure 776(a), we plot the normalized SINR, versus K/Nb, for case 1. In Figure 7.76(b), 
we plot representative beam patterns for K = 25. Figure 7.77 plots the same results for 
case 2. For both SNR levels, the loading provides a useful improvement in performance. 

We next consider the signal mismatch problem. In Example 7.10.4, we 
use diagonal loading to combat signal DOA mismatch. In Example 7.10.5, 
we also use additional constraints. 

Example 7.10.4 (continuation) 
Consider the same model as in Example 7.10.3. We use the beamspace MPDR with 

fixed diagonal loading, LNR = 20 dB. There is a single interferer at UI = 3/32 with an 
INR = 20 dB. The array is aimed at broadside but the signal arrives from ua = -0.01 
with an SNR = 10 dB. 

In Figure 7.78, we plot the output SINR, versus K/Nb,. 

The next example of an SMI beamspace processor is a GSC implemen- 
tation. The block diagram of the BS-GSC is shown in Figure 6.87. The 
equations specifying the BS-GSC are given in Section 6.9 ((6.524)-(6.528)). 
We consider an example using derivative constraints. 

Example 7.10.5: LCMP-BS-GSC-SMI beamformer (continuation) 
Consider the same model as in Example 7.10.4. Once again the array is aimed at 

broadside. The signal arrives from ua = -0.01 with an SNR = 10 dB. There is a single 
interferer at UI = 3/32 with an INR = 20 dB. We formulate the second-order derivative 
constraints in element space, 

and 

Then, from (6.525), 

and, from (6.528), 

c = [ 1 C(O) i;(o) ] , 

gH = [ 1 0 B,(O) ] l 

CbS =B;C, 

H 
Wlcmp,bs = gH [CE s; , ‘ , ,  cq - IL  c , “ ,  s ; , ‘ , ,  l 

A 

(7.532) 

(7.533) 

(7.534) 

(7.535) 

We implement (7.535) using SMI with Sx,bs replaced with Sx,bs,fb. 

We add fixed diagonal loading of 17 dB. In Figure 7.79, we plot the av- 
erage SINR, versus K/N bs. We can compare these results to those in Figure 
7.78. With the BS-MPDR beamformer, we needed an LNR = 20 dB to 
prevent signal nulling. With the LCMP-BS beamformer the derivative con- 
straints helped prevent signal nulling, so an LNR = 17 dB is adequate. The 
resulting steady state SINR, was 3 dB higher and the convergence rate was 
similar to the MPDR case. We see that the additional constraints improve 
the mismatch performance. 
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Figure 7.75 Beamspace MPDR with and without FB averaging: N = 
32, Nbs = 7, u, = 0, uI = 3/N, INR = 10 dB, 200 trials; normalized SINR, 
versus K/N: (a) SNR = 0 dB; (b) SNR = 10 dB; (c) SNR = 20 dB. 

In this section, we have studied SMI implementations of various beamspace 
beamformers. The key results are: 

(i) The convergence to steady state depends on Nbs, the dimension of the 
beamspace instead of N, the number of array elements. 

(ii) The computational complexity depends on Nb$, instead of N. 

Most of our examples have used either N = 10 or N = 32 because many of 
the results scale. In many applications, N is much larger so that Nbs/N is 
very small. Thus, the advantages in (i) and (ii) are more dramatic. 

In practice, we steer the array across the space of interest in discrete 
steps and perform beamspace processing at each step. 

7.10.2 Beamspace RLS 

In this section, we discuss beamspace RLS. All of the algorithms in Sections 
7.4 and 7.5 can be modified for beamspace implementation in a straightfor- 
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Figure 7.76 Beamspace MPDR with fixed loading: N = 32, NbS = 7, us = 
0, SNR = 0 dB, UI = 3/32, INR = 20 dB, LNR = 15 dB: (a) normalized 
SINR, versus K/NbS; (b) typical beam patterns, K = 25: SNR = 0 dB, 
INR = 20 dB, LNR = 15 dB. 
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Figure 7.77 Beamspace MPDR with fixed loading: N = 32,Nbs = 7qs = 
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Figure 7.78 Beamspace MPDR with fixed loading and signal mismatch: N = 
32, Nbs = 7, u, = O/u, = -0.01, SNR = 10 dB, uI = 3/32, INR = 20 dB, 
LNR = 20 dB; average SINR, versus normalized snapshots, K/N,+ 

ward manner. In addition, if the array manifold vector and the rows of BE 
are conjugate symmetric, then the algorithm in Section 7.4.6 allows us to 
use real computation. 

To illustrate the behavior, consider an example using RLS with variable 
loading that was developed in Section 7.4.5. We use a BS-GSC implemen- 
tation. 

Example 7.10.6 (continuation, Example 7.10.4) 
Consider the same model as in Example 7.10.4. We implement RLS-VL in beamspace 

with p=O.999. All of the other parameter values are specified in Example 7.10.4. For 
K/Nt,, > 5, the RLS curves and the SMI are the same. 

In practice, we can use the QRD to improve numerical stability. Other 
RLS examples are developed in the problems. 

7.10.3 Beamspace LMS 

In this section, we discuss beamspace LMS. All of the LMS algorithms in 
Section 7.7 can be modified for beamspace implementation in a straight- 
forward manner. To illustrate the behavior we consider an example using 
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Figure 7.79 Beamspace LCMP beamformer with derivative constraints and 
fixed loading: N = 32, Nbs = 7,~~ = 0,~~ = -0.01, SNR = 10 dB, 

UI = 3132, INR = 20 dB, LA?R = 17 dB; average SINR, versus normalized 
snapshots, K/Nb,. 

LMS-SP in beamspace. The algorithm is described in Section 7.7.4. 

Example 7.10.7 (continuation, Example 7.10.4) 
Consider the same model as in Example 7.10.4. N = 32 and Nbs = 7. We implement 

LMS-SP in beamspace. We use To = 1.2/32 and 

a(K) = -J- 
d(K) 

(7.536) 

where 
d(K) = P&K - 1) + (1 - P)x:(K)Xbs(K) (7.537) 

(see (7.474) and (7.475)). In F g i ure 7.80, we plot the average S1NR, versus K/Nb, for 
several values of y  and p. 

We see that the convergence is much faster than in element space. 

7.10.4 Summary: Adaptive Beamspace Processing 

In this section, we have studied beamspace processing. Several important 
results are: 

(i) The convergence behavior of the algorithms is a function of K/Nb, in- 
stead of K/N. In most applications, the difference will be significant. 
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Figure 7.80 Beamspace MPDR beamformer using the LMS-SP algorithm: 
N = 32, Nbs = 7, us = 0, ua = -0.01, SNR = 10 dB, uI = 3/32, INR = 20 
dB, LNR = 17 dB; average SINR, versus normalized snapshots, I(/Nb,. 

(ii) If the array is conjugate symmetric and the rows in the beamspace 
matrix are conjugate symmetric, then we can implement FB averaging 
by taking the real part of g, bs. This technique allows real processing to 
compute the necessary inverses. The result of (i) and (ii) can provide an 
order of magnitude improvement in the required number of snapshots 
to achieve a specified SINR, loss from the steady state performance in 
many cases. 

(iii) All of the element space algorithms carry over to beamspace. However, 
the computational complexity is a function of Nbs rather than N. 

As a result of these advantages, beamspace processors are widely used in 
practice. 

7.11 Broadband Beamformers 

In this section, we consider the adaptive behavior of the broadband beam- 
formers that we developed in Section 6.13. We discussed a frequency-domain 
implementation and a time-domain implementation. The frequency-domain 
beamformer consisted of A4 uncoupled narrowband beamformers. Therefore, 
we can use the narrowband results in the earlier sections in this chapter to 
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Figure 7.81 FIR beamformer: direct form. 

1 

analyze the broadband behavior. We consider several examples in the prob- 
lems. In this section, we restrict our attention to broadband time-domain 
beamformers. 

The starting point of the discussion is the time-domain model shown in 
Figure 7.81. This model is the direct form FIR model that we introduced in 
Figure 6.123. 

The second time-domain model of interest is the GSC model in Figure 
7.82 that we introduced in Figure 6.126. This GSC model assumes that the 
constraint matrix has the block structure in (6.797) or (6.810) and therefore, 
BH comp has the sparse structure in (6.822). 

In Section 7.11.1, we discuss the SMI implementation of the beamformers. 
In Section 7.11.2, we discuss the LMS implementation using the FIR filters in 
Figures 7.81 and 7.82. In Section 7.11.3, we discuss a lattice implementation 
of the FIR filter in order to improve the LMS convergence. In Section 7.11.4, 
we summarize our results. 

7.11.1 SMI Implementation 

In this section, we discuss the SMI implementation of the time-domain beam- 
former. We use the direct form model in Figure 7.81. The steady state 



876 7.11 Broadband Beamformers 

X(t) ( Presteer . _ 
w quad. demod. 

sample 

Quiescent 
b FIR filter 

Adaptive 
b FIR filter 

Figure 7.82 FIR beamformer: generalized sidelobe canceller. 

equations are (from (6.806)) 

H 
Wlcrnp = g 

H 
[ 
CH 

- 
R1 X cl 

-1 
CH 

- 
R1 X (7.538) 

where C is an N&l x &!J4 constraint matrix that has the block structure 
shown in (6.810). 

For the MPDR case, 

C - - 

1 0 l ** 0 

01 i 
. . . . 0 

0 
. . . . 0 

1 . 

= IM 8 1N (7.539) 

g H- I()... 1 - [ O J , (7.540) 

and 

In the SMI implementation, we estimate the NM x NM matrix Rx by 
constructing the sample covariance matrix, 

(7.541) 

where x(k) is NM x 1 composite input vector defined in (6.761). As in the 
narrowband case, we add diagonal loading, 

R X = it, + &NM. (7.542) 
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We then compute the NA4 x 1 weight vector, 

and 

(7.544) 

We consider the same model as in Example 6.13.5. 

Example 7.11.134 (continuation, Example 6.13.5) 
Consider a uniform lo-element array with spacing d = X,/2. There is an M-tap FIR 

filter at the output of each sensor’s quadrature demodulator. We implement a broadbaud 
MPDR beamformer using the SMI algorithm. The desired signal arrives from broadside 

( us = 0) with a flat spectrum with Bf = 0.4. The interfering signal arrives from UI = 0.29 
with an identical spectrum. The SNR = 0 dB and the INR = 30 dB. 

In Figure 7.83, we plot the average SINR, versus K for the M = 4 case. Four curves 
are shown: 

(i) LNR = 0 dB (SINR,, = 9.24 dB) 

(ii) LNR = 5 dB (SINR,, = 9.13 dB) 

(iii) LNR = -50 dB (SINR,, = 9.26 dB) 

(iv) ?j(SINRss); from (7.110), with LNR = -50 dB and N = 40. 

The algorithm with -50-dB loading has a slightly larger steady state SINR,, but signifi- 
cantly poorer performance for K < 500. The behavior is accurately described by (7.110). 
The LNR = 0-dB and LA?R = 5-dB cases have essentially the same steady-state but 
much better transient behavior. The LNR = 5-dB case is almost one dB higher than the 
LNR = 0-dB case at K = 100. LNRs greater than 5 dB lower the steady-state value 
without improving the transient behavior. Note that an LNR = 5 dB is much lower than 
the LNR for the corresponding narrowband model. 

In Figure 7.84, a representative beam pattern is plotted for K = 1,000. The nulls are 
in the correct location and the sidelobes are well-behaved. 

In Figure 7.85, we plot the average SINR, versus K for M = 2. The steady state value 
is 8.874 dB. At K = 1,000, the SMI algorithm is very close to the steady state value. In 
Figure 7.86, a representative beam pattern is plotted for K = 1,000. The nulls are in the 
correct location and the sidelobes are well-behaved. 

The M = 2 case has almost the same performance as the M = 4 case, and the 
computational complexity is reduced. The reason for this behavior is that the signal 
and interferer have identical spectra, so the additional frequency resolution obtained by 
additional taps is not required. 

As in the narrowband case, the SMI algorithm with appropriate loading provides good 
performance. The primary disadvantage is that the matrices that must be inverted are 
NM x NM, which increases the computational complexity. 

34The results in Examples 7.11.1 and 7.11.2 are due to J. Hiemstra and R. Jeffers (private 
communication). 
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Figure 7.83 Broadband MPDR time-domain beamformer with SMI algo- 
rithm: M = 4, u, = 0, SNR = 0 dB, Bfs = 0.4, uI = 0.29, INR = 30 dB, 
B fI = 0.4, LNR = 0 dB, 5 dB, and -50 dB, 100 trials; average SINR, versus 
K . 

7.11.2 LMS Implementation 

In this section, we discuss the LMS implementation of the TDL beamformer. 
In the first subsection we use the direct form structure in Figure 7.81. In 
the second subsection we use the GSC structure in Figure 7.82. 

7.11.2.1 Direct-form FIR structure 

We modify the results in Section 7.7 to accommodate the FIR case. The 
starting point is (7.418) - (7.420). Recalling that 

wq = c (cHc)-l g, (7.545) 

and 

P,IU-C CHC -v, - ( ) 
(7.546) 

the LMS equations are given by (7.418) - (7.420). For the FIR model, 

w(o) = Wq, (7.547) 
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Figure 7.84 Broadband MPDR time-domain beamformer with SMI algo- 
rithm: AL! = 4, us = 0, SNR = 0 dB, Bfs = 0.4, uI = 0.29, INR = 30 dB, 
B 

fI 
= 0.4, LNR = 0 dB, 5 dB, and -50 dB, 100 trials; representative beam 

patterns at K = 1,000 at three frequencies. 

and 

w(K) = P,I [C(E( - 1) - qK)y,(K)x(K)1+ wq, (7.548) 

where 

Yp(K> = xH(K>w(K - 1)) (7.549) 

and 

A(k) = diag [&(k), al(k), . . . ) &-&)] @ 1~. (7.550) 

We first consider the MPDR case in which (from (6.797)) 

(7.551) 

and 

(7.552) 
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Figure 7.85 Broadband MPDR time-domain beamformer with SMI algo- 
rithm: M = 2, us = 0, SNR = 0 dB, Bfs = 0.4, uI = 0.29, INR = 30 dB, 
B 

fr = 0.4, LNR = 0 dB, and -50 dB, 100 trials; average SINR, versus K; 
steady state results are also shown. 

Using (7.551) in (7.546), we have 

p:=INM-+@-i : Ilj ,: -j. (7.553) 

Using (7.552) and (7.553) in (7.548) gives the LMS equations, 

we(K) = wo(K - 1) - Ao(K)y,(K)xo(q 

-$l lT x [wo(K - 1) - Ao(K)yp(K)xo(K)] + $1, 

(7.554) 

Wm(K> = Wm(K - 1) - am(K)yp(K)xm(K) 

[wm(K - 1) - Am(K)yp(K)Xm(K)] 7 

m= 1,~~+6--1, (7.555) 
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Figure 7.86 Broadband MPDR time-domain beamformer with SMI algo- 
rithm: M = 2, us = 0, SNR = 0 dB, Bfs = 0.4, UI = 0.29, INR = 30 

dB, Bfr = 0.4, UVR = 0 dB, 100 trials; representative beam patterns at 
K = 1,000 at three frequencies. 

and 
M-l 

Y,(K) = c x:(K)w,(K - 1) (7.556) 
m=O 

Note that the coupling of the tap weight vectors only occurs in (7.556). This 
result is because of the diagonal structure of A(k) in (7.550). Therefore, we 
can use different Am(K) in (7.554)-(7.555). We used the power normalized 
version, 

where 

Am(K) = 2 
+rL~Eo ’ 

with 

a%(K) = P&(K - 1) + (1 - P) 11 Xm 

a$(O)=O, rn=O,~~~,M- 

The next example uses the same signal and interfere: 
7.11.2. 

K) II 
2 (7.558) 

, (7.559) 

ce model as Example 

1 

nl 

Example 7.11.2 (continuation, Example 7.11.1) 

(7.557) 

Consider a uniform lo-element array with spacing d = X,/2. There is a 4-tap FIR 
filter at the output of each sensor’s quadrature demodulator. The desired signal arrives 
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from broadside (us = 0) with a flat spectrum with Bf = 0.4. The interfering signal arrives 
from ‘~11 = 0.29 with an identical spectrum. The SNR = 0 dB and the INR = 30 dB. We 
use the LMS algorithm in (7.554) - (7.559) with y  = 0.01, m = 0, l . l , M - 1, and p = 0.99. 
Two levels of LNR, 0 dB, and -50 dB are considered. 

In Figure 7.87, the average SINR, is plotted versus K. The LMS algorithm converges 
much more slowly than the SMI algorithm. In Figure 7.88, representative beam patterns 
at K = 1000 are plotted for various frequencies in the band. The advantage of LMS is the 
reduced computational complexity. 

7.11.2.2 GSC FIR structure 

The GSC implementation using an FIR filter is shown in Figure 7.82. We 
assume that the constraint matrix is block diagonal so that BH is a (N - 
Nd) x N matrix. The output of the blocking matrix is an (N - Nd) x 1 
vector, xb(k). We define a (N-Nd)M x 1 vector, z, 

z(k) n - I 
xb(k) 

Xb(k - Ts) . 
I xb(k - (Ai - l)T,) 

- - 

Xb,OO (k) 
[ 1 Q,lO(k) 

. . 

. 

- Xb,OO( k - Ts) 
Xb,lO(k - T,) 

1 

1 

Xb,OO(k - (M - l)Ts) 
xb,lO(k - (M - l)T,) 

The LMS equations are (from (7.425) - (7.427)), 

q&q = Y,(K) - fi,H(K - l)z(K), 

%2(K) = tir(K - 1) + A(K)z(K)eg,(K), 

and 

i+(K) = wq - Bti,(K). (7.563) 

The LMS equations are coupled only through (7.561). 

~a,oo(K) = c;o,(K - 1) + nO(K)xb,OO(K)e;,(K), 

. 

. (7.560) 

(7.561) 

(7.562) 

(7.564) 

Gz,ng WI - - $&(K - 1) + n,(K)xb,rq(K)e;a(K) 7 
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Figure 7.87 Broadband MPDR time-domain beamformer with LMS algo- 
rithm: AI = 4, us = 0, SNR = 0 dB, Bfs = 0.4, UI = 0.29, INR = 30 dB, 

B fI = 0.4, LNR = 0 dB, and -50 dB, 100 trials; average SINR, versus K. 
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Figure 7.88 Broadband MPDR time-domain beamformer with LMS algo- 
rithm: 121 = 4,u, = 0, SNR = 0 dB, Bfs = 0.4,ul = 0.29,INR = 30 

dB, Bfr = 0.4, LNR = 0 dB, 100 trials; representative beam patterns at 
K = 1,000 at three frequencies. 
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4 - - 0 7 l -,M- 1. 

(7.565) 

Because it is an unconstrained optimization, the summation down the 
array in (7.555) is not required. The convergence parameter is a function of 
r, the index down the blocking matrix. We use the PNLMS algorithm, 

A,(K) = “Ir 
e (IO ’ 

where 

(7.566) 

(7.567) 

The GSC implementation has the same transient behavior as the direct- 
form implementation if the same values of y and ,O are used. 

7.11.2.3 Summary 

The FIR implementation using the LMS algorithm is one of the more widely 
used implementations of time-domain broadband beamformers. The advan- 
tage is that the computational complexity is the least of the various algo- 
rithms. The disadvantage is that the rate of convergence is a function of the 
eigenvalue spread and may be slow in some environments. 

In the next section, we 
FIR filter that improves the 

consider an 
convergence 

alternative 
behavior. 

implement at ion of the 

7.11.3 GSC: Multichannel Lattice Filters 

In this section, we discuss an alternative implementation of the FIR filters 
in the bottom branch of the GSC. We implement the filtering in the bottom 
branch using a multichannel lattice filter. Single-channel lattice filters are 
widely used in adaptive filtering applications because of their convergence 
properties. 

Early applications included speech analysis and synthesis, [IS71], linear 
prediction, [MV78], and least square estimation. The early papers by Grif- 
fiths [Gri77], [Gri78] are particularly relevant to our application. In the 
past twenty years there have been a large number of papers dealing with 
adaptive algorithms using lattice structures. Chapter 6 (by F. Ling) in 
[KT93], Chapters 4 - 7 in Proakis et al. [PRLN92], and Chapters 6 and 
15 in [Hay961 provide thorough discussions. Most of the applications have 
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considered single-input systems. For the array processing problem we need 
a multichannel lattice filter implementation because the input is a N x 1 
complex vector. Lattice filters are based on MMSE theory so we implement 
our processor as a GSC in which the desired scalar signal is ye(k). 

The multichannel lattice filter implementation for the array processing 
problem is given in Griffiths [Gri77], [Gri78]. Youn and Chang [YCSG] have 
discussed the implementation in more detail. A similar algorithm is given in 
Table 6.9 on p. 239 of [KT93]. 

The advantage of the lattice structure is that the equations to update the 
stages are uncoupled. Therefore, one can choose the adaption parameters in 
each stage in a manner that improves convergence. An LMS algorithm to 
update the stages is given in [Gri78] and [YC86]. 

Just as in the narrowband case, we can improve the adaptive behavior 
by using an RLS algorithm. QRD multichannel lattice algorithms are dis- 
cussed by McWhirter and Proudler in Section 7.4.2 of [KT93]. They are also 
discussed by Ling in Section 6.3.3 of [KT93]. The reference lists at the end 
of these two chapters provide further material. Both Haykin [Hay961 and 
Proakis et .a1 [PRLN92] contain discussions. The interested reader is referred 
to these references for a complete discussion.35 

7.11.4 Summary 

In this section we have provided a brief discussion of the adaptive behavior 
of time-domain broadband beamformers. We restricted our discussion to 
SMI and LMS algorithms. 

7.12 Summary 

In this chapter, we have studied adaptive beamformers. The topics in the 
chapter can be divided into four parts. 

The first part of the chapter (Section 7.2) developed techniques for esti- 
mating the spatial spectral matrix. We emphasized the sample spectral ma- 
trix and the FB averaged sample spectral matrix because of their maximum 
likelihood character, their relative simplicity, and their widespread usage. 
Other techniques that added more structure to the model were introduced 
but not developed. 

350ur discussion of lattice filters requires the reader to consult the suggested references 
to understand the issues. A more self contained discussion would require a lot of additional 
background that we have not developed. 
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The second part of the chapter (Sections 7.3-7.7) developed the three 
adaptive algorithms that are most widely used. 

The SMI algorithm is a block processing algorithm in which the estimated 
spatial spectral matrix is substituted for the ensemble spectral matrix. We 
found that we needed to include diagonal loading to obtain satisfactory per- 
formance. The convergence to steady state is a function of K/N. The 
disadvantage of the SMI approach is that the computational complexity is a 
function of N3, so that the SMI algorithm is only practical for modest size 
arrays. 

The RLS algorithm can be developed in several different ways. We used 
a least squares formulation and then developed a recursive implementation 
that was similar to a Kalman filter. A recursive QRD version was developed 
that was stable and computationally efficient. Once again, diagonal loading 
was utilized. 

The LMS algorithm required the least amount of computation. We de- 
veloped it as a stochastic version of the steepest descent algorithm. The 
disadvantage of the LMS algorithm was that its convergence depended on 
the eigenvalue spread and may be slow in certain environments. 

The third part of the chapter (Sections 7.8-7.10) focused on techniques 
for reducing the dimension of the adaptive processor. The two techniques 
were eigenspace processing and beamspace processor. In order to imple- 
ment eigenspace processors, we must estimate the dimension of the signal 
subspace. In Section 7.8, we developed the MDL and AIC algorithms to esti- 
mate the signal subspace dimension and briefly discussed subspace tracking 
algorithms. We found that eigenspace beamformers were very effective and 
reduced the convergence time and computational complexity. The disadvan- 
tage of eigenspace beamformers is that, under certain scenarios, we may lose 
a component of the eigenspace that is highly correlated with the signal. This 
loss causes a dramatic degradation in performance. BS processors construct 
the subspace in a deterministic manner, normally with a set of orthogonal 
beams spaced around the steering direction. We then utilize the SMI, RLS, 
or LMS algorithm in beamspace. The resulting algorithms are computa- 
tionally simpler and converge faster than the corresponding element space 
algorithms. 

The fourth part of the chapter (Section 7.11) discussed adaptive time 
domain implementations of broadband beamformers. The discussion intro- 
duced the issues and considered several examples of LMS and SMI imple- 
mentations. We referred the reader to the literature for a discussion of lattice 
structures and RLS implementations. 

There are several issues that we introduced in Chapter 6 that we have 
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not discussed in the adaptive context: 

(i) Array perturbations. In Section 6.6.3, we discussed how array per- 
turbations degrade the steady state performance. Similar effects occur 
in the adaptive case, but no new issues arise. Wax and Anu [WA961 
discuss the closely related problems of steering vector errors and finite 
data. 

(ii) Coherent signals and interferences. In Section 6.12, we discussed 
beamforming when the desired signals were coherent or correlated. 
We showed that spatial smoothing provided an effective algorithm in 
many scenarios. The adaptive version of the algorithm is developed 
in Shan and Kailath [SK851 and Takao and Kikuma [TK87]. The 
reader is referred to these references for a discussion of adaptive spatial 
smoothing. 

(iii) Covariance augmentation. In Section 6.7.6, we discussed the use of 
covariance matrix tapers to broaden the nulls created by the adaptive 
beamformer. A discussion of the adaptive version is given in [Gue99], 
[GueOO], [Zat99] and [ZatOO]. Another technique for broadening the 
nulls by imposing derivative constraints is discussed in [GSB96]. 

This chapter completes our discussion of beamforming. In the next two 
chapters we discuss the parameter estimation problem. 

7.13 Problems 

P7.2 Estimation of Spatial Spectral Matrices 

Problem 7.2.1 
Compute the bias of the sample spectral matrix as an estimator of S,. 

Problem 7.2.2 [Wi162] 
(a) Show that the chi-squared density is reproductive with respect to K/2. In other 

words, 

E [x2r(K)] = 
2T (5 t-r) 

K ’ 
v  > 

(7.568) 
2 

(b) Using the result in part (a), show that 

E [X”(K)] = K (7.569) 

E [X”(K)] = K(K + 2>, (7.570) 

var [X”(K)] =K(K+2)-K2=2K. (7.571) 
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Problem 7.2.3 
Show that 

(7.572) 

Problem 7.2.4 
Extend the technique of FB averaging to a standard linear array with an odd number 

of elements N. 

Problem 7.2.5 
Consider a standard 19-element hexagonal array. Show how to construct a conjugate 

symmetric array manifold vector. 

Problem 7.2.6 
Consider the correlation matrix S, in (7.75). Assume that 

(7.573) 

Assume that FB averaging is used. 

(a) Find Sx,fb. 

(b) Discuss the behavior as a function of c\r. 

Problem 7.2.7 
Generate a Gaussian random sequence corresponding to a real AR(l) process acting 

as an input to a standard lo-element linear array. 

(a) Calculate 9, and &,fb for K = 10,20,100,1000 for one trial. 

(b) Repeat for 50 trials and K = 100 and analyze your results. 

Problem 7.2.8 
In this problem we find the least squares estimate of S, with a Toeplitz constraint 

imposed.36 Specifically, we define 

e2 = tr [(G - Sx)’ (Gc - Sx)] ) (7.574) 

where C, is the sample covariance matrix defined in (7.3). The squared error is the 
Frobenius norm, 

e2 = kc(Cij -Sij)2. 

i=l j=l 

(7.575) 

360ur discussion follows Scharf [SchSl], which in turn references Lawson and Hansen 
[LH74]. 
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(a) We impose the structure on S, through the vector parameter 8 and denote it 
by S,(O). Minimize e2 with respect to 8 and show that 

de2 -- 
d& - 

-2 tr [(G - Sx)]lsx,g = 0. 
X 

(7.576) 

(b) Show that the second derivative is 

tr [($)*g] + tr [(Gc-S~)~~], (7.577 > 

which will be evaluated to verify that the solution is a minimum. 

(c) For a Hermitian Toeplitz structure we parameterize S,(O) as 

N-l 

s, = soQo + c snQn + 2 s;Q:. 
T-L= 1 7X= 1 

This corresponds to, 

s, = 

so Sl “a SN-1 ’ 

. 

4 so l * 

Q n= 

SN-1 

-0 

. . . 

Qo = I. (7.580) 

0 

0 

1 0 

0 1 

0 

0 

s; 

0 

0 

1 

is an upper triangular matrix with 1s along the nth diagonal and zeros 

Differentiate with respect to SO, Re[sn], and Im[sn] and set the result 

(7.578) 

(7.579) 

(7.581) 

everywhere. 

to zero. 

tr [(G - sly I] = 0. 

tr [(C, - s,>’ (Qn + Qa>l = 0. 

(7.582) 

(7.583) 
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tr [(cx - S,>’ (Qn - Q:)] = 0. (7.584) 

(d) Use the above results and show that, 

ii ) (7.585) 
n=l 

N N 

Re [s\] = ’ 
2(N - lkl) lx %-n)j + x Ci(i-n) 1 7 (7.586) 

j=n+l i=n+ 1 

and 

N N 

I??2 [in] = ’ 
2(N - n) x C(j-n)j - 

IL 
Ci(i-n) Y  1 (7.587) 

j=n+l i=n+l 

We see that the solution averages along the appropriate diagonals to obtain a Her- 
mitian Toeplitz matrix. We refer to this estimated matrix as &J&. This estimate 
is intuitively satisfying. However, the resulting estimate is not non-negative definite 
and gives poor results in some applications. 

Problem 7.2.9 
Consider the model in which x(k) is generated by two equal power, uncorrelated plane 

waves plus white noise. 
(a) Find an expression for the asymptotic (large K) behavior of the eigenvalues and 

eigenvectors. 
(b) Plot for a standard lo-element linear array. 

P7.3 Sample Matrix Inversion (SMI) 

Problem Note 7.3.1: In this section, we simulate the performance of the SMI imple- 
mentation of adaptive beamformers for various scenarios including those in Table 7.4. The 
scenarios are chosen to be representive of problems that may be encountered in practical 
applications. In subsequent sections, we consider different adaptive implementations for 
the same scenarios. The same data set should be used for the different beamformers. Use 
100 trials in your simulation. All of the scenarios include additive white noise. 

Problem 7.3.1 
Consider a SLAlO and Test Scenario 1. 

(a) Simulate the wf&dr smi beamformer in (7.85). Choose several values of SNR and 
INR. Plot SINR, versus K. Plot representative beam patterns for K = 2N, 6N, lON, 
and IOON. Discuss your results. 

(b) Repeat part (a) with various levels of fixed diagonal loading. Discuss your results. 

Problem 7.3.2 (continuation) 
Repeat Problem 7.3.1 for Test Scenario lm with ua = 0.02 and 0.04. 
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Problem 7.3.3 (continuation, Problem 7.3.1) 
Consider the model in Problems 7.3.1. Implement wKpdr smi as a GSC with BHB = I. 

Repeat Problem 7.3.1. Compare the performance on specific sample functions as well as 
an averaged basis. 

Table 7.4 

Test 
Scenario Signal Interferers 

Location Strength 
1 Urn =0 Separated Sidelobe 

SNR = 0, 10, l l . ,30 dB Ul = 0.30 INRi = 0, l l l ,40 dB 
u2 = 0.50 i=l, 2, 3 
U3 = 0.70 

INR = 0, l l - ,40 dB 
lm (Ual 5 Urn TSl TSl 

us = 0 Clustered Sidelobe Strength 
2 SNR = 0,. - l ,30 dB Ul = 0.28 INRi = 0, - l l ,40 dB 

u2 = 0.30 i=l, 2, 3 
u3 = 0.32 

2m IUal I Urn TS2 TS2 
US =0 Outer Main Lobe Strength 

3 SNR = 0, l - l ,30 dB u1 = 0.18 INRi = 0, l l l ,40 dB 
u:! = -0.30 i=l, 2 

3a IUal I Urn TS3 TS3 
4 us =0 Main Lobe Strength 

Ul = 0.08 INRi = 0, - l - ,40 dB 
us = 0 Random Sidelobe Strength 

5 II&l 2 0.20 INRi = 0, l l l ,40 dB 

Ui = l,***,D i = O,-,D 

us =0 Correlated Interference 
6 Ul = 0.30 INR = 0, l - l ,40 dB 

IPI # 0 
us =0 Spatially Spread 

7 Section 5.7.1 INR=lO, 20, and 30 dB 
Complex AR( 1) 

4 a = 0.3,la(l)l = 0.5, 
0.7, and 0.9 I 

Notes for Table 7.4 

1. In TS5, assume that the location of each interferer is a uniform random variable 
0.20 < luil < 0.90, i = 1,. 0 . , D and that the locations are statistically independent. 
The FNRi takes on one of five values, 0, 10, 20, 30, and 40 dB with equal probability. 
The locations and INRs of the interferers are statistically independent. They are 
fixed over the snapshots but are different realizations on each trial. 

2. In TS7, the additive white noise causes the interference plus noise model to be an 
ARMA process. 

3. In TS3, an extra interferer is added in the sidelobe. 
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Problem 7.3.4 
Repeat Problem 7.3.1 for a SLAlO and Test Scenario 2. 

Problem 7.3.5 
Repeat Problem 7.3.2 for a SLAlO and Test Scenario 2m. 

Problem 7.3.6 
Repeat Problem 7.3.1 for a SLAlO and Test Scenario 3. 

Problem 7.3.7 
Repeat Problem 7.3.2 for a SLAlO and Test Scenario 3m. 

Problem 7.3.8 
Repeat Problem 7.3.1 for a SLAlO and Test Scenario 4. 

Problem 7.3.9 
Repeat Problem 7.3.1 for a SLAlO and Test Scenario 5 with D = 4. 

Problem 7.3.10 
Repeat Problem 7.3.1 for a SLAlO and Test Scenario 6 with p = 0.95exp(jn/4). 

Problem 7.3.11 
Repeat Problem 7.3.1 for a SLAlO and Test Scenario 7. 

Problem Note 7.3.2: In several of the previous problems, the scenario included signal 
mismatch or a main-lobe interferer. We attempted to provide main-lobe protection by 
using diagonal loading. In Section 6.7, we utilized linear constraints to provide main-lobe 
protection. The linear constraint sets included: 

(a) Directional (6.287). 

(b) Derivative (6.308), (6.310). 

(c) Eigenvector (6.344). 

(d) Quiescent pattern (6.419). 

In the next five problems, we revisit some of the previous problems where main-lobe 
protection was needed. In each problem, choose one or more of the above constraints and 
implement the LCMP-SMI beamformer. Choose several values of SNR and INR and use 
various LNR. In each problem, 

(a) Plot SINR, versus K. 

(b) Plot representative beam patterns for K = 2N, 6N, lON, and 1OON. 

Compare the diagonal loading level needed in the LCMP beamformer with the diagonal 
loading level needed in the MPDR beamformer. 

Problem 7.3.12 (continuation, Problem 7.3.2) 
Repeat Problem 7.3.2 for a SLAlO and Test Scenario lm. Use ua = 0.02 and 0.04. 

Problem 7.3.13 (continuation, Problem 7.3.5) 
Repeat Problem 7.3.5 for a SLAlO and Test Scenario 2m. Use ua = 0.02 and 0.04. 

Problem 7.3.14 (continuation, Problem 7.3.7) 
Repeat Problem 7.3.7 for a SLAlO and Test Scenario 3m. Use ua = 0.02 and 0.04. 
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Problem 7.3.15 (continuation, Problem 7.3.8) 
Repeat Problem 7.3.8 for a SLAlO and Test Scenario 4m. Use ua = 0.02 and 0.04. 

Problem 7.3.16 (continuation, Problem 7.3.10) 
Repeat Problem 7.3.10 for a SLAlO and Test Scenario 6m. Use ua = 0.02 and 0.04. 

Problem 7.3.17 
Consider a SLA20. Assume us = 0 and the SNR is 10 dB. Assume there are two 

interfering signals at ~11 = 0.15 and ~12 = -0.45. Each interfering signals has an INR = 30 
dB. 

The random variable p is defined in (7.92) and the random variable v  is defined in 
(7.106). 

(a) Plot E[p] and p for K = 20,40,60,80, and 100 for MVDR beamformer using gn = 
C,: use 200 trials. 

(b) Repeat for the case of g, = C, fb. , Plot p. Also plot E[p] from (7.95) replacing K 
with 2K. 

(c) Plot a histogram of p for K = 40. Use 500 trials. 

(d) Consider the case when K = 4,10, and 16. Add DL (perhaps LNR = 10 dB) and 
plot p. 

(e) Plot q for the MPDR beamformer for K = 20,40,60,80, and 100. Compare to the 
analytic expression given by (7.110) and (7.111). 

(f) Repeat parts (a) and (b) for the GSC configuration. Specify the B matrix that you 
use (BHB = I). 

P7.4 Recursive Least Squares 

Problem Note 7.4.1: In this section, we simulate the performance of the RLS imple- 
mentation for various scenarios including those in Table 7.4. The parameters that must 
be specified are p in (7.138), the initial conditions (a: in (7.161) and G(O) in (7.163)), and 
the diagonal loading 02 in (7.209). In each problem, consider four RLS implementations: 

(a) RLS with no diagonal loading. 

(b) GSC-RLS with fixed diagonal loading (Section 7.4.4). ai/& must be specified. 
(Include ai = 0 as a reference). 

(c) GSC-RLS with variable diagonal loading (Section 7.4.5). To must be specified. 

(d) Conjugate symmetric RLS (Section 7.4.6) ( in order to use diagonal loading, we must 
derive the GSC implementation of RLS-FB; see Problem 7.4.12). 

You must choose the values of these 
as in Secti on P.7. 3. In each problem, 

parameters in your solution. Use the same data set 

(a) Plot SINR, versus K. 

(b) Plot representative beam patterns for K = 2N, 6N, lON, and lOON. 

Compare your results to SMI results for the same scenario. Discuss the effects of the 
various parameter values. Discuss any computational issues. Conduct 100 trials. 

The test scenario from Table 7.4 that we use with each problem is shown in Table 7.5. 
Recall that the details of the scenario were given in the SMI problem section. We also 
show the problem numbers for P7.5, P7.6, and P7.7. 
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Problem Note 7.4.2: The comments in Problem Note 7.3.2 also apply to the RLS 
implementation. In the next five problems we consider LCMP beamformers implemented 
in a GSC structure. Consider one or more of the constraint sets in Problem Note 7.3.2 
and plot the results indicated in Problem Note 7.3.2. The problems are listed in Table 7.5. 

Table 7.5 

Test 
Scenario 

1 
lm 
2 

2m 
3 

3m 
4 
5 
6 
7 

lm 
2m 
3m 
4 
6 

Problem 7.4.16 

( > a Derive the equations that specify the GSC implementation of the conjugate symmet- 
ric RLS beamformer in Section 7.4.6. Your equations should use real computation. 

SMI RLS QRD SD 
7.3.1 7.4.1 7.5.1 7.6.5 

7.3.2 7.4.2 7.5.2 7.6.6 
7.3.4 7.4.3 7.5.3 7.6.7 
7.3.5 7.4.4 7.5.4 7.6.8 
7.3.6 7.4.5 7.5.5 7.6.9 
7.3.7 7.4.6 7.5.6 7.6.10 
7.3.8 7.4.7 7.5.7 7.6.11 
7.3.9 7.4.8 7.5.8 7.6.12 

7.3.10 7.4.9 7.5.9 7.6.13 
7.3.11 7.4.10 7.5.10 7.6.14 
7.3.12 7.4.11 7.5.11 7.6.15 
7.3.13 7.4.12 7.5.12 7.6.16 
7.3.14 7.4.13 7.5.13 7.6.17 
7.3.15 7.4.14 7.5.14 7.6.18 
7.3.16 7.4.15 7.5.15 7.6.19 

LMS 
7.7.1 
7.7.2 
7.7.3 
7.7.4 
7.7.5 
7.7.6 
7.7.7 
7.7.8 
7.7.9 

7.7.10 
7.7.11 
7.7.12 
7.7.13 
7.7.14 
7.7.15 

(b) Modify your results in part (a) to incorporate diagonal loading. 

Problem 7.4.17 
Repeat Example 7.4.1 for the case in which there are two interferers at UI = k0.29. 

All other parameters remain the same. Compare your results to those in Problem 6.3.7. 

Problem 7.4.18 
Consider the LCMP beamformer in Example 7.3.1. Develop a recursive GSC imple- 

mentation of the beamformer. Simulate its performance and compare your results to those 
in Example 7.3.1. 

Problem 7.4.19 
One of the reasons for using p # 1 is to accommodate non-stationary environments. 

Consider the model in Problem 7.4.17. Denote the INR of the interferer at UI = 0.29 on 
the kth snapshot as UV&(k). Denote the INR of the interferer at UI = -0.29 on the kth 
snapshot as INIt@). Assume 

INR@) = 
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and continues in the same pattern. 

k = 1,~.•,25 
k = 26, - l l ,75 
k = 76, - l l ,125, 

and continues in the same pattern. 
Study the behavior of the RLS MPDR beamformer for various choices of ,X Use 10 

dB diagonal loading and SNR = 10 dB. 

Problem 7.4.20 
Repeat Example 7.4.1 for the scenario in Problem 7.3.17, that is, N = 20, us = 0, u11 = 

0.15 and 2~12 = -0.45. Consider the following parameters: 

(i) p = 0.95,0.99,0.999, 

( > ii g2 = 10, &rni = 0. (i.e., no SMI DL), 

(iii) w(0) = vs/N, 

(iv) INR = 20 dB, 

(v) SNR = 0, 10, 20 dB. 

Plot average SINR behavior as well as sample beampatterns. 

Problem 7.4.21 (continuation) 
Consider the same scenario as in Problem 7.4.20. Implement the FB RLS beamformer 

in Section 7.4.6. Compare your results to those in Problem 7.4.20. Comment on the 
difference in average SINR, beampatterns, and computational load. 

Problem 7.4.22 (continuation) 
Consider the same scenario as in Problem 7.4.20. Consider an LCMP beamformer 

with three mainbeam constraints. You may use any type of constraints you wish (e.g., 
directional, derivative, quiescent pattern), but specify your choice. Implement the direct 
form and GSC form of the LCMP beamformer. Assume us = 0.03. Compare your results 
to those obtained in Problems 7.4.20 and 7.4.21. Compare/comment on the computational 
complexity of the direct versus GSC beamformers. 

Problem 7.4.23 (continuation) 
Implement the GSC LCMP beamformer from Problem 7.4.22 with (1) fixed loading 

at 10 dB use (7.211), (2) variable loading, (3)scaled projection. Compare your results to 
those obtained in Problem 7.4.23. Use a constraint level of T’ = 2/N. 

Problem 7.4.24 
Repeat t’he derivation in (7.178)-(7.183) for the case of a moving window of length 

l/l - I-L. Simulate its performance for several of the examples in the text. 

P7.5 Efficient Recursive Implementation Algorithms 

Problem Note 7.5.1: The QRD that we have developed utilizes a GSC implementation 
of the RLS beamformer and does not incorporate diagonal loading. The objective is to 
obtain an algorithm that has good numerical stability and reduced computation. The 
first ten problems repeat implementation (b) in Problem Note 7.4.1, with ai = 0 for the 
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scenarios in Problem 7. 4.1-7.4.10 . In addition to 
should be t,o notice the improved numerical stabi 

underst 
lity. 

anding the algorithm, your goal 

Problem 7.5.1 
Consider a SLAIO and Test Scenario 1. Implement the RLS beamformer using a GSC 

configuration. Implement the adaptive component in the lower path using a QRD. 

(a) Plot SINR, versus K. 

(b) Plot representative beam patterns for K = 2N, 6N, lON, and 1OON. 

The remaining problem numbers are shown in Table 7.5 (Problems 7.5.2-7.5.10). 

Problem Note 7.5.2: 

The comments in Problem Notes 7.3.2 and 7.4.2 also apply to the QRD implementa- 
tion. In the next five problems we consider the same models as in Problems 7.4.11-7.4.15 
and use a GSC-RLS-QRD implementation. The problem numbers are shown in Table 7.5 
(Problems 7.5.11-7.5.15). 

Problem 7.5.16 (continuation, Problem 7.4.20) 
Consider the same model as in Problem 7.4.20. 

(a) Implement the QRD algorithm for the RLS-GSC beamformer. Compare your 
results to those in Problem 7.4.20. 

(b) Implement the QRD algorithm for the direct form RLS beamformer. Compare 
your results to those in part (a). 

P7.6 Gradient Algorithms 

Problem Note 7.6.1 
The first set of problems consider direct form MMSE beamformers. 

Problem 7.6.1 
Consider the model in Example 7.6.5. Assume that the SNR = 0 dB, INRl = 10 dB, 

IN& = 50 dB. Repeat the calculations in Example 7.6.5. Discuss your results. 

Problem 7.6.2 

Consider the model in Example 7.6.5. Assume that w(0) is a Dolph-Chebychev pattern 
with -20 dB sidelobes. 

(a) Repeat the calculations in Example 7.6.5. 

(b) Are tjn (K), n _> 3 equal to zero ? If not, plot them as a function of K. 

Problem 7.6.3 

Consider a SRAlO. The desired signal arrives at us = 0 with an SNR = 10 dB. 
Assume that two interferers arrive at u1 and ~2. Consider the following parameters: 

INRl = 30 dB, ur = 0.29, 

INRz = 45 dB,uz = 0.49. 

(a) Repeat the calculations in Example 7.6.4 (choose an appropriate a>. Discuss your 
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(b) Modify the algorithm to include a variable step size a(K). Compare your results 
to those in part(a). 

Problem 7.6.4 
Repeat Problem 7.6.3 for the following parameter set: 

INRl = 30 dB, u1 = 0.27, 

INRz = 30 dB, u2 = 0.31. 

Problem Note 7.6.2 
The next set of problerns utilize the test scenarios in Table 7.4. In all of the problems 

we use a GSC implementation and use the MMSE steepest descent algorithm to find wa 
in the lower branch ((7.387)-(7.389)). W e assume that (7.385) is satisfied. In all problems, 
plot 

(a) Plot SINR, versus K. 

(b) Plot representative beam patterns for K = 2N, 6N, ION, and 1OON. 

Compare your results to the RLS results in Problem Section 7.4. Note that we are using 
known ensemble statistics in this section. In Sections 7.3-7.5, we used measured statistics. 
A fairer comparison will be used when we simulate the LMS algorithm in Section 7.7. 

The problem numbers are shown in Table 7.5. 

P7.7 LMS Algorithms 

Problem Note 7.7.1 
The first set of problems consider the test scenarios in Table 7.4. Consider LMS 

algorithms: 

(a) Griffiths LMS algorithm with diagonal loading (7.417). 

(b) Frost MPDR LMS algorithm, direct form with diagonal loading (7.418). 

(c) Frost LCMP LMS algorithm, direct form with diagonal loading (7.418). 

(d) MPDR-GSC-LMS with diagonal loading (7.426). 

(e) LCMP-GSC-LMS with diagonal loading (7.426). 

In all cases, use the PNLMS algorithm with a(K) given by (7.460) and (7.461). 
The parameters to be selected for the algorithms are y  and p in (7.460) and (7.461) 

and the LNR. The SNR and INR must also be selected from Table 7.5. 
The problem number are shown in Table 7.3. In the first ten problems do parts (a), (b), 

and (d). In the next five problems do parts (c) and (e). The list in Table 7.5 corresponds 
to Problems 7.7.1-7.7.15. 

Problem 7.7.16 
Consider a SLAIO. The signal arrives from broadside with an SNR = 10 dB. There 

are two interfering plane wave signals: 

UIl = 0.29, INR1 = 30 dB, 
UI2 = 0.50, INR2 = 30 dB, 
UI3 = -0.29, INR3 = 20 dB, 
uI4 = -0.50, INR4 = 10 dB. 
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Compare the performance of SMI, RLS, and LMS beamformers. 
Assume that we use arr LCMV beamformer with a single constraint 

WHVs = 1. (7.588) 

Design an SMI beamformer with appropriate diagonal loading. Design an RLS beam- 
former with appropriate 1~ and 0:. Design an LMS beamformer with appropriate a(K) 
and 02. Simulate your beamformers and plot the following results: 

(i) SINR, versus K (K = 10, l l . ,100O); 

(ii) Beam patterns for representative trials at K = ZN, 6N, ION, 50N, and 1OON. 

Discuss your results. 

Problem 7.7.17 (continuation, Problem 7.4.20) 
Consider the same model as in Problem 7.4.20. Implement the power normalized 

version (( 7.460) and (7.461)) of the Griffiths LMS beamformer. Try different values of y  
and ,0 and various levels of diagonal loading. Plot the average SINR, versus K and the 
beampatterns for various K. Discuss your results. 

Problem 7.7.1.8 (continuation) 
Repeat Problem 7.7.17 for an MPDR-LMS beamformer in both the direct form and 

GSC structure. 

Problem 7.7.19 (continuation) 
Repeat Problem 7.7.18 for an MPDR-GSC-LMS beamformer using a quadratic con- 

straint, To = 2/N. Compare fixed loading, variable loading, and scaled projection. 

P7.8 Detection of Signal Subspace Dimension 

Problem Note 7.8.1 
The next ten problems consider an SLAlO. In each problem, plot PO, PM, and PFA 

versus ASNR for MDL, MDL-FB, AIC, AIC-FB, EDT, and EDT-FB. For the two-signal 
case, assume that u1 = -AU/~, u2 = AU/~. 

Problem 7.8.1 
Consider two equal-power uncorrelated signals and four values of Au; 0.1 HPBW, 0.5 

HPBW, 1.0 HPHW, and Au = 0.3. Consider the low sample support case, K = 20. 

Problem 7.8.2 
Consider two uncorrelated signals with unequal-power; (i) ASNRl = lO&‘NR:!, (ii) 

ASNR1 = lOOASNR2. Assume K = 100. 

Problem 7.8.3 
Consider two equal-power correlated signals. The values of p of interest are: 

(i) IpI = 0.95, & = 0, ;1-/4,7r/2, 

(ii) (pi = 0.99, & = 0,7r/4,7r/2, 

(iii) IpI = 1.0, & = O,n/4,7r/2. 

Assume K = 100. 

Problem 7.8.4 
Repeat Examples 7.8.5-7.8.7 for the case in which FB averaging is used. 
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Problem 7.8.5 
Consider three equal-power uncorrelated signals located at ur = -0.18, ~2 = 0, 7~3 = 

0.18. Assume K = 100. 

Problem 7.8.6 (continuation) 
Consider three uncorrelated signals located at u1 = -0.18, u2 = 0, u3 = 0.18. Assume 

K = 100. 

(a) Assume A5’NRl = ASNR3 = lOASNR2. 

(b) Assume ASNRl = ASNR3 = lOOASNR2. 

Problem 7.8.7 (continuation) 
Consider three equal-power correlated signals located at u1 = -0.18, 2~2 = 0, u3 = 

0.18. Assume K = 100. Consider various signal correlation matrices, p. 

Problem 7.8.8 (continuation, Example 7.8.5) 
The performance of the EDT and EDT-FB algorithms depend on the location of the 

signals relative to q0 (7.514). In this problem, we consider the model in Example 7.8.5 
except 

Ul = UC - Au/2 (7.589) 

and 
U2 = UC + fh.42, (7.590) 

where ]uc] 5 0.1 is a parameter and Au = 0.1 HPBW. 
Assume K = loo. Plot PD VerSUS k?NR for UC = 0, 0.2, 0.4, 0.6, 0.8, and 1.0 times 

AU/~. Consider the EDT, BS-AIC, and BS-MDL algorithms with both forward-only (FO) 
and FB averaging. 

Problem 7.8.9 
Repeat Problem 7.8.8 for Au = 0.5 HPBW. 

Problem 7.8.10 (continuation: Problem 7.8.1) 
Read the paper by Shah and Tufts [ST94]. Implement their algorithm for the model 

in Problem 7.8.1. Compare the results to these in Problem 7.8.1. 

P7.9 Eigenspace and DMR Beamformers 

Problem 7.9.1: The first fifteen problems utilize the test scenarios in Table 7.6. In each 
problem, we use AIC-FB or MDL-FB to detect the dimension of the signal-plus-interference 
subspace. We then implement an MPDR or LCMP beamformer in eigenspace. We utilize 
SMI processing in the eigenspace beamformer. In each problem, plot 

(a) SINR, versus K. 

(b) PD and PFA versus K. 

(c) Repeat part (a) for a DMR beamformer. 

Discuss your results. The assignment by problems to test scenarios is given in Table 7.4. 
Problems 7.9.1-7.9.15 are described by this note. 

Problem Note 7.9.2: The next several problems consider subspace tracking and require 
you to read the original references. In each problem, you must develop the subspace 
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tracker and then implement the eigenspace beamformer. For some of the subspace tracking 
algorithms, (7.520) can be used directly with an RLS or LMS adaptive implementation. In 
other cases, the eigenspace algorithm must be matched to the subspace tracking algorithm. 

Table 7.6 

Test Array 
Scenario Eigenspace Beamspace perturbations 

1 7.9.1 7.10.1 7.12.1 
lm 7.9.2 7.10.2 7.12.2 
2 7.9.3 7.10.3 7.12.3 

2m 7.9.4 7.10.4 7.12.4 
3 7.9.5 7.10.5 7.12.5 

3m 7.9.6 7.10.6 7.12.6 
4 7.9.7 7.10.7 7.12.7 
5 7.9.8 7.10.8 7.12.8 
6 7.9.9 7.10.9 7.12.9 
7 7.9.10 7.10.10 7.12.10 

lm 7.9.11 7.10.11 7.12.11 
2m 7.9.12 7.10.12 7.12.12 
3m 7.9.13 7.10.13 7.12.13 
4 7.9.14 7.10.14 7.12.14 
6 7.9.15 7.10.15 7.12.15 

Problem 7.9.16 
Read t’he discussion of the ROSE algorithm in DeGroat and Roberts [DRSO]. Im- 

plement their algorithm and the corresponding eigenspace beamformer for the signal and 
interference model in Example 6.9.1. Note that the dimension of the subspace must be 
detected. Compare your results to the SMI results in Example 6.9.1. 

Problem 7.9.17 

Read the discussion of the OPERA algorithm in MacInnes [MacI98]. Repeat Problem 
7.9.16. 

Problem 7.9.18 

Read the discussion of the FAST algorithm in Real et. al. [RTC99]. Repeat Problem 
7.9.16. 

Problem 7.9.19 

Read the discussion of the LORAF algorithm in Strobach [Str96]. Repeat Problem 
7.9.16. 

Problem 7.9.20 

Read the discussion of PAST and PAST-D in Yang [Yan95a], [Yan95b]. Repeat Prob- 
lem 7.9.16. 

Problem 7.9.21 

A primary motivation for subspace tracking is that it enables the eigenspace beam- 
former to change dimension when the signal-plus-interference subspace changes. 
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Derive a scenario in which interferers appear and/or disappear every 100 snapshots. 
Test one or more of the above subspace trackers and eigenspace beamformers with the 
above scenario. 

P7.10 Beamspace Beamformers 

Problem Note 7.10.1 

The first sixteen problems utilize the test scenarios in Table 7.6. Use a 5 x 10 DFT 
beamspace matrix in each problem. In each problem, implement: 

(i) SMI, 

(ii) RLS, 

(iii) LMS. 

Use appropriate diagonal loading. In each problem, plot 

(a) SINR, versus K, 

(b) Representative beam patterns for K = 2N, 6N, lON, and 1OON. 

The problem assignment to test scenarios is shown in Table 7.6. In all of the beamspace 
problems, utilize FB averaging of the data. 

Problem Note 7.10.2 

A 32-element SLA provides more flexibility to study beamspace processing. In Table 
7.7, several test scenarios are listed. Use a 7 x 32 DFT beamspace matrix in each problem. 
In each problem, implement: 

(i) SMI, 

(ii) RLS, 

(iii) LMS. 

Use appropriate diagonal loading. In each problem, plot 

(a) SINR, versus K. 

(b) Representative beam patterns for K = 2N, 6N, lON, and IOON. 

Problems 7.10.17-7.10.21 correspond to BS-MPDR implementations for the five test 
scenarios. Problems 7.10.22 and 7.10.23 correspond to BS-LCMP implementations for test 
scenarios lm and 3m, respectively. 

Table 7.7 

Test 
Scenario 

1 
Signal 

Urn =0 
SNR = -10,0,***,20 dB 

Interference 
Locat ion Strength 

Ul = 3132 INRi = 0, l l l ,40 dB 
u2 = 5132 i = 1,***,3 

U3 = 7132 

I  

lm uja = f1/128,f1/64, or H/32 TSl 

I 2 I TSl TSl plus 50 dB interferer 
at Ui = 27132 

3 Um = 0 u1 = l/32 
u2 = -3132 

3m Urn = &l/128 TS3 
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Problem Note 7.10.3 
The next set of problems studies the adaptive behavior of the beamformers that we 

studied in Problerns 6.9.4.-6.9.15. Problems 7.10.24-7.10.35 correspond to those problems, 
respectively. Problems 7.10.36 and 7.10.37 correspond to Problems 6.108 and 6.10.9, 
respectively. In each problem, implement: 

(i) SMI, 

(ii) RLS, 

(iii) LMS. 

Use appropriate diagonal loading. In each problem, plot 

(a) SINR, versus K. 

(b) Representative beam patterns for K = 2N, 6N, lON, and IOON. 

P7.11 Broadband Beamformers 

Problem 7.11.1 
Consider a ULAlO. The interelement spacing is X,/2, where X, is the wavelength of 

the highest frequency in the input signal. We use the signal and interference model in 
Examples 6.13.2 and 6.13.5. 

(a) Implement an FFT beamformer using uncoupled adaptive narrowband beamformers 
in each bin. Consider k! = 4, 8, and 16. Implement the adaptive narrowband 
beamformers using SMI, RLS, and LMS algorithms. Plot the SINR, versus K. 
Discuss your results. 

(b) Repeat part (a) using a time-domain beamformer with the same degrees of freedom. 
Discuss your results. 

Problem 7.11.2 (continuation, Example 7.11.1) 
Consider the same model as in Example 7.11.1. In each of following parts, implement a 

time-domain adaptive beamformer, plot SINR, versus K and discuss your results. Simulate 
both SMI and LMS implementations. 

(a) Denote the number of taps by Ak Simulate the beamformer for M = 6, 8, and 10. 

(b) Change 2~~ to -0.10. Simulate the performance for various SNR and M. 

(c) Assume the desired signal arrives from -0.10 with a flat spectrum with Bf = 0.4. 
The interfering signal arrives from 0.29 with a flat spectrum over the normalized 
frequency range 0.6n < w < 1.0~ 

Problem 7.11.3 
Repeat Problem 7.11.2 using an FFT beamformer. 

Problem 7.11.4 (continuation, Example 6.13.5) 
Consider the same model as in Example 6.13.5. Assume UI = 0.5Bw~~ and M = 2 

and 4. Use a GSC configuration and implement an SMI version and an LMS version. The 
SNR = 0 dB and the INR = 30 dB. Plot the SINR, versus K and discuss your results. 
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Problem 7.11.5 (continuation, Example 6.13.6) 
Consider the same model as in Example 6.13.6. Use a GSC configuration and imple- 

ment an SMI version and an LMS version. 
Assume the ASNR = 20 dB, us = 0.05, INR = 30 dB, UI = 0.45, and M = 4. 

Plot the average SINR, versus K. Discuss your results. 

P7.12 Summary 

Problem Note 7.12.1 

Problems 7.12.1-7.12.15 study the effect of array perturbations on the various algo- 
rithms. In each problem assume that the array is on the z-axis and that element locations 
are perturbed in the z-, y-, and x- directions using the model in (2.174) and (2.185). Let 
cl = 0.02, 0.05, a,nd 0.1. Repeat the problem in the same rows of Tables 7.4, 7.5, and 7.6 
for the following algorithms: 

(4 SW 

(b) RLS, 

(c> QRD, 

(4 SD, 
(e) LMS, 

(f) Eigenspace and DMR, 

(g) Beamspace. 
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Chapter 8 

Parameter Estimation I: 
Maximum Likelihood 

8.1 Introduction 

In Chapters 8 and 9, we consider the problem in which the parameter (or 
parameters) enters into the received signal in a nonlinear manner. 

An important problem in array processing where the parameter is em- 
bedding the received waveform in a nonlinear manner is the case of a plane 
wave with an unknown wavenumber arriving at the array. For example, in 
the narrowband snapshot model with a linear array, the received snapshots 
are 

x(k) = v(&)f (k) + n(k) j k = 1,2, l l l ,  K, 

(8 1) 

.  

and the parameter & is unknown. For D plane waves, 

x(k) = V(+,)f(k) + n(k), k = 1,2, l l . , K, (8 2) . 

where 

(8 3) 

.  

is an unknown D-dimensional vector. In our initial discussion, we assume D 
is known. In Section 7.8, techniques for estimating D were discussed. The 
topic is revisited in Section 8.8 in the context of parameter estimation. 

For an arbitrary array with a single plane-wave input, the narrowband 
snapshot model is 

x(k) = v(&), f (k)  + n(k) )  k = 1,2, l l l )  K, 
(8 4) 

.  

917 
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where 

(8 5) . 
is a 2-D vector. 

Alternatively, we could write (8.4) as 

x(k) = ~(0, &f(k) + n(k) 7 k = 1,2, l l l )  K, 
(8 6) 

.  

and estimate 6 and 4. 
The problem of estimating the wavenumber or angle of arrival of a plane 

wave (or multiple plane waves) is commonly referred to as the direction find- 
ing (DF) or direction of arrival (DOA) estimation problem. It is important 
in radar, sonar, seismic systems, electronic surveillance, medical diagnosis 
and treatment, and radio astronomy. Because of its widespread application 
and the difficulty of obtaining the optimum estimator, the topic has received 
a significant amount of attention over the last several decades. Many of our 
results and examples will focus on the direction finding problem. 

However, it is important to note that there are many other nonlinear 
parameter estimation problems of interest in the array processing area. A 
representative list includes: 

0 i Estimating the position of the sensors in array and/or their gain and 
phase characteristics (the calibration problem); 

(ii) Using an AR or ARMA model for the signals’ spatial (and/or temporal) 
characteristics and estimating the model parameters. Alternatively, we 
may need to estimate the noise/interference parameters; 

(iii) Estimating the range of a target in the near field. 

Other parameter estimation problems will arise in the course of our de- 
velopment . 

Our discussion considers parameters that are constant during the ob- 
servation period. The extension to the problem of tracking a time-varying 
parameter (i.e., a moving target) is of obvious interest, but would take us 
too far afield. 

Our discussion of the parameter estimation problem is divided into two 
chapters. In Chapter 8, we focus on maximum likelihood (ML) and maxi- 
mum a posterior-i probability (MAP) estimators and on bounds on the per- 
formance of any estimator. In Chapter 9, we develop a number of other 
estimation procedures that are computationally simpler than the ML esti- 
mator and, in many cases, provide adequate performance. 
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In Section 8.2, we review several classical estimation results that are 

used in subsequent sections of the chapter. In Section 8.3, we describe the 
parameter estimation model that we used in the subsequent discussion. 

In Section 8.4, we derive the Cramer-Rao bound (CRB) for the multiple- 
parameter DOA estimation problem. We recall that the ML estimate ap- 
proaches this bound under certain conditions. However, we observed in the 
scalar case that, as the SNR and/or the number of snapshots is decreased, 
the estimators exhibit a threshold phenomenon and the variance (or mean 
square error) increases rapidly above the Cramer-Rao bound. 

In Section 8.5, we consider the problem of estimating the direction-of- 
arrivals (DOAs) or wavenumbers of D plane waves in the presence of additive 
Gaussian noise. We first develop two maximum likelihood estimates. The 

first estimate assumes the source signals are sample functions from Gaus- 
sian random processes. We refer to this estimate as the unconditional (or 
stochastic) maximum likelihood (UML) estimate. We show that its per- 
formance approaches the Cramer-Rao bound asymptotically. The second 

estimate assumes the source signals are unknown, but nonrandom, signals. 
We develop an estimator that is referred to as the conditional (or determin- 
istic) maximum likelihood (CML) estimate, analyze its performance, and 
compare its performance to that of the UML estimator and the Cramer-Rao 
bou nd. The solution for the maximum likelihood estimator is computation- 

ally complex. We develop several other multidimensional estimators that 

have similar asymptotic performance, but are easier to implement. 
In Section 8.6, we develop various computational algorithms that enable 

us to find the estimators in an efficient manner. The techniques in this 

section are valid for arbitrary array geometries. 
In Section 8.7, we restrict our attention to standard linear arrays and 

develop a polynomial parameterization of the estimation problem. We then 

develop efficient estimation procedures using this polynomial representation. 
The discussion in Sections 8.2 through 8.7 assu.mes that the dimension 

of the parameter vector that we are estimating is known. In Section 8.8, we 
review techniques for estimating the dimension of the parameter vector. The 
detection algorithms that we developed in Section 7.8 are directly applicable 
to the estimation problem. We also discuss algorithms that jointly detect 
the number of signals and estimate their DOAs. 

In Section 8.9, we consider spatially spread signals, which can be charac- 
terized by a parameter vector of a reasonable dimension. We first consider 

the model in Section 5.3 in which the source is characterized by a spec- 
tral distribution S&o : 8, $) on a large sphere. We utilize a parametric 
model for S&JO : 8,+) and find the maximum likelihood estimate of the 
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parameters. We next consider the parametric wavenumber models (AR and 

ARMA models) of Section 5.6 and discuss maximum likelihood estimates of 
the parameters. 

In Section 8.10, we study parameter estimation in beamspace. Just as 

in the adaptive beamforming, we find that operating in beamspace provides 
a reduction in computational complexity and certain performance improve- 

In Section 8.11, we consider the impact on the estimation performance 
when there are sensor gain and phase errors or errors in the location of the 

sensors. This is the sensitivity problem that we encountered previously in 
our classical array discussion in Chapter 2 and our beamformer discussion in 
Chapter 7. We first develop a hybrid Cramer-Rao bound that indicates how 
the perturbations affect the variance of the DOA estimates. We then analyze 
the behavior of the ML estimates in the presence of perturbation. Finally, 

we develop techniques to jointly estimate the DOA parameters and the array 
parameters (such as sensor location, gain, and phase ). The estimation of 
the array parameters is referred to as the calibration problem. 

In Section 8.12, we summarize our results and discuss some related topics. 
In Table 8.1, we show the structure of the chapter. 

8.2 Maximum Likelihood and Maximum a posteri- 
ori Estimators 

One of the estimators that we will use in many applications is the maximum 
likelihood estimate of a vector parameter 0. In the discussion in this section, 
8 is an arbitrary vector parameter and the notation e does not denote an 

angle. We recall from our discussion in Section 2.4 (pp. 52-86) of DEMT 
I [VT681 that we can bound the variance of any unbiased estimator by the 
Cramer-Rao 
encountered 

bound. We can also 
tice, the ML in prac 

show that, under conditions that are often 
estimator is unbiased and, asymptotically 

(as K -+ oo) its variance approaches the Cramer-Rao bound. Thus, the ML 

estimator is an efficient estimator. This asymptotic behavior is one of the 
motivations for the use of ML estimator. Moreover, we find that the ML 

estimator also exhibits good performance in the non-asymptotic region. 
When 8 is a random variable we use maximum a posteriori probability 

(MAP) estimators. We can bound the MSE performance of any estimator 

using the Bayesian version of the Cramer-Rao Bound (see p. 84 of DEMT I 
[VT68], [VTOla]). 



8.2 Maximum Likelihood and Maximum a posterior-i Estimators 

Table 8.1 Structure of Chapter 8 
Review Models 

-----------------------. 

Background 

Bounds 

8.4 CRB ------------------------ 
CRB 
Bayesian CRB 
Hybrid CRB 

ML Estimation 

T 

Algorithms Solution Techniques Linear Arrays 

85MLE ..-_---_--* ------- em----- 

UML 
CML 
MODE 

------------_--_-------- 
Gradient, Newton 
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t 

8.7 --------------------___ 

IQML 
IMODE 

Application 
Issues Number of 

Signals 

8.9 .---_-__--__-_---------- 

Spatially 
Spread Signals 

Special 
Topics 

In many of the applications that we consider, the model reduces to the 
case in which the observation is a complex Gaussian random vector x whose 
mean m,(O) and covariance K,@) depend on the vector parameter 8 that 
we want to estimate. In view of its widespread usage in subsequent sections, 
it is worthwhile to review some results from classical estimation theory before 
proceeding to the physical problems of interest.’ 

‘The reader may want to review pp. 52-86 of DEMT I [VT68], [VTOla] as background 
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In Section 8.2.1, we derive the ML estimator for the Gaussian observation 
problem. In Section 8.2.2, we derive the MAP estimator for the Gaussian 
observation problem. 

8.2.1 Maximum Likelihood (ML) Estimator 

For an N-element array, the probability density for a single snapshot is 

1 
‘x~O(“) = det[rKx(e)] exp -cx H - mF(e>)K;r(B)(x - mx@)} 7 (8.7) 

where x is an N x 1 complex Gaussian random variable and 8 is a D x 1 
nonrandom unknown vector that we want to estimate. 

Assuming that successive snapshots are statistically independent, the 
joint probability density for E( snapshots is 

P Xl ,X2,“‘, xde(x) = kfil det[rK X (0)] - 

x exp - 
1 ( 

XE 
-  m:(q )  K,l(@ (Xk -  mx@))}  l 

The log-likelihood function is 

(8 8) . 

LX(~) = lwxl x2 . . . 1 7 ,,,le(x> 

= -Klndet[K,(8)] - e (~a - mf(e)) 
k=l 

x K;‘(e) (Xk - mx(e)) - KNh. (8 9) . 

In most cases of interest to us, either K,(0) or m,(e) (but not both) 
are functions of 8. For notational simplicity in Sections 8.2.1 and 8.2.2, we 
will assume m,(8) is not a function of 0. Then we can let m, = 0 without 
loss of generality. 

Dropping the last term because it does not depend on 8 and dividing 
through by K, we have 

K 

Lo = - lndet[K,@)] + + xXfK$(e)Xk . 
k=l 1 (8.10) 

(We omit the subscript on L(8) because we have dropped the constant 
terms.) We can write the second term as 

for this discussion. 
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1 K 

- c XFK,l(e)xk = tr 
1 K 

K 
k=l 

z c ~fK;~(t?)x~ 
k=l 1 

- - tr 

where C, is the sample correlation matrix defined in Section 7.2.1 . 

Then (8.10) can be written as 

L(8) = - {lndet[K,(e)] + tr [K,‘(B) CX]} . (8.13) 

The ML estimate is given by the value of 8 that maximizes L(8). In 
general, we must conduct a search procedure to find that value. One of the 
topics that we study in Section 8.7 is efficient procedures for finding the 
maximum in the D-dimensional space. 

A necessary, but not sufficient, condition is that 

(8.12) 

(8.11) 

$ W>l e=b = 0, i = 1,2,***,D. 
i ml 

(8.14) 

This can be written in more compact form as 

(8.15) 

where Ve is the D x 1 derivative matrix defined in (A.373), 

v 
802 

8 
- - . . (8.16) . 

a 
- deD d 

Using the derivative formulas in Section A.7 ((A.400) and (A.393)), 

we) - - 
do 

-tr K,l(e) 
[ 

dKx@) + 
i 

d8 . 
I 

+tr 
I 

q1(e)cxk;‘(8)] dK (0) ai 
i 

} , i= 1,2,.**,D. 

(8.17) 
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Setting (8.17) equal to zero gives a necessary condition on a,l. Thus, 

{ I tr K$(8) C, K$(~Y)] ‘$$B’] - 
i 

_ =O, i= 1,2,-9, Qe (8.18) 
= ml 

{ [[ 
tr K;‘(0)C,K~‘(O)-K;l(O)] “Fo(e)]}b e =o, i= 1t,2,~~~,~. 

i - - ml 

provides the necessary conditions on a,l. 
(8.19) 

When D is small (e.g., D < 3), we can use a grid search to find the 
approximate location of the peak of L(0) and then use a gradient search 

technique to solve (8.18) in order to find the exact maximum. When D is 
large, we have to find more efficient techniques. 

8.2.2 Maximum a posteriori (MAP) Estimator 

In this case we assume that the vector parameter 8 is a random variable 

with a known probability density pe(e) The MAP estimator is the value of 
0 that maximizes the a posteriori density. This is equivalent to finding the 
value of 0 that maximizes 

qej = - (Indet[K,(B)] + tr [K,‘(e) G]} + lnp@) I (8.20) 

where the subscript “T” denotes we are dealing with a random variable. 
In many cases of interest we will model 8 as a zero-mean real Gaussian 

random vector whose probabi lity density is 

exp 1 . (8.21) 

The matrix Ke is the covariance matrix of the probability density. It is 

not a function of 8. 
To find a necessary condition on the MAP estimate, we differentiate 

(8.20) with respect to 8 and set the result equal to zero. The derivative of 
the first term is the left sides of (8.15), (8.16), and (8.17). The derivative of 
the second term is given by (A.380). Adding the two terms and solving the 
resulting equation gives a necessary condition on the MAP estimate, 

h 8 map = Keb [LCe)ll&& 7 (8.22) 
map 
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where the ith element of Ve [L(e)] is given by (8.17). 
We will look at numerous examples of ML and MAP estimates after we 

develop our estimation model. 

8.2.3 Cram&Rao Bounds 

In order to understand the potential performance of parameter estimation 
algorithms we develop a set of bounds on their performance. In this section 
we develop the classical CRB and the Bayesian version of the bound. 

These bounds are discussed in Section 2.4 of [VT681 and [VTOla]. The 
original development of the classic CRB is discussed in [Fis25], [Cra46], and 
[Rao46]. The Bayesian version of the bound was introduced in [VT681 and 
[VTOla]. 

We derive the classic CRB, the Bayesian version of the bound, and a 
hybrid bound for the case of a Gaussian observation model. 

8.2.3.1 Classic Cram&-Rao bound 

In this case the log-likelihood function is given by (8.9). The snapshots 
are assumed to be statistically independent, so we can deal with a single 
snapshot and combine the results at the end of the discussion. The log- 
likelihood function for single snapshot is 

= -lndet[nK,@)] - {(x” - m*(0)) K;‘(O) (X - m(e))}. 

(8.23) 

The CRB provides a bound on the covariance matrix of any unbiased 
estimate of 8. We denote the covariance matrix of the estimation errors by 
C(0). Then, 

c(e) 22 E [[h - e] [b - elr] . (8.24) 

The multiple-parameter CRB states that 

c(e) 2 cc.(e) e J-l, (8.25) 

for any unbiased estimate of 0. The matrix inequality means that C(0) - 
C,(e) is a non-negative definite matrix. The J matrix is commonly referred 
to as Fisher’s ,information matrix (or FIM).2 

2The reader may want to review Section 2.4.3 of DEMT I [VTSS], [VTOla] at this 
point. 
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The elements in J are 

dL,(e) -.- 1 
- - - 

or 

(8.26) 

(8.27) 

The result in (8.25) also provides a bound on the variance of any unbiased 
estimate of &, 

var & - 8i > [C&)1,, = [J-‘] . [ 1 ii 
(8.28) 

The result in (8.28) can also be written as a Hadamard product, 

(8.29) 

For the problem of interest, Jij is obtained by differentiating (8.23) and 
taking the expectation. The second derivative indicated in (8.26) is 

&&Lx(B)] = tr 
i j 

-K;‘(e) yK;‘(e)y + K;lp)?!?$.$ 
j i i j 1 

- ( X H - mH(t3)) -K,l(O) 

+K;1(B)~K;1(8) 
i j  

l (x - 4Wl - me - a2mH(e)K;1(0)[x - m(O)] d(j 30 i j 

(8.30) 

To take the expectation, we rewrite the second term as 
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E 
1 

-X [ H - m(e>l(***)[x - m(e)l} = 

927 

E {  - t r  {  (0 l .)[x - m(0)][xH - m(O)]}} = -tr ((0 l )K,@)} .  (8.31) 

Taking the expectation of (8.30), using (8.31), and observing that the ex- 
pectation of the first three terms in the brackets in (8.30) are zero gives 

+ 
[ 
K,‘p)yK;‘(B)y - K;yqaZ;;) 

j i i j 

- K,‘(e)yK,‘(B)y 

4Re amH(‘) 

j I> 

{  

de 
i 

K,‘(B)$p . 
> 

(8.32) 
j 

The first four terms sum to zero. Thus, 

J ij = - E &j+x(B)l 7 1 (8.33) 
i j 

is 

J ij - - K$(e)wK$(e),* i I 
+2Re am”‘e,,;l(e)q’ . i j 1 

(8.34) 

In some cases, the mean is either zero or not a function of 0 so that 
(8.34) reduces to3 

I [ 
J ij = tr K,l(e)~K;l(e)* . 

i j 1 I (8.35) 

Using (A.401), we obtain a second form of (8.34) that is useful in many 
cases, 

J ij = 
-tr aK,w ~KXP) + 

[ do i a0 j 1 
K;‘(e)$p . 1 (8.36) 

j 

3This result was first published by Bangs [Ban71]. 
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For the special case in which 8 is a scalar 0, 

var[b-e] > - 

7 (8.37) 

. (8.38) 

Note that the results in (8.34)-(8.38) are quite general and provide a 
starting point for many subsequent derivations. They apply whenever the 
observation is a complex Gaussian random process whose mean and covari- 
ante matrix are functions of the parameters of interest. 

In many applications, the parameter vector $ contains the parameters of 
interest to us as well as other unwanted parameters. A typical problem of this 
type is the case where we observe a plane-wave signal in additive spatially 
white Gaussian noise. We want to estimate the DOA but the signal power 
and the noise variance are unknown. In this case, the DOA, is the desired (or 
wanted) parameter, and signal power and the noise variance are unwanted 
parameters. 

We partition 0 into two vectors, 

where 0, is a D1 
eters and 8, is a 
parameters. 

We write J as 

x 1 nonrandom real vector cant aining the wanted param- 
02 x 1 nonrandom real vector cant aining the unwanted 

a partitioned matrix, 
A 

8 8 W - - [ 1 8 
7 

U 

J - - 

* 
Je,e : Jeweu w : 

I  

Je,e : Je,e, w ’ 

(8.39) 

(8.40) 
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where Jo 
w 

0 is a D1 x D1 matrix whose elements are given by (8.34) with 
i,j = 1,-y wDl. Je e is a II1 x II2 matrix whose elements are given by 
(8.34) with i =: 1, l . l : &; j = D1 + 1, l l l , D: 

Je 8 - JH u w - ewe; (8.41) 

Jo 0 is a 02 x & matrix whose elements are given by (8.34) with i,j = 
L$+“l, l l l ) D. 

We partition the CRB in a similar manner. 
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Taking the expectation, (8.45) reduces to 

J(y) = GJ(B)GT, (8.47) 

and the corresponding Cramer-Rao bound is 

Ccn($ = G-TCCR(e)G-? (8.48) 

In most applications that consider, pi, is a function of only & so that the 
G matrix is diagonal, (see Problems 8.2.1 and 8.2.2). 

8.2.3.2 Bayesian Cram&-Rao bounds 

In Section 2.4.3 of DEMT I [VT681 [VTOla], we derived a bound on the 
mean-square error in estimating a random vector parameter 8. The classic 
Cram&-R,ao bound depends on the actual value of the parameter and can 
be described as a “local bound”. The Bayesian bound utilizes the a priori 
probability density of the parameter and provides a “global bound” that 

does not depend on the value of the parameter on a specific trial. 
We denote the information matrix by Jg. The subscript B denotes the 

Bayesian version of the Fisher information matrix. The JB matrix consists 
of two parts, 

J~=JD+J~, (8.49) 

where the subscript “D” denotes the information due to the data and the 
subscript “P” denotes the information due to prior knowledge. 

[J I 
n -- D ij - 

E ~2L,(8) 
I 1 8Oi a0.j ’ 

(8.50) 

where the expec tation is over both x 

where the expectation is over 8. 

[J I 
n -- P ij - E 

The correlation matrix of errors 

(8.51) 

R~ =+8-B) (a-~)~]. (8.52) 

Note that RE is not a function of 8 because it is a random vector and we 
have taken the expected value (unlike C(0) in the nonrandom parameter 
case). From Property 2 on p. 84 of DEMT I [VT681 [VTOla], 

/J (8.53) 
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The inequality means that the matrix 
I 

is non-negative definite. 

Note that this is a bound on the mean-square errors. 
For tlhe mean-square error of the ith component of 8, 

(8.54) 

For the Gaussian observation model, we use (8.34) in (8.50). Then, 

[J I D ij 

7 (8.55) 

where the subscript VY indicates that the expectation is with respect to the 
random parameter 0. 

For the special case of a real parameter vector 8, whose a priori density 
is a multivariate Gaussian density with zero mean, 

(8.56) 

and 
(8.57) 

8.2.3.3 Hybrid Cram&-Rao-type bounds 

In our study of array model perturbations and array calibration we find it 
useful to introduce a hybrid version of classic CRB and the Bayesian CRB. 

We divide the parameter vector into a nonrandom and random compo- 
nents, 01 -SW-- e - - [ 1 7 

02 

(8.58) 

and assume 01 is a D1 x 1 nonrandom vector and 02 is a 02 x 1 ra.ndom 
vector. Then JB is given by (8.49). 

If 02 is a zero-mean random variable with a Gaussian probability density, 
then, Jp is 

0 I I 0 ----c--....--- 
Jp = I I 1 I 

-1 l 0 ! Ke 
(8.59) 

2 
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The JD matrix contains an expectation over 02. For example, in the 
Gaussian observation model, 

[J 1 - Vij - E e2 K-l(0)‘FO(e) K-‘(B)7 
i j 1 + 2Re amH(e> do K;‘(O)y , 11 (8.60) 

i j 

where the subscript ?92)) indicates that the expectation is with respect to 
the random parameter 02. 

We write the inverse of the JB as a partitioned matrix, 

J ’ 
n ------------~-------------- 

jj= 

[ 

CCR(81) i Cl 
I I 1 . I (8.61) 

CH 1 ; am 

The Di x Dr matrix, C~&&), provides a lower bound on the covariance 
of any unbiased estimate of 0 1. The D2 x 02 matrix, C@2), provides a 
lower bound of the mean-square error correlation matrix of 02. The proof of 
this assertion is a straightforward modification of the discussion in Section 
2.4 of DEMT I [VT681 [VTOla]. The hybrid bound was introduced into the 
array processing literature by Rockah and Schultheiss [RS87a], [RS87b]. We 
will utilize it in Section 8.11. 

8.2.3.4 Multiple snapshots 

All of the expressions up to this point assumed a single snapshot (or sample). 
If we have K independent snapshots, then the log-likelihood function in 
(8.23) is multiplied by K and the FIM, J, is multiplied by K. The classic 
CRB in (8.25) is divided by K. 

In the Bayesian bound in Section 8.2.3.2, the data component JD is 
multiplied by K. Similarly, in the hybrid bound in Section 8.2.3.3, JD is 
multiplied by K. 

8.2.3.5 Summary 

The various forms of the CRB are important because, in many applications, 
the ML estimate (or the MAP estimate) approach the bound asymptotically 
as K goes to infinity. 

In most of those applications, the value of K where the performance of 
estimator becomes close to the bound is a function of the signal to SINR. 

We will quantify these ideas after we develop the model of interest. 
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8.3 Parameter Estimation Model 

In this section, we develop the parameter estimation model that we utilize in 

our discussions in the remainder of this chapter and in Chapter 9. It is the 
same model we used in the beamformer problem in Chapters 6 and 7 except 
the parameters in the model such as the wavenumbers of the impinging plane 
waves are unknown. 

In Section 8.3.1, we consider the case in which we have multiple plane 

waves impinging on the array. We want to estimate their directions of arrival 
(DOAs) and various signal parameters. 

In Section 8.3.2, we consider the case in which the array configuration is 
perturbed from its nominal configuration. For example, the sensor positions 

may be perturbed from their nominal location, or the amplitude and phase of 
the sensor response may be different from their nominal values. We develop 
a model that incorporates these perturbations. 

In Section 8.3.3, we consider spatially spread signals that can be modelled 
parametrically. 

In Section 8.3.4, we summarize our results. 

8.3.1 Multiple Plane Waves 

In this section we develop the model that we use to estimate the parameters 

of multiple plane waves impinging on an array. We develop a frequency- 
domain model and a time-domain model. We then introduce notation to 
treat both models with a single generic notation. 

The first model of interest is the frequency-domain snapshot model that 
we encountered previously in Section 5.2 and was used throughout Chapters 

6 and 7. 
The frequency-domain snapshot model is appropriate for either narrow- 

band or wideband processes. For the narrowband case, we only use the 
snapshot corresponding to the carrier frequency. 

For the case of a linear array, we can write the snapshots as 

X(k) = V(+)F(k) + N(k), k = 1, l . . , K, (8.62) 

where 

(8.63) 

is a D x 1 vector containing the wavenumbers of the D plane waves ($i = kid) 
and V(q) is the array manifold matrix, F(k) is a D x 1 vector of the source 

signals and N(k) is an N x 1 vector of the noise. 
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For the arbitrary array case, $J is a D x 2 matrix, 

where 

(8.65) 

contains the two wavenumbers of each source. 
The spatial spectral matrix is 

s X = V($J)SfVH($J) + % (8.66) 

For the narrowband case, the time-domain snapshot model discussed in Sec- 
tion 5.2 is also appropriate. 

In this case, 

x(k) = V(q) t’(k) + n(k), k = 1,2,. 9 l , K. (8.67) 

where the argument “k” denotes the time-domain sample (or snapshot) at 
t= k. We assume the samples are from a stationary zero-mean Gaussian 
random process. Thus, 

R X = E [x(k)xH(k)] 

= v(qqRfvH($J)+R,* (8.68) 

The majority of our discussion focuses on the narrowband case. We nor- 
mally utilize the frequency-domain notation in (8.66), because the extension 
to the wideband case is straightforward. In all of our snapshot models, we 
assume that successive snapshots are statistically independent. 

We emphasize four different models for the signal. In the narrowband 
case, these are: 

Case Sl: The source signals are sample functions from a zero-mean vector 
stationary complex Gaussian random process and Sf is known. 

Case S2: The source signals are sample functions from a zero-mean vector 
stationary complex Gaussian random process and Sf is unknown. 

In Case S2, the source signals may be uncorrelated, but we do not 
know that, so we must consider a general Sf in our estimators and 
bounds. Case S2u considers the case where we know a priori that the 
source signals are uncorrelated. 
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Case S2u: The source signals are sample functions from a zero-mean vector 
stationary complex Gaussian random process. They are uncorrelated 
(and tlherefore, statistically independent). Sf is a diagonal matrix de- 
noted by Af. Af is unknown. 

Case S3: The source signals are considered to be unknown complex se- 
quences in order to estimate $J. In this case, the performance will 

depend on the values in the complex sequences (just as in classical 
ML estimation). In order to compare the performance to Case S2, we 
can consider the unknown complex sequence to be a particular sample 
function from a zero-mean stationary complex random process. We 
can then use the statistics of the process to evaluate the performance. 

ML estimators for this model are referred to as conditional (on a par- 
ticular sample function) ML estimators. The spectral matrix in (8.66) 
will have to be revised for this case. 

There are corresponding signal models for the wideband case that we will 
discuss in various sections of the chapter. 

In communication systems, we may want to impose more structure in 
the signal model. One model that we will consider is: 

Case S4: The source signal is known. The received signal component from 
the ith source is ~ifi(lc), Ic = 1, l l 9 , E(, where CQ is a complex constant. 

This corresponds to a communication system where a known training 
sequence is sent. 

We could also consider cyclostationary signals (e.g., [Gaa88], [SG92], 

[XK92]) or [Sch94] d an constant modulus (CM) signals (e.g., [GL86]). The 
reader is referred to these references for a discussion of these models. 

There are three noise models for the narrowband case: 

Case Nl: 

and 0: is known. 

E [N(k) NH(k)] = 0; I 

Case N2: 
E [N(k) NH(k)] = 0: I 

2 l and ow is unknown. 

Case N3: 
E [N(k) NH(k)] = S, 

(8.69) 

(8.70) 

(8.71) 
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and S, is unknown. Note that, if S, were known, Case N3 could be 
reduced to Case Nl by a spatial whitening filter. 

There are corresponding noise models for the wideband case that we will 
discuss in later sections. 

For each of these models we can identify the parameters that must be 
estimated. For the one-dimensional case, a representative set is summarized 
in Table 8.2. For the case of a complex parameter such as fk, we estimate 
both real and imaginary parts. 

Table 8.2: Parameters to be Estimated 

Signal 
Case 

Sl 

Sl 

Sl 

s2 

s2u 

s3 

s4 

Noise 
Case 

Nl 

N2 

N3 

Nl 

Nl 

Nl 

Nl 

Parameters 
To Estimate 

Dimension 
of 8 

D 

D+l 

D+N2 

D+D2 

20 

D+2DK 

30 

In the (Sl, N3) and (S2, Nl) cases the dimension of 8 may be different 
if constraints are placed on Sf or S,. The combinations (S2, N2), (S2, N3), 

(S3, w, (a N3) are obvious modifications of earlier cases. 

8.3.2 Model Perturbations 

The nominal model given in (8.62) is 

X(k) = V(+) F(k) + N(k), k = 1,2, l 9 l , K. (8.72) 



Model Perturbrztions 937 

In order to model the perturbations, we write (8.72) as 

X(k) = V(@, p) F(k) + N(k), Ic = 1,2,. . . , K, (8.73) 

where p represents the parameters whose perturbations we will investigate. 
We refer to p :IS the perturbation vector.5 

We rewrite the array manifold vector to include the gain and phase of 
each sensor explicitly 

v(q&,p) = [ aoej~&WpO i . . . / aN-lejhv-#+~p~-~ IT , (8.74) 

In the general case, the p vector is a 5N x 1 vector containing a gain, phase, 
and position vector. Define 

[ I a?2 =aE(l+Aa,), n=O,*.*,N-1, (8.75) 

[qb],  = 4: + && 1 n = 0, l l l j N -  1 1 (8.76) 

[PJ,=P:,+4%cn, n=o,*-•3-L (8.77) 

[Py], = pin + &$I, 7% = 0;**,N - 17 (8.78) 

[~,],=&f~+&~,, n=O,*e*,N-l. (8.79) 

The superscript “n” denotes the nominal value. This model is similar to 
the model in Section 2.6.3 and Section 6.6.3. Then, p is 

In most cases we 
smaller dimension . N 

P - - [aTtiTPTP;PqTm 

study a subset of the p ossible variations and p has a 
‘or mall .y we assume that p has a multivari ate Gaussian 

(8.80) 

1 
pm =: (2~)zE,np,f exp [ 

1 
-~[P-PolThplb-Pal 7 

I 
(8.81) 

where p. denotes the nominal value and Ap is the covariance 
The second kind of variation is in the noise environment. 

model assumes 
E [N(k) N”(k)] = a; I. 

We can examine correlated noise by defining 

matrix. 
Our nominal 

(8.82) 

E [N(k) NH(k)] = a; I + ii. (8.83) 

We look at the effect of A on processing performance. 
There are three ways to deal with model perturbations: . 

‘Although we refer to p as the perturbation vector, it contains the nominal values. 
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(i) We choose some nominal value for the array parameters and estimate the 
DOAs as if they were correct. We then investigate how the estimator 
performance degrades as the parameters vary from their nominal value. 

(ii) We can model the variations as random variables, treat them as nuisance 
parameters, and integrate them out of the likelihood function. 

(iii) We can jointly estimate the model parameters and the DOAs. 

We will look at examples of these techniques in subsequent sections. 

8.3.3 Parametric Spatially Spread Signals 

In this case we assume that we have D spatially spread signals impinging on 
the array and the spatial characteristics of the ith signal can be characterized 
by an &-dimensional vector. 

A simple example of this situation would be the case in which each of the 
D signals could be modeled as a complex AR( 1) process (see Figures 5.24 
and 5.25). For each signal we would estimate two parameters & and la(l) ] 
(or alternatively Re[a( l)] and Im[a( l)]). 

We will consider models of this type in Section 8.9. 

8.3.4 Summary 

There are other propagation models that may be appropriate in certain 
applications. These include multipath models and near-field models. The 
reader is referred to the literature for a discussion of these models. We will 
focus our attention on the three models described above. 

8.4 CrambRao Bounds 

In Section 8.2.3, we developed the classical CRB for parameter estimation. 
In this section, we apply those results to the signal and noise models that 
we developed in Section 8.3. 

In Section 8.4.1, we consider the case in which the signal vector is a sam- 
ple function from a Gaussian random process with unknown signal spectral 
matrix and the noise is a sample function from a spatially white Gaussian 
random process. This case includes (S2, Nl) and (S2, N2). 

In Section 8.4.2, we consider the case in which the signal vector is a 
sample function from a Gaussian random process and we know a priori that 
the component signals are statistically independent with unknown A,. The 
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noise is a sample function from a spatially white Gaussian random process. 
This case includes (S~U, Nl) and (S~U, N2). 

In Section 8.4.3, we consider the case in which the signal is a sample 
function from a Gaussian random process with a known signal spectrum 
and the noise is a sample function from a spatially white Gaussian random 
process. 

In Section 8.4.4, we consider the case in which the signal is modelled as 
a nonrandom, unknown waveform and the noise is a sample function from a 
spatially white Gaussian random process. 

In Section 8.4.5, we consider the case in which the signals are modelled as 
known waveforms with complex amplitude multiplies. The noise is a sample 
function from a spatially white complex Gaussian random process. This 
corresponds to case (S4, Nl) and (S4, N2). 

In Section 8.4.6, we summarize our results. 
Before beginning the development, a brief commentary on the steps is 

useful: 

(i) The first step is to derive the Fisher information matrix J (8.34) or JB 
(8.49). This step is usually straightforward, but may be tedious. 

(ii) In most cases, we are primarily interested in estimating +, the DOAs 
of the D signals. We partition J into blocks corresponding to $J and 
blocks corresponding to the other (unwanted) parameters and blocks 
corresponding to cross-terms. We partition CCR similarly and use the 
formula for the inverse of block matrices to find the block of CCR 
corresponding to +. 

This step is straightforward, but may contain complicated expressions. 
In many of our examples, we evaluate the expression numerically and 
plot the result. 

(iii) The final step is to obtain a compact expression for CC&J). This step 
is normally a tour de force of linear algebra. When successful, it offers 
the ability to compare the bounds for different models. We will quote 
some of these results, but will normally not derive them. 

8.4.1 Gaussian Model: Unknown Signal Spectrum 

8.4.1.1 Cram&-Rao bound 

The first model of interest corresponds to the signals being a sample func- 
tion from a zero-mean stationary complex Gaussian random process whose 
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spectral matrix Sf is unknown and the additive noise is a sample function 

from a spatially white Gaussian random process (this is Case (S2, N2) in 
Section 8.2). 

We consider an array model in which the wavenumber is 1-D and assume 
that there are D signals impinging on the array. Thus, 

X(k) = q$Qyq + N(k), (8.84) 

and 

S n = 0;1, (8.85) 

where 0: is unknown, and Sf is the unknown signal spectral matrix. 

The input spectral matrix is 

S X = v(*)sfvH(qLJ) + &. (8.86) 

In this case, the parameter vector 8 can be written as, 

(8.87) 

where + is a D x 1 vector corresponding to signal DOAs (& = x cos Si), 
p is a real vector corresponding to the elements in Sf, and 0: is a scalar 
corresponding to the noise spectral height. The matrix Sf is a complex 

Hermitian matrix. 
D-l 

dim[p] = D + c 2k = 02. 
k=l 

(8.88) 

We construct the J matrix in (8.35) in a partitioned form, 

Jh!b ---- - -- ; 3?~~ -L Af!?!?~~ - I I I I 
J J I I  -  

-  I  

Pi! ' 

J 
PP 

I  J . ws g SW- -- --c------------------ 
I  

I  

J $$ ; Jo;, i Jo$o$ 

(8.89) 

Each element is obtained by substituting S, from (8.86) for K, in (8.35). 

We then must find S;‘, compute the derivative with respect to each param- 

eter, and evaluate the trace in (8.35). Thus, 

[J+& = tr [s;L z s,l z] l 

(8.90) 
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Using the matrix inversion lemma (A.48) on (8.86) gives 

s - 
X 

lx-$ [I-V(v~v+o-~s~1)vfq. 
W 

The derivative needed for the J,++ matrix is 

dS H 
X - - - 

a+ i 
!pfVir(ljr) + V(~)p,,$)~~). 

i i 

The ith column of the derivative matrix is 

(8.91) 

(8.92) 

(8.93) 

and the remaining columns are zero. Using (8.91), (8.92), and (8.93) in 

(8.90) we obtain [ 1 J Tw ij l 

We carry out the details of the derivation in 

Section 8.4.2. 
The terms in the other submatrices follow in a similar manner. This 

procedure has been carried out by Weiss and Friedlander [WF93] (The eval- 

uation of the Jij is carried out in [WF90] and summarized in [WF93].) The 
derivation is complicated and the interested reader should consult those two 
references. 

We next partition the CRB matrix in a similar manner, 

cCR($‘) i cCR($, p) i cCR($‘, 0;) ----------------~---------- ------c---------------- 
I 
I 

CCR = cCR(/-b’d’) i cCR(p) i CCR(b& . (8.94) 
----------------~----------------c--,----------------- 

I 

We then use the partitioned matrix inversion formula (A.67) to obtain 

cCR(+)= 

The result is 

ccR(~) = & {R~[[s,v"s;'~s~] a [DK~:UI'IJI,~ (8.95) 

where 0 denotes the Hadamard product (A.70). The result includes K to 
account for the K independent snapshots. Note that 

P+-= [Fv(vHv)-lvq (8.96) 
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is the projection matrix onto the noise subspace, and 

is the derivative matrix. The result in (8.95) was first obtained by Stoica 
and Nehorai [SN89a] by analyzing the asymptotic behavior of the maximum 
likelihood estimate (e.g., Stoica and Nehori [SN89b], Viberg [Vib89], Otter- 
sten [Ott89], and Stoica and Nehorai [SNSOa], [SNSOb]). The first direct 
derivation is due to Weiss and Friedlander [WF93], [WF90], and [WFSla]. 
The most efficient derivation is contained in Stoica et al. [SLGOl]. The 
reader is referred to these references for the details of the derivation. 

There are two alternative forms of (8.95) that we will encounter in the 
sequel. The first is an obvious modification, 

c&b) = $ { Re [ [DHP+D] o [SfVHS;‘VSf]ll)-’ , (8.98) 

and the second form specifies the ij element of C& 

[ I Cl CR ij = ,2 E {me [tr [ [D~P+D~] [sfv%;‘vsf]]]} . 
W 

(8.99) 

Note that if we want to find the CRB with respect to arrival angle 8, we 
substitute 

De = Vo. (8.100) 

We define 

HnD”P+D - 7 (8.101) 

and rewrite (8.95) as, 

cCR($')= & {Re [(SfVHS;‘VSf) @ HT]}-l .I (8.102) 

In [WF90], it is shown that the expressions in (8.95) and (8.102) are also 
valid for the case in which 0: is known. 

We can simplify the first term in (8.102). We define 

c Sf - - 
o2 

9 
W 

(8.103) 
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and expand S,’ using (8.91). Note that C is a matrix SNR: 

VHS-lvs 
X f = VH I-vc 

[ ( 
vHv~+I)-lvH] vc 

- - VHVC - VHVC (vHvx + I)-lvHvx 

- - [I - VHVC (VHVE +1)-l] VHVC. (8.104) 

We can rewrite the identity matrix in the bracket as 

VHS,WSf = VHVC + I) (VHVE + 1)-l - 

VHVC (VHVLl +1)-l] VHVC 

- - (VHVr, +1)-l VHVC. (8.105) 

Using (8.105) in (8.102) we obtain 

I  I  

l%R(+)=&{Re{[sf[( I + vHvg-l (vq)]] 0 @}}-l l 

(8.106) 

The result in (8.106) is the formula we shall use for most of our CRB 
calculations. As pointed out previously, the result is valid for both known 
and unknown noise variance. 

For large values of V H V&/g,, 2 the term in the innermost bracket ap- 
proaches the identity matrix I. To show this relationship, we expand VHVC 
in terms of its eigenvalues and eigenvectors, 

N 

VHVC = c Ai ai a$? (8.107) 
i=l 

Then, 

N 

[I + v”vLyl VHVC = x -k ai @ 
i $+xi - - 
N 1 

- - c 
i=l 

I 
---i- 1+ xi 

(8.108) 
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Assuming that & > 1, we can expand the denominator, giving 

N 
[I+VHVq-l VHVC = I-~+?&+*** 

= &zp;ql+ . . . . (8.109) 

The second and higher-order terms approach zero as xi approaches infinity. 
This occurs when Sf/ai is large and: 

(i) Sf is not close to singular. If the signals are correlated, Sf approaches 
singularity as lpJ approaches one for some ij pair. 

(ii) If the signals are uncorrelated, the smallest [S& /G: must be large. 

(iii) The signals are not too closely spaced. Closely spaced signals result in 
V”V approaching a singular matrix. 

When these conditions are satisfied, then we can approximate (8.106) as 

(8.110) 

where CUR denotes the approximate CRB. 
We consider several simple examples and then return to the CRB in 

(8.106) and derive some general properties. 

8.4.1.2 Single signals 

Example 8.4.1 
Consider the case of a single signal. In this case & is a scalar. Then, (8.106) can be 

written as 

tJ+ = Re[T++N$ (N$] [@(I-+] 

where the ASNR is 

(8.111) 

ASNR = N$ (8.112) 
OW 

The signal-too-noise behavior is contained in the term in the first bracket and the array 
geometry is contained in the second bracket. 

I f  the array manifold is conjugate symmetric (v = J v*), then 

dHv=O, (8.113) 
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and 

II d II 
2 . 

Then, 

N l+ASNR 
cCR($) = - [ 1 II d II -2 

2K (ASNR)" 

- 

I  

“d” 

-2 - 

l 

(8.114) 

(8.115) 

We see that for small ASNR the variance bound is proportional to (LISNR)-~ and for 
large ASNR, it is proportional to (ASNR)-l. We also observe that the effect of the array 
geometry is completely contained in the Slldll-2 term. 

We recall that the conventional beam pattern is 

h+/wh) = VHW1)V(~2~, (8.116) 

where $1 is steering direction and $2 is direction of the incoming plane wave. Then, 

The beam pattern in wavenumber space is only a function of 
(8.118) as 

II d II 
2 d2B&l, ‘IcI;z) =- 

a* 2 2 
+2=0 

Thus, the effect of the array geometry on the CRB for a single signal is completely 
specified by the second derivative (or the radius of curvature) of the conventional beam 

(8.117) 

(8.118) 

$1 - *2, so we can also write 

(8.119) 

pattern. 
If  we use the approximation in (8.110), we obtain 

N 1 
ClcR(qq = - - [ 1 lldll -2 

2K ASNR ' 
(8.120) 

We see that C‘(cR(+) approaches CUR for large ASNR. However, CA&/J) loses the 
quadratic dependence at low ASNR. 

We can obtain an explicit expression for the term in the second bracket in (8.111). 
We do not need to assume linearity or conjugate symmetry. 

The array manifold vector is 

,j+ ,j+b . . . ,C$Q 1 
T  

(8.121) 

Then, 

d*d = (;)2&, 
i=l 

(8.122) 
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and the second bracket in (8.111) can be written as 

dHd - lvHpd12 = 4 g yy” 
{izl T -@g2}- 

(8.123) 

Defining, 
p= + 2 . . . 

[ J!fL] T  ) (8.124) 

we can write (8.123) as 

d”d - IVH(?L)d12 = dpT - 
N 

;llT p 1 . (8.125) 

We now apply this result to a linear array (similar simplifications follow 
for conjugate symmetric arrays). 

Example 8.4.2 (continuation) 
Consider a standard linear array and first assume N is odd for notational convenience. 

Then 
p= -LIfL . . . i!$L 1, 

[ (8.126) 

where we have chosen the origin at the phase center of the array. Then, 

pT1=O, (8.127) 

and 
N-l 

2 

PTP= 
2c 

-2 
z = 

N(N2 - 1) 
12’ ’ 

(8.128) 
*- Z- 1 

For N even, (8.127) is still valid and 

!z 

pTp=2C(i-~)2=N(N~~-1), 
*- z- 1 

Then, substituting into (8.115), we obtain 

1 6 
(N2-- 

(8.129) 

(8.130) 

For large N, it is proportional to ND2. Note that the ASNR is proportional to N, so 
that for a fixed element SNR, the leading term in (8.130) is proportional to NB3. 

A more general curve is obtained if we normalize the bound by the BWNN (which is 
4/N for a standard linear array with uniform weighting): 

I 

1 
m' (8.131) 
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ASi’i (dB) 

Figure 8.1 Single plane-wave signal: square root of CRB(+) vs. ASNR, 
N = 10, K = 100. 

The corresponding result for the normalized version of C&R($) in (8.120) is the same as 
in (8.131) except the (ASNR)2 is omitted. 

The result for two normalized bounds are plotted versus ASNR for a standard lo- 
element array in Figure 8.1 and versus K for various ASNR in Figure 8.2. The scale on 

the vertical axis is 10 log ( J~/~NN). Plotted versus ASNR, the two bounds are 

essentially equal above 10 dB. However, plotted versus K, there is a significant difference 
at lower ASNR. The value of plotting our results with this normalization is that the results 
do not vary significantly (5 0.01) with N for N 2 10. 

Another view of C cm(+) that is useful is shown in Figure 8.3. Here, we plot the 
contours of constant CC&$J) versus ASNR and K. We will find this presentation useful 
when we study the performance of various estimators. 

It is useful to introduce several ideas with respect to the ASNR-K plane 
at this point. Some of ideas will become clearer when we examine specific 
estimators. 

In Figure 8.3, we have identified intervals on each axis in the ASNR- 
K plane. It is important to note that the exact boundaries vary with the 
particular application. On the K axis, the three intervals are: 

(i) Low sample support 

Here K < 10N. In this interval, particularly at the lower end, the sta- 
bility of C, is an important issue. In many applications, we are forced 
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Figure 8.2 
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Figure 5.3 Single plane-wave signal: CRB($) in ASNR-K plane. 
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to work in this 
because of the 

interval because 
non-stationarity 

of a limited 
of the data. 

number of observations or 

(ii) Asymptotic 

Here K is large and we can use analyses that neglect terms of O(K-l). 
Specifically, the asymptotic behavior of the eigenvalues and eigenvec- 
tors that was given in Section 7.2.2 can be exploited. When we discuss 
the asymptotic properties of estimators (particularly ML estimators), 
we are referring to this region. 

(iii) Transit ion 

In this region we transition from one mode of behavior to another 
mode. Many analyses focus on identifying the boundaries of the tran- 
sition region. 

On the ASYVA! axis, the three intervals are: 

(i) Low ASNR 

Here the ASNR is so low that the data do not provide any useful 
information. 

(ii) High ASNR 

Here the ASNR is high enough that, in many cases, the error is small 
enough that we can analyze it using a Taylor series expansion around 
the correct value. 

(iii) Transition 

In this region we transition from the small error behavior mode to a 
large error behavior mode. 

These intervals provide one way to think about the problem that we will 
find to be useful. 

It is important to note that in many cases the transition regions are 
bounded by iso-MSE curves in the ASNR-K plane. We develop this behavior 
later in this section. 

Note that we have considered the parameter in +-space. Recall that the 
corresponding *angle is 

Q 0 = cos-l - . 
0 7r (8.132) 

Therefore the bound on angle estimate depends on the actual value of the 
angle. The G matrix in (8.46) is derived in Problems 8.2.1 and 8.2.2. It is 
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a diagonal matrix so the mapping of the CRB from +-space to O-space is 
straightforward. 

For the case of two plane-wave signals, the algebraic expressions in the 

general case are complicated enough that they do not provide much insight 
into the bound. Most of our results will use numerical evaluation. We note 
that the expression in (8.130) always lower bounds the multiple-signal case. 

In Section 8.4.1.3, we consider uncorrelated signals, and in Section 8.4.1.4 
we consider correlated signals. 

8.4.1.3 Uncorrelated signals 

In this section, we consider the case of two uncorrelated plane-wave signals. 
However, we do not know a priori that they are uncorrelated. We evaluate 
CC&/J) using (8.102). The first example is for arbitrary array geometry. 

Example 8.43 
Consider th.e case of two plane-wave signals. We evaluate the H matrix first. For two 

signals, 

v  = [ vbfh) i eth) ]  l 
(8.133) 

To evaluate H in (8.101), we first find D*D, 

(8.134) 

Each of the terms in (8.134) can be written in terms of the conventional beam pattern 

’ B$i$j ($i,+j) , i = I,2;j = 1,~. (8.135) 

Therefore, 

DHD = 1 l 

(8.136) 

The next term of interest is Pv, 

1 B WI I$4 
B*(~+!Q,I+~~) 1 1 ’ 

(8.137) 

yyl = l -B (lh 44 
N [l - IB (ql ,qb2)1”] 1 1 ’ 

(8.138) 
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We use B12 as abbreviated notation for B ($1 , $2). Then, we can write 

1 H 
-- -- 

N[l - IB1212] v1 .’ v2 [ 1 -B12 Vl 

-BT2 1 I[ I --G- 
1 -- -- N [l _ I47 vlv? - B12V1V2H - B;2~2vr + vzvf} 

The ijth element of the second term in H is, 

[DUPED] 
ij 

= NL1 llB l23 a{d?[~~~? -BI~w# - 12 

-B~~v~vF+ VZVF dj , i,j=l,2. 1 > 
For conjugate symmetric v, 

Thus, (8.140) reduces to 

DHPvD = N [l - lB12i2] 

X -------- J"rV2L --e--- 

I -61 

-4312 (dfvl) 
--------2-------- pavz,fiQ&)-- ------ 1 (vz”dl) i l&hI ’ 

From (8.116) 

. (8.139) 

(8.140) 

(8.141) 

(8.142) 

drv2 = dBc (+1,$2) a& ($1 - $2) 

%h = +h 
=- dBc (+l - q2) = -B+,(n$) 

a*2 
7 (8.143) 

dfvl = dBc (;;- *‘) = Q2@$), (8.144) 
2 

where 

Then, 

A* = *1 - *2 ’ 

& = qwJ1 (*l,d4 - 
1 

N [l - IB1212] 

H22 = &z$h w% $4 - 
1 

N [l - IB1212] 

H12 = &‘ICI2 (h $2) - 
Bl2 

N [l - I&212] 

(8.145) 

I4dw)I” 7 (8.146) 

I% WI” ? (8.147) 

IB+, @~>I” 7 (8.148) 

and 

Ha1 = Hr2. (8.149) 

The final step is to evaluate the Hadamard product. For the special case of uncorre- 
lated sources, 

[S I f 12 = [S 1 f 21 - -0. (8.150) 
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and 

Sf= i cl al? [ 
2 2 

%l 7 us2 1 =fb, 

Then (‘8.106) can be written as 

(8.153) 

Note that, even with uncorrelated signals, the matrix in the first bracket will not 
be diagonal unless the conditions following (8.109) are satisfied. If  these conditions are 
satisfied, then we can use the approximation in (8.110). The matrix in the first bracket in 
(8.153) will be diagonal and the resulting Hadamard product will be diagonal. Thus, 

(8.151) 

(8.152) 

(8.154) 

where Hii is given by (8.146) and (8.147). 

In the next example, we specialize the results to the case of a standard 
linear array. 

Example 8.4.4 (continuation) 
For a standard linear array the expression in (8.154) reduces to 

6 12 IB&w>l” -l 
&CR($l) = 

K l ASNR(N2 - 1) ’ - N2(N2 - 1) [l - (B1212] > ’ 
(8.155) 

The term in braces represents the increase in the bound due to the presence of the second 
signal. Note that the bound does not depend on the power of the second signal. 

This is because the result is asymptotic and as the error becomes small, we find that 
the ML estimator places a null on the second signal (recall the discussion in Section 6.3). 
Later we shall see that the result is not true in the non-asymptotic area. 

In Figure 8.4, we plot the square root of the normalized CRB versus ASNR for N = 10, 
K = 100, and various values of A$/B W NN. We show the bound given by (8.110) and the 
exact bound given by (8.106). W e a so show the single-signal bound given by (8.130). 1 

We see that, as A decreases, cc&/) separates from CA&!)) at higher ASNR. For 
A > O.~BWNN, the two-signal bound is essentially the same as the single-signal bound 
for ASNR > 0 dB. 

In Figure 8.5, we plot the exact CRB (8.106) versus normalized signal separation 
for various SNR. We see that the bound is proportional to (Au)-~ over the region 
Au/BWNN < 1.0 and is essentially constant for Au/BWNN > 1.0. We indicate the - 
HPBW, O.~BWNN, and BWNN. The separation, Au = O.~BWNN, is referred to as the 
Rayleigh resolution value (recall the discussion in Chapter 2). 
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Figure 8.4 Square root of normalized CRB versus ASNR : N = 10, K = 100, 
two signals, various A$@W&V. 

Figure 8.5 Square root of normalized CRB versus A$/HVNN (normalized 
signal separation in +-space): two signals, ASNR = 10 dB, N = 10, K = 100. 
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8.4.1.4 Correlated signals 

When the signals are correlated or coherent, we evaluate (8.106) numeri- 
tally without any intermediate manipulation. One of the key results that 
comes out of the discussion is the importance of the phase of the correlation 
coefficient. This result was pointed out in [WF90] and [WF93]. 

In [YB92] , Y au and Bresler developed conditions for the worst case 
asymptotic conditional CRB. For two signals, they obtained an analytic 
expression for the phase angle of the worst case CRB. They show that the 
worst case asymptotic conditional CRB (ACRB) is given by fully coherent 
signals with 

s12 = II-- exp [j [arg (H12)]] 7 (8.156) 

where H is defined in (8.101). 
However, whenever v is conjugate symmetric, H is real. Therefore, the 

worst case phase is O” or 180’ for standard linear arrays (and any conjugate 
symmetric array). 

We illustrate the importance of the phase with a simple example. 

Example 8.4.5 
Consider a standard lo-element linear array. The ASU3 is 20 dB and K = 100. In 

Figure 8.6, we plot the normalized CRB given by (8.106) and the ACRB given by (8.110) 
versus the phase angle of p for various values of ]p]. In Figure 86(a), the signal separation 
is O.O~AVNN. We see that, the CRB has peaks at 

4 P = 0” 1 180”, (8.157) 

and that for larger values of ]p], the difference between the peak and the minimum value 
can be significant. We observe that, in the vicinity of qJ, = YO”, the CRB is lower for 
correlated signals than for uncorrelated signals. In Figure 8.6(b), the normalized CRB 
is plotted versus ]p] for various Au. The phase angle, q!+, equals 90”. For very small 
separation, there is a significant decreases as ]pJ increases. For AU > O.O~HVNN, the 
decrease is small. 

Note that our example uses both the CRB and the ACRB, whereas the analysis in 
[YB92] was for the ACRB. 

This example illustrates the importance of considering the phase of the 
correlation coefficient when one models correlated or coherent signals. We 
note that it is important to have the phase reference point at the center of 
the array when studying coherent signals. If one uses the end element for 
the phase reference point, artifacts are introduced in the result. This issue 
can be verified by redoing Example 8.4.5 with the phase reference at the end 
element. 

In Figure 8.7, we show the normalized bounds versus N for a small 
separation A$ = O.O~BVVNN and an ASNR = 20 dB. The phase of p is zero. 
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Figure 8.6 Square root of normalized CRB and ACRB for various (pi: two sig- 
nals, N = 10, K = 100: (a) normalized CRB and ACRB versus &/T, Au = 
0.05H4$~; (b) normalized CRB and ACRB versus IpI, & = r/2, various 
Au. 
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Figure 8.7 Square root of normalized CRB and ACRB versus number of 
sensors: two signals with A@ = 0.5BIY’&v, ASNR = 20 dB, K = 100, 
various p. 

We see that for N > 5, the normalized error is independent of the number of - 
sensors. We also see that the bound increases significantly as ]p] approaches 
one. 

In Figure 8.8, we show the CRB versus ASNR for various p. In this 
case, & = 0. In Figure 8.8(a), A$ = O.O~BIY&L In Figure 8.8(b), A$ = 
0.2165Bbv~~. 

For more than two signals, it is not clear what the worst and best case 
phase relations are. However, for conjugate symmetric v, H is real and we 
would anticipate that the O” or 180° relationship would continue to be the 
worst case. Several of the problems analyze the correlated signal case in 
more detail. 

In some cases, having additional a priori information decreases the CRB. 
For the case of coherent signals, Stoica et al. [SOVM96] have shown that 
knowing that the signals are coherent does not decrease the CRB. 

8.4.1.5 Closely spaced signals 

As we have seen from our examples, as the signal separation decreases, the 
CRB increases. This corresponds to the intuitive result that the parame- 
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ters of closely spaced signals will be harder to estimate. Swingler [Swi93] 
developed approximate expressions for the two-signal case. 

For the case of D (D > 2)) Lee ([Lee92], [Lee94]) has developed compact 
analytic expressions for the CRB in the case of small signal separation. The 
reader is referred to these references for a detailed discussion. The key result 
is that, for closely spaced signals, 

CRB oc (A$)-2(D-1), (8.158) 

where D is the the number of signals. 

8.4.1.6 Summary 

In this section, we have derived the CRB for the case of an unknown source 
signal spectral matrix and unknown noise level. In a large number of appli- 
cations, particularly passive sonar, surveillance, and radar applications, this 
is the appropriate model to use. Several points are worth reemphasizing: 

(i) For two uncorrelated signals, the bound is proportional to ASNR-1 for 
large ASNR. 

(ii) For correlated signals, the phase of the correlation coefficient is very 
important. 

(iii) For closely spaced signals, 

CRB cc (A$J)-~(~-~), 

where D is the number of signals. 

(iv) The CRB is proportional to K-l. 

(v) For standard linear arrays with N > 10, the normalized bound plotted 
versus ASNR does not depend on N. 

8.4.2 Gaussian Model: Uncorrelated Signals with Unknown 
Power 

In this section, we consider the case of the Gaussian model in which we know 
a priori that the signals are uncorrelated. As part of the derivation we also 
find the CRB for the case of known source spectrum. The CRB for uncorre- 
lated signals was used in many of the early studies of DOA estimation (e.g., 
Schmidt [Sch81] or Appendix A of Barabell et al. [BCD+84]). Porat and 
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Friedlander [PF88] use a high S.NR approximation to it in their discussion 
of the relative efficiency of MUSIC. Jansson et al. [JG099] have derived an 
expression for the uncorrelated CRB. 

The spatial spectral matrix is 

s x = VSfVH + &. (8.159) 

We can write S, as 

There are 20 + 1 unknown parameters, 

where 
$A 2 2 . . . - [ Ol a2 

We divide 8 into two parts as in (8.39), 

[ I T 
e U- a2T o2 

W 

is a D + 1 vector containing the unwanted parameters. 
The Fisher information can be partitioned as 

J - - 
[ 

;w J@Jeu 
w U Je,e U 

Then, 

- J ’ - - (J++ - J+eu JiLe, Jeu2/A-1 I ( ) : 1 _--__--_------ e-----m - ------ ------I------- 
( > I I ( > 

, 

I . 

where only the upper left block matrix is of interest, and 

Cd@) = [JQQ - J+e, Jeteu Je,+] -’ l 

(8.160) 

(8.161) 

(8.162) 

(8.163) 

(8.164) 

(8.165) 

(8.166) 

(8.167) 

We next derive the entries in J. In the derivation of J+,+, we will not 
assume that Sf is diagonal, so the resulting J+,+ will provide a bound for 
the general known signal spectrum case. 
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The ij term in Jq,+ is 

The derivative with respect to & is 

dS x ~VW) avf'w9 - - - 
w 

-SfVH(@) + VSf--. 
i w i w 7 i 

(8.168) 

(8.169) 

Now define 

(8.170) 

Then, we can write 

(8.171) 

where ei is a D x 1 vector whose ith element is unity and whose remaining 
elements are zero (see A.lO1): 

[ 1 J 
?w ij T H T H Deiei SfV + VSfe+i D 

I 

x s,l T H Dejej SfV T H + VSfejej D 
II 

, (8.172) 

[ I J 
?w = K tr ij [ 

S,lDeieTSfVHS;lDeje,?‘SfVH 

+S;lVSfeieTD”S;lDeje,TSfVH 

+S;lDe&&VHS;‘VHSfeje,TD” 

+S,lVSfeieTDHS~lVHSfe,e,TD”] . (8.173) 

Using the trace property in (A.27), 

[ 1 J 
?w 

= K tr ij c( 
$SfVHS$Dei) (ef&VHSLIDej) 

+ ($SfVHS,‘VSfei) (e’DNS;‘De,) 

+ (e,TDHSilDei) ($SfVHS;WSfej) 

+ (e,TDHS,WSfei) (e~D”S,‘VSfe,)l . 

(8.174) 
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Now all the terms are scalars and the trace can be removed. The fourth 
term is the conjugate of the first term and the third term is the conjugate 
of the second term. Therefore, (8.174) can be written as 

[ I 
J 

?w 
= 2KRe 

ij I( 
&VHS$Dej 

>( 
eTSfVHSGIDei) 

+ (e~!$VHS;‘VSfej) (eTDHS;‘Dei)}, 

(8.175) 

or, in matrix form, 

J e/J 
= 2KRe 

{[ 
SfVHS,lD] @ [SfVHS;‘D]* 

+ [SfVHS,‘VSf] o [DHS,‘D ) 
(8.176) 

which is the desired result. The expression in (8.176) can also be written as 

J +,+ = 2KRe 
0 

SfVHS,‘D]* o [S+HS,lD] 

+ [SfVHS$VSf]* o [DHS;lD]}. (8.177) 

The expression in (8.176) is for general Sf. In order to derive the other terms 
in the J matrix, we assume that (8.160) is satisfied. 

We partition the 8, vector as in 
written as 

J 
w  

- - 
U 

(8.164), so the cross-matrices can be 

J [ I @ S 

J 1 
$J n 

(8.178) 

and 

Je e 
J ss ’ - - ------ u u 

[ : 

J ns &-----we 
J I J ? (8.179) 

sn f nn 

The first cross-matrix is 

‘?+!Ji *j2 = K tr S,bF(divr + vid”)S$v. 
1 ” $7 > 

= K tr S,‘a,2div~S;‘vjv~ + S,‘~f~id”S;‘v,v3H) 
1 

- - K (~f’S;‘di)(~~v”S;‘vj) + (~~S;‘vi~~)(d~S~‘vj)} 7 
1 

(8.180) 

or 
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J?)i 0; = 2KRe 
1 

(o;VfS,lVj)( vf%,‘di)} , 

or 

J+i *f = 2KRe { [SfVHS,‘V]~jlVNS,‘D]jil) l 

In matrix form, 

J 
Q S 

= 2KRe { [S#%$V] o [V”S;‘D]~~ 

The next cross-matrix is 

J?f!)iO.$ = K tr { S,‘of(divf + vid”)S,*‘} 

= K tr S$$d&$ + S,bfvidf%$ 
{ > 

= K &%,2di + d”S,2v,a,z , 
1 i 

which reduces to 

Jtiig,$ = 2KRe 02vHSs2d- 
1 ii x 2 > 

- - 2KRe { [SfVHSL2D]ii). 

In matrix form 

J ti n = 2Kdiag [Re(SfVHS~2D)~~ 

The signal power matrix is 

Jaw = K tr i j 1 
S~lv~vps,‘v,v~}. 

or 

Jaw i j 
= K (v~S;‘vj)(v~S,‘v~)} 

{ 

= K { [VHS,‘V],IVHS,‘V]j,} l 

In matrix form 

J,, = K { [VHS,‘V] a [VHS;‘V]T}. 
7 

The noise-related matrices are 

J&T2 = K tr 
i W { 

S,lvivHs,’ 
> 

, 

(8.181) 

(8.182) 

(8.183) 

(8.184) 

(8.185) 

(8.187) 

(8.188) 

(8.189) 

(8.190) 
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JCTW i w  
= Kv+,‘y 

- - K [VHS;2V] . 
ii 

J sn = Kdiag [VHS~2V] . / 

(8.191) 

(8.192) 

Similarly, 

Jo2 02 w w  = K tr{S;‘S;‘} = K tr{SL2}, (8.193) 

and 
/J,, (8.194) 

In addition to the six matrices in boxes ((8.176), (8.183), (8.186), (8.189), 
(8.192), and (8.194)) th ere are three Hermitian transposes, 

J 
+ 

- JH s - $Js’ 

JnQ = J&Y 

(8.195) 

(8.196) 

and 
J JH 72s = sn* (8.197) 

We substitute these eight equations into (8.178) and (8.179) and the re- 
sult along with (8.176) into (8.167). All of the terms in (8.167) are explicitly 
defined and we can evaluate the uncorrelated CRB. We consider a simple 
example to illustrate the behavior. 

Example 8.4.6 

Consider a standard lo-element linear array. We plot the uncorrelated CRB given by 
(8.167) and the standard CRB given by (8.106) versus ASNflr for several signal separations; 
O.O~BWNN, O.O~BI”VNN, 0.25Bk!$VN, and 0.75.Bw NN. We consider three signal models: 

(i) Figure 8.9: ASN& = ASNR1 

(ii) Figure 8.10: ASNR2 = ASNRr + 10 dB 

(iii) Figure 8.11: AsNR2 = ASNRr + 20 dB 

In each figure, the (a) plot corresponds to signal 1 and the (b) plot corresponds to signal 
2. The value of K is 100. 

We see that: 

(i) For unequal power signals, the bound for the lower power signal is almost 
the same whether we use the standard or uncorrelated CRB. 
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Figure 8.9 Normalized CRBs versus ASNR: two signals, N = 10, K = 100; 
ASNR;! = ASNRl: (a) CRBs for signal 1 versus ASNRl; (b) CRBs for signal 
2 versus ASNRz. 
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Figure 8.10 Normalized CRBs versus ASNR: two signals, N = 10, K = 100; 
ASYVR2 = ASNRl + 10 dB: (a) CRB s f or signal 1 versus ASNRl; (b) CRBs 
for signal 2 versus ASNRz. 
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Figure 8.11 Normalized CRBs versus ASNR: two signals, N = 10, K = 100; 
ASNR2 = ASNR1 + 20 dB: (a) CRBs for signal 1 versus ASNRl ; (b) CRBs 
for signal 2 versus ASNR2. 
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(ii) The bound for the higher power signal can be significantly lower us- 
ing the uncorrelated signal model rather than the general correla- 
tion model, indicating a possible improvement in I)OA estimation for 
schemes that use this knowledge. The difference is most pronounced: 

(a) as Au decreases 

(b) as the difference in ASNR increases. 

These results do not change significantly for N > 6. There are similar - 
trends for N = 3, 4, and 5. 

Jansson et al. [JGO99] g ive several comparisons of the uncorrelated CRB 
and the general CRB. They also derive an estimator that achieves the un- 
correlated CRB asymptotically. 

8.4.3 Gaussian Model: Known Signal Spectrum 

In this section we consider the case of the Gaussian model with a known 
signal spectrum and known 0:. The result was derived in Section 8.4.2 
(8.176). Now the parameter vector 0 is 

e&q . (8.198) 

The Fisher information matrix is the term in (8.176). Thus the CRB is6 

cCR($') = J$+ 

(8.199) 

where D was defined in (8.170) and 0 denotes the Hadamard product. The 
second term in the upper left partition in (8.166) is always a non-negative 
definite matrix. Therefore, if S, is diagonal, then the known signal spectrum 
bound will be less than or equal to the uncorrelated signal bound in (8.167). 

Note that the bound in (8.199) applies to correlated signals also. The 
expression in (8.199) is also the upper left matrix in (8.89), so a similar 
statement applies to correlated and coherent signals. A good discussion of 
the coherent signal case is given Stoica et al. [SOVM96]. 

‘The result in (8.199) was published by Weiss and Friedlander [WF9la] and derived 
in [WF90]. It is also derived in Appendix A of [BCD+84]. [Wax85] derived the CRB for 
essentially this problem, but the form of the result was less compact. 
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-20 -10 0 10 20 AS& 40 50 60 70 a0 

(dB) 

Figure 8.12 Normalized CRBs versus ASYVI?~: ASYVA!~ = ASV&. 

We consider a simple example to show how knowledge of the spectrum 
affects the CRB. 

Example 8.4.7 (continuation) 

We consider a standard lo-element linear array. We first consider the case of two 
uncorrelated signals. We consider the same parameter set as in Example 8.4.6. The 
results are shown in Figures 8.12, 8.13, and 8.14. In each figure, we plot the normalized 
CRB using (8.106), (8.167), and (8.199) versus ASML 

We see that the uncorrelated signal bound and the known spectrum bound appear 
to be the same. There is actually a very small difference. For Au = 0.2165BIV~~ and 
ASNRI = 0 dB, the difference is 0.02 dB. 

Example 8.4.8(continuation) 

Consider the same model as in Example 8.4.7 except the two signals are coherent, with 

P = 1. Note that the phases of p is O”, so forward-backward averaging cannot decorrelate 
the signals. In Figures 8.15 and 8.16, we plot the normalized CRB for the unknown signal 
spectral matrix case from (8.106) and for the known spectral matrix case from (8.199). 

For a closely spaced signals there is a significant difference in the two 
bounds. For wider spacings, they coincide. 



Gaussian Model: Known Signal Spectrum Model: Known Signal Spectrum 

\ 

-60’ I  I  I  1 1 I  1 1 I  

-20 -10 0 10 20 AS& 40 50 60 70 80 

(dB) 

( > a 

20- I I 

' lOa... ,. . . : I.....; .-q . . 
0 

. . .\:. . . . . . . . . 
. . . . I& ..: . . ._ 

‘ 
‘Y.;. 1 A,10 .‘j: .,._. . 

..:... .’ . . . . ‘. -(jO- . . . :. .._‘..._. _‘.,.,,. ‘. 

-70 I I I 1 1 1 I I I 

-10 0 10 20 30 40 50 60 70 80 90 _-_.- - 
AM/R2 (dB) 

969 

Figure 8.13 Normalized CRBs versus ASNR: ASNR2 = AS’NRl + 10 dB: (a) 
CRBs for signal 1 versus ASNRl; (b) CRBs for signal 2 versus ASNR2. 
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Figure 8.15 Normalized CRBs versus ASNRl: two signals, N = 10, K = 100, 
ASNRz=ASNRl, p = 1. 

8.4.4 Nonrandom (Conditional) Signal Model 

The nonrandom signal model was introduced in Section 8.3.1. For a narrow- 
band model, the snapshot model is (from (8.67)) 

X(k) = V(Q) F(lc) + N(k), k = 1,2, l 00, K. (8.200) 

We assume that F(k) is an unknown nonrandom complex source-signal vec- 
tor (D x 1). Alternatively, we can view F(k) as a specific sample function 
of a complex random process, and we derive an estimator for this sample 
function and bound its performance. This second viewpoint leads to the de- 
scription as a “conditional” (conditioned on F(k), Ilc = 1,2, l 9 . , K) estimator 
and a conditional Cramer-Rao bound. The two viewpoints lead to identical 
results. 

The nonrandom (conditional) signal model was described in Section 8.3. 
To evaluate the CRB we utilize (8.35). The unknown parameter vector is 

(8.201) 

The vector + and the scalar gu, 2 have been defined previously (8.87). F is a 
real vector that contains the signal values at snapshot times k = 1,2, l l l , K. 
Thus, 

F & 
[  

Re [F(l)]’ Im [F(l)]’ Re [F(2)IT l l l Im [F(K)]‘]~. (8.202) 
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Figure 8.16 Normalized CRBs versus ASNRl: ASNR2 = ASNRl + 20 dB: (a) 
CRBs for signal 1 versus ASNRl; (b) CRBs for signal 2 versus ASNR2. 
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It is a 2DK dimension vector. 
The Fisher information matrix has the same structure as in (8.89). 

J - - 

J$$Y 1 J?f!m ! J&-& 
- - - -  -  . . - p - - -  - - s - - - - -  em - -  I I I I 

JF+ ; JFF j JFcJ~~ -------- -r----..-----.m------- I I I 
J . ($Jq 1 JQ$q/) j J&Y; 

. (8.203) 

The three principal submatrices are of dimension D x D, 2KD x 2KD, and 
1 x 1, respectively. 

To evaluate the terms, we use (8.34) with 

K&3) = o;I, (8.204) 

and 

We go through the steps in the derivation of the hound because it is 
representative of the technique for deriving a multiple-parameter CRB. Our 
derivation uses (8.204) and (8.205) and borrows techniques from Appendices 
C and G of Stoica and Nehorai [SN89a]. 

Derivation of CCRB7 
The elements in the upper left sub-matrix are 

( 

~ Fj(k) 

j 1 
+d Fj(k)] e (8.206) 

Defining 

D = [ d(!h) d(lCl2) l ** 4~D) ]  Y 
(8.207) 

and 
F(k) = diag {Fl(k), h(k) ,  l l 9 I  b(k)} j (8.208) 

we can write J 
?wJ 

as 

J = 
2clzc) 

&eFH(k)DHDF(k). 
OW 

(8.209) 
k=l 

7A simple derivation of the CCRB is given in Stoica and Larsson [SLOl]. It was mo- 
tivated by the results in Gu [GuOO]. It reparameterizes the original model to obtain a 
block-diagonal Fisher information matrix. 



974 8.4 Cram&-Rao Bounds 

The second principal submatrix JFF is 2KD x 2KD and is block diagonal. Each block is 
20 x 20 and has an identical structure. The lath block corresponds to the lath snapshot. 
It has a structure 

[JFF(~)] = -?- & [ ; T  J$f ] 1 (8.210) 

the real and imaginary parts, respectively, of where the superscripts “R” and “I” denote 
A. We now derive AR and AI: 

+ [AR] = 
OW 

ij 

2 K dmH dm 
i$ x 

-. - 

k=l 
ReaF,“(k) aFjR(k) 

- - $Re{vH($i)V(dj)J, i,j = 1,2,***,D (8.211) 

Therefore, we can define 
A = [VHV] , (8.212) 

and 
AR = Re [V”V] . (8.213) 

To find the matrix in the upper right corner we use 

- - (8.214) 

Therefore, the matrix in the upper right-hand corner can be written as -A’. Note that 
the matrices do not depend on Ic, so each block is identical. The two other sub-matrices 
follow in a similar manner. 

The third principal sub-matrix is a scalar. Using (8.34) 

K 

J,2,2 = 
c [ 

tr 1 KN 
w w 

-&*+I Z4’ 

DW g’w o’w 

(8.215) 

k=l 

We next evaluate the off-diagonal matrices. From (8.34), (8.204), and (8.205), we have 

J+ 2 = J,,z = 0. 
QW ‘W 

We partition the 2KD x D matrix, JF+, into K 20 x D matrices: 

(8.216) 

[ 1 
J@(k) = 

ij 
&FH (rC)VH (+> 

i I[ &V@/@‘(k) 9 I> 
- - +Re 

g’w 

VH(Q)E$dF(k) 
j 

(8.217) 
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Similarly, 

(8.218) 

Thus, 

where 

Similarly, 

We also define 

[J1/)FO] = [ A”‘(k) A”(k) ] . 

AT e [ AT(l) i AT(2) ; l eB i AT(K) ] . 

The information matrix is, 

J= 

J ; 
+!I ’ 

A’(l) i l l l ;  6 , AT(K) ; 0 
--e-s --~--------------------------------- ,,,I ..---- 

0 : 0 I I ; KN 
, , I *a4 . W 

The bound on 0: is not coupled. Thus, 

(8.219) 

(8.220) 

(8.221) 

(8.222) 

. (8.223) 

(8.224) 

Using the formula for the inverse of a partitioned matrix on the (D+2KD) x (D+2KD) 
matrix in the upper left-hand corner (A.62), we obtain the conditional CRB (CCR) on +, 

c&(?,b) = J++ - ATJ,&A. (8.225) 
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To evaluate the second term, we write 

J,k= [ ;; -,“d], 

where 
B % A-l, 

(see (A.68)). Th en, one can show by direct substitution that 

AT(k)BA(k) = Re [AH(lc . 

Using (8.228) in (8.225) gives 

C&(Q) = J$+ - CRe [AH(k)s 
k=l 

Using (8.220) and (8.209) in (8.229) gives 

C&d@) = $2 Re {FH(k)DHDF(k) 
k=l 

(8.226) 

(8.227) 

(8.228) 

(8.229) 

-FH(k)DHV (V”v>-1 VHDF(k)} . (8.230) 

This result can be written as 

C&(e) = $ e Re {FH(k)DH [I - Pv] DF(k)} 
w k=l 

- - $5 Re { Fx(k)DXp:D~(k)} , 
w k=l 

which is the desired result. 
We can rewrite (8.231) more compactly by defining 

H fl DHP+D - . 

Then, 

K 
- - 

ij 
dH ($%)P+d(+j) x FT (k) Fj (k> 

k=l 

5 Fj(k).l?F(k) 
k=l 

(8.231) 

(8.232) 

(8.233) 
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where 

i3f = f 
k=l 

The result in (8.233) can be written using the Hadamard product as 

(8.234) 

(8.235) 

As we would expect, the bound depends on the actual value of the vector 
parameter q!~ and the actual signal waveform (through !&). However, if we 
now assume that x(k) is a sample function from an ergodic random process, 
then as K goes to infinity, $f will approach the actual spectral matrix Sf 
and we can write the asymptotic conditional Cramer-Rao bound (ACCR) as 

cKCR(@‘) = & [Re [Ho~:]]-~./ (8.236) 

This is the same bound that we encountered in Section 8.4.2.1 as a high 
SNR approximation to the standard CRB which we also refer to as the 
stochastic or unconditional CRB. We saw several examples of how the two 
bounds compared in that section. In all of the examples, the C&$J) was 
above Cm&+) and they converged as the SNR increased. In other words, 
the stochastic CRB was a better (tighter) bound than the asymptotic con- 
ditional CRB (ACCR). We now show that 

First, consider CC&$J) g as iven by (8.102). Using the matrix inversion 
lemma we can write’ 

SfvHs,lvsf = Sf - Sf I - VH [ [ VSfVH +tr;r 
-1 

1 I VSf 

- - Sf - Sf [I + VHo,2VSf]-1. (8.238) 

Now the second matrix on the right side of (8.238) is Hermitian and 
non-negative definite. Thus, 

SfVHS,lVSf < Sf. - (8.239) 

‘This result is from Ottersten et al. [OVK92]. S ee also Stoica and Nehorai [SNSOb]. 
Several useful order relationships are discussed in Stoica and Sharman [SSSOa] and Stoica 
and Nehorai [SN89a]. 
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Then, using the properties of Hadamard product (see (A-76)-(A-78)), 

[Re {H a (SfV”S;‘VSf)}] -’ > [Re {H 0 ST}]-‘, (8.240 

so that 

%3(e) 2 &Km(@)- (8.241 

If H and Sf are both positive definite, then the inequality is strict. 
We recall from Examples 8.4.1 and 8.4.2 that even t)hough the inequality 

is strict, the difference is negligible when the eigenvalues of VHVSf/a~ 
become large. 

8.4.5 Known Signal Waveforms 

In this section we consider the case in which the signal waveforms are known. 
One application of this model is in communication systems in which a train- 
ing sequence is sent to enable the receiver to synchronize. The CRB for this 
case is derived in Li and Compton [LC93]. 

The samples of the signal from +!~i are denoted by 

fi(k) = cxipi(k), k = 1,2,-•-,K, (8.242) 

where pi(k) are the samples from the known signal and ~i is a complex 
constant. We consider both known and unknown ai. 

The time- #domain samples are 

X(lc) = wv(k> + n(k) 
= V(+)p(k)a + n(k), k = 1,2, l l - , K, (8.243) 

where 

p(k) !? diag {p1(k), ~2@>, l - l ,pD@)) j (8.244) 

(8.245) 

The case for known a is a degenerate version of the model in Section 
8.4.4. The CRB is given by the inverse of (8.209) 

o2 K 

CRB(+) = $ RexFH(k)DHDF(k) (8.246) 
k=l 
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where 

F(k) = diag {al&), a2?‘2@), l l ’ 7 aDpD(k)} 7 (8.247) 

For the case of unknown a, we replace the Fisher information matrix in 
(8.203) with 

r J I J 
!b 

I I 
!hfJ ’ a!R I J 

---- - ---r--- T!J w  ----------- -----w I I I 
J - - J a& / Ja!Ra.R ; J~R~I J (8.248) ------- --r---------------------- I 

I  

I  

where a~ and al are the real and imaginary parts, respectively, of a. Note 
that we omit the ai term because there is no cross-coupling. The steps 
for deriving the new submatrices are analogous to those in (8.210)-(8.214). 
Carrying out those steps, substituting the results into (8.248)) inverting J, 
and retaining the matrix in the upper corner, we obtain 

[ 
II 

-1 

- Re AHBelA , (8.249) 

where 
K 

A n x FH(k)VHDF(k) , - (8.250) 
k=l 

and 
K 

B n x FH(k)VHVF(k) . - (8.251) 
k=l 

Using the same technique as in (8.233)-(8.235)) we can write, 

2 
o2 J,+,+ = KRe {DHD a “a> , 

W 

1 
A@-A= - 

K 
{VHD 0 5;) , 

1 
BK~-B= - 

K 
(VHV 0 q} ) 

(8.252) 

(8.253) 

(8.254) 

where 

& ih ; 2 f(k)fH(k). 
k=l 

(8.255) 
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Using (8.252)-(8.254) in (8.249) gives 

o2 cm(@)= Z[R, {DH~&~- H -1 11 
-1 

A@, AK ’ (8.256) 

For the special case in which & is diagonal, the CRB(+) is diagonal. 
The result in (8.256) is for an arbitrary array geometry. If we consider 

the case of a standard linear array and a diagonal s^f, tlhen the result can be 
simplified. 

For unknown 

2 

CRB(+) = 6aw 
K(N2-l)Ndiag 

P i= 

(8.257) 

(8.258) 

is the average power in the ith signal and contains the effect of ari. 

The result in (8.257) can also be written as 

CRB(@) = ’ 
K(N2 - 1) 

diag ASNR,l, ASNR& l l l 

1 

, ASNR,‘} . (8.259) 

Comparing (8.259) with (8.115) and (8.131)) we see that the CRB for any 
signal in a known multiple-signal environment is the same as the CRB for 
a single signal in the unknown signal environment. This is a logical result 
because we can use the temporal characteristics of the known signals t 0 
eliminate all of the signals except the desired signals. For two signals, we 
can obtain a diagonal Sf for arbitrary K. However, for D > 2, there are 
residual off-diagonal terms whose magnitude decreases as K increases. 

We observe that the CRB is not a function of the angle between the plane 
waves. We also observe that there is no requirement that D, the number of 
signals, be less than N, the number of sensors. 

8.4.6 Summary 

In this section, we have developed CRBs for several signal and noise models 
that we will study in detail in the remainder of Chapter 8 and Chapter 9. 
The fundamental result that is the starting point for all of the derivation is 
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(8.34), which gives the expression for the ij element in the Fisher information 
matrix, 

J ij = tr K;1(~)a~(e)K;1(~)~9 
[ i j 

(8.260) 

This result is valid whenever X(k) is a complex Gaussian vector with 
mean m,( 0) and covariance matrix K,(8). The vector 8 includes all param- 
eters that are unknown (both wanted parameters and unwanted, or nuisance, 
parameters). 

In the cases we have developed in this section, X(k) is the sensor output. 
Later we look at cases where we pre-process X(k) with a linear transfor- 
mation prior to doing the parameter estimation. In those cases, we can use 
(8.260) on the output of the transformation to compute the CRB. Ideally, we 
would like the transformation to generate a sufficient statistic for the desired 
parameter estimation problem so that the CRB would remain the same. In 
practice, we often have to use transformations that only increase the CRB c 
slightly. 

There are a number of other models where we utilize the CRB: 

(i) Planar arrays 

In this case, (8.200) can be written as 

where $J is defined as 

Each component vector is a 2 x 1 real vector. We will use 

i = 1, * l l ) D. 

(8.261) 

(8.262) 

(8.263) 

in the subsequent discussion but the components could also be (Si, &) 
if desired. 

Yau and Bresler [YB92] have derived the asymptotic conditional Cramer- 
Rao bound for the case in which $J~ is a M x 1 vector. We quote their 
result for the M = 2 case. 
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( > ii 

We define 

D i= av(+i) avC+i> 

‘+Xi a$yi 1 i = 1, l l . ) D, (8.264) 

and 
D = D1 D2 l ** DD , 

[ I 
(8.265) 

which is a N x 20 matrix. As in (8.232), we define 

H2 * DHp’D - 
v l 

(8.266) 

We use the subscript 2 to denote that & has two components. 

We define a 2 x 2 matrix of ones as, 

[ 

1 
12x2 = 1 

1 
1 1 . 

Then, the ACCR is 

- - 
2K 

p p2 0 [ST 8 l2x2]]]-17 

(8.267) 

(8.268) 

where 0 is a Hadamard product (A.70) and @ is a Kronecker product 
(A.79). Yau and Bresler [YB92] derived the conditional CRB, but the 
modification to obtain the asymptotic bound is clear. 

We consider some examples in the problems. NotIe that this result also 
can be used for multiple polarization signals. 

Broadband signals 

We discuss broadband signals in Section 8.5.6 and discuss the appro- 
priate CRB. 

(iii) Spatially spread signals 

We discuss parametric models for spatially spread signals in Section 
8.9 and derive appropriate CRBs. 

(iv) Beamspace processing 

In Sections 6.9 and 7.10 we discussed beamspace beamformers. We 
will also use beamspace processing for parameter estimation. The 
beamspace matrix is BE and we require 

H Bbs Bbs = I. (8.269) 
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The beamspace steering vector is 

bS 

H 
= B,,v. 

We define a projection matrix, 

PVbs = BEV 
[ 
VHPB,J 

I 
-’ VHBbs. 

The beamspace spectral matrix is 

S H 
xbs = B@xBbs 

H B,,V&V H 2 = Bbs + a,X. 

The beamspace noise is white due to (8.269). 

Thus, the CRB for beamspace estimation is 

CRBbs(+) = 2 [Re { [DHBbsP$-bsBED 

o [SfVHBb,s,:sB~Vs,] T 

I 

(8.270) 

(8.271) 

(8.272) 

(8.273) 

We discuss several examples in the problems and study beamspace 
estimators in more detail in Sections 8.11 and 9.7. 

(v) Range and bearing estimation 

In the case of near-field sources, the parameter vector includes both 
range and bearing. Several references discuss this model and derive 
CRB (e.g., Rockah and Schultheiss [RSS7a] [RS87b] or Huang and 
Barkat [HB91]). 

(vi) Mult ipat h models 

In many applications, multipath is an important factor. Several refer- 
ences discuss parameter estimation in radar and sonar systems. Rendas 
and Moura [RM91] derive the CRB for a model that is appropriate for 
the sonar environment. 

(vii) Minimally redundant arrays 

The CRB results applied to arbitary array geometries, but our ex- 
amples discussed uniform linear arrays. Another interesting class of 
arrays is the minimally redundant arrays discussed in Section 3.9. The 
CRB for this case are discussed in Chambers et al. [CTSD96] and 
Abramovich et al. [AGGS98]. They also discuss estimation techniques. 
We develop several examples in the problems. 
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(viii) Cyclostationary signals 

8.5 Maximum LAkelihood Estimation 

In many communication systems the modulated signals exhibit a cy- 
clostationary (periodic correlation) property that can be exploited to 
improve the DOA estimation performance. Schell [Sch94] derives the 
CRB for this model. 

( > ix Computation 

Computation of the inverse of the Fisher information matrix may be 
diffcult for large parameter sets. Hero et al. [HUSF97] develop a 
recusive algorithm to compute the bound. 

We encounter other examples as we proceed through Chapters 8 and 
9. We now consider maximum likelihood estimation procedures. In many 
cases of interest, the maximum likelihood estimates achieve the Cramer-Rao 
bound as K, the number of snapshots, goes to infinity. 

8.5 Maximum Likelihood Estimation 

In this section, we derive the maximum likelihood estimator for the DOAs of 
D plane-wave signals. In Section 85.1, we consider the model in which the 
source signals are sample functions from a Gaussian random process with 
an unknown Sf. 

The maximum likelihood estimator that we consider in Section 85.1 is 
sometimes referred to in the literature as the unconditional ML estimate or 
the stochastic ML estimate (e.g., [SNSOb]). 

In Section 85.2, we consider a model in which we treat the source signals 
as nonrandom but unknown and derive an ML estimate that is referred to 
in the literature as the deterministic (or conditional ) ML estimate. We 
compare the performance of the two estimates. 

In Section 8.5.3, we discuss the asymptotic performance of the maximum 
likelihood estimators. In Section 8.5.4, we extend the results to wideband 
signals. In Section 8.5.5, we summarize our results. 

8.5.1 Maximum Likelihood Estimation 

In this section, we derive a family of unconditional ML (UML) estimators. 
The reason that we have several UML estimators rather than a single esti- 
mator will become apparent as we proceed. 

We use the frequency-domain snapshot model from Section 8.3.1 (8.62). 
We assume that we have D plane-wave signals arriving at the array from 
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directions +r, &, l l . , $Q,. The signals are sample functions from Gaussian 
random processes whose source spectral matrix is unknown. The signals are 
corrupted by additive spatially uncorrelated Gaussian noise with spectral 
height S&). Thus, 

X(k) = V(+)F(k) + N(k), k = 1,2, l l l ,  K. (8.274) 

Sf = E [F(k)FH(k)] l (8.275) 

We assume that 

S n = *$I, (8.276) 

and that ai is known. We consider the unknown ai case subsequently. The 
component vector & summarizes the parameters from the D signals that we 
want to estimate. The component vector & is the l- or 2-D wavenumber. 
Alternatively, we could estimate the azimuth and elevation angles (&, & ). 

The first estimator will be referred to as the asymptotic ML (AML) 
estimator.g 

8.5.1.1 AML estimators 

The ML estimators for this model have been derived by Biihme [Boh86] and 
Jaffer [Jaf88]. 0 ur discussion follows the latter reference. To simplify the 
notation, we indicate the snapshot number by a subscript. 

The likelihood function is 

1 
L (@, Sf) = - lndet S, - K (8.277) 

k=l 

and 

S X = v(wfVH(+) + 021, (8.278) 

where we have dropped unnecessary constants. To avoid confusion between 
the sample covariance matrix and the ML estimate of S,, we use C, to 
designate the sample covariance matrix. Recall that the sample covariance 
matrix is 

C 
1 K H x=- 

K 1 xkxk l 
(8.279) 

k=l 

‘The abbreviation “AML” is sometimes used to denote approximate ML estimate in 
the literature. We do not use it in that manner. 
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Using (8.279), we can write (8.277) as 

L(@f) = - [lndet&+tr [$ 

= - [lndet&+tr [S; 
1 K 

l . - 
c 

H 

K IF; 
XI, XI, 11 

- - - 
[ 
lndet S, + tr [s;’ cJ] . (8.280) 

Fortunately, the solution is separable so that we can maximize over S, 
to obtain an explicit function of q!~ and then maximize over q!~ to get the 
total solution. 

We denote the ijth element of Sf as Sij. Then S, can be written as 

(8.281) 
i=l j=l 

Differentiating the first term in (8.280) using (A.400), we have 

(8.282) 

and, from (A.397), 
dln)S,I s-1 T - - 

dS X [ 1 x l 

From (8.281), 
dS 
x = V(+i)VH(+j). 
dS ij 

Using (8.283) and (8.284) in (8.282) gives 

(8.283) 

(8.284) 

ah pX1 

dS 
= tr [s;‘v(+ti)VH(+j)] = tr [VH(+j)SGIV(+i)] . (8.285) 

ij 

Differentiating the second term in (8.280) using (A.401) and (A.393), we 
have 

dtr [S-lC,] 
aiij = tr { [‘tr ~~~cxl]T g/} 

= tr 
1 -s,‘cXs~lv(~i)vH(~j)) 

= tr {mVH(+j)S,lC,S;lV(+tJ}. (8.286) 
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A necessary condition is that 

aLw~w = 0 i j  1 2 - 

dS 7 7 -  )  , * * * ,  

D 
l (8.287) 

i j 

Substituting (8.285) and (8.286) into (8.287) and noting that both terms are 
scalars, 

VH(q5j) [s,‘c,,s;l - sx’3 v($!Q) = 0) i) j = 1) 2) l l l )  D, (8.288) 

or 
VH(@) [s;‘c,s;’ - s;‘3 v(+) = 0. (8.289) 

To get (8.289) into a more usable form, we write, 

- s l x = -l SfVH 
I 

) (8.290) 

where we have suppressed the q!~ dependence of V( +) . 

V 
s,lv = -p I - SfVHV + &I-l SfVHV 

W [ [ 3 

V - - -J 
W I 

SfVHV++] 
-1 

([SfPV +0;1] - f H 
s v V)] 

= v SfVHV +0;1 
i I 

-1 
= vs;? 

Using (8.291) and its conjugate transpose in (8.289) gives 

(8.291) 

[ 
SfVHV + 0;1 I -l VH [c, - s,] v [SfVHV + 0;1] -l = 0. (8.292) 

Note that one cannot let s^, ml = C, in order to solve (8.292) because g, ml 
must have the structure in (8.281) and, with probability 1, C, will not have 
that structure. 

The condition in (8.292) implies 

[ 
VH [c, - x s Iv] s g = 0. (8.293) 

X= x,ml 

Substituting 
S x = VSfVH + 0;1, (8.294) 

into (8.293) gives 

VHCxV = VHVSfVHV + cTCVHV. (8.295) 
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The solution to (8.295) is denoted by Sf,m@): 

&m&+5) = [vHv]-l VH [c, - o;q v [vHv]-l ’ 1 (8.296) 

The result in (8.296) can also be written as 

(8.297) 

where 
vt = [VHV-1] VH, (8.298) 

is the Moore-Penrose pseudoinverse. This result was previously given in 
[Sch79] and [ Jaf85]. 

The result in (8.296) does not guarantee that Sf,,,&) is non-negative 
definite because the maximization with respect to Sf was over the set of 
Hermitian matrices and not over the set of non-negative definite matrices. 
We discuss the implication of this result after we complete the derivation. 

We define 

Sx,ml(qq = v(@f,m,(@J)vH(+) + dI, (8.299) 

where SQ-&@) is given by (8.296). 
The relation in (8.299) can also be written as 

%c,ml(@) = pv [Gc - &] pv + 41, (8.300) 

where PV is the projection matrix onto the range of V(e). 
To find $ml, we maximize (8.280) with &,&), as given by (8.300), 

substituted for S,. Thus, 

h 

+ ml = arg max 
QJ 

{ - [lndet s&q + tlI [~;l(~,cx]]} 9 (8.301) 

and 
- n- 
Sf = Sf,mZ = gf ($m,>, (8.302) 

where we drop the “mZ” subscript on Sf for simplicity. 
The last step is to get the right side of (8.301) into a more usable form. 

Using (8.290), 

S,'(7#!J)cx= -$c+q~fvHV+~~I]-l~fVHC~. (8.303) 
W W 
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From (8.297), 

SfVHV + (7;1 = [V”V]-lv~[cx-o~I]VIVHV]-lv~Vf~~I 

- - [ 1 VHV --I VHC,V, (8.304) 

so 

[ 
&VHV + ai1 ] -IL = [VHC,V] -l VHV. 

Assuming C, is positive definite, the inverse exists.” 
Then, from (8.303), 

(8.305) 

tr [$‘(+)C,] = T - &tr k [VHC,V]%HViifVHC,] 
W 

tr [c,] 1 - - - - ztr [S,V”V] . 
o2 W 

(8.306) 

Using (8.304) we have 

tr [&VHV] = tr VHV 
I 1 

-1 
VHC,V -- 0;1 

I 

= tr [PVC,] - Da:. (8.307) 

Using (8.307) in (8.306) gives, 

tr [SL’(+)C,] = -$ {tr [[I - pv] Gc]} - D 

= -$ {tr [P&J} - D. (8.308) 

From (8.300)) 

SC(~) = PvC,pv + a; [I - pv] 
2 1. = PvC,Pv + awP,. (8.309) 

Using (8.308) and (8.309) in (8.301) and dropping terms that do not depend 
on q!~ gives 

h 

e am1 = argmax 
1 

-1ndet 
i 

2 3-L PvC,Pv + a,1 v 1 Q (8.310) 

-  &tr [P=c,3} l 

l°Cx is positive definite if K > N. - 
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The estimator defined by (8.310) is referred to in the literature as the 
stochastic or unconditional ML estimate. We use the subscript “aml” for 
asymptotic maximum likelihood. A brief discussion of the reason for this 
description is useful. l1 If Sf is strictly positive definite, then, since the 
ML estimates are consistent, Sf,~&G) tends to Sf as K -+ 00. Therefore 

s^f,r?d(~, must be positive definite and therefore is a valid ML estimate. 
Hence, (8.310) provides a large-sample realization of the ML estimator in V 
the case of a non-singular Sf (non-coherent sources). ‘The case of coherent 
sources is discussed in detail in Stoica et al. [SOVM96], and the reader is 
referred to that reference.12 The key result (8.310) still provides a large- 
sample re alization 

In order to find qaml, we need to perform a maximization over a mD- 

dimensional space where m is the number of parameters to be estimated 
in each plane wave (normally one or two). In Section 8.7, we discuss vari- 
ous implementation techniques to perform this maximization. All of these 
techniques require a significant amount of computation. 

Before considering some examples, we indicate th.e effect of unknown 
noise variance on the ML estimate. 

If the noise variance ai is unknown, then the likelihood function in 
(8.280) becomes, 

qwfd) =- [ lndet S, + tr [S;’ CX]] , (8.311) 

where 

S x=VSfVH+a;I. (8.312) 

Proceeding in exactly the same manner as above, we find 

h o2 
W= 

tr [P=cx] 
N-D ’ 

(8.313) 

Substituting (8.313) into (8.310), we obtain 

h 

@ 
tr P+C, P+ 

am1 = arg max [ 1 
e 

PvC,Pv + N - D- , (8.314) 

because the second term in (8.310) is no longer a fun.ction of @. We can 

llThis discussion follows [SOVM96]. 
12M. Viberg directed me to this reference (private communication). 
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maximize the term in braces by minimizing the determinant. Thus, 

h 
Q am1 = 

tr[P$C,]P+ 
PvC,Pv + N-D - l 

(8.315) 

for the case of unknown noise variance. 
When one carries out the derivation leading to (8.314), there is an inter- 

mediate step containing 

gf,,l(+) = [VHV]-l VH [C” - sil] v iVHVIA1 ) (8.316) 

with 6: given by (8.313). The resulting gf,ml(@) is not necessarily positive 
definite. 

We consider a simple example to demonstrate the behavior of the ML 
estimator. 

Example 8.5.1 
We consider a standard lo-element linear array. The signal is a single plane wave 

arriving from us = 0. We assume the noise spectrum height ai is k.nown. We find G,l by 
calculating the term in brackets in (8.310) over a dense grid of points (-1 5 u 5 1). We 
then use a local minimization routine to find the exact minimum. 

In Figure 8.17, we plot the normalized root mean-square error (RMSE) versus ASNR. 
In Figure 8.18, we plot the normalized RMSE versus K for several ASNR. In both figures 
we also plot the CRB. 

We see that for ASNR > -2 dB, the RMSE of AML estimator coincides with the CRB. 
However, as the ASNR decreases, the RMSE increases sharply. This behavior is referred as 
the threshold phenomenon and is a characteristic of most nonlinear parameter estimation 
problems (e.g., Section 2.4 of DEMT I [VT68], [VTOla] or Wozencraft and Jacobs [WJ65]). 
In order to understand the behavior, we show a scatter plot of the estimates for various 
ASNR in Figure 8.19 and the corresponding histogram in Figure 8.20. We see that, above 
threshold, the estimates are clustered around the correct value. 

At ASNR= -3 dB, most of the estimates (93/100) are clustered around the correct 
value, but the others correspond to a subsidiary peak that is not close to the correct value. 
These errors are sometimes referred to as anomalous (or global) errors. Note that even a 
few anomalous errors cause a dramatic increase in the RMSE, because they are so large 
compared to the local errors (the errors clustered around the correct value). 

As the ASNR decreases further, the number of local errors decreases. At an ASNR = 
-12 dB, the histogram shows that the errors are spread across u-space in an almost uniform 
manner. 

It is convenient to write total MSE as 

USE = pz,(M~&,) + (1 -pzo)(MSE&, (8.317) 

where pl, denotes the probability that the estimation error is local. The local 
MSE, “MSEl,” is usually characterized by the CRB. It is usually difficult to 
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calculate p10 except in the asymptotic (large K) region. We should observe 
that, in this example, the threshold occurs just as pl, decreases from unity. 

We find that this characteristic is true in most cases. Thus, the region of 
primary interest is usually 

0.95 < pl, < 1.0. - - (8.318) 

The global MSE, “MSEJ is usually hard to calculate as we enter the 

threshold region. However, further below threshold, it generally approaches 
the variance of a uniform random variable (one-third in u-space for us = 0). 
If we have a priori information about the portion of u-space where the signal 
can originate, the MSE below threshold may be lower. 

We will discuss performance issues further after we consider the multiple 
plane-wave problem. 

Example 8.5.2 
Consider a standard lo-element linear array with two equal-power plane-wave signals 

impinging on it. The signal separation is A$, = 0.2165BVV~~” The signals are uncorre- 
lated. In Figure 8.21, we plot the normalized RMSE versus ASNR for K = 100 snapshots. 
We see that for RSIYV.. > 5 dB, the RMSE is equal to the CRB. At an ASNR = 5 dB, a - 
threshold occurs and the RMSE increases rapidly. 

In order to understand this behavior we show a sequence of scatter plots for various 
ASNR. In Figure 8.22, the ASNR = 6 dB and the errors are local. The likelihood function 
has a single peak that is close to the correct 
that only the upper left triangle is needed. 

value. Note that we always assign ii:! > ii1 so - 

In Figure 8.23, the ASNR = 0 dB. We see that the majority of the errors are local. 
However, 
locations, 

there are a number of points in which Gr is at the midpoint of the two signal 

61 = 
Ul -l-U2 
- = 0, 

2 
(8.319) 

and the second estimate 62 is scattered from u = 0 to u = l.There is similar behavior for 

When this result occurs we say that the ML estimator cannot resolve the two signals. 
In order to compute the probability of resolution, we say that the signals are resolved if 

161 - 
2 

2411 5 min(y, N), (8.320) 

162 - 
2 

24 < min(y, z). (8.321) 

Each of the conditions in (8.320) and (8.321) correspond to a local error for the respective 
parameter. The probability of resolution, PR, is the probability that both (8.320) and 
(8.321) are satisfied. Then, we can write the total MSE as 

MSE = PR(MSE~~) + (1 - PR)(MSE~~). (8.322) 
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Figure 8.17 AML estimator, single signal, 
normalized RMSE versus ASNR. 
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Figure 8.18 AML estimator, single signal, us = 0, ASNR = -10 dB, 0 dB, 
10 dB: normalized RMSE versus K. 
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Figure 8.21 AML estimator: two equal-power uncorrelated plane-wave sig- 
nals at fAu&Z (0.2165BVV~~/2), K = 100: normalized RMSE versus 
ASNR. 
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Figure 8.22 AML estimator: two equal-power uncorrelated plane-wave sig- 
nals at fAu~/2(0.2165BWN~/2), K = 100, ASNR = 6 dB: scatter plot of 
AML estimates. 
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Figure 8.23 AML estimator: two equal-power uncorrelated plane-wave sig- 
nals at fAu~/2(0.2165BW~~/2), K = 100, ASNR = 0 dB: scatter plot of 
AML estimates. 

In Figure 8.24, we plot the probability of resolution versus ASNR. We see that the 
threshold in the RMSE occurs as soon as PR decreases from unity. Therefore in analyzing 
the PR behavior, the important region is approximately, 

0.95 < PR < 1.0. - - (8.323) 

In Figure 8.25, we show a scatter plot for an ASNR = -6 dB. The estimator is far below 
threshold and the estimates are spread over u-space. 

This discussion is appropriate for the parameters in this example, Au 21 
0.5HPBW and K = 100. If Au becomes too small (e.g., Au = O.lHPBW), 
then the inequalities in (8.320) and (8.321) will be violated by local errors 
(and, in some cases, the CRB). In these cases, the threshold occurs at P’ 
values lower than predicted by (8.323). 

In Example 8.5.2, the signal separation is approximately 0.5HPBW. 
Another interesting case is a signal separation of O.~BWNN. This separation 
is the classical resolution separation. This case is simulated in Problem 8.5.5. 
The result is that, for K = 100, the threshold occurs at ASNR = 0 dB. This 
result provides a quantitative basis for the classical resolution definition. 

In Figure 8.17, the threshold for a single-signal occurs at ASNR = - 1 
dB. Thus, for uncorrelated signals, when the separation exceeds the classical 
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Figure 8.24 AML estimator: two equal-power uncorrelatIed plane-wave sig- 
nals at ~~~,/2(0.2165sW,N/2), K = 100: probability of resolution versus 
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Figure 8.25 AML estimator: two equal-power uncorrelated plane-wave sig- 
nals at fAz~n/2(0.2165BWN~/2), K = 100, ASNR = -6 dB: scatter plot of 
AML estimates. 
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resolution separation, the threshold behavior will be similar to the single- 
signal model. The CRB behavior was shown in Figure 8.5. 

The behavior in Example 8.5.2 is characteristic of most DOA estimation 
problems. The exact behavior will be a function of the number of signals, the 
separation of the signals, the source- signal spectral matrix (this includes the 
signal strengths and their correlation), the noise level, the number of sensor 
elements, and the number of sn.apshots. 

In this section, we have derived the AML estimator and investigated the 
performance for two simple examples. The second example illustrates the 
performance issues that are of interest in all of the estimators that we study. 
They are: 

(i) The MSE in the high SNR region. We would like the estimator to become 
unbiased and have a variance that approaches the CRB. 

(ii) The MSE in the asymptotic region. As E( -+ oo, we would like the 
estimator to become unbiased and have a variance that approaches 
the CRB. 

. . . 
( > 111 

( > iv 

For a given I-r’, as the SNR decreases, we reach a point in which the es- 
timator starts to make global errors on some trials. These large errors 
dominate the small errors of other trials and the MSE rises sharply. 
This is the threshold behavior that is characteristic of nonlinear pa- 
rameter estimation problems. We would like the threshold to occur at 
the lowest possible SNR. 

For the multiple-signal case, the threshold behavior can be described in 
terms of a probability of resolution, P’. As soon. as PR decreases from 
unity, we move into the threshold region. Typically, this threshold 
behavior occurs in the range, 

0.95 < PR < 1.0. - - 

It is possible to obtain useful analytic results for the asymptotic (high 
K) and the high SNR region. We discuss them briefly in Section 8.5.5. Some 
analytic results are available for the probability of resolution and threshold 
behavior, but we usually have to resort to simulation. 

The above four factors relate to performance. The fifth issue is the com- 
putational complexity of the estimator. After we discuss the performance 
capabilities, we look for estimators that are less complex but perform close 
to optimum. 
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We will use a set of test scenarios to study the behavior of the param- 
eter estimation algorithms that we develop in this chapter and in Chapter 
9. Several of them are designed to stress the estimators. We study other 
scenarios that exhibit interesting properties, but the test scenarios in Table 
8.3 allow a consistent comparison across algorithms. Wt3 use a lo-element 
standard linear array (SLAlO) throughout the comparisons. We consider a 
number of other array geometries in examples and problems, but only do a 
complete comparison for the SLA. We normalize the RMSE and standard 
deviation by the BWNN and plot the results versus ASNlZ. Thus the results 
are valid for any SRA with N > 10. For smaller arrays, we need to check 
the result for applicability. Theten test scenarios are shown in Table 8.3. 

Test 
scenario 

1 
2 
3 

8 

9 

10 

Table 8.3: : 
No. of Power 
Signals 

2 Equal 
2 Equal 
2 ASNR2 = 10ASNR1 

ASNR2 = ~OOASNRI 
2 Equal 
2 Equal 
2 Equal 
3 Equal 

N 3 Equal 

ASNR1 =ASNRs 
= 10 ASNR2 

ASNR1 =ASNRs 
= 100 ASNR2 

Equal 

est Scenario2 
Correlation 

p=O 
p=O 
p=O 

0 < lpl < 1.0 

IPI = 1 
p=o 
p=I 

P#I 

p=I 

p=I 

Separation K 

MJ=A~JR _ 1 > ION 
Ati=alL~ _ 1 > 1ON 

*I := -A$R - > 1ON 
$2 = 0 

*3 =A$JR 

$I1 z= -2&R 2 1ON 

$2 =- A* R 

*3 =0 
*4 =WR 

*5 = 2&!'~ 

Notes: Table 8.3 

1. Recall that A$JR _ * 0.2165BW~~. This is approximately 0.5HPBW. The subscript 
“R" denotes reference. 

2. Because we are working in q-space (or u-space), the estimation results for element 
space algorithms depend on signal separation, not a,bsolute location. For beamspace 
algorithms, the location with respect to the beam fan must be specified. 

3. Various p matrices will be considered in Test Scenario 8. 
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In the text, we only show representative test scenarios. Before studying 
the behavior of AML in more detail, we look at other stochastic estimators. 

8.5.1.2 Unconditional ML estimators 

We now return to the issue that was pointed out after (8.296). The estimate 
of &ml given by (8.296) may not be non-negative definite and, therefore, 
it is not necessarily a proper estimate to use in the subsequent part of the 
algorithm. 

Bresler [Bre88] has analyzed this issue in detail and devised an ML al- 
gorithm that guarantees a non-negative definite estimate of &. Bresler’s 
algorithm assumed that $J was known, but it is straightforward to develop 
an iterative version of his algorithm. We implemented this iterative version 
of the Bresler algorithm for the test scenarios in Table 8.3 and found that the 
performance in estimating Q was essentially the same as the AML algorithm 
over the entire range of ASNR (both above and below threshold). 

There are two other estimates of & that lead to different estimators. 
The first approach uses 

a2 
1 N 

W= N-D i c- x 
i’ 

(8.324) 
= D+l 

where the ii are the N - D smallest eigenvalues of C,, as the estimate of 
0;. Then, we let 

- 
Sf,I = 

t 
v cc 

H 
X- z;1 vt ) 

)C > 
(8.325) 

where Vt is the Moore-Penrose pseudoinverse of V, 

vt n [vHv]-lVH. - (8.326) 

Then, by analogy with (8.300) 

&($J) = Pv [C” - z;1] Pv + zg. 

Using (8.327) in (8.301) and proceeding as before, we obtain, 

(8.327) 

h 

2c1 W?Yll = arg min ~ { pet ~x,I(@> + tr [~;,;cwx]] } 7 (8.328) 

This estimate is due to Wax et al. [WSKSZ]. 
Schmidt [Sch79] suggested using 

(8.329) 



Maximum Likelihood Estimation 1001 

This estimate is unbiased and consistent. Then, 

where 5: is given by (8.324) and 

(8.330) 

(8.331) 

where s^,,ll($) is given by (8.330). 
We implemented the two algorithms for the test scenarios in Table 8.3 

and found that their performance was essentially the same as the AML 
estimator over the entire range of ASNR. Stoica et al. [SOVM96] derive h 
a ML estimator for coherent signals that guarantees that S, is a positive 
semi-definite matrix of a given rank. They show that the AML estimate 
in (8.315) is the large-sample realization of the ML estimate even when the 
signals are coherent. 

We focus our subsequent work on the AML estimator. In the next sec- 
tion, we simulate the AML estimator for some of the test scenarios in Table 
83 . . 

8.5.1.3 Performance of AML estimators 

We consider a sequence of six examples to illustrate the behavior of the AML 
algorithms. All of the examples utilize a standard lo-element linear array 
with two signals impinging on it. 

Example 8.5.3 (continuation, Example 8.5.2) 
We use the same model as in Example 85.2, except the separation is reduced to 

0.05BlV~~. The signals are uncorrelated (p = 0). The results are shown in Figure 8.26. 
We see that the threshold has moved about 13 dB to the right. 
threshold behavior as a function of A$. 

Later, we explore the 

Example 8.5.4 (continuation) 
We use the same model as in Example 8.5.2, except (p( = 0.95. The separation A$ 

equals A+R. We consider two phase angles for p. In the first case, &, = 0, and in the 
second case & = 7r/4. The results for &, = 0 are shown in Figure 8.27. We see that the 
threshold is 5 dB higher and occurs at RSINR = 10 dB. Above the threshold the AML 
estimator converges to the CRB. We recall from Figure 8.6 that the CRB is higher for the 
correlated signal case. The results for & = 7r/4 are shown in Figure 8.28. We see that the 
behavior for this phase angle is very similar to the uncorrelated case. This result illustrates 
the importance of considering various phase angles when studying the correlated signal 
model. 

We also simulated the AML estimator for IpI = 1 with &-, = 0 and 7r/4. The results 
are very similar to the IpI = 0.95 case. 
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Figure 8. 26 AML estimator: two equal-power uncorrelated plane-wave 
nals, &J = 0.05BWNN, K = ION; normalized RMSE versus ASNR. 
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Figure 8.27 AML estimator: two equal-power correlated signals, Au = 
0.2165BWNN, K = lON, p = 0.95, & = 0; normalized RMSE versus ASNR. 
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20 

Figure 8.28 AML estimator: two equal-power correlated signals, Au = 
0.2165BVV&, K = 10N, p = 0.95, & = 7r/4; normali.zed RMSE versus 
ASNR. (Note that the vertical scale is different from Figure 8.27.) 

Example 8.5.5: Unequal signal powers 
Consider a standard HI-element linear array with two uncorrelated plane-wave signals 

impinging on it. The signal separation is A+R. The SNR of signal 2 is 20 dB higher than 
the SNR of signal 1. The results are shown in Figures 8.29 and 8.30. The RMSE of the 
weaker signal moves away from the CRB at ASNRl = 1 dB. The RMSE of the stronger 
signal moves away from the CRB at ASNR2 = 24 dB. 

Example 8.5.6: (Low sample support) 
We consider a standard lo-element linear array. We use the same signal model as in 

Example 8.5.3 except K = 20 (2N). The results are plotted in Figure 8.31. We see that 
the threshold occurs at an ASNR = 11 dB. This value is 61 dB higher than the K = 1ON 
case. 

We have considered four scenarios in this section. Above threshold, the 
AML estimator approaches the CRB. However, the location of the threshold 
varies with the parameters in the scenario. 

In our discussion of the CRB, we found that, if we knew that the signals 
were uncorrelated, the CRB was lower in certain scenarios. The next logical 
step is to develop a ML estimator that exploits that a priori knowledge. An 
uncorrelated ML has been developed by Bell [Be11991 and shows improved 
performance in the scenarios where the CRBs differed. The reader is referred 
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-25 I-1 
-20 -15 -10 -5 ASi’3, 5 10 15 20 

(dB) 

Figure 8.29 AML estimator: two uncorrelated plane-wave signals with un- 
equal power, au = 0.2165BPVj~~, ASNRz = ASNRl + 20 dB; normalized 
RMSE of signal 1 versus ASNRl. 

to this reference for further discussion. 

8.5.2 Conditional Maximum Likelihood Estimators 

In this section, we develop a ML estimator that is referred to in the literature 
as a deterministic or conditional maximum likelihood (CML) estimator. The 
reason for the name will be clear when we formulate the model. 

In this section, we derive the estimator and. investigate its performance. 
We compare its performance to the stochastic maximum likelihood estimator 
of Section 8.5.1 and to the CRB. 

We consider the same snapshot model as in Section 8.5.1, 

X(k) =VF(k)+N(k), k- 1,2,aQY. (8.332) 

However, we model the source signals as unknown nonrandom signals. Thus, 
F(k) is a D x 1 vector 

F(k) = [ Fl(k) i F2(k) i .-. i FD(k) I*, . 8 (8.333) 

whose elements are unknown nonrandom complex numbers. 
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Figure 8.30 AML estimator: two uncorrelated plane-wave signals with un- 
equal power, Au = 0.2165BVV~~, ASNRz = ASNRl + 20 dB; normalized 
RMSE of signal 2 versus ASNRz. 

Alternatively, we can consider F(k) as a specific sample function from 
a random process and design an estimator based. on tha)t sample function. 
This is sometimes referred to as conditional maximum likelihood estimation. 

The noise process is a sample function from a Gaussian random process. 
We assume that it is spatially uncorrelated so that 

E [N(k)NH(k)] = D;I. (8.334) 

The noise in successive snapshots is assumed to be statistically independent. 
The spectral height a$ is known. Later we consider the case of unknown 
02. In that case we find the ML estimate of 0: as part of the estimation 
pkcess. We assume the number of signals, D, is known. 

The joint probability density is 

K 1 
Jdx) = knl mexp (8.335) 

= 

and the In likelihood function is 

L($,F) = -KNlnoi - (8.336) 
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ASNR (&, 
25 

Figure 8.31 AML estimator: two equal-power uncorrelated plane-wave sig- 
nals with low sample support, au = 0.2165BW~~, K = 2N; normalized 
RMSE versus ASNR. 

(we have dropped the term containing x), where $J is an D x 1 vector and 
F is a D x K matrix whose i?th column is F(k). We want to maximize 
this function over the unknown parameters (+, F). This is equivalent to 
minimizing3 

K 

L2(& F) n x IX(k) -  ~(~>F(lc>12 l 

k=l 

(8.337) 

If we fix $J and minimize over F(k), the result is just the matrix MVDR 
filter of Section 6.5 (see (6.200)). Thus, 

where 

(8.339) 

The result in (8.338) and (8.339) is exactly what we derived in Section 6.5 
where $J was known. Substituting (8.338) and (8.339) into (8.337), we obtain 

13The subscripts signify that the functions are different although they have the same 
minimum (or maximum). 
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the function 

L3W = 2 Ix(k) 
k=l 

which is to be minimized over +. We recognize the coefficient 
term as the projection matrix onto the columns of V(e) 

- - c 
k=l 

2 

7 (8.340) 

of the second 

(8.341) 

Thus we can either minimize L3(+) over + or, equivalently, maximize 

(8.342) 

To get a useful geometric interpretation of (8.342), recall our discussion 
of signal subspaces in Section 5.5. The signal component of X(k) always 
lies in the signal subspace defined by the columns of V ($J) . The noise has 
two effects; it adds noise into the signal subspace and it adds noise in an 

orthogonal space that causes X(k) to lie outside the signal subspace. The 
CML estimator finds the D steering vectors that form a signal subspace that 
is as close as possible to the X(k) , k = 1,2, l . l , K. Closeness is measured by 

the magnitude of the projection of X(k), k = 1,2, l . . , K onto the estimated 
signal subspace.14 

A second interpretation of (8.342) is also useful. We can rewrite (8.342) 
as 

L5W 
- - 

- - 

1 
2 

K 1 

pv c ww(k)HPV 1 
k=l J 

tr [PvPvC,] = tr [PVC,] 7 (8.343) 

where 

C, Li ; 5 X(k)X(k)H. 
k=l 

(8.344) 

‘*This result in (8.342) is equivalent to that first obtained by Schweppe [Sch68]; the 
geometric interpretation is due to Ziskind and Wax [ZWfBa], [ZWSSb]. 
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Thus, the CML estimate is 
h 
‘1c, cml = argmF {tr [PVCx]} 7 

or equivalently, 
h 

2cI cm1 = argrn.i+n{tr [P:C,]}. 

Now decompose C, using an eigenvector expansion, 

Then we can write I 

(8.345) 

(8.346) 

(8.347) 

(8.348) 

Thus, the CML estimator projects each of the estimated eigenvectors onto 
the signal subspace, weights the magnitude squared of that projection with 
the estimated eigenvalue, and sums over all eigenvectors. It does this for 
each value of + and chooses the value of $J that gives the maximum value. 

If we compare the conditional likelihood function in (8.345) with the 
asymptotic stochastic likelihood function in (8.310), we see that the differ- 
ence is the first term in (8.310): 

- lndet 
[ 

2 -L PvC,Pv + qflPv . 
I 

(8.349) &ml(+) - &ml(+) = 

Thus, the two estimates w  

ligible compared to tr 
[ 
P$, 

11 be similar when the term in (8.349) is neg- 

I 0;. Conversely, the two estimates will be 
r 1 

different when the term in (8.349) is significant compared to tr P’C 
I v 4 

/oi 

and has its maximum at a different +. 
By considering several examples, we observe that the estimates are more 

likely to be different in the following cases: 

(i) Small signal separation relative to BWNN. 

(ii) Sources with high correlation and coherent sources. 

(iii) A mixture of high SNR and low SNR signals. 

If the noise variance ai is unknown, then we estimate it. Returning to 
(8.336), we must retain the first term. Using (8.336) and (8.343), we have 

L(@, @, 0;) = -Nln0: - $tr [P+C,] . 
W 

(8.350) 
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Differentiating with respect to ai and setting the result equal to zero, we 
obtain 

h 
o2 

tr ptC, 
‘w= 

[ 1 
N 

. (8.351) 

Note that this estimate is different than the estimate in (8.313). Substituting 
(8.351) into (8.350) gives 

LW) = -Nln (tr [P:C,]) . (8.352) 

Maximizing (8.352) is equivalent to minimizing the argument of the loga- 
rithm, so h 

@ cm1 = argn-$n {tr [P+&,]} , (8.353) 

which is identical to (8.346). Thus, knowing the variance of the noise does 
not affect the CML estimate. 

Before doing a set of examples, we derive a closely related estimator. 

8.5.3 Weighted Subspace Fitting 

We can interpret the CML estimator as an algorithm that fits the subspace 
spanned by V(q) to the measurements, 

%K & x(1) x(2) ’ l l 

[  

X(K) ]  )  

(8.354) 

in a least squares sense. To obtain this interpretation we rewrite L&J, F) 
in (8.337) as a Frobenius norm, 

= tr 
0 

j;;, - V(@)F] H [x” - v(?b)Fl) 9 (8-355) 

and 

( -J 0 7 (8.356) 

From (8.338) 
@ = v+&, (8.357) 

where Vt is the Moore-Penrose pseudoinverse, 

V t = vHv -lvH. [ 1 (8.358) 
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Then (8.356) reduces to 

h 

@ Cd 
= argn-$n{tr [p=X,lH [P+XK]}, (8.359) 

which can be written as 
h 
e cm1 = argmin tr P&-&z 

e 1 [ I> 
= argrni+n{tr [P:C,]}. (8.360) 

We now consider more general subspace fitting techniques. The goal is 
to find an estimator that approaches the CRB asymptotically and has good 
performance in the threshold region. In addition, we would like the estimator 
to be computationally simpler than $J~~~. 

The notion of weighted subspace fitting was introduced by Viberg and 
Ottersten [VO91]. 

We let M be an N x D’ matrix representing the data, D’ is the rank 

ofV(9w ( un ess the signals are coherent, D’ = D). An example of an M 1 
matrix that we use is obtained by an eigendecomposition of C,, 

C -H -H 
x = G&u, + &&JJ~. (8.361) 

If we only utilize the data in the estimated signal subspace, we can define 

M a% 
AI 

M=&A;. (8.362) 

More generally we can write 

M = &Wa, (8.363) 

where W is a D’ x D’ diagonal matrix. This definition leads to the name, 
weighted (signal) subspace fitting (WSF). We define the cost function, 

= tr{[M-V(~)TIHiM-V(~)Tl}, (8.364) 

where T is a D x D’ matrix. M is taking the place of XI, and incorporates 
the data input through (8.361). T is taking th.e place of F. 

Minimizing L(+, T) with respect to T gives, 

?f+ = V+M. (8.365) 
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Substituting (8.365) into (8.364) and using the same steps as in (8.343)- 
(8.346), we obtain 

h 

+ 

= argmin tr PtMMH 
{ [ I> 

. 
e 

(8.366) 

Using (8.363) in (8.366) gives 

h 

+ 

= argmin tr P+&W@ 
1 [ I> . ti 

(8.367) 

The next step is to determine an optimum weighting W. This is difficult 
to do for arbitrary K. Viberg and Ottersten [VO91] consider the asymptotic 
case and show that the weighting 

GL-1 WLO n A A, 7 - (8.368) 

where 

R n A, - &;I, - (8.369) 

with 
1 N 

$A l 
W- N - D i x x 

= D+l *” 
(8.370) 

gives an estimator that asymptotically achieves the stochastic CRB. We in- 
vestigate its performance in the non-asymptotic region by simulation. We 
refer to the estimator described by (8.367)-(8.370) as the asymptotically op- 
timal WSF estimator (AOWSF) or more compactly, WSF,,. When D’ = D, 
the AOWSF cost function is equivalent to the method of direction estima- 
tion (MODE) algorithm derived by Stoica and Sharman [SSSOa]. The two 
algorithms of interest are summarized in Table 8.4. 

Table 8.4 

CML 
A 

e 
arg min - - 

+ 
( t r  [p+Gc] }  l 
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Figure 8.32 Normalized RMSE versus ASNR: CML and MODE estimators; 
A$ = A$Q, N = 10, K = 100, p = 0, 100 trials. 

We consider several of the examples that we discussed in the stochastic 
maximum likelihood case. 

Example 8.5.7 (continuation, Example 8.5.2) 
We consider the same model as in Example 8.5.2. The results are shown in Figure 

8.32. We have also shown the AML estimator for comparison. We see that the estimators 
are close to the CRB for ASNRs greater than 10 dB, Below the threshold, CML and WSF 
(MODE) behave in a similar manner. We see that the threshold of all of conditional 
estimators are slightly to the left of the threshold of the AML estimator. 

In Example 8.5.3, we reduced the separation to Au = 0.05BiV~~. We 
implemented the CML and MODE algorithms for this case and found that 
their threshold was the same as the AML estimator (Z 17 dB) and that their 
RMSE approached the CRB above threshold. 

Example 8.5.8 (continuation, Example 8.5.4) 
We consider the same model as in Example 8.5.4. A@ = A$R and p = 0.95ej% In 

Figure 8.33, we show the results for & = 0. We see that MODE performs better than 
CML. The MODE threshold is slightly higher than the AML threshold in Figure 8.27. 
Above threshold, the approach to the CRB is slower than the uncorrelated case for both 
estimators. 

In Figure 8.34, we plot the same results for q$, = 7r/4. The difference in performance 
between MODE and CML is larger. The MODE threshold is about 1 dB higher than the 
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Figure 8.33 Normalized RMSE versus ASNR: MODE and CML estimators; 
&!J = At,bR, N = 10, K = 100, p = 0.95, 100 trials. 

AML threshold. 

In Example 8.5.5, we considered the case of unequal signal powers. We 
implemented the CML and MODE algorithms for this scenario. The CML 
and MODE algorithms have very similar behavior and their performance is 
almost the same as the AML algorithm. 

In Example 8.5.6, we considered the case of low sam.ple support (K = 
2N). We implemented the CML and MODE algorithms for this scenario. 
The CML and MODE algorithms have very similar performance and their 
performance is almost the same as the AML algorithm. 

It is risky to draw general conclusions from a limited set of examples. 
However, it appears that AML, CML, and MODE all have similar perfor- 
mance in several interesting scenarios. In the correlated signal case, MODE 
is better than CML and similar to AML. 

In the next section we discuss the asymptotic performance of the esti- 
mators that we have derived. 
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ASNR (dB) 

Figure 8.34 Normalized RMSE versus ASYI; MODE and CML estimators, 
A$ = A$,, K = lON, p = 0.95ej”/4, 100 trials. 

8.5.4 Asymptotic Performance 

The performance of estimators as the number of snapshots, K, goes to in- 
finity is referred as the asymptotic performance and has been extensively 
studied in classical statistical theory (see, e.g., [And841 or [KS61]). An esti- 
mate is consistent if 

lim I@] = 8, 
K-+00 

(8.371) 

and is efficient if the variance of 0i approaches the CRB. 
The asymptotic performance of the UML and CML estimators has been 

analyzed by Stoica and Nehorai ([SN89a]), [SNgOa], and [SNSOb]). Their 
approach to the UML (AML) estimator utilizes a series expansion around 
the correct parameter value and standard statistical theory of ML estimators 
(e.g., [KS61]). Th ey show that the AML estimator is consistent and that the 
variance of each component of q!~ approaches the CR.B. They reference an 
earlier paper by Ottersten and Ljung [OL89] that gives a direct derivation. 

The CML estimator does not obey the regularity conditions of ML es- 
timator theory because the numbers of pararneters approaches infinity as 
K -+ 00. Stoica and Nehorai [SN89a] show that the CML estimator is not 
consistent as K -+ 00 and that it is not efficient. For a single signal, they 
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show that 
2 

aCML 1 - - 
- 2 - 

%RB l+AsNR* 
(8.372) 

In most applications, in order for the estimator to be above threshold, the 
ASNR is such that the second term in (8.372) is very small. We saw this 
behavior in our simulation examples where, on the scale that we were plotting 
the MSE, the RMSE of the CML estimator appeared to approach the CRB 
bound. 

Other references that discuss the asymptotic behavior of ML estimates in- 
clude Sandkiihler and Bijhme [SB87] and Benitz [Ben93]. We discuss asymp- 
totic performance of other estimators in Section 9.5. 

Note that we are frequently interested in the performance of the estima- 
tors for a fixed K as the ASNR goes to infinity. In many cases, the behavior 
is similar but a different analysis is required. 

Asymptotic analyses play an important role in parameter estimation 
problems, and we quote results at various points in Chapters 8 and 9. It 
is important to remember two points when using the results of asymptotic 
analyses: 

(i) Without simulations, it is often difficult to determine the values of 
SNR and K where the asymptotic results are valid. 

(ii) It is desireable for an estimator to be consistent and efficient. How- 
ever, we will encounter a number of useful estimators that are “almost 
consistent” or “almost efficient .” If the bias or excess variance above 
the CRB is very small, the performance may be satisfactory. In many 
cases, the error due to the model mismatch will be larger than these 
terms. 

8.5.5 Wideband Signals 

A detailed discussion of the extension of ML techniques to wideband signals 
is contained in Doron and Weiss [DW92], [DWM93]. Our discussion follows 
[DW92]. We consider the stochastic ML estimate first. We use the frequency- 
domain snapshot model, 

(8.373) 

There are three noise cases of interest: 

1 rl 
n . m = oi(mwo>, m = 1,2, l l l , M, is known. 
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2 1;1 
n 

. m = a:@-~& r-n = 1,2,~44 is un.known. 

3 rl 
n 

. = ~z(rnwo) = u:, m = 1,2,~44, and 0; is unknown. 

We first consider the wideband version of the asvmptotic ML estimate 
developed in Section 8.5.1 (see (8.310) and (8.315)). c 

The compressed likelihood functions follow in a manner’ analogous to the 
narrowband case. For case 1, 

&(Q) = e { -&tr [P$_Cm] - lndet [Pv,C,Pv, + 
m=l 

q _L 
m pv I} m  7 

where 
(8.374) 

C n f 5 xk(mwo)x.f(mwo), m= 

k=l 

(8.375) 

is the sample covariance matrix at mwo. Then, 

M h e am1 = arg m? C { - ln det [PVmCmPv,,t + Ilmp+,] 

m=l 

-$tr [P+mCm]} l 
(8.376) 

Note that Vm, the array manifold at w  = mwo is a function of m and 
therefore Pv, is a function of m. 

For case 2, 

(8.377) 

L2(‘1cI) = -Hs - (N-D) $J ln(tI [P:_C,]} 7 
m=l 

(8.378) 

where 
M 

Hs = c lndet [PV,c,pV, + P+_] . (8.379) 
m=l 

For case 3, 

h 

rl 
- - 

C,M,1 tr [P+_ G-n] 
(N-D)M ’ 

(8.380) 
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and 

L3(‘IcI) = -Hs - M(N - D)ln 5 tr [P~~c,] . 
m=l 

(8.381) 

The likelihood functions for the CML estimator follow in a similar manner. 
For case 1 (known noise variance case), 

IM 1 
L3@) = ‘T;7 --4X [h&m] 7 

m=l rim 
(8.382) 

and h 
Q cm1 (8.383) 

For case 2, 

Lf($J) = - 5 In (tr [P+mC,l), 
m=I 

where we have dropped unnecessary constants. Thus, 

h 

Q cm1 = arg max + 
i 

E ln(tr [p+mcm])}- 
m=l 

(8.384) 

(8.385) 

For case 3, 
M 

Lf(+) = x t r  [PV,Cm] l 

(8.386) 
m=l 

Thus, 
M 

h 

$J cm1 = arg rn? C tr [PV,Cm] . 
m=l 

The noise estimate is 

fin MN 

(8.387) 

@J=e?i, l 

(8.388) 

The extension of the CRB to the wideband case follows in a straight- 
forward manner. The other ML techniques that were developed for the 
narrowband case can also be extended to the wideband case. 

Bohme and his colleagues have published a number of papers on wide- 
band ML estimation (e.g., [Boh89], [KDB93], [KMB92], and [KB93]). We 
revisit the wideband case briefly in Section 9.10 and give a few more refer- 
ences. However, we do not study the case in a detailed manner. 
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8.5.6 Summary 

8.6 Computational Algorithms 

In this section, we have studied ML estimators in detail. We have found 
the estimates using a grid search over a D-dimensional u-space followed 
by a local minimization. Due to the computational complexity, this search 
approach is generally not used in practice. In the next two sections, we 
develop computational algorithms that provide good results with reduced 
computational complexity. 

8.6 Computational Algorithms 

In this section, we discuss computational techniques for finding stochastic 
maximum likelihood estimators and CML estimators. 

In Section 8.6.1, we discuss several optimization techniques. In Section 
8.6.2, we develop the alternating projection (AP) and alternating maximiza- 
tion algorithm. In Section 8.6.3, we develop the expectation-maximization 
algorithm. In Section 8.6.4, we summarize our results and discuss other 
techniques that are available. 

8.6.1 Optimization Techniques 

In this section, we give a brief discussion of search techniques that can be 
used to solve the minimization problem, 

4 = arg m$[J@)]. (8.389) 

We are interested in three expressions for F($) corresponding to the AML, 
CML, and WSF estimatiors. 

From (8.315)) 

F aml = det PvC,Pv + 
tr P+C, P+’ [ 1 

N-D 
(8.390) 

From Table 8.4, 

F -L 
C77tl = tr PVC, ) 

[ I 
(8.391) 

F 
[ 

_L^ 
-24AH 

ws f = tr PvUsA A, Us . 1 (8.392) 



Optimization Techniques 1019 

Most of the techniques that we discuss in this section originated in the 
nonlinear optimization area and are adapted to solve our estimation prob- 
lems. The reader needs to explore some the optimization sources, such as 
Dennis and Schnabel [DS96], Gill et al. [GMWU], or Nash and Sofer [NS96], 
to get a comprehensive discussion. These sources have been utilized for ML 
estimation by Ottersten et al. [OVSN93], and several of our results are from 
that reference. 

We utilize a search technique to find the value of $J that minimizes F(Q). 
The basic idea is to model F($) as a quadratic function in the vicinity of the 
minimum. We select a starting point QO. We then find a descent direction 
that will cause F(Q) to decrease and calculate a step size to determine how 
far to move in the descent direction. We discuss techniques for choosing & 
in Section 8.6.2. 

At the first iteration, 

(8.393) 

In (8.393), q. and & are D x 1 vectors, Q,F(+) is the D x 1 gradient 
vector, 

V+F(+) & [T l l . %lT + I?‘(+), (8.394) 

and a0 is a D x D matrix. The gradient vector will equal 0 at a stationary 
point and 

vqpye) = 0, (8.395) 

is a necessary but not sufficient condition for a minimum. The matrix a0 
determines both the descent direction and the step size. We will separate a0 
into two terms in subsequent equations. At the kth iteration, 

(8.396) 

We continue the iteration until we satisfy a stopping rule of the form, 

IF(&+l) - F(&)l < h (8.397) 

h 
II 2cI k+1 - 4k II< 620 (8.398) 

is satisfied. 
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In the classical Newton method, 

ak = 

where V2 F(+) is the Hessian matrix. 

(8.399) 

(8.400) 

In order for -H-1 (@k)F’(+k) to b e a descent direction, H(@k) must be 
positive definite. This may not be true if we are too far from the minimum, 
because F (q!~) may not be quadratic. There are different techniques for 
modifying H to make it positive definite. One approach is to use DL, , 

Hk = Hk + &, (8.401) 

where 0: is chosen at each step to make fik both positive definite and well- 
conditioned. This technique is discussed in Chapter 5 of [DS96]. 

In practice, we want to adjust the step size, so we use a damped Newton 
algorithm 

i&+1 = & - I.lkHilFk, (8.402) 

where FL is the gradient defined in (8.394) (e.g., [GMWN], [DS83], [DS96]). 

In order to choose the step length & we choose a p < 1 and let 

k (r-l> 
i - - 7 i 2 0. (8.403) 

At each step in the iteration, we try successive values of i starting at i = 0 
and use the smallest i that causes an adequate decrease in F(@,). For 
example, if p = 0.5, we would try 

/-& = 1, ;, (;)‘; (f)3,-e. (8.404) 

until we obtain a satisfactory decrease in F(+,). Quadratic convergence is 

obtained if the step length converges to unity. 
The advantage of the Newton algorithm is that one can show quadratic 

convergence. However, in order to implement the Newton method, we must 
compute a matrix of second derivatives and invert a D x D matrix. In most 
applications, we try to find a computationally simpler approximation to the 
Newton method that still converges at an adequate rate. 
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One approach is to replace the Hessian by an approximate Hessian that 
has the same form as the asymptotic form of the Hessian matrix. This 
approach is referred to in the statistical literature as the scoring method. 
Ottersten [OVSN93] have derived the expression and we use their derivation. 

Using (8.296), we can rewrite (8.390) as 

F,,&b) = lndet [V&!J)V" +&:I] ) (8.405) 

where, from (8.313), 

(8.406) 

We included the In in (8.405) to be consistent with the derivation in [OVSN93]. 
Then, using ]I + ABI = II + BAI, we can write (8.405) as 

- - ln e2CNsD) 1 W w> p+c,vI> l 

(8.407) 

Now define a matrix 

GAV - 

The gradient matrix is 

[VHcxV]-l - s,2(7/!J) [VHV] -‘I . 

F I am1 +) =2Re(DIAG [G~c,P+$, 

(8.408) 

(8.409) 

where D is defined in (8.97) and DIAG[A] is a column matrix formed from 
the diagonal elements of A. 

Because the AML estimate is efficient, the approximate Hessian is derived 
from the CRB in (8.102), 

H am1 ,a ($) = $Re { [DHP$D] o [SfV”S;‘VSfIT}. (8.410) 

We replace the ensemble statistics Sf and 0; by their AML estimates Sf(+) 
and &i(Q) and use (8.299) to replace S, by 

s&j!+ = V@+!J)VH + ~~($J)~~ (8.411) 
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Then, the second matrix in (8.410) can be written as 

$(+)VH [v$(+)vH + k;(+)I] -‘V&(+) = 6i(+)GHC,G. (8.412) 

Using (8.412) in (8.410) g ives the approximate Hessian matrix, 

H,,I,&J)= 2&Q)Re [D~P$D]O[G~C,G . (8.413) 

The terms in (8.402) are now defined. At each step, we compute G~($J,> 
using (8.406) and use the result in (8.408), (8.409), and (8.413) to compute 

F;,,wk) ad fLnl,U~~k)~ w  e substitute the results in (8.402) and use 
(8.403) and (8.404) t o compute the step size. We then compute &+r. We 
continue the iteration until the stopping rule is satisfied. We choose $0 using 
the AP or AM technique, which we derive in Section 8.6.2. 

The approximate Hessians for the CML estimator and the WSF,, es- 
timator are also derived in [OVSN93]. These authors also consider several 
examples and discuss efficient computational techniques. The reader is re- 
ferred to this reference for a more detailed discussion. 

In the next section, we discuss a different approach to quasi-Newton 
methods. 

8.6.1.1 Quasi-Newton methods 

There are a number of other algorithms that attempt to retain some of the 
good properties of the Newton algorithm, but with a reduced computational 
cost. In this section, we present one of these algorithms that is effective in 
array processing problems. 

The starting point for the methods in this section is the Newton algo- 
rithm. 

Once again, we choose an initial estimate & . The iteration is 

We use a modified form of the Newton algorithm which is referred to 
as the modified variable projection algorithm (e.g., [Kau75], [RW80], 
[GP73]). The algorithm was applied to the array processing problem by 
Viberg et al. [VOK91], and our discussion follows that reference. We con- 
sider the CML and WSF,, estimators. We write F(+) as 
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The matrix M represents the data. In the case of CML, 

so M equals %K. 

MMH = C,, (8.416) 

In the case of weighted subspace fitting, 

M = &Wi (8.417) 

(see (8.363)). 
We now define a vector r by stacking the columns of Pb(@)M, 

r = vet (P+(+)M) . (8.418) 

Using (8.418) in (8.415) gives 

F(+) = lr12- (8.419) 

The gradient of F(e) with respect to $+ is 

&F=2Re{ ($-)?} =2Re{rfr}, (8.420) 

where 
n dr 

ri = -- - 
w  

aP+(+) M . 
i w  i 

The derivative of the projection matrix is, 

(8.421) 

d -L d 1, -P, = --PV = -PVViV t - 
w  

-P+ViVt H, (8.422) 
i w  i ( > 

where 
v n dV 

i= . 
w  i 

Using (8.422) in (8.420) gives 

(8.423) 

F’(+) = -2Re {DIAG [v~MM~P+D(+)]} , (8.424) 

where D(+) is defined in (8.97) and DIAG[A] is defined after (8.409). 
The next step is to derive the Hessian, 

d2 
-F = 2Re rf$ + r$r} . 
%W$j { 

(8.425) 
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The Gaussian modification of the Newton method assumes that the second 
term in (8.425) is small and approximates the Hessian by 

HG = 2Re rf$ . 
1 > 

(8.426) 

Discarding the second derivative guarantees that (8.414) is a descent method 
because HG is nonnegative definite. The resulting algorithm is the variable 
projection algorithm of Golub and Pereyra [GP73]. Using (8.418) in (8.422) 
and observing that VtP’ = 0 we obtain v 7 

H ri rj = tr H VHPtVjVt + P+ViVt [V’] H V,HPt MMH 
i 

I  > 

l 

(8.427) 

Kaufman [Kau75] modifies the Gauss-Newton algorithm by deleting the 
second term in (8.427). With this modification, 

H ij HVHP$VjVtMMH , 

which can be expressed in matrix notation as, 

H=2Re [ . 

(8.428) 

(8.429) 

The iteration algorithm is defined by (8.414), (8.424), and (8.429). It is 
pointed out in [OVSN93] that, for the WSF case, this algorithm is the same 
as the WSF version of the asymptotic Hessian (scoring) algorithm discussed 
in Section 8.6.1.1. (We did not derive the WSF version.) 

In order to obtain convergence to a global minimum we must initialize 
the algorithm appropriately. In Section 8.7.2.1, we develop the alternating 
projection algorithm that we use to initialize the modified Gauss-Newton al- 
gorithm. In [OVSN93], examples are given to show the effect of initialization 
accuracy. 

8.6.1.2 Summary 

In this section, we have provided a brief discussion of gradient techniques 
for solving ML estimation problems. The reader is referred to the various 
references, particularly [OVSN93] for further discussion. 
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8.6.2 Alternating Maximization Algorithms 

In this section, we develop techniques that are sometimes referred to in the 
optimization literature as the relaxation method. The basic idea is straight- 
forward. We have a function of D variables, Q/J). We want to find the 
value of Q that maximizes F(+). We accomplish this by a sequence of 1-D 
maximization problems. 

The technique was applied to the array processing problem by Ziskind 
and Wax [ZWsSb]. For the CML cases, they utilize a property of projection 
matrices to simplify the algorithm, and the resulting algorithm is referred 
to in the array processing literature as the alternating projection (AP) al- 
gorithm. For the stochastic ML case, the algorithm is referred to as the 
alternating maximization (AM) algorithm. Both algorithms use the same 

8.6.2.1 Alternating projection algorithm 

The AP algorithm was used by Ziskind and Wax [ZWSSb] in order to replace 
the multidimensional maximization problem by a sequence of 1-D maximiza- 
tion problems. Our discussion follows [ZWSSb]. 

In this subsection we consider the CML estimate. From (8.345), we must 
maximize h 

e cml = arg mr {tr [pVc,l} l 
(8.430) 

The basic idea is straightforward. It is an iterative technique in which, 
at each step of the iteration, we hold D - 1 parameter values constant and 
maximize over a single parameter. 

Thus, the value of $~i at the (/G + 1)-th iteration 
lowing one-dimensional maximization problem, 

h 
@+1) 

i = arg max tr P 
ti i 

{ [ [ 
V($~~))),v(lh) I 

is obtained by the fol- 

C X 7 (8.431) 

(k) where &I is the value of the estimated vector parameter (D - 1 x 1) at the 
kth iteration with the first component removed, 

v4 
The algorithm maximizes the +i in order, starting at i = 1. For i > 1, 4~~) 
is defined as 

h 
e w 

0 i = (8.433) 
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A (3) 
Wl 

A (2) 
Wl 

A (1) 
Wl 

n* r rgure 8.35 AP Algorithm: successive iterations. 

The estimates of qGT for r < i are the results of the (k + 1)th iteration, which 
was done previously. 

Note that we have separated the space of the projection matrix into a 
N x (D - 1) fixed component and a N x 1 component that is allowed to vary. 

The graphical behavior of the algorithm is shown in Figure 8.35. The 
algorithm moves to the peak in steps parallel to the axes. Since the value of 
L(q) is maximized at each step, convergence to a local maximum is guar- 
anteed. The initial condition is key to convergence to the global maximum. 

Ziskind and Wax [ZWSSb] use the following initialization procedure. 
First solve the problem for a single source $1. Thus 

(8.434) 

This is equivalent to assuming there is a single source. Then solve for the 

second source assuming the first source is at & (‘I. Thus, 

h 

ti 
(0) 
2 = argmax tr 

932 
{ [ 

P - 
jv(ij0b(~2)] cx Ii l 

(8.435) 

We continue this procedure until we obtain the D initial estimated values, 
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h h 

@ 
(0) 

* (O) 1 ,“‘,‘D* At each step, we assume that all preceding initial values are 
known. With these initial values, we then carry out the iteration in (8.431). 

There is a property of projection matrices referred to as the projection c 
matrix update formula1 that simplifies the computation at each iteration. 

Property 
Let B and C be arbitrary matrices with the same number of rows and define the 

composite matrix [ B I C 1. If  B and C were orthogonal, then 

PB,C =PB+PC. (8.436) 

However, since they are not orthogonal, we define PC(B), where C(B) is the residual of 
the columns of C, when C is projected on B, 

C(B) = [I - PB] c = &c. (8.437) 

Then, the projection matrix onto the column space of [ B I C ] is I 

PB,C = PB + PC(B). (8.438) 

To utilize this result, we let 
A (W 

B = w/J(i) >, (8.439) 

and 
C = V(*i). (8.440) 

Using this result in (8.431), we can write 

P 
v(~~f)))7V(Qi) = 

P (8.441) 

The vector in the subscript in the second term is generated by constructing: 

(9 p (k) (corresponds to PB). 
v(+(i) 1 

cii) p;c+‘k), [ 1 v(&) (corresponds to PAC). 
(i> 

(iii) P (k) (corresponds to PC(B)). 
v(+i)(v(+(i) > 

Since the first term in (8.441) is not a function of +i it can be dropped. 
Thus, (8.431) reduces to 

P 
(k) cx 

v(+i)Cv(4(i) >I 

l 
(8.442) 
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Now define a normalized vector 

8.6 Computational Algorithms 

Then, 

and (8.442) can be written as, 

h 
@+1 

i 

(8.443) 

(8.444) 

(8.445) 

= arg max 
+i 

{  bH($i, @;)Gcb(h, i$;,} l (8.446) 

We continue the iteration across i and k until 

where fi is a function of the desired accuracy. 
The AP algorithm can be summarized: 

(i) Initialize the algorithm using the procedure in (8.434) and (8.435) to 
obtain qJi”) 4(O) ,&Co) 7 2 Y-‘Y D l 

(ii) For i = 1, l l l , D, and k = 1, use (8.446) to obtain $‘, 4$“, @ ,  l l l ,@‘, 

(iii) Iterate (8.446) for k = 2,. l 0. 

(iv) Repeat until (8.447) is satisfied for all i = 1, l - , D. 

The issues of interest with respect to the AP algorithms are: 

(i) What are the conditions on signal geometry, S..&, and K that will cause 
the initial conditions to be such that the AP algorithm converges to a 
global maximum? 

(ii) What is the rate of convergence? 

(iii) Is the rate of convergence improved by using the AP algorithm for the 
first several iterations and then switching to a gradient procedure? 



Alternating Maximization Algorithms 1029 
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Figure 8.36 Normalized RMSE versus ASNR: A+ = A$q, N = 10, K = 100, 

P - - 0 . 

We consider two of the test scenarios in Table 8.3 to illustrate the be- 
havior of the AP algorithm. 

Example 8.6.1 (continuation, Examples 8.5.2 and 8.5.9) 

Consider the same model as in Examples 8.5.2 and 8.5.9. There are two equal-power 
uncorrelated signals impinging on a standard lo-element linear array. The signal separation 
is A$Q. We use the AP algorithm to estimate the DOAs. We initialize the algorithm using 
(8.434) and (8.435). 

The results are shown in Figure 8.36. Comparing the result to the CML and MODE 
curves in Figure 8.32, we see that the curves are the same. 

Example 8.6.2 (continuation, Example 8.5.8) 

Consider the same model as in Example 8.5.8. The result for &, = 7r/4 is shown in 
Figure 8.37. We see that the curve is the same as the curve in Figure 8.34. 

In all of the other test scenarios, the AP results are the same as the 
grid search results. There is a significant computational saving, so the AP 
algorithm is attractive. There are certain cases in which the initialization will 
cause the algorithm to converge to a local maximum rather than the global 
maximum, but we did not encounter this problem in our test scenarios. 
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Figure 8.37 Normalized RMSE versus ASNR: AT/J = A$Q, N = 10, K = 100, 
p = 0.95ej”/4. 

8.6.2.2 Alternating maximization algorithm 

In this section we consider the use of the AM technique to find the AML esti- 
mate given by (8.310). From (8.310), the function that we want to maximize 
is 

h 

+ = argmax 2 _L 
am1 

e 

P&,Pv + awPv - 1 
in the case of known noise variance and, from (8.315), 

arg min 
1_ 

[ I 
1. h 

e 
tr PVC, P, 

am1 = 
@ 

PvC,Pv + 
N-D I (8.449) 

in the case of unknown noise variance. 
The vectors, 4 [ii and 4::; are defined in (8.432) and (8.433), respec- 

tively. We proceed in an iterative manner 

q@+l) = argmax i 
?k 

{F (Q : {v (i$f) dh)))) 7 (8e450) 
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where the term in the braces in (8.450) is the term inside the braces in 

(8.448) or (8.449) with V(e) replaced by V Q { ($)) ,y($+)} in the projec- 

tion matrices. We initialize the algorithm in a manner similar to (8.434). 
We implemented the AM algorithm for the scenarios in Table 8.3. We 

used the AP initialization technique in (8.434) and (8.435). In all cases, the 
results were the same as in the grid search AML algorithm. 

8.6.3 Expectation Maximization Algorithm 

In this section we develop the expectation maximization (EM) algorithm 
and apply it to the parameter estimation problem. The basis for the name 
will be clear when the algorithm is developed. 

In Section 8.6.3.1, we derive a general form of the algorithm. In Section 
8.6.3.2, we apply it to the CML estimation problem. In Section 8.6.3.3, we 
summarize our results. 

8.6.3.1 EM Algorithm 

The original derivation of the EM algorithm is due to Laird et al. [LDR77]. 
It has been applied to the array processing problem by Feder and Wein- 
stein [FW88] and Miller and Fuhrmann [MF90]. A tutorial article by Moon 
[Moo961 discusses various other applications. Our discussion follows these 
references. We begin with a general discussion of the EM algorithm, then 
consider the case when the probability densities are Gaussian, and then ap- 
ply the EM algorithm to the problem of interest. 

The basic idea of the EM algorithm is straightforward. Recall from (8.2), 
that on the kth snapshot, we observe 

Xk = V(+)Fk + Nk k = 1,2,. . l , K, (8.451) 

and want to find &+ Now suppose that, instead of Xk, we could observe 

Yki = v(t$)Fki + Nki i = 1,2, l l l , D. (8.452) 

Then we would have a set of D uncoupled 1-D maximization problems that 
are reasonably easy to solve. We refer to the transformation between the 
Yki and XI, as H, 

xk = H(Ykl,Yk2, l l ’ ,YkD)r (8.453) 

and refer to the Yki,i = I,***, D as the “complete data” and XI, as the 
“incomplete data.” 
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The EM algorithm is a technique for inferring the complete data from 
the incomplete data and using this inferred data to find the ML estimate. 

EM Algorithm l5 We denote the observed (“incomplete”) data by the vec- 
tor X whose probability density, px(X : 0)16 depends on the vector param- 

eter 0. We denote the complete data by the vector Y, which is related to X 
by the many-to-one (non-invertible) transformation H(e) 

X = H(Y). (8.454) 

Note that the choice of Y and therefore H( 0) is not unique, and one of the 

keys to successful application of the EM algorithm is an appropriate choice 
of Y and H(e). 

h b-4 We assume that the estimate of 0 at step n of the iteration is 8 . We 
denote the likelihood function of Y as,17 

Ly(e) k lnpy,e(Y) = lnpy(Y : e). (8.455) 

If Y were available, we would maximize Ly (0). As only X is available, we 
find the expectation of Ly(e>, given that we have observed X and that our 

h (4 
current parameter estimate is 8 . 

We define the resulting expectation as U(e, e’“‘): 

h b-4 lnpy(Y:81X:8 (8.456) 

This is the expectation step. Note that it is conditional expectation with 
* (4 respect to X and 0 . 

h b-4 The next step is to maximize U(O, 8 ) with respect to 8. The resulting 
h (n+l) 

estimate is 8 . Thus, 

$n+l) arg max - - 8 u(e, b@)). (8.457) 

The steps in (8.456) and (8.457) define the EM algorithm. 

15This discussion follows [FW88] and [Moo96], which follow [LDR77]. 
“We use py(Y : e) instead of p,,e(Y) to minimize the use of double subscripts in the 

derivation. 
17We have used n to denote the steps in the iteration because we use k to denote the 

snapshot. 
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The algorithm starts with an initial estimate 6 (0) . The procedure de- 

scribed in (8.434)-(8.435) can be used to obtain this initial estimate. The 
iteration proceeds until 

gn+l) h b-4 - 8 < 6. (8.458) 

The maximization step ensures that U(0, @)) increases on each iteration 
cycle. 

WU [Wu83] shows that if U (0, @)) is continuous in both variables, then 
the algorithm converges to a stationary point. In the next section, we apply 
the algorithm to the CML estimation problem. 

8.6.3.2 Conditional maximum likelihood estimate 

We now apply the EM algorithm to solve for acml. From (8.451), the obser- 
vation model is 

Xk = V(+)Fk +Nk, k = 1,2,-4C (8.459) 

Wc assume the white noise level ai is known. 
In this case, the unknown parameters are the D x 1 vector +, corre- 

sponding to the DOAs, and the 2OK x 1 vector F. Thus, 

0 = [+, Fl ’ (8.460) 

The likelihood function is 

K 

W) 
- -- 

Cl Xk - V(@Fk12 7 (8.461) 
k=l 

where we have discarded constant factors. The incomplete data are XI,, Ic = 

12 7 1”‘1 K. A logical choice for the complete data would the observation of 
each plane-wave signal by itself in the presence of noise. Thus, 

ykl =v($$&g+Nkl, 1 = 1,2;-,D, (8.462) 

where 

and 

(8.463) 

D 

ID 
1 = 1. (8.464) 

I=1 
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For simplicity, we will use 

8.6 Computational Algorithms 

1 
pI = -. 

D 

Then, 

D 
XI, = x 

n 
y/cl = H 

I=1 

I 

yk2 
. 
. . 

YkD 

(8.465) 

(8.466) 

We see that H is a linear transformation so that XI, and Ykl, l = 1,2, l . l , D 
are jointly Gaussian. 

Using (8.460) in (8.456), we can write 

up, P’) = U(+, F; ijbcn’, F@)) 

Y : @,FIX : $@$@ . (8.467) 

Neglecting constant terms, we can write the In likelihood function as 

K D 

L(y : $‘, F) = - x x Iykl - v($l)Fkl12 l 

(8.468) 
k=l I=1 

Since Ykl is a sufficient statistic for estimating v( ?,+)Fkl, we only need to 
find the conditional mean, 

(8.469) 

Because &-l and X are jointly Gaussian, this is a classical estimation result. 
(We use Bayes rule to obtain py,,(x() from pxlykl (-) and find the mean by 
inspection.) 

or 

h (4 Y kl - 
A (4 -(n) 

xk -v(+ )Fk 3 
I 

(8.470) 

(8.471) 

The conditional mean is the signal component from the nth iteration plus 
a portion l/D of the component of the current observation vector, which is 
orthogonal to the estimated signal subspace. The result in (8.471) is the 



Expectation Maximization Algorithm 1035 

expectation step. We observe that the expectation result is also an estima- 
tion result, so the EM algorithm is sometimes referred to as the estimation- 
maximization algorithm. 

To define the maximization step, we recall from (8.345) and (8.338) that 

h 

Q = arg max @ { tr [VW [vH(wH(~)] --IL vH(W,I) (8.472) 

and 

@, = (8.473) 

To get the corresponding relation for the complete data, we define 

s -b> n 1 K 
Yl - yf 1 

$n)p4” 
kl kl l 

k=1 

Then, using (8.474) in the 1-D version of (8.472), we have 

$n+l) = arg max 

{ 

vHwl)q+h) 
1 $1 IvW1)12 i 

, l= 1,2,..‘,0, 

and the 1-D version of (8.473) is 

j$(n+u 1 = I,&. . . ) 4 
kl = Iv($l(n+1))12 ’ k=l,2,...,K. 

Since Iv(~!Q)~~ -15 N, (8.475) and (8.476) can be rewritten as 

4@+l) = argmm {vH(ql#~l+14+)l)}, 1 h 
1 = 1,2,. . . , D, 

(8.474) 

(8.475) 

(8.476) 

(8.477) 

(8.478) 

The EM algorithm is defined by (8.471), (8.477), and (8.478). We observe 
that (8.477) can also be written as 

$n+l) 1 (8.479) 
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‘,I 
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0 Y kD + ML Processor --+ A WI) WD 

A A A . 

6 (n) * W 
% w2 

a (n) 
WD 

Figure 8.38 Implementation of EM algorithm. 

Note that the term in the braces is just the power output of a conventional 
beamformer when the input is ?k’; /G = 1,2, . l . , K. This leads to the block 
diagram of the iteration process shown in Figure 8.3P Note that all of the 
maximizations are done in parallel. 

Summarizing, the EM algorithm for the CML estimate is: 

(i) Initialize the algorithm with @J(O) and pi:) (from (8.434) and (8.435)). 

(ii) Estimate qkl (‘I, F; = 1, l l . , K; 1 = 1, l l l , D using (8.471). 

(iii) M aximize 

$n+l) 1 
with n = 0. 

(iv) Compute 

(8.480) 

(8.481) 

h (n+l) (v) Estimate Ykl using (8.471). 

(vi) Iterate through steps (ii)- until 

+(n+l) - +‘“’ < 6, - (8.482) 

18This figure is similar to Figure 1 in [FWM], but their model assumed a known signal 
rather than an unknown nonrandom signal. 
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The EM algorithm provides an alternative procedure to the AP algo- 
rithm for solving the CML problem. A similar procedure is available for 
the UML algorithm. Miller and Fuhrmann [MF90] use the UML algorithm 
for uncorrelated signals and enforce the non-negative definite requirement at 
each iteration. Therefore, their solution is the UML estimator as contrasted 
to the AML estimator. 

For our test scenarios, the EM algorithm converges to the correct solu- 
tion, but is slower than the AP algorithm. 

Fessler and Hero [FH94] develop a new space-alternating generalized EM 
algorithm (SAGE), and demonstrate that it converges significantly faster 
than the conventional EM algorithm. The reader is referred to that reference 
for discussion. 

8.6.4 Summary 

In this section, we have developed several techniques for solving the ML esti- 
mation problem. The most efficient approach in terms of both computation 
and speed of convergence appears to consist of the following steps: 

(i) Initialize the algorithm by using the procedure in (8.434) or by making 
an initial estimate using one of the simpler algorithms that we develop 
in Chapter 9. 

(ii) Use the relaxation methods, either AP or AM as appropriate to get 
closer to the minimum. 

(iii) Use a search technique such as a quasi-Newton algorithm to achieve 
the final convergence to the estimate. 

All of the computational algorithms developed in this section are appro- 
priate for arbitrary array geometries. In the next section, we consider an 
approach that is useful for standard linear arrays. 

8.7 Polynomial Paramet erizat ion 

In this section we develop two computationally efficient algorithms that are 
applicable to standard linear arrays. 

In Section 8.7.1, we show how we can reparameterize the ML estimation 
in terms of a polynomial with its roots on the unit circle. 

In Section 8.7.2, we utilize the polynomial parameterization for the CML 
estimator to develop an algorithm that is called the iterative quadratic 
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maximization likelihood (IQML) algorithm and provides a computation- 
ally efficient solution. 

In Section 8.7.3, we utilize the polynomial parameterization for the WSF 
(or MODE) estimator to develop an iterative MODE (IMODE). 

In Section 8.7.4, we summarize our results. 

8.7.1 Polynomial Parameterization 

The technique of reparameterizing the ML estimator problem in terms of a 

polynomial is due to Kumaresan et al. [KSS86], and Kumaresan and Shaw 
[KS851 (e.g., E vans and Fish1 [EF73]). 

In many of the estimators we have discussed the vector + enters into the 

cost function through the projection matrix PV (e.g., (8.315) or Table 8.4). 
We now want to develop an alternative expression for PV that will be easier 
to evaluate. 

For a standard linear array, V is an N x D matrix, 

(8.483) 

. . . ej(y)ljfi I*, i = 1,. . . , De (8.484) 

The first step in developing the parameterization is to recognize that, if 

we let 
3-b z-e , (8.485) 

then the polynomial 

b(z) = 602~ + 61~~~~ + 9 l l + 6D (8.486) 

describes the spatial characteristics of the signal component. It can be writ- 
ten as 

D 

b(x) = 60 j--J@ - Xi), (8.487) 
i=l 

and has roots at 

zi = ej@i, i = 1,2,--J. (8.488) 

We define the coefficient vector of the polynomial as 

b = b. bl l l l bD 
[ 1 * . (8.489) 
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If we find the ML estimate of b, we can use it to obtain the ML estimate of 

ti 
. 

i,Z= 12 , ,“‘~ D. To carry out this procedure we construct a N x (N - 0) 
Toeplitz matrix, B, 

B - - 

. 
b * D 

0 
b b-1 b b 

. . . . . . . . . 
. 

b ;; 
. 

: l . b L 
0 b 6 
0 0 
. . . . . . . . . 

0 0 . . . b . 8 I 

(8.490) 

and show that we can write the noise subspace projection matrix as 

1. p, = PB =B (VB)-~ By. (8.491) 

To verify (8.491), we consider the ith column of V(Q), v($i). Denote the 
first column of B as br. Then, 

= bD + b,_,@i + . . . + b&ok 

- - =o, i= 1,2,***,D, (8.492) 

where the last equality follows from (8.488). Similarly, 

bfv($i)=b(G’i) .,j’i=O, i=1,2,***,D, (8.493) 

and so forth. Thus, the columns of B are orthogonal to V. Since for any 
b # 0, B has rank N - D, its columns span the orthogonal complement to 
V and PB is equal to P$. 

The equivalence of the two projection matrices, 

PL v=pB, (8.494) 

is a key result that is used to solve ML problems. 

8.7.2 Iterative Quadratic Maximum Likelihood (IQML) 

In this section, we illustrate one application of polynomial parameterization. 
The specific case of interest is the CML estimate. The resulting algorithm 
is called the IQML algorithm. 
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The IQML algorithm was derived independently by Bresler and Macovski 
[BM86] and Kumaresan, Scharf, and Shaw (Kumaresan et al. [KSS86] and 
Kumaresan and Shaw [KS88][Sha87]). 0 ur d iscussion is similar to that in 
[BM86] but we include a modification due to Nagesha and Kay [NK94]. We 
give a short discussion of other similar algorithms and other implementations 

of IQML at the end of this section. Although we are using the technique for 
CML, we see that it can be extended to any estimator that relies on PV or 
Pt in the estimation algorithm. 

The CML estimate is given by (8.346) as 

h 

+ 

arg min 
cn-ll = { [ 

1_ tr PVC, 

We can write the required minimization in (8.495) 

min J(b), 
b&b 

where 

> 
. 

as 

J(b) = tr [PB C,] = tr B (B”B)-’ BH c,J , 

(8.496) 

(8.497) 

and we must specify the constraints on b by defining nb. 
We first derive an alternative form for J(b) that is useful for computation. 

We define an (N - D) x (D + 1) data matrix, for the kth snapshot as 

XD (k> &-l(k) l 9 l 
X0(k) 

xD+1 (k) x,(k) ’ ’ ’ 
AI, = 

Xl(k) 
. . . 7 (8.498) 
. . . . . 

X&k) X,via(k) l l 9 

where X,(k) is the frequency-domain snapshot of the output of the nth 
sensor at snapshot k. We use Ak to avoid confusion with the snapshot 

vector X(k). 
By direct multiplication, one can show that 

BH X(k) = Al, b. (8.499) 

Substituting (8.499) into (8.497) gives 

K 9 J(b) - - x B (B”B)-’ BH X(k)XH(k) 
k=l 1 

- - bH [?A: (B”B)-’ A/j b. 
k=l 

(8.500) 
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The form of (8.500) suggests an iterative procedure in which we hold 
BHB fixed from the previous step and solve the quadratic minimization in 
b. We must impose some constraints on b to get a useful solution. 

The first constraint is imposed to guarantee a non-zero b. Breslev and 
Macouski [BM86] use 

Re [bo] = 1, (8.501) 

to guarantee a non-zero b. Nagesha and Kay [NK94] and others use the 
norm constraint 

llbll 2-1 - . (8.502) 

As pointed out in [NK94], the constraint in (8.501) is not useful for cer- 
tain signal geometries. A simple example is the case of a single signal at 
$J = 0. Here Re[ba] = 0 (see Problem 8.7.12). We use the quadratic con- 
straint in (8.502) and refer to the algorithm as IQML-QC to avoid confusion 
with some of IQML algorithms in the literature. 

We would like the roots of the b polynomial to lie on the unit circle. 
We impose a conjugate symmetry constraint on b. Conjugate symmetry is 
a necessary, but not sufficient condition. lg We find that with the conjugate 
symmetry constraint, when the algorithm is above its threshold, the roots 
lie on the unit circle and start to move off the circle as we transition into the 
threshold region. A discussion of this root behavior is contained in Stoica 
and Nehorai [SN89a]. 

Thus, we require 

We introduce the constraint in (8.503) using a technique from Kumaresan 
and Shaw [KS883 and Shaw [Sha87]. We assume that D is odd.20 We define 
a (D + 1) x 1 vector, c as 

C= 
Re(bo) Im(b )  Re(h) ”  l Re(b(D-l)la) 1m(b(D-l)/2) IT . 

(8.504) 

lgThe exception to this statement is the case of a single root, where the conjugate sym- 
metry constraint is also sufficient. Shaw [Sha95] has derived a constrained MILE estimator 
based on this property. 

20The development for even D is done in Problems 8.7.9 and 8.7.10. 
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We define a (D + 1) x (D + 1) transformation matrix T, 

1 
TA---- - 

fi 

This can be written as 

1 1 

T 
1 - - 

2/2 

1 

0 
J 
0 

0 
1 

0 
0 

0 
0 

0 
0 

0 0 
. - 3 

1 
0 

0 

0 

I(D+1)/2 @ 1 j 
--------------- 1 I -----̂ - --- 

1 

7 

J(D+1)/2 
+ 

- l 

31 

where 8 is Kronecker product. Then, 

b = Tc. (8.507) 

We define 

QxATH - (&if [BHB]-‘A,) T, (8.508) 
k=l 

and 

F(c) = c*~&c. 

. (8.505) 

(8.506) 

(8.509) 

Because Im( Q,} is skew-symmetric, its quadratic form is zero. Thus, 
Im[F(c)] = 0, so we can use21 

F(c) = cT [Re {ii&}] c. (8.510) 

We assume B is fixed from the previous iteration. We minimize F(c) subject 
to the norm constraint 

llc112 = 1. (8.511) 

The solution follows immediately if we expand Re{Q,} in terms of its 
eigenvalues and eigenvectors: 

D+l 
Re{Qx} = c hp&~- (8.512) 

i=l 

21An alternative derivation of (8.509) is developed in Problem 8.7.8. 
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the smallest eigenvalue, 
The non-zero c that minimizes F(c) is the eigenvector corresponding to 

e = timin, (8.513) 

where the notation emphasizes that $min corresponds to the smallest eigen- 
value. 

We can summarize the iterative algorithm using the quadratic constraint 
(IQML-QC): 

(i) Initialization: set m = 0 and BcO) = Bo. 

(ii) Compute 

Qcm) = TH 
X 

(8.514) 

where Bc~) is given by (8.490), and Ak is given by (8.498). 

(iii) Perform an eigendecomposition of Re( aim)} as in (8.512). Set 

&4 = (p) 
772273 l 

(8.515) 

(iv) Find 
(8.516) 

(v) Find the roots of h(m)(Z). Denote these roots as &, i = 1,2, l l l , D. 
Then 

& = Larg(Zi), i = 1,2,**0,0. (8.517) 

(vi) Set m = m + 1. 

(vii) Repeat steps (ii)-(v). 

(viii) Check convergence: Is 

l$(m + 1) - I;(m)ll < e, (8.518) 

where E reflects the desired precision. If (8. 518) is satisfied we terminate 
the iter ation and use the & from step (v) , otherwise return to step (ii). 

We can initialize the algorithm with 

H 
B(o)B(O) = I, (8.519) 
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or we can perform an initial estimate of $J using one of the simpler algorithms 
that we develop in Cha,pter 9. 

As pointed out in [13M86], the matrices BH B and OX have consider- 
( > 

able structure that can be exploited for computational efficiency. B* B is 
a banded Hermitian matrix, so its inverse can be efficiently computed (e.g., 
[Kum85] ! [KSSSS]). Th e inverse of BHB can be computed as the inverse of 
a D x D matrix rather than a (N - 0) x (N - 0) matrix. 

There are a number of references concerning IQML-type of algorithms. 
An early reference is Evans and Fischl [EF73]. Other iteration algorithms 
include Matausek et al. [MSR83], Kay [Kay84]. Algorithms using other ap- 
proaches include Tufts and Kumaresan [TK82] and Kumaresan et al. [KT83]. 
In [BM86], the relationship of IQML to these algorithms is discussed. 

There have been a number of papers discussing IQML since [BM86]. 
McClellan and Lee [Mclgl] show the equivalence of the Steiglitz-McBride 
algorithm [SM65] and IQML. 

Clark and Scharf [CS92] discuss the complexity of the IQML algorithm 
and compare it to other algorithms including the Steiglitz-McBride algo- 
rithm (e.g., [SM65]). A n e ffi cient implementation of IQML is given by Hua 
[Hua94]. [KS881 1 a so discuss an adaptive version to track slowly rnoving 
sources. Stoica et al. [SLS97] analyze the asymptotic behavior. Li et al. 
[LSL98] cornpare the performance of IQML and MODE estimators. 

The issues of interest with respect to the IQML algorithm are: 

(i) Rate of convergence. 

(ii) Comparison of threshold behavior with CML algorithm in Section 10.5.2. 

(iii) Computational complexity. 

We illustrate the performance of IQML-QC for several of the test cases 
that we have studied in Sections 8.5 and 8.6. However, before doing the 
examples we develop the polynomial pararneterized version of MODE. 

Before developing MODE, we should note that we have developed the 
IQML algorithm for solving the CML estimation problem. The polynomial 
parameterization can be used for other algorithms. 

For the AML algorithm 

F(c) = lndet [P&PA + ~;PB] , (8.520) 

with 
h 
o2 

1 
W= mtr [PBcx] l 

(8.521) - 
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and c is defined in (8.504). We use the same general iterative procedure as 
above. 

In the next section we discuss the polynomial parameterized version of 
WSF (MODE). 

8.7.3 Polynomial WSF (MODE) 

The weighted subspace fitting (WSF) (or MODE) algorithm was described 
in Section 8.5.3 (see (8.367)-(8.370)). The algorithm is 

h 

+ 

= argmin tr P$JsW,,@ 
+ 1 [ I> 

, (8.522) 

where CJs is an N x D matrix whose columns are the estimated signal 
eigenvectors and Wao is a D x D diagonal matrix, 

W 
9 h -1 

a0 = A AS 7 (8.523) 

K = iis - @, (8.524) 

h 
a2 W= 

1 

N-D 
(8.525) 

The polynomial implementation of MODE was defined in Stoica and 
Sharman’s original papers ([SSSOa] ,[SSSOb]). Li et al. [LSL98] give a more 
explicit definition of the algorithm. Both references emphasize a two-step 
algorithm. We focus on an iterative version of the algorithm, that we call 
IMODE. In the examples in [LSL98] they use IMODE for some of their 
results. Li et al. [LSL98] 1 a so contain a discussion of relative computational 
complexity of IQML and MODE. 

Using a polynomial parameterization, we can rewrite (8.522) as 

6 = argmin tr P~tJSWaofi~ 
Q 1 [ I} , (8.526) 

subject to a quadratic constraint, 

lbll 2-1 - ? (8.527) 

and a conjugate symmetry constraint 

b i- b h-i* (8.528) 
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We can rewrite the right side of (8.526) as 

J(b)= tr [B(B~B)-~B*~J~w,,~~,"~. (8.529) 

We use an approach similar to the IQML approach to get (8.529) into a more 
usable form. For notational simplicity we define 

u, n &w&, - (8.530) 

and write 
D 

where & are the columns of ?Ts. 
We can write (8.529) as 

D 

J(b) - - c B (&%) BH&$f 
d=l 

(8.531) 

- - c $TB (BHB)-l BH$d . 

d=l 

(8.532) 

We define a matrix 

$d(D + 1) $d(D) “* d 4 (1) 
- 

Ad = 
$d(D + 2) $d(D + 1) 0.0 4 (2) d 

. . . . . (8.533) 

- &j(&) ;P$(; - 1) 

. 

. .-. Qd(N:- 0) 

This matrix is analogous to the data matrix in (8.498) except its components 
come from the signal subspace matrix. Then 

BHi$,=&b, (8.534) 

and 
D 

J(b)=bH ~Af(BHB)-lAd b. 1 (8.535) 
d=l 

This form is identical to (8.500), so the subsequent steps are identical 
to (8.502)-(8.518). The c vector is defined in (8.504) and the T matrix is 
defined in (8.505): 

&AT H(eAf[BHB]-lAd)T, 
d=l 

(8.536) 
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and 

F( > C = c 
T- QDC = cT [R&b}] c* (8.537) 

We minimize F(c) subject to a unit norm constraint on c. The resulting 2: 
is the eigenvector of Re(Qo} corresponding to the smallest eigenvalue. 

We can now define an iterative version of the MODE algorithm using the 
same steps as in the IQML. We refer to it as the IMODE algorithm. 

The IMODE algorithm can be summarized: 

(i) Initialization: set m = 0 and choose B(o) such that 

H 
B(,)B(O) = 1. (8.538) 

(ii) Compute 

(8.539) 

In 8.539, the matrix B(,) is given by (8.490). Compute 0~ and & 

Use & in (8.533) to form Ad. 

(iii) Perform an eigendecomposition of Re{ Gg’} and set 

p-4 = p, (8.540) 

A (4 
where Gmin is the eigenvector corresponding to the smallest eigenvalue. 

(iv) Find 
(8.541) 

(v) Find the roots of Ij(,‘@). Denote these roots as iirn ,i = I,**. ,D. ( > 

Then 
h cm> 

1cI 
dm> 

i =arg& ), i= 1,2,*+X (8.542) 

(vi) Set m = m + 1. 

(vii) Repeat steps (ii)-(v). 

(viii) Check convergence 

IlQ-n + 1) - ii(r < 6. (8.543) 
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If (8.543) is satisfied, terminate the iteration and set 

(8.544) 

Otherwise, continue the iteration. 

Stoica and Sharman [SSSOa] showed that, asymptotically, replacement of 
[BHB]-’ by a consistent estimate will have a negligible effect. Thus, a large 
sample realization of 6 is given by 

G=mzn{tr{ [U,“B] [BP&~-’ [~llir,])). (8.545) 

In (8.545), the matrix & is the consistent estimate of B obtained by min- 

imizing t r [ (o;B) (B*&)]. Therefore, the MODE algorithm developed 

by Stoica and Sharman is a two-step algorithm that corresponds to termi- 
nating the IMODE algorithm in (8.538)-(8.542) at the m = 1 step. When 
comparing IMODE and MODE, we refer to the latter as two-step MODE to 
emphasize the difference. 

We now consider two of the test cases that we have analyzed previously. 

Example 8.7.1 (continuation, Example 8.5.2)22 
Consider the same model as in Example 8.5.2. There are two equal-power uncorrelated 

plane-wave signals impinging on the array from + = fk$~/2. We implement three 
algorithms; IQML-QC23, IMODE, and two-step MODE. 

In Figure 8.39(a), the normalized RMSE is plotted versus ASNR for the three algo- 
rithms. The thresholds for IMODE and IQML-QC are slightly higher than the threshold 
using grid search shown in Figure 8.32. The threshold for two-step MODE is about 3 dB 
higher. Above an ASNR = 10 dB, all three algorithms are essentially on the CRB. 

In Figure 8.39(b), a histogram showing the number of iterations required when the 
ASNR = 10 dB and the error threshold, E = 0.01 is plotted. This ASNR is above the 
threshold point. The most common number of iterations is four. However, from Figure 
8.39(a), the last iterations do not improve the performance significantly, so two-step MODE 
is adequate above threshold if the number of iterations needs to be constrained. 

In Figure 8.39(c), the same results are shown for an ASNR = 5 dB which is just below 
the threshold. We see that, in this set of 1000 trials, three or more iterations were always 
used and 4-6 iterations were generally needed. In this case, the additional iterations 
provide a useful decrease in the RMSE, and IMODE should be used. 

22Figures 8.39 and 8.40 are due to J. Hiemstra (private communication). 

231n implementing IQML-QC in MATLAB? we found that, after finding e in (8.515) to 
an adequate precision, we could decrease the RMSE further by using the fmins function to 
minimize Re [cTQxc] + 1 (l[ci12 - 1) 1. This is a minimization with a penalty function and 
can be viewed as a slight modification of a pure IQML algorithm. A gradient technique 
could also be used. The technique is most useful near the threshold. MATLAB@also has 
a constrained minimization that could be used. We denote this version as IQML-G in the 
legend. 
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Figure 8.39 IQML-QC, IMODE, two-step MODE: N = 10, K = 100, A+ = 

4h3, P = 0: ( a normalized RMSE versus ASNR; (b) histogram of number of > 
iterations, ASNR = 10 dB; (c) histogram of number of iterations, ASNR = 5 
dB . 

Example 8.7.2 (continuation) 
Consider the same model as in Example 8.7.1 except that the signals are correlated. 

Two values of p, p = 0.95 and p = 1.0, are considered. Note that &, = 0, which is the 
most difficult case for the algorithms. The results are shown in Figure 8.40. 

In Figure 8.40(a), the normalized RMSE is plotted versus ASNR for the three algo- 
rithms for the p = 0.95 case. The threshold for IQML-QC and IMODE is 15 dB and 
two-step MODE is slightly higher. This value is 10 dB higher than the uncorrelated case. 
Above threshold, the RMSEs of all three algorithrns are close to the CRB. 

In Figure 8.40(b), the normalized RMSE is plotted versus ASNR for the three algo- 
rithms for the p = 1.0 case. The approach to the CRB is more gradual. The threshold is 
in the 23-25 dB range. The IMODE and two-step MODE algorithms have smaller RMSEs 
than IQML-QC in the ASNIZ regions of interest. 

In Figure 8.40(c), a histogram for the p = 1.0 case showing the number of iterations 
required when the ASNR = 25 dB and the error threshold E = 0.01 is plotted. This ASNR 
is above the threshold. About 95% of the trials used three or four iterations. 

In Figure 8,40(d), the same information is plotted for the ASNR = 20 dB case. This 
ASNR is in the threshold region; The number of iterations range from three to seven, but 
three and four iterations were used in almost 80% of the trials. 

For the uncorrelated signals case in Example 8.7.1, the modified IQML- 
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p = 1.0, ASNR = 20 dB. 
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QC algorithm and IMODE had similar threshold behavior and approached 
the CRB above threshold. The two-step MODE algorithm had a higher 
threshold, but approached the CRB above threshold. The IQML-QC al- 
gorithm has a higher flop count, so IMODE is the preferred algorithm for 
this case. The behavior in this example appears to be characteristic of the 
general uncorrelated signal case. If the threshold behavior is an important 
factor in a particular application, then IMODE is useful (or perhaps, five- 
step MODE). If performance above threshold is the important factor, the 
two-step MODE appears to be adequate. Similar comments apply to the 
correlated and coherent signal case. 

Li et al. [LSL98] p rovide a more general comparison of IQML, IMODE, 
and two-step MODE. They also provide a detailed discussion of an efficient 
implementation of IMODE and a comparison of flop counts. The interested 
reader should consult that reference. 

For standard linear arrays, IMODE is the leading candidate of the algo- 
rithms developed up to this point in the text. There are still issues, such as 
the effect of an unknown number of signals and robustness to array pertur- 
bation that must be explored. In addition, other algorithms are developed 
in Chapter 9. 

A unitary version of IMODE is developed in Gershman and Stoica [GS99]. 
We discuss it in Chapter 9 after other unitary algorithms have been devel- 
oped. It is identical to FB-IMODE, which is standard IMODE using FB 
averaging in the sample spectral matrix (e.g., Stoica and Jansson [SJ97]). In 
[SJ97], it is shown that the RMSE of FB-MODE in the asymptotic region is 
greater than or equal to the RMSE of standard MODE. In Example 8.7.2, 

4p = O”, so the two versions are identical. 

8.7.4 Summary 

In this section we have developed a polynomial parameterization and then 
showed how it could be used to develop efficient computational algorithms. 
Although we used CML and MODE as examples, the general technique is 
applicable to any algorithm that utilizes Pv. Whenever the array geometry 
allows it, the polynomial parameterization approach should be considered. 

We can also develop Newton or quasi-Newton algorithms that utilize the 
polynomial parameterization. The advantage of doing the Newton algorithm 
in polynomial space is that the number of computations at each iteration 
is reduced. Starer and Nehorai [SN92] have derived the algorithm and give 
examples. 
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8.8 Detection of Number of Signals 

Up to this point in our discussion of parameter estimation we have assumed 
that the number of signals, D, is known. In practice, we would use one of the 
algorithms developed in Section 7.8 to estimate D. We use that estimate, 
denoted as b, in our estimation algorithm. We refer to this technique as 
separable detection. All of the results in Section 7.8 apply to this problem. 

There are a number of scenarios studied in the problems. In some cases, 
the threshold of the detection algorithms occurs at the same ASYYR or higher 
ASNR than the threshold of an ML estimator operating with the correct 
number of signals. This result suggests that all estimation algorithms needed 
to be checked for robustness to errors in fi. 

In most parameter estimation problems, if fi # D, it is better to overesti- 
mate rather than underestimate. In many cases, the output of the parameter 
estimator serves as the input to another processor such as a tracker. We can 
rely on the subsequent processor to eliminate the extra signals. This ob- 
servation suggests that if we must operate in the vicinity of the threshold, 
we should use AIC or AIC-FB and require subsequent processing (after the 
estimator) to eliminate an extra signals introduced by an overestimation er- 
ror from AIC. If we are operating above threshold, we should use MDL or 
MDL-FB, because it provides consistent estimates. 

A second approach is to jointly detect the number of signals and estimate 
their location. The CML version of the joint detection-estimation algorithm 
was developed by Wax and Ziskind [WZ89]. The AML version of the joint 
detection-estimation algorithm was developed by Wax [WaxSl]. One can 
show that the MDL version of resulting estimators is consistent (e.g., the 
approach by Zhao et al. [ZKB87] or Wax and Ziskind [WZ89]). 

Cho and Djuric [CD941 approached the joint detection and estimation 
problem using a technique they called Bayesian predictive densities (e.g., 
[DjuSO]). Th eir result contains the same data term as the AML estimator 
but has a different penalty term. 

Ottersten et al. [OVSN93] utilize a generalized likelihood ratio test with 
a different model for the two hypotheses than was used in Section 7.8.1. 
They obtain a sequential hypothesis test that utilizes the AML estimates at 
each candidate value of d. 

All of the joint detection and estimation techniques have significant com- 
putational complexity and do not appear to be widely used in practical ap- 
plications. 

We defer an analysis of this problem until Chapter 9, where we compare 
the performance of a number of algorithms for the unknown D case. 
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8.9 Spatially Spread Signals 

In this section we discuss parameter estimation for spatially spread signals. 
In Section 8.9.1, we consider the model that we developed in Section 5.3. 
Here the source signal is characterized by a spectrum distributed on the 
surface of a large sphere whose distribution is specified by S& : 8,+). We 
parameterize the spatial spectrum and find the ML estimate of the param- 
eters. We also derive the corresponding CRB. 

In Section 8.9.2, we consider linear arrays and assume that the spatial 
spectrum can be modeled as a spatial ARMA process. We discuss the ML 
estimate of the ARMA parameters and the corresponding CRB. 

In Section 8.9.3, we summarize our discussion. 

8.9.1 Parameterized S(0,+) 

In this section we consider the model described in Section 5.3.4. For numer- 
ical simplicity, we first consider the case of a standard linear array along the 
x-axisz4. From (5.145)) the 1-D signal spectrum is 

s 7r 
Ss(w : ApJ = 

sin 8 

0 
d8Te,-jkoA~~cose&,(W : e), (8.546) 

Letting 

1 

s 

2n 
$-)(w : 0) n - 

27T 
So@ : 6 &@- (8.547) 

0 

1c) = 7rcoso, (8.548) 

AP z = m- ( 
A 

$7 (8.549) 

Sf (+> = mJ : e)I~~~cose 7 (8.550) 

we can write the elements in the array spectral matrix as 

1 

s 

7r 
[s 1 f =G mn d$&“-“bf (Q). 

-7r 
(8.551) 

At this point we must specify Sf (@) in order to proceed. We consider 
two simple examples25 in which we can evaluate the integral in (8.551) ana- 
lytically. In other cases, we can calculate Sf numerically. 

24The ML part of this discussion follows Meng et al. [MWW93]. 
25The two examples are taken from [MWW93]. 
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Example 8.9.1 
Assume 

4 s&q = - cr+ 
7r 0; + (* - *o)2’ 

(8.552) 

The parameter $0 is the mean value of the angle of arrival and a$ controls the width. 
Assuming cr$ << x, we use (8.552) in (8.551) and recognize a familiar Fourier transform 
pair, to obtain, 

4 Sf = - 
29 

where 

1 

. . . . . . . * . . . 
N-l 

% 
NO-2 ... 

% 1 

x+ fi exp[-a+ +$/JO]. 

n 0; - - gs, (8.553) 

(8.554) 

In the second example, we assume that S’f (Q) has a Gaussian shape 
central at $0 with standard deviation of q.26 

Example 8.9.2 

Assume 

SfW) = -gqXP (-‘+;-o)2), (8.555) 

where a+ << YL Using (8.555) in (8.551) and recognizing the familiar Fourier transform 
pair, gives 

P 1 
o2 

f = mn n)“$ +j*0(m - n) . 

> 

(8.556) 

For D independent signals, we have 

D 

Sf = x Sfi, (8.557) 
i=l 

where the Sfi are given by (8.553) or (8.556). 
A particular case that we will study is the two-signal case in which 

a2 
S fl = 

fl - exp 

II- ( 

($J - dkd2 - 
274 20 1 1 

7 

and 

(8.558) 

26This model is applicable in a number of wireless commur icat ion applications. 
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CT2 
S f2 = 

f2 - exp 

J- ( 

(+ - +c2j2 - 
2 27q 20 2 . 

2 ) 

(8.559) 

*The spectral matrix of the total input is 

S x = Sf + &. (8.560) 

We can now use (8.560) directly in the In likelihood function to find the 
ML estimate and the CRB. 

We first consider the CRB. For simplicity, we write the result using the 
notation of our two examples. 

We define Q0 as the D x 1 parameter vector denoting the center of each 

Sft w>, 

Qo - n P&l Iha l l ’ CD 
[  + I  

T  l 
(8.561) 

The vector ai denotes the spread of the Sfi ($J), 

2 2 T  54 l ’ l a$D .  

I  

(8.562) 

The (T; denotes the power in each Sfi (Q), 

02 02 . . . ,2 1 
T 

fl f2 fD ’ 
(8.563) 

Assuming 0: is unknown, we have a (30f 1) parameter estimation problem. 
To evaluate the CRB, we write the information matrix in a partitioned 

form 

J+ Q 
I 

0 0: 
J 

+ 0 
02 : J+ 02 : J+ ,2 - 

----..---^--(-------- ?tk’----- O~~s_~~ ----- YJ!L 
I 
I 
I I . 

J q$Jo / J apT$ i J ap; ; J o2 o2 + w  
----- ---- 

J 
-,-------------------------------- - I - I 

I  * 

J gzq, / J a@$ i J a;a: / J a;cJ; ------^----(-------- ----------------------- 
I  

I  

I  

J +/Jo ; J,$,$ ; J+T; [ Jo-$,$ s 
where each term is given by (8.35), 

J 
I 

dS a!3 
ij = tr -X-S,lLS;l 

de 
, 

i de j 1 

7 (8.564) 

(8.565) 

where 8i denotes the appropriate parameter. To evaluate (8.564), we utilize 
(8.553) or (8.556) in (8.560) and calculate the derivatives in (8.565). 
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We consider two simple examples to illustrate the technique. 

Example 8.9.3 (continuation) 
Consider a standard lo-element linear array. There is a single spread signal impinging 

on the array. The spectral matrix is given by (8.556). We first consider the case in which 
(T$,, a& and 0: are known. This result provides a bound on more realistic models. In this 
case, J is a scalar. To evaluate it, we differentiate (8.556). The result is 

(8.566) 

We substitute (8.566) and the inverse of (8.556) into (8.565) to obtain J+O+O. Then, 
the CRB($o) is the reciprocal of it. We plot the normalized bound in Figure 8.41 for 
various values of 

6.L = o&L (8.567) 

We also show the conventional CRB (a, = 0). We see that the bound increases significantly 
as oU increases. 

The next step is to consider the case when a$,, a:, and ai are unknown. 
The resulting cross-matrices are all zero, so the bound in Example 8.9.3 also 
applies to this case. 

We next consider the case of two spatially spread signals. 
Example 8.9.4 (continuation) 

Consider the case in which there are two uncorrelated spread signals impinging on a 
standard lo-element linear array. We use the signal model in (8.555) for each signal. For 
the case of known signal and noise power, there are four parameters to estimate: q&l, q&2, 
&, and az2. If  the signal powers and noise power are unknown, then there are three 
additional parameters: ~7~) &, and a$ 

We assume that the &2 = -$,I and that A$ = A$JR. We also assume that a$2 = a&. 
In Figure 8.42, we plot the bound on UCJT[$J~~] versus ASNR for various a,~,1 for the four 
parameter case. In Figure 8.43, we plot the bound on var[~L~1] for the seven-parameter 
case. 

The parameters are coupled so the CRB for the seven parameter case is higher than 
in the four-parameter case. 

In order to find the ML estimate, we must conduct a search over the 
parameter space. 

Using (8.13), we can write the In likelihood function as 

L (Q*, OS, +7;) = ---IT {In ISXI + trY [sx’cx]} 7 (8.568) 

where 2cI0, q, f 2 o2 are D x 1 vectors containing the parameters of each of the 
D spread signals. 

Then, 
h 

8 ml = arg min In 
8 1 

where 8 is a (30 + 1) x 1 parameter vector. 

S,I + tr [S;‘Cx]} ) (8.569) 
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Figure 8.41 Normalized CRB on $J for single spread signal versus ASNR: 
N = 10, K = 100, Qs = 0: (a) values of aU from low4 to 0.1; (b) values of oU 
for 0.2 to 0.5. 



1060 8.9 Spatially Spread Signals 

I I I 

. : . . . . . .:. . . . . . . . : . . . . . ..I ‘-‘-‘- 
‘\ 0.05 . 

:_ 
. . . . . 0.1 

* - -* conv-CRB 

-10 

Figure 8.42 Normalized CRB on q!~,~ and &a for two spatially spread signals: 
N = 10, K = lOO,&, = 0.5A~, $++a = -0.5A~, o$, and a& are unknown, 

2 afl, LT~~, and ai are known. 

30- .. ,:, ; *. :.. . . .; . . . . 

\ .. . . . . . 
. : :: .::. . . . .:. . . . .;. . . . . . . 

- '\ : . . 

‘*,\ - - - . - - - - -  

-  I  

10 
ASNR (d:; 

30 50 

Figure 8.43 Normalized CRB on qcI and Qc2 for two spatially spread signals: 
N = 10, K = 100, ‘lclcl = 0.5AR, $+, = -0.5A~, all seven parameters are 
unknown. 



Parameterized S(0,q!1) 1061 

1 I  I  I  I  I  I  

. . . . . . . . . . . . . . 

X X conv- yfO . . . -. 
CRB- -. 

y! -: 

-4o- ...,..,.. ,.. . . ,. cRBwaw ..‘.,. “” “.. .i” . .._._.. &,<:- 
. 

.-.-._ conv-CR6 

-50 ' I I 1 I 

-20 -10 0 10 (cl:; 30 40 50 
AS/W 

Figure 8.44 ML estimator of $0 and a~: N = 10, K = 100, $0 = 0.0433x, 

ati = 0.27r, a: and a$ known; normalized RMSE versus ASNR. 

In order to keep the computations manageable we consider the case of a 
single signal with $0 and oU unknown, but where 07 and a$ are known. 

Example 8.9.5 (continuation, Example 89.3) 

Consider a single spatially spread signal impinging on a standard lo-element linear 
array. The signal component of the spatial spectral matrix is given by (8.556). We assume 
that OFand ai are known and find the ML estimate of $0 and a+ 

The normalized RMSE is plotted versus ASNR in Figure 8.44. We also plot the CRB, 
the normalized RMSE of the conventional ML algorithm (assumes a plane-wave signal), 
and the conventional CRB. 

We see that RMSE of both estimates, $0 and o$,, coincide with the CRB above ASNR 
- 5 dB. This threshold is about 7 dB above the single plane-wave case in Figure 8.17. We - 

see that the conventional ML estimator is not effective. 

For multiple signals, the computational complexity makes ML impracti- 
cal. In Chapter 9, we develop simpler estimation algorithms. Some of these 
algorithms can be modified to accommodate this spatially spread model, but 
we will not discuss the necessary modifications in the text. 
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8.9.2 Spatial ARMA Process 

If we restrict our attention to an SLA, then we can model a spatially spread 
signal as an auto-regressive (AR) process and the total input including the 
white noise component can be modeled as an ARMA process. 

We developed models for these processes in Section 5.7. We can estimate 
the parameters of the spread signal using various techniques. This approach 
is referred to in the literature as parametric spectral estimation and has been 
widely studied and applied. Our model is the spatial version, but the results 
carry over directly. We refer the reader to several references for a complete 
discussion. 

The article by Kay and Marple [KM811 followed by their comprehensive 
books, Kay [Kay881 and Marple [Mar87], contains a discussion of ARMA 
processes. The book by Stoica and Moses [SM97] discusses ARMA mod- 
els and the associated CRBs. There is a sequence of papers that compute 
CRBs for AR or ARMA models (cf. Friedlander and Porat [FP89], Anderson 
[And’ll], Porat and Friedlander [PF86], and Friedlander [Fri84]). 

8.9.3 Summary 

In this section we have introduced the problem of estimating the parameters 
of a spatially spread signal. The CRBs quantify the potential performance 
degradation caused by the spreading. The ML estimators approach the CRB 
in simple cases, but are computationally prohibitive in the multiple-signal 
environment. 

In the single spread signal example, we saw that the conventional ML 
estimators that ignored the spreading did not perform well. The same result 
is true for the multiple-signal environment. 

8.10 Beamspace algorithms 

8.10.1 Introduction 

In Sections 6.9 and 7.10, we saw the advantages of beamspace processing in 
the context of adaptive beamforming. In this section, we show its application 
in the parameter estimation problem. 

A number of authors have discussed the advantages of beamspace pro- 
cessing for parameter estimation. References include Bienvenu and Kopp 
[BK84], Gray [Gra82], Forster and Vezzosi [FV87], Van Veen and Williams 
[VVW88a], [VVWSSb], L ee and Wengrovitz [LW88], [LW90], Buckley and 
Xu [XB88], [XBSS], [BX90], and Zoltowski [Zo188]. 
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Figure 8.45 Beamspace processing. 

The beamspace model was shown in Figure 6.81 and is repeated in Figure 
8.45 for convenience. The output of the beamspace matrix is, 

xbs =BgX, (8.570) 

where BE is an NbS X N matrix. We process xbS to estimate the parameters 
of i nterest. 

As in the beamformer problem, there are several advantages: 

(i) The dimension of the beamspace NbS is usually much smaller than N so 
the computational complexity is reduced and the statistical stability 
of the estimate of the spatial spectral matrix is improved. 

(ii) If there are strong interfering signals that are not in the same sector 
as the signals of interest, we may be able to null them out prior to 
implementing our parameter estimation algorithm. 

(iii) Most of our algorithms have assumed additional white Gaussian noise 
(or Gaussian noise with a known correlation function that we could 
pre-whiten). In Figure 8.46 we show a representative non-white spa- 
tial noise spectrum that we assume is unknown. We indicate how we 
have divided q-space into six sectors by using six parallel beamspace 
processors. In each of these sectors we can model the noise as white 
with an unknown variance and use the beamspace version of algorithms 
that we have developed. 

On the other hand, the disadvantage is that the performance of the algo- 
rithm after pre-processing may be poorer. If we choose Bbs improperly, then 
we may lose information that degrades the performance of the parameter es- 
timation algorithm. We would like to show that the output of the beamspace 
processor is a sufficient statistic for the estimation problem of interest. A 
simpler approach is to compare the beamspace CRB to the element-space 
CRB. We find that the CRB on the asymptotic variance of the beamspace 
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Figure 8.46 Beamspace processing for non-white spatial noise spectrum: six 
beam sectors. 

estimator is always greater than or equal to the CRB bound in element space. 
However, we find that, with an appropriate choice of Bbs, the probability of 
resolution can be improved. 

The model of interest is the familiar snapshot model, 

X(k) =VF(k)+N(k), k= 1,2,-,K, (8.571) 

where X(k) is an N x 1 vector, F(k) is the D x 1 signal in space vector, 
N(k) is an N x 1 white Gaussian noise vector, and V is the array manifold 
matrix, 

I I 
V - - 

[ Vl : v2 :  l l ’ :  VD ,  

I  

I  

(8.572) 

where 

Vn ’ V (Y&-J l 
(8.573) 

We use the Gaussian signal model. The signal vectors are independent sam- 
ples of the stationary zero-mean complex Gaussian random process with 
unknown spectral matrix Sf. The noise vectors are independent samples 
of a stationary zero-mean complex Gaussian random process with spectral 
matrix 0:; I where ai is unknown. 

The spectral matrix of the sampled input vector X(k) is 

s n E [X(k) XH(k)] x - 
= VSfVH +0;1, (8.574) 

where @1,$9,*** , $0, sf, and ai are unknown. 
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We define an Nbs x N matrix BE, which is used to pre-process the data, 

Xbs(k) = B:X(k). (8.575) 

We assume 

Nbs 5 N (8.576) 

(8.577) 

We also assume that the columns of B are orthonormal so that 

H 
B,, Bbs = I. (8.578) 

In some applications, we may start with a pre-processing matrix B,, that 
does not satisfy (8.578). We then construct Bbs using the transformation. 

Bbs = &IO ( BH no > 

- 
B no 

L 
2 (8.579) 

The choice of (B,H, Bno)-’ is available. One choice is the inverse of the 

Cholesky factorization of BFoBno. A second choice is the Cholesky factor- 
ization of the inverse of (B,H,Bno). We find that different choices may result 
in different performance. 

The spectral matrix of &s is 

%s 
H 

= B,,vsfV 
H 2 

Bbs + a,I. (8.580) 

We operate on &s to estimate the various parameters. 
In Section 8.10.2, we discuss various beamspace matrices. In Section 

8.10.3, we derive the beamspace CRB and derive conditions on Bbs under 
which the beamspace CRB is equal to the element-space CRB. In Section 
8.10.4, we derive the beamspace ML estimator and study its performance. 
In Section 8.10.5, we summarize our results. 

8.10.2 Beamspace Matrices 

In this section we discuss various beamspace matrices. We encountered most 
of these matrices in earlier discussions (e.g., Sections 3.10, 6.9, or 7.10), but 
we need to revisit them in the context of DOA estimation. For notational 
simplicity, we consider a standard linear array in the text. 
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8.10.2.1 Conventional beams (DFT) 

The most common beamspace matrix has rows that consist of conventional 
beams whose pointing directions are spaced at 27r/N intervals in q-space. 
In Figure 8.47, we show a 7-beam fan, and in Figure 8.48, we show a 6-beam 
tan. 

The rows of BE are given by 

H P 1 
1 

bsrn=ze 
j(Y)rnS[ 1 e-jmff . . . ,-j(N-l)m% 1, m E QhrbS, 

(8.581) 
where fiNbS is the set containing the values of m included in the beamspace. 

In most cases, it is convenient to denote the value of m corresponding to 
the beam closest to @ = -x as mL (the subscript “L” denotes left). Then, 
the range of m is mL < m < mL + NbS. If the beam sector is near 1c) = x - 
(endfire) then mL + NbS may exceed N and the beams wrap around. 

The beam formed by (8.581) corresponds to a conventional beam pointed 
at $J = 2rmjN. 

If the beamspace sector is centered at $J = 0 and NbS is odd, there is a 
center beam aimed at $J = 0. If the beamspace sector is centered at $J = 0 
and Nbs is even, then m in (8.581) is replaced by m’ = m - X/N and the 
indexing limits are modified. Then, the two inner beams are aimed at &X/N 
in Q-space. This beamspace matrix is referred to as the DFT beamformer in 
the signal processing literature. It is referred to as the Butler beamformer 
in the classic antenna literature. The mth beam in q-space is (2.127), 

mL<m<mL-j--Nbs. - - 

(8.582) 
The resulting beamspace array manifold vector is a real NbS x 1 vector, 

Vbs(‘+) = B$(+) = [bl(‘+) ” ’ bN,,(+)lT* (8.583) 

We also consider the case in which the conventional beams are placed 
closer together. In this case, they are not orthogonal. We write 

[ 1 bH j(n-i!$L #h.gL) zE$ 
no,i ) ‘I 7 n 

n = 0, 1, l . . , N - 1, 

i = 1,2, l l l ,  Nbs, (8.584) 

where 1 5 a 5 2. The beamspace matrix is orthogonalized using (8.579). 
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We can also use beams with lower sidelobes such as Dolph-Chebychev or 
Hamming. This type of beamspace matrix was discu.ssed in Section 3.10. 

8.10.2.2 Taylor series beamspace 

For the case of two plane-wave signals, we find that the beamspace matrix 
that provides good threshold performance is 

B no = [ v(@l> j vW2) j v($%-n) ] ) (8.585) 

where v(q&), i = I,2 is the steering vector corresponding to the true wavenum- 
bers, $1 and $2, of the two sources and $J~ = ($1 + &)/2 is the midpoint. 
However, we cannot construct the B,, in (8.585) because $q and $9 are the 
wavenumbers we are trying to estimate. 

However, we can approximate the matrix in (8.585) by using a Taylor 
series expansion of the array manifold vector. We can do an initial beamscan 
on the sensor output and determine the areas in u-space that appear to 
contain one or more signals. We denote the midpoint of one of these areas 
(the peak in the beamscan) as qrn and use a Taylor series expansion around 

+ . 
m- 

V(Qi> = V(qm) + V”‘($m) (tii - 4m) 

(Tk - 4rnj2 
+Vc2)($m) 3l + v’3’(72,) 

($% -  1L,J3 + 

qj l l l 9 

0; 

(8.586) 

where i = 1,2, l l l , m and 

~=&rl ’ 
(8.587) 

is the kth derivative of the array manifold with respect to q!~ evaluated at 
$J = +m. Then, 

B no = 
[ v(lZm) i v’l’(?Jm) i &‘(qJm) i . . . i 

. I ( v’“‘@m) ] 7 (8.588) 

and 

Bbs = &o [B:~ B,,] -’ . (8.589) 

We consider an example to illustrate the behavior of this beamspace 
processor. 
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Figure 8.49 Beam patterns for Taylor series beamspace matrix, N = 10, 
Nbs = 3. 

Example 8.10.1 

Consider a standard lo-element linear array. Assume that the beamspace is centered 
at qrn = 0. If  we use a 3-D beamspace, then B 72o is a 10 x 3 matrix with a Vandermonde 
row structure 

B no = 

-1 0 0 
1 

j 
0 * 2 

. . . . . . 
i (ij) (?2jj2 
. . . . . 

m i (9-j) (91)2 

(8.590) 

We compute Bbs using (8.589) and plot the corresponding beam patterns in Figure 8.49. 

8.10.2.3 Discrete prolate spheroidal sequences (DPSS beamspace) 

We have encountered DPSS in Section 3.1 (3.25)-(3.35). The application to 
beamspace processing is due to Forster and Vezzosi [FV87]. 

We define bi, i = 1,2, l 0 l , M to be the columns of the beamforming 
matrix Bbs. We require the columns to be orthonormal. Then, as in (3.26), 
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Nbs = 3. 

we define 

(8.591) 

which is the ratio of the energy of the ith beam in [---~&JO] to the energy 
of the ith beam in [-‘rr, ~1. The numerator is 

&N = biAbF, (8.592) 

where 

A 
n +O - - 

s 
vt+> vH ($4 dG* (8.593) 

-40 

For a linear array? the mn element is 

[Al 
2 sin [(m - n)] T/JO - 

mn - 
( 

m # n, 
m- 4 ’ 

(8.594) 

and 

[Al 
- 

mn - 2@0 7 m = n. (8.595) 

The denominator is 
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WD = 2nb” bi. 

Thus, 

1071 

(8.596) 

(8.597) 

We want to maximize ai,i = 1,2,**9, Nse subject to the orthonormality 
constraint. This corresponds to finding the eigenvectors of the matrix A, 
which corresponds to the M largest eigenvalues. Thus, we solve 

2dbi = Abi. (8.598) 

Using (8.594) in (8.598)) this corresponds to 

N sin(m - xt)$q) c 
( 

b 
4 n 

= rXb,, m = 1,2,.. 9, N. (8.599) 
n=l 

m- 

For each of the M largest eigenvalues, we obtain a sequence that defines the 
column vector bi. These sequences are called DPSSs and are discussed in 
detail by Slepian [Sle78]. 

The number of significant eigenvalues is 

N $0 
se = -N+l. 

7r 

The corresponding spheroidal functions are 

N 

G&,b) = ci x b;) ejtin, 
n=l 

(8.600) 

(8.601) 

and 

i 

1) i 
ci- , 

odd, 

J i even. 
(8.602) 

7 

The spheroidal functions are real functions that are doubly orthonormal, 

s vr Gi($) Gj($+W = &j, 
-7r 

(8.603) 

(8.604) 
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The spheroidal functions correspond to beam patterns in the following 
manner, 

N 

Bi($) = C bg’ ejqn. (8.605) 
n=l 

Thus, 

Gi($) = Ci Bi(+>- (8.606) 

The odd-numbered beams are real and symmetric and can be considered 
sum beams. The even-numbered beams are odd and asymmetric and can be 
considered difference beams. 

Thus, the beamspace processor determines $0 from prior knowledge of 
the target environment or by a preliminary processing with one of the simpler 
algorithms that are derived in Chapter 9. The value of $0 determines Nse 
from (8.600). We find the bi as the eigenvectors corresponding to the Nse 
largest eigenvalues of (8.598). We use these bi,i = 1,2, l *. , Nse, as the 
columns of B. In Figure 8.50, we plot the first three eigenbeams for uo = 0.2. 

We find that this spheroidal function decomposition is an effective beamspace 
matrix. 

8.10.2.4 Conjugate symmetric beamspace matrices 

In conjugate symmetric arrays we can use FB averaging of the data to es- 
timate S,. If, in addition, the columns in the Bbs matrix are conjugate 
symmetric or conjugate asymmetric, 

bbs,i = Jbgs,i, i = l,**‘,Nbs, (8.607) 

or can be made to satisfy by a suitable choice of the origin, additional com- 
putational simplications occurs. 

When (8.607) is satisfied and we use FB averaging of the data, the sub- 
sequent processing can be done using real matrices. Alternatively, we can 
process the data without FB averaging and use the real part of the resulting 
matrix and achieve the same result. Utilizing real computations provides sig- 
nificant computational saving (e.g., Linebarger et al. [LDD94] and Zoltowski 
et al. [ZKS93]). 

Note that we can use FB averaging even if (8.607) is not satisfied. How- 
ever, we need to use complex processing in beamspace. 
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8.10.3 Beamspace Cram&-Rao Bound 

8.10.3.1 Introduction 

As in the element-space algorithms, we can analyze the behavior by finding 
the probability of resolution, the bias, and the variance. In this section, we 
develop the beamspace CRB and compare them the element-space CRB. 

From our earlier discussions, we know that we can find algorithms (e.g., 
the unconditional ML estimate) that will approach the bounds. Thus, the 
ratio of the beamspace CRB to the element-space CRB will indicate the 
potential increase in variance by operating in beamspace. There will be an 
additional increase in variance if we use an algorithm that does not approach 
the CRB. 

In Section 8.4, we developed the CRB for the element-space model. We 
now want to develop the CRB for the beamspace model and develop neces- 
sary and sufficient conditions on B in order for the two bounds to be equal. 
Our discussion follows Weiss and Friedlander [WF94].27 We consider the 
stochastic signal model. The deterministic signal model is also discussed in 
[WF94]. We then explore the behavior of beamspace CRB for the various 
pre-processing matrices in Section 810.2. 

The model of interest is given by (8.571)-(8.580) in Section 8.10.1. We 
first define the following projection matrices, 

and 

The beamspace steering vectors are 

Pv 2 v (VW)-l VH, 

P$I-Pv. 

(8.608) 

(8.609) 

VB 
H = Bbsv. (8.610) 

Then. 

and 

PVB = BE v [VH PB v] -I VH Bbs, (8.611) 

-L 
pvB &I-Pv,. (8.612) 

The last projection matrix is, 

PB fi Bbs BE, (8.613) 

27An earlier discussion of beamspace pre-processing matrices is contained in Anderson 
[And911 (see [AndSl], [And93], and [AN95]). 
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and Bbs satisfies (8.578). 
The CRB for the Gaussian signal model was given in Section 8.4.2.1 (see 

(8.95)). 

cCR(+) = 2 {h [ (D~P+D) o (s~v”S;‘VS~)~]}~~. (8.614) 

The output of the beamspace matrix, Xbs(k$, k = 1,2, l l . , K satisfies 
the same conditions as the original data sequence. The beamspace spectral 
matrix is 

S H 
Xbs = B&Bb, = BgVSfV Bbs + 0;1. (8.615) 

The beamspace noise is white due to (8.578). 
Thus the bound for beamspace estimation is, 

(8.616) 

Note that this bound corresponds to the general CRB and includes un- 
correlated signals as a special case. If we know a priori that the signals are 
uncorrelat.ed, we would adapt the bound in Section 8.4.2. 

8.10.3.2 Beamspace matrix conditions 

We now want to find conditions on Bbs such that CC&+) = Cc&!+ 
Weiss and Friedlander [WF94] derive the following result; 

Assuming the Sf is positive definite, then28 

cCR($') 5 CCR,bs(?@, (8.617) 

with equality if and only if 

PBV = v, (8.618) 

and 
-L _L PBPVD = PVD. (8.619) 

The first condition (8.618) implies that we point the beams at the sources. 
The second condition implies that the column space of Bbs includes the 
projection of d,, rz = 1,2,. l l , D on the noise subspace PG. If Bbs spans 

28Recall that1 the matrix inequality means that Cc~,&b) - Cc&b) is a non-negative 
definite matrix. 
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both V and D, it will span the required projections. One approach is to 
have D columns of Bbs corresponding to the signal steering vectors, 

b i = v(&), i = 1,2,. l l , D, (8.620) 

and D columns corresponding to the derivatives of the steering vectors, 

bi = d($+i = D + l,..., 20. (8.621) 

A second approach is to approximate the derivatives by differences. This 
also requires two beams for each source. For example, if there is a source at 
qn, we point one beam at tin and a second beam at 4n + 6, where 6 is small 
enough that 

1 

d nN 3 [v (+n + 4 - v ($+J (8.622) 

The obvious practical problem with this result is that we are trying to 
estimate the source locations, so that we cannot point the beams exactly at 
the sources. Two solutions appear logical. 

If we have some prior knowledge of the signal DOAs and they are closely 
spaced, one of the Bbs matrices described in Section 8.10.2 may be an ade- 
quate approximation. We investigate the behavior for several cases in sub- 
sequent examples. 

If the performance using this technique is not adequate, we can develop 
a simple iterative scheme to obtain the required beamspace matrix. 

We first consider some beamspace matrices that are similar to (8.620) 
and then examine the family of beamspace matrices that are most commonly 
used in practice. 

The first example uses the clairvoyant beamspace matrix from (8.585). 

Example 8.10.2 
Consider a standard lo-element linear array. We first consider the clairvoyant beam- 

space matrix from (8.585). W e consider two equal-power uncorrelated sources with SNR = 
10 dB and use K = 100 snapshots. 

We define 

and 

Bno 52 [ ~($1) i ~($2) [ v(+m> ] 1 (8.623) 

Bbs = B,, (BfoBno)-’ . (8.624) 

In Figure 8.51, we show the beamspace CRB using (8.624) in (8.616) and the element- 
space CRB. We see that, if the signal separation is less than O.~BWNN(AU < 0.28) that 

- the beamspace matrix given by (8.624) does not increase the CRB. 

Example 8.10.3 (continuation) 
Consider the same model as in Example 8.10.2. 



1076 8.10 Beamspace algorithms 
1 

70 I I 1 I 1 I I 1 1 

60- 

50- 

- 40- 
3 3 

9 e30- . . 

m  

5 20- 

P - 
,o lo- 

I 
o- I: 

-lO- 

-20 /' 

-30 
0 

I 1 f’ 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

DOA separation (Au) 

Figure 8.51 Normalized CRB for beamspace processing using clairvoyant 
beamspace matrix: N = 10, Nbs = 3, K = 100, SNR = 20 dB; element-space 
CRB shown as reference. 

We next define an approximation to the B,, in (8.623) by the first three terms 

Bno 2 [ v(&-J i i&s,) ; i;(&) ] . (8.625) 

Two cases are considered. In case 1, Grn = q!~~. In case 2, Grn = $1 
We substitute (8.625) into (8.624) to obtain Bbs. The results from (8.616) are shown 

in Figure 8.52. 
We see that the beamspace CRB coincides with the element-space CRB for Au < 0.20 - 

and is only slightly above it for Au 5 0.30. 

Example 8.10.4 (continuation) 
We consider the same model as in Example 8.10.2. We use B,, as given by (8.588) 

which we repeat, 

Bno = [  v($+,) i v(~)(+~) i d2$,bo) I  l l l ;  +-+(qo) ]  ,  
(8.626) 

We utilize Bbs as given by (8.589) and evaluate the beamspace CRB as a function of m. 
The results are shown in Figure 8.53. Note that NbS = m + 1, so there are m + 1 beams. 

As we would expect, as m increases the beamspace CRB matches the 
element-space CRB for larger Au. For m = 5, there is negligible difference 
for Au = 1. Note, however, that this requires six beams from the lo-element 
array. 
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Figure 8.52 Normalized beamspace CRB versus Au using a Taylor series 
beamspace matrix: N = 10, Nbs = 3, SNR = 10 dB, K = 100. 

We next consider a beamspace matrix using the discrete prolate spheroidal 
sequences. 
Example 8.10.5 

We consider the same model as in Example 810.2. We utilize the DPSS functions 
derived in Section 8.10.2.1 to construct the beamspace matrix. We denote the width of 
the sector by 2Qe. The B no matrix is given by (8.599). In Figure 8.54, we use three 
beams and plot the beamspace CRB versus source separation for various values of 2~0. 
For Au < 0.3, the bounds are close to the element-space CRB for all of the four cases. In - 
Figure 8.55, we use four beams. For Nbs = 4, the beamspace CRB remains close to the 
element-space CRB for Au 2 0.5. In Figure 8.56, we increase Nbs as 27~0 increases. In 
this case the bounds remain close out to Au = 1.0. 

8.10.3.3 DFT beamspace matrices 

In most applications utilizing beamspace processing the beamspace matrix 
consists of conventional beams whose pointing directions are spaced by 2/N 
in u-space. It is referred to as the DFT beamspace. In this section we 
consider this model and a variation of it. We compute the beamspace CRB 
for two examples. 

Example 8.10.6 
Consider a standard 32-element linear array and a Nbs x N DFT beamspace matrix. 
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m: Taylor series beamspace matrix, N = 10, Nbs = m + 1, SNR = 10 dB, 
K = 100. 

0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

Figure 8.54 Normalized beamspace CRB using DPSS function beamspace 
matrix: N = 10, Nbs = 3, SNR = 10 dB, II = 100. 
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for DFT beamspace matrix: N = 32, NbS = 3, two plane-wave signals at 
f&~/2: (a) Au = Nbs/N; (b) &.L = aNb,/N. 

There are two equal-power uncorrelated plane-wave signals impinging of the array from 
u = k&~/2. We plot the CRB versus ASNR for various Au. We also plot the element- 
space CRB for comparison. In Figure 8.57, Nbs = 3. In Figure 8.58, Nbs = 5. 

In both cases, the beamspace CRB and the element-space CRB are almost equal for 
AU = NbJN. This spacing is well inside the beamspace sector. At Au = 2Nbs /N, the 
signals are on the sidelobes of the outer beams and the Cramer-Rao differ by almost 10 
dB. 

Example 8.10.7 (continuation) 
Consider the same 32-element standard linear array as in Example 810.6. We use 

Dolph-Chebychev (-40 dB SLL) beamformer spaced at 2/N, for the rows in a 5 x 32 
beamspace matrix. The motivation for this choice is to decrease the effect of any high- 
power out-of-sector interferers. 

In Figure 8.59, we plot the beamspace CRB versus ASNR. We see that the beamspace 
CRB and the element-space CRB are essentially the same as in Example 8.10.6. 

8.10.3.4 Summary 

We see that, by suitably choosing the beamspace matrix, we can obtain a 
beamspace CRB that is very close to the element-space CRB for signals that 
are well inside the beamspace sector. 
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Figure 8.58 Normalized beamspace and element-space CRBs versus ASNR 
for DFT beamspace matrix: N = 32, Nbs = 5, two plane-wave signals at 
f&~/2: (a) Au = Nbs/N; (b) Au = 2Nb,/N. 

8.10.4 Beamspace Maximum Likelihood 

In this section, we derive the beamspace maximum likelihood estimator. 
We restrict our attention to the beamspace version of the CML estimator 
discussed in Section 8.5.2. 

Using the model in Section 8.5.2 ((8.332)-(8.353)), the likelihood function 
can be written as, 

&-&brF)= -E(& lnaz - -$ 2 Ix,,(k) - Vbs(ti)Fk12, (806~~) 

w k=l 

where 
Vbs(+) = [ vbs(h) ‘*’ vbs(‘+D) ] 7 (8.628) 

and 

Vbs(‘$‘) = BEv(q). (8.629) 

Then, proceeding as in Section 8.5.2, we obtain 

h 

@ cm1 ,bs , (8.630) 
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for Dolph-Chebychev beamspace matrix: N = 32, Nbs = 5, two plane-wave 
signals at f&/2: (a) Au = NbJN; (b) Au = 2NbJN. 

where 

and 

cx,s = (8.632) 

In Section 8.7, we saw that from a computational point of view, the IQML 
and IMODE algorithms were attractive in estimating direction of arrivals in 
the element space. In beamspace processing, Zoltowski and Lee proposed 
2-D beamspace domain ML (BDML) and 3-D BDML [ZL91] schemes for 
estimating the DOAs in the cases of a single signal and the two signals, 
respectively. These two schemes are computationally simple. Both of them 
use DFT beamspace matrices, and choose the number of beams to be the 
number of impinging signals plus one. 

Zoltowski also presented an IQML algorithm in which the beamspace 
transformation is based on subspace processing [Zo188]. 

Tian and Van Trees [TVTOO] have derived a beamspace IQML estimator 
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using DFT matrix beamformers. It utilizes several key results from Zoltowski 
et al. [ZKS93]. We summarize the derivation in [TVTOO]. 

In the IQML algorithm, the spatial characteristics of the signal compo- 
nents is parameterized by a coefficient vector b = [bo l l l bg]T. The vector b 
is defined such that the polynomial 

b(z) = boP + blxD-l + l l ’ + b, (8.633) 

has D roots at xi = eJrui, i = 1,. l . , D. The ML estimate of ui, i = 1, l l l , D, 
can be obtained from the ML estimate of b. 

In order to extend the element-space IQML algorithm to the beamspace 
domain, it is necessary to find a linear parameterization of the null space of 
Vbs. This is equivalent to finding a full-rank matrix B(b) such that 

C {B) Vbs = 0. (8.634) 

The operator L(a) represents a linear transform operation, and B is a Nbs x 

w bs - 0) Toeplitz matrix given by 

bD l l l b() 0 0 

BH 
. . . - 0 . . . - . . . 0 

0 0 bD l * l b() 

(8.635) 

Polynomial parameterization by (8.634) is not always possible for any 
beamforming transformation. In element space, the linear parameteriza- 
tion of the noise space is made possible by the Vandermonde property of 
the element-space array response matrix. The Vandermonde structure of 
the array manifold may not be preserved after beamspace transformation. 
A crucial step in developing the BS-IMQL algorithm is to find the linear 
parameterization formula L{ B}. 

We use the DFT beamforming matrix in (8.581). Due to the common 
out-of-band nulls in DFT beams, a DFT beamforming matrix can be trans- 
formed into a banded Toeplitz matrix [ZKS93]. This transformation pre- 
serves the Vandermonde property of the beamspace array manifold and en- 
ables the polynomial parameterization in the beamspace. The beamspace 
matrix consisting of Nbs DFT beamformers can be rewritten as an N x Nbs 
matrix2’ 

vv = j$vv(~;) l l l vjv((m + Nbs -  l ) ; ) ] ,  (8.636) 

2gWe have replaced Bbs with W to avoid confusion with the B matrix in (8.635). 
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where the integer number m should be properly chosen so that the Nbs beams 
cover most of the signal energy, and 

vN(ui) = [e-jPf-92~d% . . . ej(~12~dUi]T, (8.637) 

where ZL~ is the ith direction of arrival in u-space, and d is the element spacing 
measured in wavelengths. 

It has been shown ([ZKS93]) that W can be factored as 

W=CQ, (8.638) 

where Q is a Nbs x Nbs full-rank matrix and C is a N x Nbs banded Toeplitz 
matrix 

0 

CO 

CN-Nbs-1 

CN-Nbs 

CN 

0 

CO 

Cl 

‘--No 

(8.639) 

The vector c is an (N - Nbs + 1) x 1 vector whose elements are the first 
(N - Nbs + 1) elements in the first column of C. 

The following equality holds by arithmetic manipulations [ZKS93]: 

H 
c vN(u> = a(u)vlv,, (u), (8.640) 

where VNb,(u) is defined by (8.637) with N replaced by Nbs. Note that 

N- Nbs 

44 
- - 

c 
&( -!!!++i)2adu 

2 = cHvN-Nbs+l(U) (8.641) 
i=o 

is a scalar, which does not affect the structure in vNbs (u). The property in 
(8.640) is critical to the applicability of IQML in beamspace. 

It follows from (8.633) that 

-!%g 
BH~~Jui) = zi 

.O i 
. . 
LD-1 1 b(Zi) = 0, .pbs 

i 

(8.642) 
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for i = l,*=e , D. Now, define a Nbs x (Nbs - 0) matrix F = Q-lB. From 
(8.638), (8*640): and (8.642), we have 

FHvb,(ui) = BHQ-HWH~N(~i) = BHCHvN(ui) 

= a(ui)BHVNb,(Ui) = 0, i = 1, l . l , D. (8.643) 

Since F has rank Nbs - D, its columns span the orthogonal complement to 
the signal subspace, that is, 

Pl - 
vbs - PF, (8.644) 

where PF = F(FHF)-lFH. Therefore, we have 

C(B) = FH = BHQ-H. (8.645) 

The CML estimate is given in the beamspace by 

fi = arg min tr P 
U 

{ t,, (4 s,,} 

- - arg 2’; tr {pF(b)%s} 7 (8.646) 
U 

where & is the beamspace spatial spectral matrix. 
Define SQ = Q-H$&sQ-l. We have 

tr{pF%s} = tr { F(FHF)-lFH!SbS} (8.647) 

= tr { Q-lB(FHF)-lBHQ-H$bS) 

= tr {B(FHF)-lBHSQ} . 

(8.648) 

(8.649) 

Minimization of the objective function in (8.649) can be readily solved 
by the IQML method discussed in Section 8.7.2.30 

We need to find Q-l in order to implement the IQML algorithm. The 
DFT beamforming matrix may be decomposed into the product of a banded 
Toeplitz matrix C and a full-rank matrix Q (8.638). Only the inverse of the 
matrix Q needs to be computed for the IQML procedure. Zoltowski et al. 
[ZKS93] provide a closed-form expression for Q without forming C. Here 
we briefly explain an intuitive way to compute the matrix C, and give an 
simple expression to compute Q-l directly. 

The Nbs columns of W are part of the N x N DFT matrix. Due to 
the orthogonal properties of DFT beams, the other N - Nbs columns of the 

3oWe use IQML-QC. The QC descriptor is omitted for simplicity. 



1086 8.10 Beamspace algorithms 

N x N DFT matrix that are not contained in W are orthogonal to each of 
the NbS columns of W. Mathematically, 

w 
H 

V&I) = 0, (8.650) 

or 
QHCH~IV(21,) = 0, (8.651) 

for 2~~ E {(m + &) 6, l l . , (N + m - 1) $}. Define a polynomial 

44 = &-Nbsz 
N-Nb, 

+ l l l + c;x + co. (8.652) 

Equation (8.651) implies that c(z) has N - NbS roots at xn = exp{j7run}. 
Therefore, the coefficients of c(z) can be found by 

c* l ‘- cN-Nbs] H = poly{ e’nun}7 (8.653) 

where the operator poly{m} converts the roots to a polynomial. 
Once the matrix C is computed, the inverse of the matrix Q can be 

found by pre-multiplying both sides of (8.638) by WH: 

WHW = WHCQ = I. (8.654) 

Therefore, the inverse of Q is given by Q-l = WHC. 
We consider an example to illustrate the performance of beamspace 

IQML. 

Example 8.10.8 
Consider a SLA 32. There are two equal-power uncorrelated signals impinging on the 

array from &A$/2 where A$J = AY+!JR. The beamspace dimension, &s, equals 8 and is 
centered at $J = 0. We simulate beamspace IQML and element-space IQML for K = 100. 

In Figure 8.60(a), we plot the normalized RMSE versus ASNR for the two IQML 
algorithms. We also plot the element-space CRB and the beamspace CRB. In Figure 
8.60(b), we plot the probability of resolution versus ASNR. 

We see that both IQML algorithms approach their respective CRBs above threshold 
(the difference in the bounds is 0.61 dB). The probability of resolution performance is 
similar. The performance of ES-IQML below threshold is handicapped because we have 
not used the beam fan information. 

The lower computational complexity of BS-IQML compensates for the slightly larger 
RMSE. 

Other examples exhibit similar behavior. Beamspace IQML provides 
good performance with reasonable conputational complexity. In Chapter 9, 
we discuss two other beamspace estimation algorithms and compare their 
performance to the IQML algorithm. 
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Element-space Cramer-Rao bound 
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Figure 8.60 Beamspace and element-space IQML: N = 32, Nbs = 8, K = 
100, All, = A?jGf& p = 0, 500 trials: (a) RMSE versus SNR; (b) probability 
of resolution versus SNR. 
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8.10.5 Summary 

In this section, we have considered maximum likelihood estimation in beamspace. 
In most. cases, we can select a beamspace matrix such that the beamspace 
CR.13 is very close to the element-space CR,B. The beamspace maximum 
likelihood estimate approaches the beamspace CRB above threshold. The 
thresholds occur at about the same AS..Y as in element-space estimation. 

However the increase in t,he RMSE is not as sharp, because we have assumed 
that! the signals are inside the beam sector. 

For uniform linear arrays, the beamspace IQML algorithm provides excel- 

lent performance with reasonable computational complexity. Using a similar 
technique, a bcarnspace IMODE algorithm has been developed (see [TiaOl]). 
The performance for Example 8.108 is similar to IQML. 

8.11 Sensitivity, Robustness, and Calibration 

In our discussion of classical antenna processing and adaptive beamformers 
we saw the importance of array calibration in maintaining satisfactory per- 

formance. We would anticipate that the various high-resolution parameter 
estirnation algorithms that we have developed would exhibit varying degrees 
of sensit,ivity to the model assumptions about the environment. 

There are t,hree related problems of interest: 

(i) Sensitivity We implement one of the parameter estimation algorithms 
assuming a nominal array manifold and nominal noise model. We 
analyze (or simulate) the performance under the perturbed conditions 

( g e. . sensor position perturbations) and measure the degradation in 

performance. For the perturbation model that we utilize, we can bound 
the resulting performance with the hybrid CRB derived in Section 
8.4.1.3. 

(ii) Robustness We modify the parameter estimation algorithm to reduce 
the degradation due to the perturbations. We describe an algorithm 
as robust if it is reasonably insensitive to model perturbations. 

One approach to designing a robust algorithm is to jointly estimate 
the DOAs and the model parameters. In the context of robust beam- 
formers, we are not explicitly interested in the model parameters (they 

are “unwanted parameters”). We only estimate them to improve our 
DOA estimation performance. 
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There are other approaches to robustness that do not estimate the 
model parameters. 

(iii) Calibration In this problem we are explicitly interested in estimating 
the array parameters (e.g., sensor position, gain, and phase). This 
problem is referred to as the calibration problem. 

In some cases, we try to calibrate the array using signals with unknown 
DOAs. This technique is referred to as the blind calibration problem. 

A complete discussion of these three topics is beyond the scope of our 
discussion. We provide a brief introduction to the area and highlight the 
issues involved. We provide some references here and expand the reference 
list in Section 9.8. 

In Section 8.11.1, we review the models for the perturbations in the array 
parameters and the noise environment that we introduced in Section 6.6.3. 
In Section 8.11.2, we develop hybrid Cramer-Rao bounds for the joint esti- 
mation of the signal parameters and the array parameters. In Section 8.11.3, 
we analyze how the array perturbations affect the performance of some of 
the maximum likelihood estimators that we derived in this chapter. We find 
that the performance can decline significantly under certain scenarios. In 
Section 8.11.4, we consider a joint estimation approach in order to improve 
robustness. The array parameters are estimated as part of the algorithm, 
but the emphasis is on improving the DOA estimation performance. In Sec- 
tion 8.11.5, we briefly discuss the calibration problem. In Section 8.11.6, we 
summarize our results. 

8.11.1 Model Perturbations 

In this section, we develop several characterizations to describe perturbations 
in our nominal observation model. We first consider the case of perturbations 
in the array manifold matrix. The models consider perturbations in the gain 
and phase of the sensors and in the position of the array elements. 

The frequency-domain snapshot model can be written as 

X(k) = V(e,& p) F(k) + W(k), k = 1,2,. l . , K, (8.655) 

where F(k) is a D x 1 complex source signal with source spectral matrix 
Sf. The vect#or 8 and # represent the elevation and azimuth angles of the D 
plane-wave signals. The vector p is a real M x 1 vector that represents the 
perturbations in the array parameters. The additive white noise has spectral 
height 0:. 
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For notational simplicity, we will consider the case in which the array is 
in the x-y-plane, and the plane waves are arriving in the x - y plane so we 
are only estimating #. Then, (8.655) can be written as 

X(k) = V($, p) F(k) + W(k), k = 1,2, l l l ,  K, (8.656) 

where the ith element of 4 is the angle between the ith plane wave and the 
x-axis (see Figure 2.1). 

This model is the same model that has been used throughout the chapter 
except that V(@,p) is written as a function of 4 rather than $J. This 
change is made so that our results can be more easily compared to those in 
the literature. The two models can be related by (8.44)-(8.48). The array 
perturbation model in Section 6.3.3 is used with this change. 

8.11.2 Cram&-Rao Bounds 

In this section, we derive the Cramer-Rao bound on the variance of any 
unbiased estimator in the presence of array perturbations. 

When we derive the CRB we are implicitly assuming that we are jointly 
estimating all of the parameters in the model (+ and p). However, the 
resulting bound also applies to the case in which we only estimate 4 and 
treat p as an unwanted or nuisance parameter. Therefore, we can use it to 
bound the behavior of algorithms that assume some nominal array manifold 

matrix, w7 PO), in the presence of array perturbations. The CRB also 
bounds the behavior of autocalibration algorithms that jointly estimate 4 
and p. 

Our approach utilizes the hybrid Cramer-Rao bound which was derived in 
Section 8.2.3.3. This approach was first used in the array context to study the 
array shape calibration problem by Rockah and Schultheiss [RS87a]. This 
paper contains several useful results on array calibration and provides useful 
background reading. Subsequent work by Weiss and Friedlander ([WF89] 
and Appendix B of Chapter 10 of [HaySla]) d erived compact expressions for 
the CRB in the presence of position displacements and gain and phase errors. 
They consider the case in which the source spectral matrix Sf and the white 
noise level ai are known. Although this case is generally not applicable 
in practice, it bounds the unknown spectrum case and the resulting CRB 
enables us to identify some of the key issues in the calibration problem. 

In this section, we consider the more common case in which the spec- 
tral matrix Sf and the noise level are unknown. After deriving a general 
expression we focus our attention on position displacements. 



Cram&-Rao Rounds 1091 

8.11.2.1 Cram&-Rao bound: Unknown spectral matrix 

We consider the case in which there are D plane waves impinging on the 
array. The signals are sample functions from zero-mean Gaussian random 
processes with source spectral matrix Sf. The additive noise is white with 

2 spectral height ow. The parameters to be perturbed are denoted by p and 
are imbedded in the array manifold matrix V, which we denote by V($, p). 

From (8.656) 

xv4 = wP7 P> w  

We assume that Sf and ai are 
The total 

+W(k), k= 1,2;..,K. (8.657) 

unknown. 
t-0 I parameter vector or interest 

8 8 W - - [ I e 
9 

U 

e 
+ 

W= [ 1 P 

7 

is a (D + M) x 1 vector that represents the wanted parameters and 

8 I-L 
U- [ 1 a2 7 

W 

(8.658) 

(8.659) 

(8.660) 

is a (02 + 1) x 1 vector that represents the unwanted parameters. We first 
consider the Fisher information matrix associated with 8,. The vector 4 is 
a D x 1 vector corresponding to source DOAs in angle space. The parameter 
perturbation vector p is M-dimensional. For example, in the case of position 
perturbations, M = 2N: 

I 
T 

PYO Pm P,, l l l &N-l &N-l ’ (8.661) 

We assume that p is a real Gaussian random vector 

Pp(P) = 
1 1 

(2747 jnpp exp 
-$P - Po)TApl(P - PO) 

> 
) (8.662) 

where p. represents the nominal value of the parameter vector p. The Gaus- 
sian assumption is a good model for many applications. 
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The Fisher information matrix for a single observation is given by, 

JB(&) = JD(&) + JP(e,)= (8.663) 

The data matrix JD is partitioned as, 

. (8.664) 

The prior matrix Jp is given by (8.59) as a 
0 I I 0 -----c------- 

Jp(e,) = : [ 1 0 t -1 ’ 
* Ap 

because @ is an unknown nonrandom vector. 
To evaluate the terms in Jo(e,), we use 

(8.665) 

[JPPI E 
a2 lnp,(x(e) -- 

ij - X, e &At +j 

[ 1 J 
a2 lnPx(xp) 

dw 
- -- E ij X, e 

[ @i +j 
We can use (8.35) to obtain 

f r 

(8.666) 

7 i,j = 1,-m,M. (8.667) 

i = 1,2,-s l , D 
7 l 

J 

- - 12 M 
(8.668) 

7 1*-‘) l 

[J 1 PP ij 

(8.669) 

(8.670) 

and a similar relationship for the cross-term matrices. Note that, although 
an expectation over 0 is indicated, the only random component is p so it is 
really an expectation over p. 

The expectation over 8 is difficult to evaluate so we introduce an approxi- 
mation that was originally proposed by Rockah and Schultheiss [RS87a]. We 
assume that the traces in (8.669) and (8.670) are reasonably smooth in the 
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vicinity of the nominal value of p = p. and if the variances of the array 

perturbations are small, then we can approximate (8.669) and (8.670) by 

and 

[ 1 J PP ij s tr 

(8.671) 

(8.672) 

(8.673) 

The Fisher information matrix for the total vector 0 can be written as 

J (9) = J(e,, 0,) = [“u1”-’ 8 (8.674) 

where the XT Y, and Z matrices correspond to the appropriate J matrices. 
Then, the upper left (D + AI) x (D + AI) matrix in J&8) is, 

JB(&) = J,(e,) + JP(~w>, (8.675) 

and is given by (8.664) and (8.665). 
We are interested in the CRB on 8,. Thus, we write, 

J-l(e) = [[ Jd$) ;] + [ ‘pr,l’ ;I]-’ 

- [J&e,) + XZwlY + Jp(e,)l-’ X’ - 
Y I Z 1 I  l 

(8.676) 

We observe that the first two terms in the matrix in the upper left corner 
correspond to the matrix in the upper left corner of (8.94). Thus, the hybrid 
CRB for the 0, block of the hybrid CRB is given by (8.99): 

= [$ke [tr [ [DrP$Di] [S#%;‘VSf]]] + J,(e,,)]-’ , 
W 

(8.677) 
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where Jp(&,) is given by (8.665) .31 

‘I’hc matrix Di is 
component matrices, 

The left matrix is an 

a, N x (D + M) matrix that can be divided into two 

Di = [D4i DpJ . (8.678) 

N x D matrix, 

Dtii = T& [W,P)llp=p,, i= 17%--a (8.679) 
i 

and we have used the same smoothness assumption as in (8.671)-(8.673). 
The right matrix is an N x 111 matrix, 

D PL = Y$ [V(h P)llp=p, 7 i 
i 

where M is the number of parameters 
(8.677) with tIhe definitions in (8.679) 
place for numerical evaluation. 

= D+l,-,D+M, (8.680) 

that are perturbed. The formula in 

and (8.680) is an adequate starting 

Once the specific parameterization is specified, the expression can be 
evaluated. We consider the case in which the sensor positions are displaced. 

WC assume that each perturbation parameter is associated with a single 
sensor. 

WC define 

D 
4 [ 

n e $-& . . . &], - (8.681) 

and 

2:. ;;a , , , ‘%,. 
T  

dP I 
7 

x0 xl XC-1 

where Vk,. denotes the kth row of the array manifold matrix V.32 
We can a,lso write D, as, 

N-l 

D X- x 
dV 

% 
. 

n=O Xn 

Similarly, we can define 

tv;- “a”;- , , , %,. 
T  

. 
PYO PYl dP YN-1 I 

(8.682) 

(8.683) 

(8.684) 

“Y’he result in (8.677) is due to Wahlberg et al. [WOV91]. 
“2This result is also in [WOV91]. 
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We also define33 

c 5 SfVHS,WSf. 

Then, (8.677) reduces to 

xRe 

(8.685) 

DtiPLD 0 CT 
ev4 ------ ------------------ 

i D;P+o(D,C)~ i D$P+Q(D,C)~ - 
~------------------------------ ------------------- I I 

(I&x) o (D$P+)T i ( D,CD,H) @ (P$ i (D,JDy”) @ (P:)’ 
-..-----*------ -- -e-e ---q-e ------------------------------ ------------------ 

( D,CD,H 0 (P# i (D,ED,H 

0 ------- 

1 
0:A;‘: 0 . 

----C------r-,..-----. 
I  

I  

I  

0 I  I  
-  

I  0 
A 

'A l I  

The result in (8.686) assumes that all pzn and pyn are perturbed. In Example 
8.11.2, we indicate how to modify the formula when some pXn and p,, are 
not perturbed. 

We observe that the matrix in the upper right corner is identical to 
the result in (8.98). 34 It represents the CRB on 4 in the absence of array 
errors. To find the impact of the array perturbations on the DOA estimation 
accuracy bound, we partition the right side of (8.686) as, 

[cH(J@)]-l = (8.687) 

where F and G are the partitions of (8.686). Using the formula for the 
inverse of a partitioned matrix gives 

33This C is different from the C in (8.103). 
34The bound in in (8.98) is in wavenumber space ($J) . Here, the bound is in angle space. 
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The second term in (8.688) represents the increase in the DOA estimation 
bound due to array perturbations. Note that it is a bound on the covari- 
ante mat!rix of any unbiased estimate of 4. In addition, recall that it is an 

approximation to the bound because of (8.671), (8.672), and (8.673). 
In a similar manner we can obtain a bound on the mean-square calibra- 

tion error. 
The result in (8.686) can be extended to the case in which35 

[ 1 
T 

P= 90 91 l l -  m-1 yo y1 l ” TN-1 . (8.689) 

A key question that was first investigated by Rockah and Schultheiss 
[RS87a] is what conditions are required on the array geometry such that the 
second term in (8.688) will go to zero as the SNR goes to infinity. 

Rockah and Schultheiss [RS87a] investigated array geometrv conditions ” 
under which the variance and mean-square error would approach zero as 
the SNR approached infinity. . 36 They assume that there are no signals with 
known directions. This is sometimes referred to as the blind calibration 
problem. They found that: 

(i) If the location of one sensor and the direction to a second sensor is 
known, then, except for some pathological array configurations, three 

sources were adequate to guarantee that the bound would approach 
zero as the SNR approaches infinity. 

(ii) The most conspicuous example of a pathological geometry is a linear 
array. Thus, the nominal array configuration must be nonlinear in 
order for the second term to approach zero. This result arises from the 
inability of the calibration procedure to estimate displacements along 
the axis 

to equal 

We now consider two examples to illustrate typical behavior. The first 

of a linear 
zero, then 

array. If we can impose constraints to force 

the result changes. 
APX, 

example is a linear array, and we will see the result of the observation in (ii). 

Example 8.11.1 
Consider the model in which the nominal array is a standard lo-element linear array 

along the z-axis. 
The sensor patterns are isotropic. We assume there are two plane-wave sources located 

at I/IA@. We assume that the Apz, and Apy, position perturbations are independently- 
distributed Gaussian random variables with variance a:. We let K = 100. We plot the 

35We have used y  for the sensor phase to avoid confusion with the DOA in angle space. 
36Rockah and Schultheiss [RS87a] used a simpler version of the CRB to derive their 

result (i.e., the plane-wave signal arrivals were assumed to be disjoint in time). 
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Figure 8.61 Normalized hybrid Cram&-Rao bound on DOA versus ASNR 
for various ap: SLA 10 array, two plane-wave signals with A$/:! = 412.55”, 
K = 100. 

hybrid Cramer-Rao bound for the plane wave at A$/2. We also plot C’O, the CRB for 
perfect sensor location information. Note that these are angle bounds in contrast to the 
wavenumber bounds we used in earlier sections. 

In Figure 8.61, we plot the CRB on DOA for A$ = A$Q (5.1”) versus ASNR for 
various oP. We see that the bounds level off as the ASNR increases. The departure from 
the zero calibration error bound occurs at an /LS’NR that decreases as crP increases. 

The second example of interest is a circular array that satisfies the con- 
straints in (i). 

Example 8.11.2 
Consider a 33-element circular array located in the x-y-plane. The nominal locations 

correspond to a standard uniform circular array with interelement spacing of X/2. The 
location of the first element is fixed on the x-axis. The location of the seventeenth element 
is fixed in the y-direction and allowed to vary in the x-direction. Thus, the model satisfies 
the identifiability criterion in (i). Three equal-power uncorrelated plane waves impinge on 
the array from 41 = -A4, 42 = 0, and $3 = A+. For notational simplicity, we rewrite 
(8.686) as 
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ASNR (dB) 

Figure 8.62 Normalized hybrid Cramer-Rao bound (average of three signals) 
versus ASNR: circular array with N = 33, three plane-wave signals at 0 and 
&A+ for various A#, + = 0.05X. 

We delete the first column in F+x, F,,, F,, and the first and seventeenth columns 

in F 
4Y7 

Fxy , and F,,. We delete the first rows in F,,, F,, and the first and seventeenth 

row in F,,. We delete the first elements in A,’ and the first and seventeenth element in 
- 

A l 
Y l 

In Figure 8.62, we plot the CRB (average of three signals) versus ASNR for various 
A& The standard deviation of the perturbation is + = 0.05X. We see that the CRBs are 
parallel and continue to decrease as the ASNR increases. 

Similar bounds for gain and phase perturbations follow directly from 
(8.677) (e.g., [FlaOO]). 

8X.3 Sensitivity of ML Estimators 

In this section, we discuss the sensitivity of the ML algorithms of Sections 
8.5-8.7 to array perturbations. Our approach requires a simulation of a 
particular algorithm in the presence of the array perturbations. We restrict 
our attention to a single example that conveys the type of behavior we can 
expect. We consider the CML-AP algorithm that we previously discussed in 
Example 8.6.1. 
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Figure 8.63 Normalized RMSE versus ASNR; nominal linear array with sen- 
sor position perturbations; N = 10, K = 100, two plane-wave signals with 
Au = Ay&, p= 0, op = 0.05X. 

Example 8.11.3 (continuation, Example 8.6.1) 
Consider the same model as in Example 8.6.1. There are two equal-power uncorrelated 

signals impinging on an array that is nominally a standard lo-element linear array along 
the z-axis. The signal separation is A+R. We use the AP algorithm to estimate the DOAs. 

There are no gain or phase perturbations. The sensor positions are perturbed. The 

P% and py,, , n = 0, l l l , 9, are statistically independent Gaussian random variables with 
standard deviation up. 

The algorithm does not use this information about the displacements. It implements 
the algorithm assuming the nominal array manifold. 

In Figure 8.63, we plot the normalized RMSE versus RSNR for + = 0.05X. We see 
that the RMSE is flattening out as the ASNR increases. 

In this example, the RMSE does not approach the CRB. However, it 
flattens out at a reasonably low value. 

A discussion of the sensitivity of the ML algorithm is given in Friedlander 
[FriSO]. 

8.11.4 MAP Joint Estimation 

The formulation of the joint MAP estimation problem follows naturally from 
our hybrid model. Wahlberg et al. [WOV91] has discussed this model and 
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Viberg and Swindlehurst [VS94] have extended their development. Our dis- 

cussion follows [ WOV9 11. 
The cost function of interest is 

Fmap(g,f) = Fml(& P) + $P- Po)npl(P- PO>* (8.691) 

For the stochastic ML model, we use the AML model. From (8.315), 

Fml(R P> = Faml(6 P> 

= Klndet 
tr ptc, PS 

[ I PvC,Pv + - 
N-D 1 . (8.692) 

For the conditional model, we use a scaled version of the WSF,, estimator 

(see (8.367)-(8.370)). Asymptotically, 

F,lP, P> = t!&w..ao(e7 P), 
W 

(8.693) 

where 

1 N 
h 
o2 W= N - D i c x 

D+l Ai7 
(8.694) 

= 

and 

FWSF,, = tr P+(e)& [As - eq2 A,‘O,] . (8.695) 

Thus, we define 

F n K 1 
wmap - ~EIWSF,,(~, p) + $P - Po)$‘(P - PO>= 

W 

(8.696) 

We can maximize the expression in (8.696) by using one of the algorithms 
discussed in Section 8.7. 

We can obtain a simpler expression if we assume the variations in p are 
small. Expanding (8.691) around po, we have, for small variations around 
the nominal value, 

Fmap(R P> N 
-  

aFml V& P> 
FmZ(8, PO> + 

[ 1 1 
T 

dP 
(P - PO> 

+-(P - PO> ; T{ [~2~~~~~~~~=p~+A;-)!,,o,* 

(8.697) 
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We can maximize Fmap (0, p) with respect to p, 

Using (8.698) in (8.697) g ives a concentrated cost function, 

. (8.699) 

We now have reduced the problem to a D-dimensional minimization 
rather than D + M. Wahlberg et al. [WOV91] suggested using the ap- 
proximation in (8.693) in (8.699) and refer to resulting algorithm as the 
MAPprox algorithm. Wahlberg et al. [WOV91] and Viberg and Swindle- 
hurst [VS94] h ave studied the algorithm. Jansson et al. [JSO98] developed 
a generalized weighted subspace fitting (GWSF) algorithm that is a general- 
ization of the MODE and WSF algorithms developed in Sections 8.5.3 and 
8.7.3 (e.g. Stoica and Sharman [SSSOa] and Viborg and Ottersten [VOSl]). 

The advantage of the GWSF algorithm is that it can be implemented 
using a two-step procedure when the nominal array is a uniform linear array 
(see Section 8.7.3). The algorithm is also consistent even if the signals are 
fully correlated. The paper also contains a large sample analysis of the 
MAPprox algorithm and a summary of earlier work on the model error 
problem. The reader is referred to these references ([WOV91], [VS94], and 
[JSO98]) for further discussion. 

The other approach to joint estimation treats p as an unknown nonran- 
dom vector. ‘We discuss this approach briefly in the next section. 

8.11.5 Self-Calibration Algorithms 

The basic idea of self-calibration algorithms is to formulate a joint estimation 
problem that contains the parameters of interest. The goal is to calibrate an 
array using a set of plane-wave signals whose DOAs and powers are unknown. 
This leads us to a joint estimation problem. 

Many of the self-calibration algorithms have the following characteristics: 

(i) They estimate the DOAs assuming a nominal array configuration. They 
then estimate the array parameters assuming the DOAs are correct. 
They repeat the iteration until the estimates converge. This can be 
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( 1 ii 

viewed as a joint estimation problem using “group alternating maxi- 
mization.” 

They do not assume an a priori density of the array parameters. How- 
ever, they do assume a nominal configuration to initialize the iteration 
in (i). 

(iii) They frequently use a simpler DOA estimator than ML. The reasons 
for this simplification will be easier to explain after we have discussed 
some of the simpler algorithms in Chapter 9. 

There are discussions of self-calibration algorithms in Weiss and Fried- 
lander (e.g., [FW88], [WF89], or Chapter 10 in [HaySlb], [WFSlb]), Weiss 
et al. [WWLSS], Rockah and Schultheiss [RS87a], [RS87b], and Porat and 
Friedlander [PF97]. 

8.11.6 Summary 

In this section we have discussed how array perturbations affect the per- 
formance of DOA algorithms. After reviewing the perturbation model, we 
derived the CRB for the joint estimation problem of + and p. We then stud- 
ied the performance of the CML algorithm that we had derived in Section 
8.6. In order to improve performance we introduced the technique of joint 
estimation (or autocalibration), but did not develop it in detail. 

8.12 Summary 

In Section 8.12.1, we summarize the major results in Chapter 8. In Section 
8.12.2, we briefly discuss some related topics. In Section 8.12.3, we provide 
a brief introduction to Chapter 9. 

8.12.1 Major Results 

In this chapter we have studied algorithms for estimating the parameters of 
a signal arriving at an antenna array. Although the formulation was general, 
most of our discussion focussed on estimating the directions of arrival of a 
set of plane waves impinging on the array. 

In Section 8.2, we reviewed classical ML estimation and MAP estimation. 
We also reviewed three versions of the Cramer-Rao bound: the classic CRB, 
the Bayesian CRB, and the hybrid CRB. These results form the background 
for most of later developments in this chapter. 
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In Section 8.3, we developed the models that we use in the parameter 
estimation model. The model of most interest consisted of multiple plane 

waves impinging on the array in the presence of additive noise. We em- 
phasized two temporal models for the signals. In the first model, the signals 
were sample functions from a zero-mean vector stationary complex Gaussian 
random processes with an unknown source spectral matrix Sf. In the sec- 
ond model, the signals were considered to be unknown nonrandom complex 
sequences. We modeled the additive noise as a zero-mea.n vector complex 

Gaussian random process that is temporally white and spatially uncorre- 
lated. We also introduced array perturbation models and spatially spread 
models. 

In Section 8.4, we developed CRBs for the various models. These CRBs 
are a key issue in any parameter estimation discussion for two reasons: 

(i) They provide a lower bound on the covariance matrix of any unbiased 

estimator. 

(ii) Above some value of K (the number of snapshots) and ASNR (the array 

signal-to-noise ratio), in many cases, the ML estimator reaches the 

bound. 

There were different bounds for the different signal models. One can 
show that the CRB using the conditional signal model was also greater than 
or equal to the CRB using the unconditional (or stochastic) CRB. However, 

in most cases, in the ASNR-K region where the CRB is conveying useful 
information (where the performance of the ML estimator approaches the 
bound), the two bounds practically coincide. 

In Section 8.5, we studied ML estimators in detail. For a fixed K, we 
found that the ML estimator exhibited a threshold phenomenon. Above a 
certain ASNR, the performance of the ML estimator approaches the CRB. 
However, as the ASNR was decreased, a threshold point was reached where 
the estimator started making large errors, so the MSE increased quickly. 

Figures 8.17-8.25 helped explain this behavior. We argued that estimators 
should be judged according to two criteria: 

(i) Behavior above threshold. The estimator should approach the CRB. 
Generally, this behavior can be studied analytically using asymptotic 
or Taylor series techniques. 

(ii) The location of the threshold. We want the estimator to have its thresh- 
old at as low a value of ASNR (for a given K) as possible. 
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We emphasized two types of ML estimators; the unconditional (or stochas- 

tic) ML estimator (AML) and the conditional (or deterministic) ML estima- 
tor (CML and the related MODE/WSF estimator). In the examples that 
we considered, there was very libtle difference in performance. 

In the simulations in Section 8.5 we utilized a grid search to ensure that 

we found the global maximum. This approach is computationally demanding 
for two plane-wave signals and generally not feasible for a larger number of 
signals. 

In Section 8.6, we developed computational algorithms for finding the 

ML estimators. We introduced several gradient algorithms, two alternating 
maximization (AM) algorithms, and the expectation-maximization (EM) al- 
gorithm. The AM algorithms, which maximize each variable separately in an 
iterative manner, were efficient when a suitable initialization was possible. 
The EM algorithm converged more slowly in most examples. We did not 
study the gradient algorithms in detail. All of the algorithms in this section 
were applicable to an arbitrary array geometry. 

In Section 8.7, we developed polynomial parameterization techniques 
that were applicable to standard linear arrays. After introducing polyno- 
mial parameterization! we derived the IQML and IMODE algorithms. Both 
algorithms required less computation than our previous algorithms and pro- 
vided similar threshold performance. 

In Section 8.8, we revisited the problem of estimating the number of 

plane-wave signals that were present in the input to the array. We empha- 
sized the separable detection algorithms (AIC, MDL) that we had studied 
earlier and assumed that the output of the detection step was used as an 

input to estimation algorithm. In some cases, the threshold of the detection 
algorithms occurred at the same ASNR as the threshold of the ML estimator 
operating with the correct number of signals. We suggested that, if we must 
operate in the vicinity of the threshold, we should use AIC or AIC-FB and 
require subsequent processing (after the estimator) to eliminate any extra 

signals introduced by an over-estimation error from AIC. If we are operat- 
ing above threshold, we should use MDL or MDL-FB because it provides 
consistent results. We introduced the idea of joint detection and estimation, 
but did not pursue it because of the computational requirements. 

In Section 8.9, we introduced the parameter estimation problem for spa- 
tially spread signals and discussed it briefly. Both models that we discussed 
were parametric models. After deriving the CRBs, we considered several 
simple examples. We found that for a single spatially spread signal, even a 
small amount of spread caused the CRB to level off as the ASNR increased. 
For the single-signal case, the multiple-parameter ML estimator approached 
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the CRB above threshold. The ML estimator for the multiple-signal problem 
did not appear to be practical because of the computational complexity. 

In Section 8.10, we discussed parameter estimation in beamspace. We 
first developed conditions on the beamspace such that the beamspace CRB 
would equal the element-space CRB. Several beamspace matrices, such as 
the Taylor series preprocessor and the discrete prolate spheroidal functions 
had a CRBb, that came very close to the CRB,I, over a useful range of 
signal separation AU. The conventional DFT beamspace processor also had 
a CRBb, that was close to the CRB,I, for signals in the center part of the 
beamspace sector. We derived the beamspace ML estimator and evaluated 
its performance. The MSE of the BS-ML estimator approached the CRBb, 
above the threshold ASNR. 

In Section 8.11, we discussed the effect of array perturbations on the per- 
formance of our parameter estimation algorithms. We modeled the problem 
as a combined estimation problem in which we estimated both the signal 
and noise parameters ($J,, Sf, 0;) and the perturbation parameters. After 
reviewing the perturbation model, we derived the CRBs for the composite 
parameter set. The resulting CRB also applies to the case in which we only 
estimate the signal and noise parameters. For the case of position pertur- 
bations, we found that the CRB for a linear array leveled off as the ASNR 
increased. We investigated the performance of the conventional ML estima- 
tor and found there was significant degradation. We introduced the idea of 
a joint estimator called the MAPprox algorithm, but did not pursue it in 
detail. 

8.12.2 Related Topics 

One area of interest that we did not explore can be referred to as structured 
adaptive beamforming. Recall that the purpose of the adaptive beam- 
former was to estimate the waveform of the desired signal. In the literature, 
this is sometimes referred to as the “signal copy” problem. In Chapters 6 and 
7 we normally assumed that we knew the direction-of-arrival of the desired 
signal, but did not impose any additional structure on the environment. 
However, in many applications, we can impose the structure by assuming 
that 

X(k) = V(+)F(k) + W(k), k = 1,2,. l l , K, (8.700) 

which is familiar as the model used in most of this chapter. 
The basic idea is straightforward. If we are using the unconditional model 

(Section 8.5.1), we estimate $J, Sf, and ai. We then use these estimates, 
as if they were correct, in one of the beamformers in Chapter 7. An early 
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reference that studied a similar approach was the Lincoln Laboratory Report 
by Barabell et al. [BCD+84]. They conducted extensive simulations of 
various DOA estimation algorithms and explored the calibration issue. One 
can refer to this approach as DF-based signal copy. 

Various analyses of this problem have appeared in the literature (e.g., 
Ottersten et al. [ORK89], Friedlander and Weiss [WF93], Wax [Wax85], 
and Yang and Swindlehurst [YS95]). The paper by Yang and Swindlehurst 
[YS95] contains a good summary of results. Note that we are imposing a 
structure on the signal and noise model and not the array geometry. The 
reader is referred to these references for a discussion of this problem. 

A second problem of interest that we did not explore is analytic expres- 
sions for the behavior of a ML estimator (or any other estimator) as the 
ASNR or K decreased. We did not develop bounds on the performance. We 
refer to this as the nonlinear behavior region. 

The covariance predicted by the CRB corresponds to small errors in the 
estimator performance and was directly related to the shape of the main lobe 
of the beam pattern. In our simulations, we observed that as the number 
of observations or SNR decreased we reached a point where the estimator 
was making large errors and the performance deviated significantly from the 
CRB. 

We would like to develop bounds that enable us to predict this nonlinear 
behavior. The bounds can be used for several purposes. 

The first purpose is to predict the value of SNR or K where the “thresh- 
old” occurs. The threshold is defined to be the point where the MSE of the 
estimator starts to deviate from the CRB. If we have control over the system 
parameters (e.g., an active radar or sonar) we will design the system so it 
operates above the threshold. 

The second purpose of the bounds is to describe the behavior in the 
transition region below the threshold. In many systems, we will have to 
operate in this region and need to predict the behavior. 

There are two models that are used in the nonlinear bound literature. In 
the first model, we treat the vector parameter as an unknown nonrandom 
quantity. We utilized this approach in DEMT I [VT681 [VTOla] (see pp. 71, 
147, 284-286, 386) and developed the Bhattacharyya and Barankin bounds. 
We can extend these results to the array processing case and develop several 
hybrid bounds. 

There are several approaches in the statistics literature for this model 
that have been successfully applied to parameter estimation problem by 
various researchers. 

The first approach is the Barankin bound [Bar49]. The original version 
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is a greatest lower bound, but is computationally complex so that simplified 
versions (e.g., Chapman and Robbins [CR51], Hammersley [Ham50], and 
Kiefer [Kie52]) are normally used. Application of the Barankin bound to 
the array processing problem was first done by Baggeroer [Bag691 and later 
by Becker [Bec77] and Chow and Schultheiss [CSU]. 

The Barankin bound has been applied in the radar area by Swerling 
[Swe59], McAulay and Seidman [MS69], and McAulay and Hofstetter [MH71]. 

The second approach uses the Bhattacharyya bound [Bha46], which is an 
extension of the CRB utilizing higher derivatives of the likelihood function. 

We can also derive a hybrid bound that contains the Cramer-Rao, Bhat- 
tacharyya, Barankin, and Hammersley-Chapman-Robbins bound as special 
cases. The hybrid bound37 is due to Abel [Abe93], [AbeSO], and is based on 
a derivation using the covariance inequality in Ibragimov and Has’minskii 
[IHU] and L e h mann [Leh83]. The reader is referred to these references for 
a discussion of these approaches. 

In the second model we treat the parameter as a random variable with a 
known probability density and develop bounds on the MSE of the estimator. 
These bounds extend into the threshold and transition region. 

The bounds using the first model are local bounds that depend on the 
actual value of the parameter 8. These bounds are useful in many applica- 
tions. One of their disadvantages is that they fail to limit the MSE when the 
parameter space is finite. In many cases, bounds exceed the MSE of the ML 
estimator in the low SNR region. This behavior can be attributed both to 
the violation of the unbiased estimator assumption and to the lack of a pri- 
ori information in the bounds. Similar observations were made in [Abe93]. 
Clearly, these bounds must be used cautiously for performance analysis in 
bearing estimation problems where the parameter space is compact and es- 
timators are inherently biased at low SNR. 

There are two general approaches to the global bound problems. The 
first approach is referred to as extended Ziv-Zakai (EZZ) bounds ([Be195], 
[BEVT96]). Th is is a Bayesian bound that assumes that the parameter is a 
random varia,ble with a known a priori distribution. They provide a bound 
on the global MSE averaged over the a priori probability density function 
(pdf). There are no restrictions on the class of estimators to which Bayesian 
bounds apply, and they incorporate knowledge of the a priori parameter 
space via the prior distribution. The basic approach in the Ziv-Zakai bound 
and its extension is to relate the MSE to the probability of error in a binary 

37Note that we are using “hybrid” in a different manner than in Section 8.2.3.3. In that 
section, hybrid denotes a mix of real unknown parameters and random parameters. Here, 
hybrid denotes a mixture of different bounds on real unknown parameters. 



1108 8.12 Summary 

detection problem. In order for the bound to be useful we must be able to 
evaluate or bound the resulting probability of error. 

There have been a number of results on global bounds over the last three 
decades. The original Ziv-Zakai bound [ZZ69] was improved by Chazan et 
al. [CZZ75] and Bellini and Tartara [BT74]. The disadvantage was that the 
bounds were restricted to scalar parameters with uniform a priori densities. 
In Bell [Be195], the EZZ bound was developed that was applicable to vector 
parameters and arbitrary a priori densities. The reader is referred to the 
above references for a discussion of these bounds. 

The second approach to global bounds was developed by Weiss and We- 
instein [WW83], [WWS4]. It is based on the p(s) function that we discussed 
in Section 2.7 of DEMT I [VT681 [VTOla]. In some situations it provides 
a tighter bound than the extended Ziv-Zakai bound. In other situations, 
the EZZ bound provides better results. The reader is referred to the above 
references for a discussion of the Weiss-Weinstein bounds. 

The above references provide a number of useful results. However, we 
were unable to apply these results to accurately estimate the threshold where 
we estimate the DOAs of two plane waves in additive noise.38 

The third related topic is the problem of DOA estimation in the presence 
of unknown correlated noise. There are a number of papers dealing with 
this problem. Both parametric and nonparametric noise models have been 
utilized. Parametric models have been utilized by Le Cadre [LeC89], Bohme 
and Kraus [BK88], and Nagesha and Kay [NK96]. A useful parametric 
noise model is the spatial ARMA model that we discussed in Section 5.7. 
Nonparametric approaches include the work of Wu and Wong ([WW94], 
[WW95]), Wong et al. [WRWQ92], Reilly and Wong [RW92], Stoica et al. 
[SVWW96], Stoica et al. [SOV92], Wax [Wax92], Prasad et al. [PWMS88], 
Paulraj and Kailath [PK86], Y e and DeGroat [YDG95], Rajagopal et al. 
[RKR94], and Harmanci et al. [HTKOO]. Papers that utilize an instrument 
variable approach include Stoica et al. [SVO94] and Stoica et al. [SVWW98]. 

We discuss other related topics in Section 9.10. 

8.12.3 Algorithm complexity 

In this chapter, we have focused on ML estimators and the CRB. By utilizing 
AP or AM techniques and IQML and IMODE where applicable, we were able 
to reduce the computational complexity. F’urt her reductions were obtained 

38This inability was 
of non-linear bounds. 

the primary reason we did not include a more thorough discussion 
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by utilizing beamspace processing. In spite of these improvements, the ML 
algorithms still required a fair amount of computation. 

In Chapter 9, we develop parameter estimation algorithms that require 
less computation. We analyze their performance and compare their perfor- 
mance to the ML estimators developed in this chapter and the CRB. 

8.13 Problems 

P8.2 Maximum Likelihood and Maximum A Posteriori Estimators 

Problem 8.2.1 
Consider the problem of estimating the direction of arrival of D plane waves using a 

linear array. In our subsequent discussions, we usually compute the CRB on the vector $, 
where 

WI i = 7TUi =~cosOi,i= l,***,D, (8.701 j 
where & is the angle of the ith plane wave with respect to the z-axis. 

Show that 

CCR(~)=G~'CCR(+)G& 

where 
Gj’ndiag{l/nsin81,...,l/~sinBo). 

Discuss your result. 

(8.702) 

(8.703) 

Problem 8.2.2 (continuation) 
Consider the converse problem of going from CCR(B) to CCR(+). Show that 

CCR(+) = G$CCR(~)G$, (8.704) 

and find GQ,. How are GQ, and Go related? 

P8.3 Parameter Estimation Models 

Problem Note 8.3.1: The In likelihood function is the starting point for most of the 
development in this chapter. In all of the following problems, develop the In likelihood 
function for the indicated signal and noise model and identify the unknown parameters. 
Unless noted, we are considering narrowband processes. We assume that there are D 
signals and that +i is 1-D. There are K statistically independent samples. 

Problem 8.3.1 
Signal case S 1 and noise case Nl. 

Problem 8.3.2 
Signal case Sl and noise case N2. 

Problem 8.3.3 
Signal case Sl and noise case N3. 
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Problem 8.3.4 
Signal case Sl and noise case N3. There are D signals. Noise consists of DN uncor- 

related plane waves whose DOA and power are unknown plus white noise with unknown 

Problem 8.3.5 

Signal case Sl and noise case N3. There are D signals. The array is an SLA. Noise 
consistIs of a complex spatial AR(l) p recess (Section 5.7) plus white noise with unknown 

Problem 8.3.6 (continuation) 
Repeat’ Problem 8.3.5 for the case in which the noise consists of the sum of DN complex 

spatial AR( 1) processes plus white noise with unknown a& 

Problem 8.3.7 (continuation, Problem 8.3.5) 
Repeat Problem 8.3.5 for the case in which the noise consists of a complex spatial 

AR(p) process plus white noise with unknown a$ 

Problem 8.3.8 

Repeat Problem 8.3.1 for signal case S2. 

Problem 8.3.9 

Repeat Problem 8.3.2 for signal case S2. 

Problem 8.3.10 

Repeat Problem 8.3.3 for signal case S2. 

Problem 8.3.11 

Repeat Problem 8.3.4 for signal case S2. 

Problem 8.3.12 

Repeat Problem 8.3.5 for signal case S2. 

Problem 8.3.13 

Repeat Problem 8.3.6 for signal case S2. 

Problem 8.3.14 

Repeat Problem 8.3.7 for signal case S2. 

Problem 8.3.15 

Repeat Problem 8.3.1 for signal case S2u. 

Problem 8.3.16 

Repeat Problem 8.3.2 for signal case S2u. 

Problem 8.3.17 

Repeat Problem 8.3.3 for signal case S2u. 

Problem 8.3.18 

Repeat Problem 8.3.4 for signal case S2u. 
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Problem 8.3.19 
Repeat Problem 8.3.5 for signal case S2u. 

Problem 8.3.20 
Repeat Problem 8.3.6 for signal case S2u. 

Problem 8.3.21 
Repeat Problem 8.3.7 for signal case S2u. 

Problem 8.3.22 
Repeat Problem 8.3.1 for signal case S3. 

Problem 8.3.23 
Repeat Problem 8.3.2 for signal case S3. 

Problem 8.3.24 
Repeat Problem 8.3.3 for signal case S3. 

Problem 8.3.25 
Repeat Problem 8.3.4 for signal case S3. 

Problem 8.3.26 
Repeat Problem 8.3.5 for signal case S3. 

Problem 8.3.27 
Repeat Problem 8.3.6 for signal case S3. 

Problem 8.3.28 
Repeat Problem 8.3.7 for signal case S3. 

Problem Note 8.3.2: The next problems consider model perturbations. 
The parameter perturbation vector p is M-dimensional. For example, in the case of 

position perturbations, M = 2N. 

p = Px, PYO PXl *  . . [ PYN-1 I** (8.705) 

We assume that p is a real Gaussian random vector 

P&9 = 
1 

(2799 ln,lt 
=P { -& - Po)*Apl(P - PO)} 7 (8.706) 

where p0 represents the nominal value of the parameter vector p. The Gaussian assumption 
is a good model for many applications. 

Problems 8.3.29-8.3.31 consider position perturbations. Problems 8.3.32-8.3.34 con- 
sider gain and phase perturbations. 

Problem 8.3.29 
Consider a SLAlO along the z-axis. The position perturbation model is given by 

(8.73)-(8.80). We assume Ap is diagonal. Note that pxn and p,, are constant over the 
entire observation period. Repeat ,Problem 8.3.1 for this model. 

Problem 8.3.30 (continuation) 
Repeat Problem 8.3.2 for the perturbation model in Problem 8.3.29. 
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Problem 8.3.31 (continuation, Problem 8.3.29) 
Repeat Problem 8.3.3 for the perturbation model in Problem 8.3.29. 

Problem 8.3.32 
Consider a SLAlO along the z-axis. The gain and phase perturbation model is given 

by (8.73)-(8.80). W e assume Ap is diagonal. Repeat Problem 8.3.1 for this model. 

Problem 8.3.33 (continuation) 
Repeat Problem 8.3.2 for the perturbation model in Problem 8.3.32. 

Problem 8.3.34 (continuation, Problem 8.3.32) 
Repeat Problem 8.3.3 for the perturbation model in Problem 8.3.32. 

P8.4 CrambRao Bounds 

Problem Note 8.4.1: The first set of problems considers the test scenarios in Table 8.3 
at the end of Section 8.5.1.1. We also use these test scenarios in Sections P.8.5, P.8.6, 
P.8.7, P.8.10, and P.8.11. Table 8.5 shows where the various test scenarios are used. 

8.4 
8.5 

8.6 

8.7 
L 

8.10 
8.11 

8.4 
8.5 

8.6 

8.7 
8.10 
8.11 

Table 8.5 Problen 
Test Scenarios are 

~ TSl 1 TS2 

1 P.8.4.3 
Ex.8.5.6 
P.8.5.4 

P.8.6.3 P.8.6.5 P.8.6.4 P.8.6.6 

P.8.7.4 P.8.7.5 P.8.7.6 P.8.7.7 
P.8.10.4 P.8.10.5 P.8.10.6 
P.8.11.4 P.8.11.5 

P.8.11.10 P.8.11.11 

Structure for SLA 10. 
described in Table 8.3 

L 

P.8.6.3 

P.8.7.3 P.8.7.2 
P.8.10.2 P.8.10.3 
P.8.11.2 P.8.11.3 
P.8.11.8 P.8.11.9 

TS8 TS9 TSlO 
P.8.4.5 P.8.4.4 P.8.4.6 

Problem Note 8.4.2: We derive the CRB for a number of array geometries and signal 
scenarios. In most cases, we find an estimator in a subsequent problem and compare its 
performance. 
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Problem 8.4.1 
Consider a SLAlO. There are two uncorrelated plane-wave signals impinging on the 

array from 1tA$/2, where A$ = AT+!JR. SNR1 = lOOSNR2. 

Plot the normalized CRB(10 log( CRBQVVNJJ)) versus ASNR. 

Problem 8.4.2 
Consider a SLAlO. There are two equal-power correlated signals impinging on the 

array from 1kA$/2, where A+ = AI/JR. The correlation coefficient is 1 pi exp(j&,). Consider 
three values of IpI; 0.95, 0.99, and 1.0. Consider three values of &: 0, 7r/4, and 7r/2. Plot 
the normalized CRB versus ASNR. 

Problem 8.4.3 
Consider a SLAlO. There are three equal-power uncorrelated plane-wave signals im- 

pinging on the array from I/J = 0, $J = A+, and 1c) = -A$, where A+ = A$Q. Plot the 
normalized CRB versus ASNR. 

Problem 8.4.4 (continuation, Problem 84.3) 
Repeat Problem 8.4.3 for the case in which the two plane waves at &A+ have an SNR 

that is 10 dB higher than the plane wave at I,!J = 0. 

Problem 8.4.5 (continuation, Problem 84.3) 
Consider the same model as in Problem 8.4.3 except the signals are correlated with 

unequal-power. Denote the signals as: No.1, $J = -A$; No.2, + = 0; No.3, $J = A$, 
where A$ = A$JR: 

SNR1 = SNR3 = 0.5SNR2 

m = 0.9, p23 = 0.9, p13 = oe5exp(jr/2) 
Plot the normalized CRB versus ASNR. 

Problem 8.4.6 (continuation, Problem 8.4.3) 
Consider the model in Problem 8.4.3. Repeat the problem for the case of five equal- 

power uncorrelated plane waves located at + = 0, &A$, f2A+, where A$ = A$R. Plot 
the normalized CRB versus ASNR. 

Problem Note 8.4.3: The next set of problems considers a 32-element standard linear 
array (SLA32). The problems with two and three signals are similar to the earlier problems. 
The larger array size allows us to consider more complicated scenarios. 

Problem 8.4.7 
Consider a SRA32. There are two equal-power uncorrelated signals impinging on the 

array at fau/2, where Au = l/32. 

Problem 8.4.8 (continuation) 
Repeat Problem 8.4.7 with Au = l/128. 

Problem 8.4.9 (continuation, Problem 8.4.7) 
Repeat Problem 8.4.7 with Au = l/32 and ASNR1 = lOOAsNR2. 

Problem 8.4.10 (continuation, Problem 8.4.7) 
Repeat Problem 8.4.7 with Au = l/32 and p = 0.95, p = 0.95exp(jn/4), and p = 

0.95 exp(j;lr/2). 
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Problem 8.4.11 (continuation, Problem 8.4.7) 

(a) Repeat Problem 8.4.7 with three equal-power uncorrelated signals located at -l/32, 
0, l/32. 

(b) Repeat part(a) with ASNRl = ASNRS = 1OOASNR~. 

Problem 8.4.12 (continuation, Problem 84.7) 
Repeat Problem 8.4.7 for the following cases: 

(a) Five equal-power uncorrelated signals located at f2/32, &l/32,0. 

(b) Seven equal-power uncorrelated signals located at f3/32, f2/32, f1/32,0. 

(c) Fifteen equal-power uncorrelated signals located at &m/32, m = 0, l l - ,7. 

Problem Note 8.4.4: 
The next several examples consider low redundancy arrays that were introduced in 

Section 3.9.2. 

Problem 8.4.13 
Consider the 5-element linear array in Table 3.9. The sensor spacing is 

l-3*5*2. 

Two equal-power uncorrelated signals impinge on the array from &AU/~, where Au = 
0.0866. 

(a) Plot the square root of the CRB (10 logCRB3) versus SNR. We do not normalize 
because of the comparison in parts (b) and (c). 

(b) Compare your result to those for an SLA with the same number of elements. 

(c) Compare your result to those for an SLA with the same aperture. 

(d) Discuss your results. 

Problem 8.4.14 (continuation, Problem 8.4.13) 
Repeat Problem 8.4.13 for the 7-element linear array in Table 3.9. The sensor spacing 

Problem 8.4.15 (continuation, Problem 8.4.13) 
Repeat Problem 8.4.13 for the g-element linear array in Table 3.9. The sensor spacing 

Problem 8.4.16 (continuation, Problem 8.4.13) 
Repeat Problem 8.4.13 for the lo-element linear array in Table 3.9. The sensor spacing 

is 

l-5-4.13.3.8.7.12-2. 

Problem Note 8.4.5:The next several examples consider planar arrays. We utilize 
(8.268) and obt ain the asymptotic conditional CRB (ACCR). 
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Problem 8.4.17 
Consider a standard 10 x 10 rectangular array. There are two equal-power uncorrelated 

plane waves impinging on the array. Their (0,& d irections are (34”, 45”) and (2S”, 45’), 

respectively. Plot the ACCR (10 1ogACCRQ versus ASNR. 

Problem 8.4.18 (continuation) 
Repeat Problem 84.17 for the case in which RsNR1 = lOOASNR2. 

Problem 8.4.19 (continuation, Problem 8.4.17) 
Repeat Problem 84.17 for the case in which the sources are correlated. Consider 

p = 0.95 and 0.95 exp(jnl2). 

Problem 8.4.20 (continuation, Problem 84.17) 
Consider a standard 10 x 10 rectangular array. There are three equal-power uncorre- 

lated plane waves impinging on the array. Their (0,4) directions are (45”) 50”), (45”, 45”), 
(45”) 40”) respectively. Repeat Problem 8.4.17. 

Problem Note 8.4.6: The next several problems consider hexagonal arrays. In order 
to get some comparison with a 10 x 10 rectangular array, we use the standard 91-element 
hexagonal array in Example 4.4.1. 

Problem 8.4.21 
Repeat Problem 8.4.17. Compare your results to those in Problem 8.4.17. 

Problem 8.4.22 
Repeat Problem 8.4.18. Compare your results to those in Problem 8.4.18. 

Problem 8.4.23 
Repeat Problem 8.4.19. Compare your results to those in Problem 8.4.19. 

Problem 8.4.24 
Repeat Problem 8.4.20. Compare your results to those in Problem 8.4.20. 

Problem 8.4.25 

Consider a cross array consisting of an N-element SLA along the z-axis and an M- 
element SLA along the y-axis. The linear arrays are symmetric about the origin. N and 
ik? are even, so there is no element at the origin. 

Use the signal model in Problem 8.4.17 and assume N = M = 10. Plot the ACCR 
(10 logACCR+ ) versus ASNR. Compare your results to those in Problem 8.4.17. 

Problem 8.4.26 

Derive the stochastic CRB for the planar array model. Compare your result to the 
ACCR in (8.268). 

P8.5 Maximum Likelihood Estimation 

Problem 8.5.1 (continuation, Example 8.5.3) 
Simulate the CML algorithm for the model in Example 8.5.3. Compare your results 

to the AML results. (Test scenario 2.) 
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Problem 8.5.2 (continuation, Example 85.4) 
Consider the model in Example 8.5.4 except IpI = 1 and &, = n/2. (Test scenario 5.) 

Simulate the Ah4L, CML, and MODE algorithms. Compare the results of three algorithms. 

Problem 8.5.3 (continuation, Example 8.5.5) 

(a) Repeat Example 85.5 for ASNR1 = lOASNR2. 

(b) Repeat Example 8.5.5 for the CML and MODE algorithms. Compare your results. 
(Test scenario 3.) 

Problem 8.5.4 (continuation, Example 8.5.6) 
Repeat Example 8.5.6 for the CML and MODE algorithm. (Test scenario 6.) Compare 

your results. 

Problem 8.5.5 (continuation, Example 8.5.2) 
Repeat Example 8.5.2 with A$ = 0.58kV~~. Note that this is the classical resolution 

separation. Plot the same results as in Figures 8.21 and 8.24. Discuss your results. 

Problem 8.5.6 (continuation, Example 8.5.4) 
Repeat Example 8.5.4 with A$ = O.~BVVNN. Plot the same results as in Figures 8.27 

and 8.28. Also plot the case when p = 0.95exp(jx/2). C onsider preprocessing the data 
using FB averaging. 

Problem 8.5.7 (continuat,ion, Example 8.5.5) 
Repeat Example 8.5.5 with A$ = O.~BVVNN. Plot the same results as in Figures 8.29 

and 8.30. 

P8.6 Computational Algorithms 

Problem Note 8.6.1: All of the algorithms in this section require initialization. A 
bad initialization can result in convergence to local maximum (or minimum) instead of 
the global maximum (or minimum). We use the initialization procedure in (8.434) and 
(8.435). 

Problem 8.6.1 (continuation, Example 8.6.1) 
Consider the same model as in Example 8.6.1. Solve for the CML estimate using the 

quasi-Newton technique in Section 8.6.1. Discuss your results. (Test scenario 1.) 

Problem 8.6.2 (continuation, Example 8.5.5) 
Consider the model in Example 8.5.5. Use the AP technique to find the CML estimate. 

Ues the Ah4 technique to find the AML estimate. Compare your results. (Test scenario 

3.1 

Problem 8.6.3 (continuation, Problem 8.4.3) 
Consider the same model as in Problem 8.4.3. Use the AP technique to find the CML 

estimate. Use the AM technique to find the AML estimate. Compare your results to the 
CRB. Discuss your results. (Test scenario 7.) 

Problem 8.6.4 (continuation, Problem 8.4.4) 
Repeat Problem 8.6.3 for the model in Problem 8.4.4. (Test scenario 9.) 
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Problem 8.6.5 (continuation, Problem 8.4.5) 
Repeat Problem 8.6.3 for the model in Problem 8.4.5. (Test scenario 8.) 

Problem 8.6.6 (continuation, Problem 8.4.6) 
Repeat Problem 8.6.3 for the model in Problem 8.4.6. (Test scenario 10.) 

Problem 8.6.7 (continuation, Problem 8.4.17) 
Repeat Problem 8.6.3 for the model in Problem 8.4.17. 

Problem 8.6.8 
Consider a standard lo-element linear array. There are two equal-power uncorrelated 

plane-wave signals impinging on the array. 

(a) Use t,he EM algorithm in Section 8.6.3.2 to find $,,l. Compare your results to the 
AP and discuss the computational requirements. 

(b) Read [FH94]. Implement their algorithm for this problem. 

Problem Note 8.6.2: The SLA is a useful example. However, in practice, we will 
normally use the algorithms that is developed in Section 8.7 for SLAs. The next set of 
problems considers linear arrays with non-uniform spacing where the techniques in Section 
8.7 do not apply. 

Problem 8.6.9 (continuation, Problem 8.4.13) 
Consider the 5-element linear array in Problem 8.4.13 and the same signal model. 

Find the CML estimate using the AP algorithm. Plot the normalized RMSE versus ASZW 
and compare it to the CRB derived in Problem 8.4.13. 

Problem 8.6.10 (continuation, Problem 8.4.14) 
Consider the 7-element linear array in Problem 8.4.14 and the same signal model. 

Find the CML estimate using the AP algorithm. Plot the normalized RMSE versus ASNR 
and compare it to the CRB derived in Problem 8.4.14. 

Problem 8.6.11 (continuation, Problem 8.4.15) 
Consider the g-element linear array in Problem 8.4.15 and the same signal model. 

Find the CML estimate using the AP algorithm. Plot the normalized RMSE versus ASNR 
and compare it to the CRB derived in Problem 8.4.15. 

Problem 8.6.12 (continuation, Problem 8.4.16) 
Consider the lo-element linear array in Problem 8.4.16 and the same signal model. 

Find the CML estimate using the AP algorithm. Plot the normalized RMSE versus ASNfl 
and compare it to the CRB derived in Problem 8.4.16. 

P8.7 Polynomial Parameterization 

Problem Note 8.7.1: The next several problems consider a SLAlO with a set of plane 
waves impinging on the array. In each problem, simulate IQML and IMODE. Plot the nor- 
malized RMSE (10 log(RMSE/BWNN)) versus ASNR for K = 100. Compare your results 
to the CRB and the previous ML implementations. Compare the number of iterations 
required. 
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Problem 8.7.1 

There are t,wo equal-power uncorrelated signals and A$ = O.O~BVVNN. (Test scenario 

2.) 

Problem 8.7.2 

There are two equal-power coherent signals: A+ = A$J~ and p = 1 exp(@/Z). (Test 
scenario 5.) 

Problem 8.7.3 

There are two uncorrelated signals: A+ = A$R and /LSYVRz = 1001&?NR~. (Test 
scenario 3.) 

Problem 8.7.4 

There are two equal-power uncorrelated signals: A$ = A~!JR and K = 20 instead of 
100. (Test scenario 6.) 

Problem 8.7.5 

There are three equal-power uncorrelated signals: $1 = -A$, $JZ = 0, and & = A+, 
where A$J = A+,. (Test scenario 7.) 

Problem 8.7.6 (continuation, Problem 8.4.5) 
Use the same signal model as in Problem 8.4.5. (Test scenario 8.) 

Problem 8.7.7 (continuation, Problem 8.4.6) 
Use the same signal model as in Problem 8.4.6. (Test scenario 10.) 

Problem 8.7.8 

In this problem, an alternative derivation of (8.509) is developed. Assume that D is 
odd and let 

D=Zq+l. (8.707) 

Define 

b=[ bT b;lT, (8.708) 

where b is given in (8.489) and bl and bz are (q + 1) x 1 vectors where 

b2 = Jb;. (8.709) 

The Ak matrix in (8.498) is partitioned in two (N - D) x (q + 1) matrices, 

A = [ AI [ A2 ] , (8.710) 

where the k subscript is suppressed. 
Now define 

and 

A= [ A&A2J ; j(A1 -A2J) 17 (8.711) 

c = [ [Re [b# / [Im [h]]* ] . (8.712) 

Note that c in (8.712) contains the same elements as the c in (8.504), but they are arranged 
in a different order. 

Show that 
Ab = AC. (8.713) 



and 

so b~,2 is real. 
Define c as 

bo = bh-i, i = 0, l *. 9 D/2 - 1, (8.720) 

b 
9 

= b> , (8.721) 
2 

c= Re [bo] Im [bt-~] l l l 
]  I m  [b+] b+ ]  l 

(8.722) 

Find T such that 
b=Tc. (8.723) 

Problem 8.7.11 
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Problem 8.7.9 (continuation) 
In this problem, the IQML algorithm for even D is derived using the model in Problem 

8.7.8. Let 
D = 2q. (8.714) 

Define 

b= [ b;r h b: IT, (8.715) 

where bl and bz are q x 1 vectors that satisfy (8.709) and b3 is a real scalar. Partition A 
as 

A= AI ; A3 ; A2 1, [ (8.716) 

where A1 and AZ are (N - D) x q matrices and A3 is an (N - D) x 1 vector. Define 

A=[A1+AzJ;A3;j(A1-AzJ) ]. (8.717) 

Define 

Show that 

Problem 8.7.10 

c = [ [Re [bl]lT i b3 i [Im [bl]lT IT. 

Ab-iic. 

(8.718) 

(8.719) 

In this problem, the IQML algorithm for even D is developed. In this case, the b 
vector satisfies the constraints: 

FB-IMODE is the standard IMODE algorithm using FB averaging in the sample 
spectral matrix (e.g., [SJ97]). In this problem, we compare the performance of FB-IMODE 
and FO-IMODE for different parameter values. In each part, plot the normalized RMSE 
versus ASNR for FB-IMODE and FO-IMODE. Also plot the normalized CRB. In the 
MODE algorithms, use E = 0.01 and a maximum of eight iterations. The array is a lo- 
element SLA and K = 100. There are two equal-power plane wave signals separated by 
4. 

(a) A+ = 0.2165Bk&~, p = 0; 

(b) A$ = O.O5mNN, p = 0; 

(C) A+ = o.dmNN, &I = 0; 

(d) A+ = 0.2165Bkv~r~, p = 111, consider & = 0, Ok, 0.87r, 0.85~) O.7n, 0.67r, and 
0.57r; 
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(e) Repeat part (d) for A+ = 0.05~NN; 

(f) Repeat part (d) for A$ = 0.4mNN. 

Discuss your results. 

Problem 8.7.12 
The vector b is defined in (8.489). C onsider the case of a single plane-wave signal 

impinging on the array from $J = 0. Show that Re[b,] = 0. 

P8.8 Detection of Number of Signals 

Problem Note 8.8.1: Our discussion and most of the discussions in the literature assume 
that the number of signals, D, is known. In practice, we usually have to estimate D. In 
the next nine problems we revisit Examples 8.7.1 and 8.7.2 and Problems 8.7.1-8.7.7. 

In each problem, simulate the AIC-FB and MDL-FB algorithm to estimate D. Plot 

PD &I Pr[b = D] 

PM 4 Pr[b < D] 

PFA ii P@ > D] 

versus ASNR for K = 100. Use the output b in both the IQML or IMODE estimation 
algorithm. Plot the normalized RMSE versus ASNR. In order to calculate the RMSE 
when fi > D, assume that the D estimates are paired with the closest true DOA and the 
excess estimates are ignored. Calculate the number of trials where fi < D, but do not 
assign an RMSE to the missed signal. Compare your results to those in the corresponding 
example or problem from Section 8.7. 

Problem 8.8.1 (continuation, Example 8.7.1) 
Use the signal model in Example 8.7.1. 

Problem 8.8.2 (continuation, Example 8.7.2) 
Use the signal model in Example 8.7.2. 

Problem 8.8.3 (continuation, Problem 8.7.1) 
Use the signal model in Problem 8.7.1. 

Problem 8.8.4 (continuation, Problem 8.7.2) 
Use the signal model in Problem 8.7.2. 

Problem 8.8.5 (continuation, Problem 8.7.3) 
Use the signal model in Problem 8.7.3. 

Problem 8.8.6 (continuation, Problem 8.7.4) 
Use the signal model in Problem 8.7.4. 

Problem 8.8.7 (continuation, Problem 8.7.5) 
Use the signal model in Problem 8.7.5. 

Problem 8.8.8 (continuation, Problem 8.7.6) 
Use the signal model in Problem 8.7.6. 
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Problem 8.8.9 (continuation, Problem 87.7) 
Use the signal model in Problem 8.7.7. 

Problem 8.8.10 
Read Wax and Ziskind [WZ89]. S imulate their algorithm for the model in Problem 

8.8.1. Compare your results to those in Problem 8.8.1. Discuss the relative computational 
complexity. 

Problem 8.8.11 
Read Wax [WaxSl]. Simulate his algorithm for the model in Problem 8.8.4. Compare 

your results to those in Problem 8.8.4. Discuss the relative computational complexity. 

Problem 8.8.12 
Read Cho and Djuric [CD94]. S imulate their algorithm for the model in Problem 

8.8.1. Compare your results to those in Problem 8.8.1. Discuss the relative computational 
complexity. 

P&9 Spatially Spread Signals 

Problem 8.9.1 
Consider Example 8.9.3. 

(a) Discuss the relationship between g21 an d the CRB in terms of beam pattern of the 
array. 

(b) Show that the cross-matrices (8.564) are zero for the single signal case. 

Problem 8.9.2 (continuation, Example 8.9.4) 
Consider the 4-parameter model. Assume $c, = -A$/2 and $Q = A+/2. Assume 

+52 = "til = 0.3A$/2. Assume K = 100. Plot the CRB (10 logCRB1/2) versus AsNR for 
A$ = 0.2, 0.4, and 0.6. Note that the bound is not normalized. 

Problem 8.9.3 
Consider a SLAlO. There is a single signal spatially spread signal impinging on the 

array. The spatial spectrum can be modeled as a complex AR(l) process with known 
power. Assume that the white noise is negligible. 

Plot the CRB for various parameter values. 

P8.10 Beamspace Algorithms 

Problem Note 8.10.1: 
The first set of problems focuses on beamspace Cramer-Rao bounds. We consider 

many of same arrays and signals as in Section 8.4. In each problem, we consider three 
types of beamspace matrices: 

(a) DFT beamspace (8.581), (8.582). 

(b) Taylor series beamspace (8.588), (8.589). 

(c) DPSS beamspace (8.598), (8.599). 

The dimension of the beamspace is a design parameter. In element space, the CRB in 
the $- or u-space only depends on the signal separation. In beamspace, the CRB also 
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depends on the actual location because the center of the beamspace may be mismatched. 
In each problem we consider three values for the location of the center of the signal set, 

$J C= -r/N, 0, and n/N. 
In each problem, plot the normalized CRB versus ASNR for K = 100 and compare 

them to the element-space CRBs in Section 8.4. 
The first six problems consider a SLAlO. 

Problem 8.10.1 (continuation, Example 8.4.4) 
Consider two equal-power uncorrelated plane-wave signals: $Q = tic - A$/2, $2 = 

I,LJ~ + A+/2, where A$ = A$JR. (Test scenario 1, modified.) 

Problem 8.10.2 (continuation, Problem 84.1) 
Consider two uncorrelated plane-wave signals: $1 = tic - A$/2, $2 = tic + A$/2, 

where A$ = A+R. ASNR2 = lOOASNR1. (Test scenario 3, modified.) 

Problem 8.10.3 (continuation, Problem 8.4.2) 
Consider the same signal directions as in Problem 8.10.1. The signals are correlated 

using the values in Problem 8.4.2. (Test scenario 4, modified.) 

Problem 8.10.4 (continuation, Problem 8.4.3) 
Consider three equal-power uncorrelated plane-wave signals: $1 = tic - A+, $2 = tic, 

$3 = $, + A$, where A$ = A&. (Test scenario 7, modified.) 

Problem 8.10.5 (continuation, Problem 8.4.4) 
Consider the same signal model as in Problem 8.10.4, except the signals at $1 and +3 

have an SNR that is 10 dB higher than the signal at $2. (Test scenario 9, modified.) 

Problem 8.10.6 (continuation, Problem 8.4.6) 
Consider five equal-power uncorrelated plane-wave signals: $1 = Qc - 2A$+ $2 = 

$J~ - A$, $3 = qc, $4 = $J~ + A$, $5 = tic + 2A+. (Test scenario 10, modified.) 

Problem Note 8.10.2: The next six problems consider a SLA32. 

Problem 8.10.7 (continuation, Problem 8.4.7) 
Consider two equal-power uncorrelated signals at $1 = & - n/32 and $1 = +& + r/32. 

Problem 8.10.8 (continuation, Problem 8.4.8) 
Consider two equal-power uncorrelated signals at +I = Y/J, - n/128 and $1 = $c + 

r/128. 

Problem 8.10.9 
Consider the same model as in Problem 8.10.7 except the signals are correlated. Let 

p = 0.95, 0.95exp(j7r/4), and 0.95exp(jr/2). 

Problem 8.10.10 

(a) Consider three equal-power uncorrelated signals located at $1 = & - n/32, $2 = 0, 
and $3 = & + n/32. 

(b) Repeat part (a) with ASNRI = ASNR3 = lOOASNR2. 
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Problem 8.10.11 

(a) Consider five equal-power uncorrelated signals located at 

$Ji=?/Jc+v, i=l,..., 5, (8.724) 

(b) Consider seven equal-power uncorrelated signals located at 

(8.725) 

Problem 8.10.12 
Consider the signal model in Problem 8.10.7 and assume I/J= = n/128. We use a DFT 

beamspace matrix with fVbs = 5. Find Gcrnl,bs (8.630) by using the AP algorithm. 
Discuss your results. 

Problem 8.10.13 
Consider the signal model in Problem 8.10.10 and assume & = 0. We use a DFT 

beamspace matrix with Nbs = 5. Find &ml+ (8.630) by using the AP algorithm. 
Discuss your results. 

Problem 8.10.14 
Consider the same signal model as in Problem 8.10.12. Repeat Problem 8.10.12 using 

the beamspace IQML algorithm. Compare your results, including computational issues. 

Problem 8.10.15 (continuation, Problem 8.10.13) 
Repeat Problem 8.10.14 for the signal rnodel in Problem 8.10.13. 

P&11 Sensitivity, Robustness, and Calibration 

Problem Note 8.11.1: The next five problems consider a lo-element linear array that 
is nominally a SLA along the z-axis. The sensor location perturbation model is given 
in (8.661) and (8.662). The pzi and P,,~ perturbations are statistically independent with 

OP = 0.05X, which is 10% of the nominal value. We consider different signal models and 
evaluate the element-space hybrid CRB, the beamspace hybrid CRB, and the RMSE of 
various algorithms: 

(a) Element-space hybrid CRB. 

(b) CML and MODE AP in element space. 

(c) CML and MODE AP in beamspace (DFT BS matrix with Nbs = 5). 

(d) Element-space IQML. 

(e) Beamspace IQML. 

In each part, plot the normalized RMSE versus ASNR for K = 100. Include the gp = 0 
case as a reference. Note that the sensor positions do not change during the snapshot 
sequence. Discuss your results. 

Problem 8.11.1 
Two equal-power uncorrelated plane-wave signals impinge on the array from 1kA+/2, 

where A+ = A$JR. (Test scenario 1.) 
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Problem 8.11.2 

Two uncorrelated plane-wave signals impinge on the array from kA$/2, where All, = 
A+R, ASNR:! = 1OOASNRl. (Test scenario 3.) 

Problem 8.11.3 

Two equal-power correlated plane-wave signals impinge on the array from ~tA$/2, 
where A+ = A$R. p = 0.95exp($r/4). (Test scenario 3.) 

Problem 8.11.4 
Three equal-power uncorrelated plane-wave signals impinge on the array; $1 = -A& 

49 = 0, lj!+ = A+, where A$ = A+R. (Test scenario 7.) 

Problem 8.11.5 (continuation) 

Consider the same model as in Problem 811.4 except ASNRl = ASNR3 = lOOASNR2. 
(Test scenario 9.) 

Problem Note 8.11.2: The next set of problems considers sensor gain and phase per- 
turbation. We use the model in Section 6.3.3 with no sensor position perturbations. We 
let o9 = 0.02 and gy = .05. 

In Problem 8.11.6, we derive the hybrid CRB for gain and phase perturbations. In 
Problems 8.11.7-8.11 .ll we simulate the performance for the same signal models as in 
Problems 8.11.1-8.11.5. In each problem, do the five parts in Problem Note 8.11.1 and 
plot the results. 

Problem 8.11.6 

Use the expression in (8.677) as a starting point. Derive the hybrid CRB for the case 
of gain and phase perturbations. 

Problem 8.11.7 (continuation, Problem 8.11.1) 

Repeat Problem 8.11.1 for the sensor gain and phase perturbation parameters in Prob- 
lem Note 8.11.2. (Test scenario 1.) 

Problem 8.11.8 (continuation, Problem 8.11.2) 

Repeat Problem 8.11.2 for the sensor gain and phase perturbation parameters in Prob- 
lem Note 8.11.2. (Test scenario 3.) 

Problem 8.11.9 (continuation, Problem 8.11.3) 

Repeat Problem 8.11.3 for the sensor gain and phase perturbation parameters in Prob- 
lem Note 8.11.2. (Test scenario 4.) 

Problem 8.11.10 (continuation, Problem 8.11.4) 

Repeat Problem 8.11.4 for the sensor gain and phase perturbation parameters in Prob- 
lem Note 8.11.2. (Test scenario 7.) 

Problem 8.11.11 (continuation, Problem 8.11.5) 

Repeat Problem 8.11.5 for the sensor gain and phase perturbation parameters in Prob- 
lem Note 8.11.2. (Test scenario 9.) 
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Chapter 9 

Parameter Estimation II 

9.1 Introduction 

In Chapter 8, we focused on maximum likelihood estimation and the bounds 
on achievable performance. We found that the stochastic maximum likeli- 
hood estimator achieved the Cramer-Rao bound but it required a significant 
amount of computation to find the estimate. We introduced several other 
estimators. Some of the estimators provided good performance but, in gen- 
eral, still required a significant amount of computation. In this chapter we 
focus our attention on estimators that are computationally simpler, but may 
provide acceptable performance in many problems of interest. 

In Section 9.2, we discuss several estimators that we refer to as quadratic 
estimators because they compute a quadratic form as a function of $ and 
choose the D largest peaks as 4. 

In Section 9.3, we develop a family of subspace algorithms. The most 
prominent of these algorithms is the MUSIC (Multiple Signal Classification) 
algorithm invented by Schmidt [Sch79] and Bienvenu and Kopp [BK80]. It 
is widely used because of its performance capability, and various versions 
and modifications of the MUSIC algorithm have been extensively studied. 

In Section 9.4, we discuss linear prediction (LP) algorithms briefly. These 
algorithms grew out of the work by Burg [Bur67] on maximum entropy 
estimators and modified forward-backward linear prediction estimators due 
to Tufts and Kumaresan [TK82]. We do not develop this area in detail. 

In Sections 9.2 and 9.3, we utilize simulation to study the performance 
of the various estimators. In Section 9.5, we consider the asymptotic regime 
and derive expressions for the probability of resolution, the bias, and the 
variance. We then combine these results to obtain an analytic expression for 
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the mean-square error. 

Many of the algorithms developed in this chapter suffer significant perfor- 
mance degradation (or fail to work) when the incoming plane waves are corre- 
lated or coherent. In Section 9.6, we study one technique, spatial smoothing 
(SS) , for solving this problem. 

In Section 9.7, we develop beamspace algorithms. In these algorithms 
we preprocess the incoming signal with a matrix that, in essence, creates a 
set of beams. We then utilize these beam outputs to find the DOAs. We 
show that, in many environments, we can obtain estimators with equivalent 
variance and an improved probability of resolution with significantly less 
computation al complexity. 

In Section 9.8, we study the sensitivity of the various algorithms to per- 
turbations in the array or the noise environment. 

In Section 9.9, we consider planar arrays. Most of the algorithms devel- 
oped in this chapter are applicable to arbitrary array geom.etries. However, 
some of the particularly efficient techniques, such as algorithms that find the 
roots of a polynomial, do not extend easily. 

In Section 9.10, we summarize the results of the chapter and indicate 
several topics that we have omitted. In Table 9.1, we show the structure of 
the chapter. 

9.2 Quadratic Algorithms 

9.2.1 Introduction 

In this section we discuss several algorithms that we refer to as quadratic 
algorithms because each of them computes one or more quadratic forms. We 
should note that several of the algorithms that we develop in Sections 9.3 
and 9.4 also compute quadratic forms. However, the logic leading to their 
structure is different. One should view the quadratic algorithm term as a 
convenient descriptor rather than a precise definition. 

The basic estimators of interest are listed in Table 9.2. In each algorithm, 
we vary v(Q) over the a priori range of the sources in q-space, plot the value 
of the indicated function, and select the D largest values as the estimates 

0f$%~2,” , $D. We assume that D is known or has been estimated. All 
of these algorithms are valid for an arbitrary array geometry. For 2-D esti- 
mation, the scalar $J is replaced by the vector +, whose components are $J~ 
and QY. 
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Algorithms 

Table 9.1 Structure of Chapter 9 

- - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - - - -______c 

BS-MUSIC, BS-MVDR 

Coherent 
Signals 

Model 
Mismatch 

Planar 
Arrays 

9.6 Coherent _------------------------ 

Spatial Smoothing 

9.8 Sensitivity _ ---------------------- _ _ 

Array Perturbation 

9.9 Planar Array --------------------------- 

2-D Root MUSIC 
2-D Unitary ESPRIT 
2-D BS-Unitary ESPRIT 

9.4 Linear Prediction .---------------- 

FBLP 
Max Entropy 



9.2 Quadratic Alaorithms 

Table 9.2: Quadratic Algorithms 

1. Beamscan v* (I4 cx VW) 

2. Weighted beamscan v*(q) C, w v(q) 7 

3. MVDR 1 
vN(~) Gil VW4 

For linear, equally-spaced arrays, we develop a polynomial version of 

the algorithm where the roots correspond to $1, $2, . l . ,$&. These rooting 
algorithms are computationally simpler and more accurate. 

In Sections 9.2.2 and 9.2.3, we develop the algorithms and give a graphi- 
cal indication of their performance. In Section 9.2.4, we develop the rooting 
version of the algorithms. In Section 9.2.5, we present a detailed compari- 
son of the performance of the various algorithms based on simulation and 

compaOre their performance to the Cramer-Rao bound derived in Chapter 8. 
In Section 9.2.6, we summarize our results. 

The results in this section are similar to those in Barabell et al. [BCD+84],l 
which analyzed the algorithms listed in Table 9.1 along with the MUSIC algo- 
rithm (Section 9.3). Their report considers uncorrelated signals and contains 
ext,ensive simulations for various combinations of SNR, &!J, and K. 

9.2.2 Beamscan Algorithms 

The beamscan algorithm forms a conventional beam, scans it over the ap- 

propriate region of +-space, and plots the magnitude squared of the output. 
If the kth snapshot vector in the frequency domain is 

XI, = C Xl,(l) i X,(2) i l **  i 

,  xk(N) IT,  (9 1) 

.  

8 

t,hen, for K snapshots, 

i;,(+) = $ 5 (VH($)xk/2, -n- < g!J < 7r. - - 
k=l 

(9 2) . 

We have omitted the & scaling factor in the weight vector of the conventional 
karn pattern to be consistent with the majority of the literature. This 

‘This reference is a Lincoln Laboratory report that has a distribution restriction but 
:q)pcars t,o be well-known in the community. 
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estimator is referred to as the Bartlett beamformer. The expression in (9.2) 
can be rewritten as, 

(9 3) . 

The term in the braces is the sample spectral matrix. Thus (9.3) can be 
rewritten as 

pB(‘+) = vH(“b) cxv(+), (9 4) . 

where C, is the sample spectral 
an estimate of the spatial spectrum. Its x>erformance has been studied in 
detail in the context of both temporal and spatial spectrum estimation (e.g., 
[Kay88], or [Mar87]). If the array is a standard linear array, we would 
compute &(+) by using an FFT in (9.2). 

In our application, we select the D peaks of &($) and designate them 

Not ice that & (+) is providing 

as &, i = 1,2,. l 9 , D. We assume that the number of signals, D, is known. 
Zhang [Zha95b] h as studied the performance of the Bartlett beamformer. 

The algorithm is scanning a conventional beam so the resolution cannot 
exceed the classical resolution we developed in Chapter 2. For an arbitrary 
array, if the AALSR and E( are large enough, we will be able to resolve targets 
separated by the beamwidth of the array. For a standard N-element linear 
array, this will correspond to sources whose separation is greater than or 
equal to 2/N. 

There are various modification to the Bartlett estimator that are appro- 
priate for various environments. 

If we anticipate that there are weak targets in the sidelobe region of the 
conventional beam, we can use one of the weightings developed in Chapter 
3 to reduce the sidelobes at the expense of broadening the main lobe and 
decreasing resolution. The resulting estimator is 

pBW($) = $ e IVH(711)Wxk12, - 

k=a 

nqN7L - - (9 5) . 

Then, 

w  = diag w(1) i w(2) i ... i 
[ , W(N) ] . 0 I (9 6) . 

(9 7) . 
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where 
C x,‘w = WC,WH. (9 8) . 

For a conjugate symmetric array, we can improve the performance for a 
modest number of snapshots by using FB averaging, as discussed in Section 
7.2.3. In this case the estimator is 

FB,fb(N = (9 91 . 

where J is the exchange matrix. The expression for p’,~(+) can be rewritten 
as 

&f&b) = vHW~Cx,jbv(ll,), (9.10) 

where 

1 K 

C x,fb = - 
2K c( 

H T &x, +Jx;x, J 
> 

. (9.11) 
k=l 

The behavior of these estimators is discussed in Problems 9.2.1 through 
9.2.3. 

9.2.3 MVDR (Capon) Algorithm 

The MVDR algorithm was discussed in the context of waveform estimation 
in Section 6.2.1. To use these results in the parameter estimation context, we 
use the weighting in (6.71) with C,, the sample gpectral matrix, replacing 
S,. Then2 

K 
A 2 
P mvdr w> 

1 - 
-a 

H - 
K Wmvdr xk 7 

1 -a 
tC=l 

- - 

This reduces to 

1 K 

-c K 
k=l 

vH(+) cx-l 
vH(+> c,-l v(TJq 

xk 

1 h 

P mvdr = w> 
vH($> c,-l v($) ’ 

-7r 5 yb < 7T. 

-7rqJ-e - - 

2 

7 -7r < + -c 7r. - - 

(9.12) 

(9.13) 

21n the notation of Chapter 6, we should call this the MPDR algorithm. The MVDR 
terminology is so widely used in the parameter estimation literature that we will use it. 
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This estimator is due to Capon [Cap69], and its behavior was discussed in 
by Lacoss [Lac71]. We plot &vdr(+) and find its D peaks. These values 
correspond to the D wavenumber estimates: &, &, l l l ,  40. 

As in the case of the Bartlett beamformer, the MVDR algorithm also 
provides a spatial spectral estimate that does not rely on any underlying 
signal model. We focus our attention on its performance as a DOA estimator. 

Frequently we plot the inverse of PmUd, (+) and find the D minima of 
function. We refer to the inverse as the null spectrum, 

omvdr($) = vH($) c,-l v(q), -- 5 ti L 7l-g (9.14) 

If v(q) is conjugate symmetric, we can improve performance and reduce 
computation by FB averaging of the data. Then (9.13) becomes 

R?-wdr, fb 0) = 
1 

vH(+> c;‘fb vhf9 ’ 
-7r < Q < 7r, 

- - 
(9.15) 

! 

where CX,~~ is given by (9.11). The null spectrum in (9.14) becomes, 

(9.16) 

We consider a simple example to show its behavior for a large number of 
snapshots. 

Example 9.2.1 
We consider a standard lo-element linear array. There are two sources located at 

U = kO.0433. This corresponds to a separation of A$JR. The sources are uncorrelated and 
their strength is 20 dB above the white sensor noise. We process 1,000 snapshots. 

The results for a typical trial are shown in Figure 9.1(a) for the Bartlett algorithm (9.2) 
and the MVDR algorithm.3 We see that the MVDR algorithm exhibits two distinct peaks 
at the location of the two sources. It is important to point out that that case corresponds 
to high SNR and a large number of snapshots. It does indicate that the MVDR algorithm 
appears to have a resolution capability in this environment. Although there are two peaks 
in the spectrum, the dip between the peaks is very small, so we would anticipate that the 
signals might not be resolved on other trials. This behavior is due to the close spacing 
between the signals. In Figure 9.1 (b), we show the results from a typical trial when the 
spacing is doubled so that Au = 0.1732. Now the dip between the peaks is significant. 

These plots provide an indication of behavior, but they do not tell how well the 
MVDR algorithm works in terms of estimation accuracy or its behavior for lower SAC. or 
fewer snapshots. Later we investigate its behavior in terms of estimation accuracy and 
resolvability as a function of source SNR, separation, and the number of snapshots (K). 

We return to the MVDR algorithm in Section 9.2.4 and study its behavior 
as a function of SNR, source separation, and number of snapshots. We now 
look at a root version of the MVDR algorithm that is applicable to standard 
linear arrays. 

3Gabriel [Gab801 has similar plots. 



1146 9.2 Quadratic Algorithms 

40- 1 I I I I I I I I 

?MVDR 
L - Beamscan - 

30- ' 
\ 

1' '\ 
/ \ 

I \ 
I \ 

'I \ 
20- I \ 

-1 \ 
/ /- 

\ 
/. '/ 

g  #\-/---' - 
i-,- 

\ G.-L /--\ 
- 

1-i . 

o- " 

-20 I I I I I I I I I 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

u 

( > a 

0.2 0.4 0.6 0.8 1 

Figure 9.1 Performance of beamscan and MVDR algorithms: standard lo- 
element linear array, p = 0, SNR = 20 dB, K = 1,000: (a) u = f0.0433; (b) 
u = ItO.0866. 
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9.2.4 Root Versions of Quadratic Algorithms 

In this section we consider a standard N-element linear array. For this 
case we can derive an alternative version of the quadratic algorithms that is 
computationally simpler and more accurate.4 

The null spectrum of the MVDR algorithm can be written as a quadratic 
form, 

SW = vH(+) Gv(Te, (9.17) 

where G is a Hermitian matrix. Finding the peaks of P(Q) is equivalent 
to finding the minimum (or nulls) of Q(q). We want to find a polynomial 
whose roots correspond to the minimum of Q(q). 

We recall that we can write 

v(~) = [ 1 ejll) . . . eW-W]T, (9.18) 

where we have put the first element at the origin to simplify notation. Letting 

jti z=e , (9.19) 

we can write (9.17) as 

N-l N-l N-l N-l 

8Z(z) = C C x-mgmnXn = C C gmnxnmm, 
m=O n=O m=O n=O 

(9.20) 

where gmn is the mnth element of G. Now define k = n - m and write &&) 
as 

N-l 

00 zx = 
x clkZk, (9.21) 

k=-(N-l) 

where 

c k+N-1 
n=O gn-k,n, k = -(Iv - l), l ‘. ) -l,O, 

qk 
- - (9.22) 

~~~~ gn-k,n, k = 1,2,*4V- 1. 

The Hermitian property of G implies that the coefficients of Q.&z) are con- 
jugate symmetric, 

4-k = 4;. (9.23) 

4The use of rooting algorithm is due to Barabell [Bar831 (see also [BCD’84]) 
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The null spectrum can also be written as, 

N-l 

so zx = c qi x 
-k 

. (9.24) 
k=-(N-l) 

(9.25) 

The nulls of Q(q) are due to the roots of Q&) that lie near the unit 
circle. Due to the conjugate symmetry, if xd is a root of Q&), then so is 

l/ 42 
Qd (x) can be factored, 

(9.26) 

where H(x) is the FIR filter that would generate a spectrum Q&). 
Half of the roots of QZ (z) will lie inside the unit circle. The rooting 

algorithm constructs Q&) using the appropriate G (C,’ for MVDR), and 
computes the D roots inside and closest to the unit circle. Then, 

‘& = 
arg &-j 
-, d= 1,2,-a,D. 

7r 
(9.27) 

The estimate of the root & has a radial and angular error. Only the 
angular error affects &. In many cases of interest, this angular component 
is smaller than the estimate of null location obtained from the null spectrum. 
We analyze this behavior in detail in Section 9.5. 

In Section 9.3, we encounter algorithms in which 

Yil G = &$JN. (9.28) 

In that case we take advantage of this decomposition and construct Q&) 
in a different manner. 

9.2.5 Performance of MVDR Algorithms 

In this section we investigate the behavior of the MVDR and root MVDR 
algorithms as a function of the array SNR and the number of snapshots. 
There are a number of papers in the literature that analyze the performance 
of MVDR. The paper by Vaidyanathan and Buckley [VB95] contains several 
results of interest and summarizes some of the previous work. They derive 
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an expression for the asymptotic (K -3 co) bias, the additional bias due 
to finite data, and the standard deviation. They also studied the effects of 
array perturbations. The reader is referred to this reference for a discussion 
of these analytic results. 

We restrict our discussion at this point to two uncorrelated signals im- 
pinging on the array. The array is a standard lo-element linear array, so we 

use G , f b  l 

Example 9.2.2 
We use a standard lo-element linear array and assume there are two uncorrelated 

signals impinging on the array from ,tAq!~/2. We assume A@ = A$R. We simulate the 
performance of the algorithms for various SNR and number of snapshots. We measure the 
probability that the algorithm can resolve the two signals in the following manner. I f  the 

algorithm produces two distinct solutions inside the main lobe and & - & < A7,!~/2, we 
I I 

say that the signals are resolved. In this example, we use the sample covariance matrix 
C x,~b. We consider the spectral MVDR and root MVDR algorithms. 

In Figure 9.2 we plot the probability of resolution versus ASYVK In Figure 9.3, we plot 
the normalized RMSE versus ASNR. In Figure 9.4, we plot the normalized RMSE versus 
K, the number of snapshots. 

The threshold of root MVDR occurs at an ASNR of about 15 dB for K = 100. Above 
threshold, the RMSE is very close to the CRB. The threshold of spectral MVDR is harder 
to specify. The dramatic increase in RMSE occurs at about 22 dB, but the RMSE does 
not approach the CRB until the ASNR = 40 dB. In Figure 9.4, we see that root MVDR is 
very close to CRB as K ---+ 00 but spectral MVDR is not.5 An analysis of this behavior if 
contained in [Lac71]. 

In Figures 9.5, 9.6, and 9.7, we show the behavior of the two algorithms as a function 
of signal separation for various values of ASNR. In each case, there is a critical value of 
AU for the root MVDR and spectral MVDR algorithms (which are different). I f  Au is 
larger than the critical value, then the MVDR algorithms are very close to the CRB. 

9.2.6 Summary 

In this sectlion, we have observed that root MVDR performs reasonably 
well above threshold, but the threshold is significantly higher than the ML 
algorithms for closely spaced signals. Spectral MVDR has an even higher 
threshold. 

In the problems, we develop two other quadratic algorithms, AAR and 
TNA, which exhibit somewhat better performance than MVDR but do not 
appear to be used in practice. We also discuss diagonal loading in the prob- 
lems and see that it improves the performance in the low sample support 
case. 

‘The result in Figure 9.4 appears to exhibit different behavior than the example in 
[VB95]. The reason is that their signal separation is about EAR instead of AR. 
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Although neither the Bartlett beamformer nor spectral MVDR are effi- 
cient parameter estimators, they can play a useful role as a preliminary pro- 
cessor to indicate the number of plane waves impinging on the array, their 
approximate location, and their approximate signal power. 1.f two plane 
waves are closely spaced, the algorithms will think they are single plane 
waves and underestimate the number of signals. The more sophisticated 
algorithms such as AIC or MDL can correct the underestimation. The more 
sophisticated parameter estimation algorithms that we develop can improve 
the estimation accuracy. 

In the next section we explore algorithms that exploit the orthogonality 
between the signal and noise subspaces. 

9.3 Subspace Algorithms 

9.3.1 Introduction 

In our discussion of optimum beamformers in Chapter 6, we saw that when- 
ever the received waveform consisted of D plane-wave signals plus uncorre- 
lated noise, we could immediately reduce the problem from an N-dimensional 
problem to a D-dimensional problem. This reduction was accomplished by 
generating D sufficient statistics that defined a signal subspace. Once the 
signal subspace was created, all further processing was done in that subspace. 
We were able to generate the signal subspace exactly because we knew the 
angles of arrival of the D signals. A similar result held for correlated noise, 
assuming that we knew the spectral matrix of the noise. 

In the parameter estimation problem, the D angles of arrival are un- 
known. We want to utilize the received data to estimate the signal subspace 
and utilize this information to estimate the angles of arrival. 

We can utilize either the narrowband snapshot model in either the fre- 
quency domain or the time domain. In the frequency-domain snapshot 
model, 

s X = V(Q) SfVH(@) + 0: I, (9.29) 

where 

(9.30) 

We assume that D is known. We want to estimate $1, @z, l l 9 , $D. 
The spectral matrix can be written in terms of its eigenvalues and eigen- 

vectors as 
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(9.31) 
i=l 

s X = *iA(PH, (9.32) 

where A = diag [Al, X2,. l . , AN]. 
We assume the eigenvalues are in order of decreasing size. Since there 

are D signals, 

x1 > x2 > l l ’ > AD > AD+1 = l l ’ = g2 

-  -  -  W’ 

We refer to the first D eigenvalues, 

(9.33) 

as the signal-subspace eigenvalues and 

CP i7 i = 1,2, l . l , D, (9.35) 

as the signal-subspace eigenvectors. Note that there is still a noise com- 
ponent in the signal subspace. The remaining eigenvectors define a noise 
subspace that does not contain any signal component. 

We define these subspaces, 

us= * *1 i fD2 i [ ( ,“‘I ; @D ] ) (9.36) 

as an N x D matrix and 

as an N x (N - D) matrix. Then 

IjvflU~l~~=~jY~~j~~=N~, i=1,2,*‘*,0, (9.38) 
j=l 

= 0, i = 1,2;-, D. (9.39) 

The theory of subspace processing follows directly from (9.39). We find 
a set of vectors that span UN. Project v($) onto UN for all allowable 
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values of 5. The D values of $J where the projection is zero are the desired 

$h,‘$‘2,--,‘$D- 

In practice, we do not know the eigenvalues and eigenvectors and must 

estimate them from the data. We denote the estimated spectral matrix by 
&. It could be the sample spectral matrix C, or, if appropriate, C,,J~ as 
defined in (9.11). h 

Then, we can expand S,, 

N 
- 
S X- 

x 
ii li$ &H, (9.40) 

i=l 

and 

(9.41) 

(9.42) 

We developed the statistics of & and &i in Section 5.7. 
For finite I-(, 6~ # US and fiN # UN. Therefore, different choices of 

vectors in the estimated noise subspace will lead to different performances 

of the estimators. We discuss various algorithms and their performance. 
The common steps are: 

(i) Use gx to determine 6~ and 6s. In some algorithms, we also need 
the eigenvalues. Note that this assumes we have already estimated D 

using one of the techniques that was developed in Section 7.9. 

(ii) Compute a function Q(q) called the null spectrum by projecting v(q) 
on a particular set of vectors in 6~. Choose the D minima of Q(q). 
The corresponding values of $J are the &, i = 1,2, . . m , D. 

Note that Q(q) is a one-dimensional function so that we are no longer 

searching over a D-dimensional space to find $. 
In most cases, we will use the singular value decomposition developed in 

Section 5.8 to compute the eigenvalues and eigenvectors directly from the 

data. 
In Sections 9.3.2 and 9.3.3, we discuss two subspace algorithms: MUSIC 

and Min-Norm. In Section 9.3.3, we compare their performance. In Section 

9.3.4, we derive a different type of subspace algorithm, ESPRIT, and com- 
pare its performance to that of MUSIC and Min-Norm. In Section 9.3.5, we 
summarize our results. 
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9.3.2 MUSIC 

The first algorithm of interest is called MUSIC (Multiple Signal Classifica- 
tion), and was invented by Schmidt ([Sch79], [Sch81], [Sch83], [Sch86], and 
[SF86]) and independently by Bienvenu and Kopp [BK80], [BK83]. 

In Section 9.3.2.1, we develop the spectral MUSIC algorithm. In Sec- 
tion 9.3.2.2, we develop the root version of the MUSIC algorithm, which is 
applicable to standard linear arrays. 

9.3.2.1 Spectral MUSIC 

In this case, Q(q) is expressed in terms of the eigenvectors of the noise 
subspace 

which can also be written as 

vw) 7 (9.43) 

= (9.44) 

Thus, MUSIC is using a uniform weighting of the norms of the projections 
of v($) onto the estimated eigenvectors. Equivalently, in terms of the eigen- 
vectors of the signal subspace, 

QMU(+) = vH (ti) v($+ (9.45) 

The steps in the algorithm are: 

(1) We compute either 6~ or tiN using the SVD procedure in Section 
7.2.6. The choice will depend on the size of D, the number of signals 
compared to N, and the number of sensors. In most cases, we use 6~. 

(2) We plot Q~&,LJ) by varying v($J) over --7r 5 $J 5 x and choose the D 
minima. 

In order to implement MUSIC, we need enough snapshots to get a reason- 
able estimate of & and we have to know the array manifold v($J). Note that 
spectral MUSIC is applicable to arbitrary array geometry and its extension 

to ?!J = I% &IT is straightforward. 
For standard linear arrays, the root MUSIC algorithm is applicable. 



MUSIC 1159 

9.3.2.2 Root MUSIC 

For a standard linear array, we can use a polynomial representation. The 
array manifold polynomial vector is defined as 

[ 1 
T 

v&z) = 1 x l .= zN-l ) (9.46) 

which is the array manifold vector, with a phase shift, evaluated at x = 

exP(N 7 

[Vz(X)]&$ = ej’+%(+). (9.47) 

Then, (9.44) can be written as 

- ^H - - &u, v&z). 1 (9.48) 

If the eigendecomposition corresponded to the true spectral matrix, then 
the exact MUSIC spectrum could be obtained by evaluating QMU,&) on 
the unit circle, 

and the D roots would correspond to the location in $-space of the D signals. 
In practice, we compute the roots of QMQ(Z) and choose the D roots that 
are inside the unit circle and closest to the unit circle. 

We denote these roots by &, i = 1,2,. . l , D. Then a 

h 

+ 

arg 2i 
ix- 

7r ’ 
i = 1,2, l . l ) D. (9.50) 

Since we are using an estimated covariance matrix, there will be errors 
in the location of roots. The effect of this error is shown in Figure 9.8. 
We observe that the radial component of the error Azi will not affect 
However, it would distort the MUSIC spectrum. Thus, we would expect 
that spectral MUSIC will have less resolution capability than root MUSIC. 
We investigate this behavior analytically in the asymptotic region in Section 
95 . . 

For a standard linear array, the performance can be improved by using 
FB averaging of the data, as in (9.11), to obtain C&J,. The corresponding 
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subspace decomposition is 

Unit circle 

/ 
AWi A 

\ 

AZ i z Vi =i 
Re(z) 

Figure 9.8 Behavior of roots in z-plane. 

Then, the FB root MUSIC polynomial can be written as 

We find the roots of QM~ fb,.&) and proceed as in the forward-only root > 
MUSIC algorithm. 

9.3.2.3 Unitary root MUSIC 

The forward-backward root MUSIC algorithm can be implemented with real 
computation by using a unitary transformation. This approach is due to 
Pesavento et al. [PGHOO] and our discussion follows that reference. 
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We define a real-valued sample spectral matrix, 

C x,Re = QH Cx,fb QT (9.53) 

where Q can be any unitary, column conjugate symmetric matrix. In the 
text, we will always use the sparse matrices introduced in (7.58) and (7.59), 

Q 
1 I j1 - - [ 1 J2 J -jJ ’ 

(9.54) 

for N even, and 

1 
I 0 

. 
JI 

Q - - 
1/z [ 1 OT fi OT ) (9.55) 

J 0 
. - JJ 

for N odd. 
Note that 

C x,Re = - ’ [QHCxQ + QHJC;Jq]. 
2 

(9.56) 

Using 

JQ * - - Q 9 (9.57) 

(9.56) can be written as 

C x,Re = - ; [QH CxQ + [Q*lHC:Q*] 
- - 

Re [QH CxQ] l 

(9.58) 

We denote the eigenvalues and eigenvectors of Cx,~e by Xi,Re and & Re, 1 
respectively. They satisfy the characteristic equation, 

h 

C x,Re Re + = iRe$Re- (9.59) 

The eigenvalues and eigenvectors of &fb are denoted by j\i,fb and &fb, 
respectively. They satisfy the characteristic equation, 

Cx,fb$fb = ‘fb+fb* (9.60) 

Pre-multiplying (9.60) by QH gives 

QHC,,fb& = QHC,,fbQQH& = ~fbcQeQH+fb (9.61) 

which is (9.59) with 



1162 9.3 Subspace Algorithms 

and 

(9.62) 

i& = ifb. (9.63) 

The subspace decomposition of the real matrix C&R~ can be written as 

C x,Re = ~S,Re&S,Re~~Re + 6V,RekV,Ref$Re~ (9.64) 

and corresponds to the subspace decomposition in (9.51) through the relation 
in (9.62) and (9.63). The FB MUSIC polynomial in (9.52) can be written as 

OMU,fb,z (2) = 
1 

v~(z)&9xir~,~~~~,~,v.0 

1 
= V~(-)&UIV,Re~~,R~QHVa(Z) 

x 
1 

= +~(-)&V,RXJ&e+~(~) 
z ? 

n - &W,U,&j, 

where the array manifold polynomial is 

(9.65) 

+&j 4 QHv&)- 

The steps in unitary root MUSIC can be summarized: 

(9.66) 

1. Compute the real sample spectral matrix C,Q+ using (9.58), 

2. Perform the eigendecomposition in (9.64)) 

3. Compute QMU,U,z(z) using (9.65) and (9.66), 

4. Find the roots of &JU &x> and choose the D roots that are inside 
the unit circle and closest to the unit circle. Denote these roots as 
h . 
xi,%= ,“‘) 1 D ) 

5. The estimates are 

(9.67) 
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The advantage of unitary root MUSIC is that it has the same performance 
as FB root MUSIC. It provides a significant reduction in computational 
complexity. In order to achieve this reduction, an efficient polynomial root- 
finding algorithm must be used. 6 The Lang-Frenzel algorithm ([LF94]) is 
used in our examples. 

Pesavento et al. [PGHOO] have derived closed-form expressions for the 
large sample mean-square estimation error of unitary root MUSIC. 

Before we do any examples of the MUSIC algorithm, we derive a second 
subspace algorithm. 

9.3.3 Minimum-Norm Algorithm 

A second algorithm of interest is called the Min-Norm algorithm. It was 
first developed by Reddi [Red79]. The minimum-norm property and a better 
motivation for the algorithm was presented by Kumaresan and Tufts [KT83]. 
Our derivation follows this latter reference. 

The signal subspace is spanned by the columns of V (see (9.2)). We 
define a vector 

that has the property that, 

d = dl d2 ... dN T 
[ 1 

vH&)d = 0, i = 1,2,*ee,D, (9.69) 

or equivalently, 

Then, the polynomial, 
N 

D(x) = x dk z-(lc-‘) 
k=l 

has zeros at 
~k=exp(j’$k), i= 1,2,**-,0. 

(9.68) 

(9.70) 

(9.71) 

(9.72) 

As we discussed in Section 9.3.1, the N - D noise eigenvectors all have 
this property (i.e., satisfy (9.69) and (9.70)) and span the noise subspace. 
The MUSIC algorithm utilizes all of the noise subspace eigenvectors. In the 
Min-Norm algorithm, Kumaresen and Tufts propose to use a single vector 

‘This suggestion was due to A. Gershmann (private communication). The unitary 
root MUSIC examples were done by D. Bray using a slightly improved version of the LF 
algorithm. 

7This use of this property was first proposed by Pisarenko ([Pis72], [Pis73]). 



lltq 9.3 Subspace Algorithms 

d in the noise subspace. They hypothesize that the estimate of $k will be 
more accurate and that the N - D “noise” zeros will tend to be uniformly 
distributed within the unit circle and will be less likely to generate false 
sources. 

We want to find d as a linear combination of the N-D noise eigenvectors. 
Then, if S, were known exactly, D(Z) will have its zeros at +I, $2,. l l , $0. 

We require that & equal unity and minimize 

N 

(9.73) 

It is useful to discuss why this particular choice of d is logical (e.g., Kumare- 
sen [Kum83]). We factor D(Z) into two polynomials, 

D(z) = a(z) 02(x), (9.74) 

D 

D&z) = x ak z-(~-‘), al = 1, 
k=l 

has the signal zeros, and 

N-D 

D2(x) = x bkz-(lc-‘), bl = 1, 
k=-l 

has the noise zeros. Minimizing Q is the same as minimizing 

(9.75) 

(9.76) 

(9.77) 

This is equivalent to minimizing 02(x) given D1 (x). Using the analogy to 
linear prediction [Mak75], Kumaresen [Kum83] shows that the zeros of B&z) 
always has zeros inside the unit circle that are independent of the zeros of 
Br (x> and they are approximately uniformly distributed in the sectors where 
the D signal zeros are absent. 

We now find D(z) in terms of the estimated signal or noise eigenvectors. 
First, partition d, 

d 
1 - - [ 1 d /  l 

(9.78) 
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Next, we partition the signal subspace matrix 6~ as 

g T 
6, = -j-- ) [ 1 (9.79) 

S 

where g has the first elements of each of the signal eigenvectors. We partition 
the noise subspace matrix 0~ as 

(9.80) 

where c has the first elements of each of the noise eigenvectors. From (9.70), 
d will be orthogonal to the columns of CS, 

@d=O. (9.81) 

Substituting (9.78) and (9.79) into (9.81) gives 

-1 [ 1 
H 

Us d’ = -g*. (9.82) 

Now, minimizing d’ subject to the constraint in (9.82). This is a familiar 
minimization subject to linear constraint. The minimum-norm value of d’ is 

d’= -6’s ([f&lH CL)-’ g*. (9.83) 

From the definition in (9.79), we observe that 

-/ [ 1 
H -/ 

Us Us = I - g* gT. (9.84) 

Using the matrix inversion lemma, 

Substituting (9.85) into (9.83) gives 

6’ g * 
d t - S -- 

l-gHg’ 

d - - 

m  

1 

--?9-- _ 1-g g 

(9.85) 

(9.86) 

(9.87) 
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We can also express d in terms of the noise eigenvectors. 
Since 

CU -H-I - 7 

and 

Thus, 

1 ---------- 
d - - [ 1 . 

-1 * 
%F c c’ 

We observe that we can also write 

d=tij&. 
I I C 

If we define 

then 

L C* 
w2z-7 

I I c2 

1 
d = &VW% 

Then the Min-Norm null spectra can be written as 

(9.88) 

(9.89) 

(9.90) 

(9.91) 

(9.92) 

(9.93) 

(9.94) 

QMN($) e ivH(+)d12 4 v~($>~N~@v($J) 1, (9.95) 

where 
w = w&&T+ (9.96) 

and interpreted as a weighted eigenspace algorithm. It is sometimes referred 
to in the literature as a weighted MUSIC algorithm. Comparisons of MUSIC 
and Min-Norm are contained Xu and Kaveh [XK96] and Kaveh and Bass& 
[KB90]. 
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The Min-Norm null spectra can also be written in terms of signal sub- 
space eigenvectors, 

QMN($) b lvH(lll)d12 = ~~(ti)hWs@~(+), (9.97) 

where 

d=& g* 
1-gHg’ 

(9.98) 

and 
L g 

* 
w2 = 

l-gHg’ 
(9.99) 

For root Min-Norm we calculate d using (9.92) and then form the poly- 
nomial 

D(x) = 1 + dl z-l + l l l + dN z-~, (9.100) 

and compute the roots of D(z). We choose the D roots that are closest 
to the unit circle in the z-plane. It turns out that the difference in perfor- 
mance between spectral Min-Norm and root Min-Norm is not as great as 
the difference between spectral MUSIC and root MUSIC (e.g., [RH89b]). 

We now consider the same models as in Examples 9.2.3 and 9.2.5, and use 
the MUSIC and Min-Norm algorithms to estimate the directions of arrival 
in q-space. 

Example 9.3.1 (continuation) 
Consider a standard lo-element linear array and assume there are two uncorrelated 

plane-wave signals impinging on the array from &Aq!~/2. Assume A$ = A$Q. We simulate 
the four algorithms derived above: MUSIC, root MUSIC, Min-Norm, and root Min-Norm. 
We use Cx,fb. 

In Figure 9.9, we show the probability of resolution versus ASNR for K = 100 (ION). 
In Figure 9.10, we show the normalized RMSE versus ASNR. We see that spectral Min- 
Norm has better resolution behavior than spectral MUSIC. However, root MUSIC has 
better resolution behavior than root Min-Norm. The threshold of root MUSIC occurs 
when the ASNR = 7-8 dB. Above threshold, MUSIC and root MUSIC approach the CRB. 
(In Section 9.5, we show that the ratio of the MUSIC variance to the CRB is (1 + AsNR-l) 
for large K and AslvR.) However, the Min-Norm RMSE remains about 2.5 dB above the 
bound. 

In Figure 9.11, we plot the normalized RMSE versus K for an AsNR = 20 dB. Spectral 
Min-Norm has better threshold performance than spectral MUSIC, but it remains about 
2.5 dB above the CRB. For this ASNR, both root algorithms are above threshold for K = 10 
(K = N). Root MUSIC approaches the CRB bound, while root Min-Norm remains 1.9 
dB above it. 

Example 9.3.2 (continuation) 
We consider the same model as in Example 9.3.1 except p = 0.95. In Figure 9.12, we 

show the probability of resolution versus ASNR, and in Figure 9.13, we plot the normalized 
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Figure 9.9 MUSIC and Min-Norm algorithms: probability of resolution ver- 
sus AS’NR; N = 10, A@ = A$JR, p = 0, K = 100, 200 trials. 
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Figure 9.10 MUSIC and Min-Norm algorithms: normalized RMSE versus 
ASNR; N = 10, A$ = A$Q, p = 0, K = 100, 200 trials. 
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Figure 9.11 MUSIC and Min-Norm algorithms: normalized RMSE versus 

K : N = 10, ASNR = 20 dB, A$ = Aq!q, p = 0, 200 trials. 
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Figure 9.12 MUSIC and Min-Norm algorithms: probability of resolution 
versus ASNR; N = 10, A@ = A~!Q, p = 0.95, K = 100, 200 trials. 
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-20 -10 0 
ASNkO (dB) 

20 30 40 

Figure 9.13 MUSIC and Min-Norm algorithms: normalized RMSE versus 
A+SNR; AT = 10, &G = A+,, p = 0.95, K = 100, 200 trials. 

RMSE versus ASNR. The results are similar to those in Example 9.3.1, except the curves 
are shifted to the right by about 15 dB. 

Example 9.3.3 
Consider the same model as in Example 9.3.1 except A$ = ~.OBWNN. The normalized 

RMSE is shown in Figure 9.14. 

9.3.4 ESPRIT 

In this section we discuss a subspace algorithm referred to as ESPRIT for 
“Estimation of Signal Parameter via Rotational Invariance Techniques”. It 
was derived by Roy and is described in detail in his doctoral dissertation 
[Roy87], as well as several other publications ([RK89], [RPK86], [PRK86], 
[OK90], [RK87], and [OVKgl]). 

One version of ESPRIT (least squares) is identical to the Toeplitz approx- 
imation method (TAM) used earlier by Kung et al. [KLF86] for direction 
finding (e.g., Mayrargue [May881 and Rao and Hari [RH89a]). 

There are several versions of ESPRIT. In the text, we discuss three ver- 
sions. In Section 9.3.4.1, we discuss LS (least squares) and TLS (total least 
squares) ESPRIT. In Section 9.3.4.2, we discuss unitary ESPRIT. In Sec- 
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Figure 9.14 MUSIC and Min-Norm algorithms: normalized RMSE versus 
ASNR; N = 10, A$ = ~B~NN, p = 0, K = 100, 200 trials. 

tion 9.3.4.3, we summarize our ESPRIT results and discuss some related 
algorithms. 

9.3.4.1 LS and TLS ESPRIT 

In this section, we develop the ESPRIT algorithm in the context of a uniform 
linear array. Our discussion follows Ottersten et al. [OVK91]. 

We consider the standard N-element linear array. In Figure 9.15, we 
show a lo-element array. The first step in the ESPRIT algorithm is to 
choose two identical subarrays. The number of elements in the subarrays 
is denoted by Ns and Ns > D + 1 where D is the number of signals. We - 
assume that the first element in the original array is the first element in the 
first subarray and that the (d, + l)th element in the original array is the 
first element in the second subarray. The parameter d, denotes the distance 
between the subarrays measured in Ap units (Ap is interelement spacing). 
The first set of subarrays in Figure 9.15 shows the case of two overlapping 
subarrays with d, = 1. The second set of subarrays in Figure 9.15 shows the 
case of two overlapping subarrays with d, = 3. The third set of subarrays 
in Figure 9.15 shows the case of two non-overlapping subarrays with ds = 5. 
In Figure 9.16, the case of two non-overlapping subarrays with d, = 1 is 
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Figure 9.15 Subarrays for ESPRIT algorithm. 

shown. In this case, the element spacing in the subarrays is X so we would 
anticipate ambiguity problems. 

We can specify the subarrays by use of a selection matrix J,. We begin 
by defining the non-zero component, which we denote by S,. For the first 
set of subarrays in Figure 9.15, J, is a 9 x 9 identity matrix. For the second 
set of subarrays in Figure 9.15, Js is a 7 x 7 identity matrix. For the third 
set of subarrays in Figure 9.15, S, is a 5 x 5 identity matrix. For the general 
case corresponding to Figure 9.15, J, is an Ns x Ns identity matrix where 
N, is the length of the subarray. 

We now define the Ns x N selection matrices for the subarrays in Figure 
9.15 ) 

[ 

- , 
Jsl n Js ; hvsxd, ) I 

and, 

(9.101) 
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Figure 9.16 Subarray for ESPRIT algorithm. 
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9 
0 

l 

10 

[  

I  -  

Js2 n O&x& / s l J 1 
For the subarray choice in Figure 9.16, J, is a 5 x 9 matrix, 

J S- 

1 0 0 l a’ 0 
0 0 1 0 .” 0 
0 0 0 0 1 l ** 0 
. . . . . . . . . . . . . . . . . . . . . 
0 . . . 1 

(9.102) 

. (9.103) 

If we denote the array manifold matrix of the total array as V and the 
array manifold matrix of the ith subarray (i = 1, 2) as Vi, then 

Vl = JslV, (9.104) 

and 
V2 = Js2V. (9.105) 

The ESPRIT algorithm exploits the shift invariance property of the array, 
which implies 

v2 = VI@, (9.106) 

where 
i@ A diag - ejdSql, eJds@‘2, . . . , eJdsqD 1 , (9.107) 

for the subarrays in Figure 9.15. The &, i = 1,2, l . l , D are the wavenumbers 
of the D signals in Q-space. The source spectral matrix and the steering 
matrix are assumed to have full rank D. This restriction does not allow 
fully correlated signals. For the subarrays in Figure 9.16, each exponent is 
multiplied by 2. The ESPRIT algorithm will find an estimate of + and use 
that estimate to estimate $1, . . . , $0. 

The columns of V span the signal subspace, therefore, we have the rela- 
tionship 

U S = VT, (9.108) 
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where T is a non-singular D x D matrix. This relationship says that the 
signal subspace eigenvectors are linear combinations of the array manifold 
vectors of the D sources. 

Selecting subarray signal subspaces gives 

us1 * JslUs - = JslVT = VIT, (9.109) 

and 

us2 * Js2Us - = Js2VT = V2T. (9.110) 

The relation 

U s1= VlT (9.111) 

implies 

Vl = UsIT-! (9.112) 

Similarly, 

U s2 = V2T = V#T (9.113) 

implies 

U s2 = UsIT-%T. (9.114) 

We define 

Xl! = T-%T. (9.115) 

Note that the eigenvalues of !P are the elements of @. Thus, if we obtain 
an estimate of !P and compute its eigenvalues, we can obtain an estimate of 

+ l,“‘, GD* 

The equivalent relationship to V2 = V14e in terms of signal subspace 
eigenvectors is 

U,l\E = u,2. (9.116) 

Since Ns is greater than D, this is an overdetermined set of equations. In 
practice, we have estimates for Us2 and Us1 

h 

U sl = Jslh (9.117) 

and 
h 

U s2 = Js2k (9.118) 

Then (9.116) is replaced by 

&lib = tJs2. (9.119) 
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If we solve (9.119) using a least squares approach, then we minimize the 
difference between 0~2 and OS&, 

The result is 
&s = [tJps1]-qtJs2. 

The steps in the LS-ESPRIT algorithm can be summarized: 

1. Perform the eigendecomposition on C, to obtain 6,, 

2. Find &r and OS2 by using (9.109) and (9.110), 

(9.121) 

3. Find &S using (9.121), 

4. Find the eigenvalues of &LS denoted by Al, AZ, l = 9 , AD, 

5. Find the estimates in q-space by using & = $- (argQ, i = 1, . . . , D. 
S 

Golub and Van Loan (Section 12.3 of [GVL83] and [GVL80]) suggest 
that a total least squares (TLS) criterion is more appropriate because both 

* I  A 

&r and OS2 are estimates containing errors. 
If the TLS formulation is used 

-1 
%rLS = 412v22 7 

where Vr2 and V22 are D x D matrices defined 
of the 20 x 20 matrix 

(9.122) 

by the eigendecomposition 

with 

AE = diag[XE1,XE2,***,XE2D]r 

where the eigenvalues are ordered, 

(9.124) 

xEl > XE2 > “* > XE2D. - - - (9.125) 

The TLS-ESPRIT algorithm uses ~TLS from (9.122) in steps 4 and 5 of 
the LS-ESPRIT algorithm to find &, i = 1, l l l , D. We normally use the 
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TLS-ESPRIT algorithm for the examples in the text. One can show that 
LS ESPRIT and TLS ESPRIT have the same asymptotic (K --+ oo) vari- 
ance (e.g., RH89a). However, TLS ESPRIT generally has better threshold 
behavior. 

We can now summarize the steps in the TLS-ESPRIT algorithm: 

1. Perform the eigendecomposition on C, to obtain 6,, 

2. Find & and 6,~ by using (9.109) and (9.110), 

3. Perform the 20 x 20 eigendecomposition in (9.123) and use (9.122) to 
obtain &~s, 

4. Find the eigenvalues of @TLS, denoted by ir, AZ,. l . , AD, 

5. Find the estimates in +-space by using, 

h 

+ i 
= arg&, i = 1,2,. l l , D. (9.126) 

We will do several examples to illustrate ESPRIT performance in typical 
scenarios. Before doing the examples, there is an issue of interest. 

The issue is the choice of d, for the overlapping subarrays shown in Figure 
9.15. We can rewrite the angle of the ith term in (9.107) as 

(9.127) 

where & is the angle of the ith plane-wave signal to broadside. If d, = 1, 
then we can determine ui unambiguously for 

-1 < u/i < 1, - - (9.128) 

- m  

;  <6+. 

-  -  

However, for d, > 1, the unambiguous range decreases to 

1 1 
-z < ui < d’ - - 

S S 

(9.129) 

(9.130) 

For example, for the last set of subarrays in Figure 9.15, we would need 
to know the a priori location of the ui in the range, 

-0.2 < ui < 0.2, - - (9.131) 
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ASNR (dB) 

Figure 9.17 TLS-ESPRIT algorithm: probability of resolution versus 
ASNR; N = 10, p = 0, K = 100, 500 trials. 

which corresponds to the BvF/ NN of the conventional beam pattern. Thus, 
in order to use d, > 1, we either need a priori knowledge of the sector of 
u-space where the signals are located or we have to do some preprocessing 
to determine the sector. The limitations for unambiguous location follow 
directly from our classical array discussion in Chapter 2, because we can 
think of the ESPRIT algorithm as operating on a 2-element array 
each element consists of an identical subarray. 

We consider several examples to illustrate the performance of t 1 
PRIT algorithm. 

Example 9.3.4 (continuation, Example 9.3.1) 
1 1’ Consider t’he same model as in Example 9.3.1. We have a standard lo-element rmear 

array with two equal-power uncorrelated plane waves impinging on the array from kA$/2, 
where A+ = A$JR. 

In Figure 9.17, we show the probability of resolution versus A5Y.R for TLS-ESPRIT 
and various subarrays. We see that, for d, = 1, TLS-ESPRIT has slightly better resolu- 
tion performance than root MUSIC. The resolution performance improves as d, increases. 
However, for d, > 1, the model assumes prior knowledge of the range of $J (see (9.130)). 

The normalized RMSE is shown in Figure 9.18. Note that, as the ASAY% approaches 
zero, the RMSE approaches the variance of a random variable that is uniform over the a 
priori range (Var(u) = 1/3dz). Ab ove threshold, the RMSE is parallel to, but above, the 
CRB. For d, = 1, the RMSE is about 1 dB above the bound. 

where 

le ES- 
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Figure 9.18 TLS-ESPRIT algorithm: N = 10, p = 0, K = 100, 500 trials; 
normalized RMSE versus ASNR. 

Example 9.3.5 (continuation) 
Consider the same model as in Example 9.3.4 except p = 0.95. The probability of 

resolution versus ASYW is shown in Figure 9.19. The normalized RMSE versus ASNR is 
shown in Figure 9.20. The results are similar to the p = 0 case, but are shifted to the right 
by about 15 dB. 

One can improve the performance of the ESPRIT algorithm by a tech- 

nique referred to as row weighting. This technique is described in [OVK91]. 
The basic idea is to weight the rows of 6, by modifying the identity matrix 
component of the selection matrix J,, 

where 

W =min{m,,N-m,--c&+1}. (9.133) 

The parameter m, determines where the increase in weighting stops. In 
most cases, m, is chosen as large as possible. We show the results with a 
simple example. 

Example 9.3.6 (continuation) 
Consider the same model as in Example 9.3.4 and assume d, = 1. In Figure 9.21, 

we show the probability of resolution versus ASYW for various m,. In Figure 9.22, we 
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Figure 9.19 TLS-ESPRIT algorithm: N = 10, p = 0.95, K = 100, 500 trials, 
probability of resolution versus ASNR. 
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Figure 9.20 TLS-ESPRIT algorithm: N = 10, p = 0.95, K = 100, 500 trials; 
normalized RMSE versus ASNR. 
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Figure 9.21 TLS-ESPRIT algorithm with row weighting: N = 10, p = 0, K = 
100, 500 trials, probability of resolution versus ASNR, various m,. 

show the normalized RMSE. We see that there is a useful improvement in the RMSE for 
m = 3,4, or 5. The normalized RMSE is about 0.2 dB above the CRB. 

In most applications of LS-ESPRIT and TLS-ESPRIT, row weighting 
will be used. Stoica and Viberg [SV95] d iscuss the asymptotic equivalence 
of weighted LS-ESPRIT and TLS-ESPRIT. 

The TLS-ESPRIT algorithm applies to arbitrary array geometries that 
exhibit the shift invariance property. For ULAs, one can develop an algo- 
rithm referred to as unitary ESPRIT that exploits the conjugate symmetry. 
We develop it in the next section. 

9.3.4.2 Unitary ESPRIT 

We encountered unitary transformations in the context of adaptive beam- 
forming in Chapter 7 and in the unitary root MUSIC discussion in Sec- 
tion 9.3.2.3. The original references on unitary ESPRIT are by Haardt 
and Nossek [HN95] and Haardt and Ali-Hack1 [HAH94]. Zoltowski et al. 
[ZHM96] provide a concise discussion of unitary ESPRIT as background 
for their development of 2-D unitary ESPRIT. Our discussion follows Sec- 
tion III of [ZHM96]. Unitary ESPRIT is one method of accomplishing FB 
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Figure 9.22 TLS-ESPRIT with row weighting, various ms: N = 10, p = 
0, K = 100, 500 trials; normalized RMSE versus ASNR. 

averaging with ESPRIT. Other references that discuss FB-ESPRIT or FB- 
TLS-ESPRIT include Roy [Roy87], Mou and Zhang [MZ91], Zoltowski and 
Stavrinides [ZS89], Rao and Hari [RH93], and Bach1 [Bac95]. 

We start with the invariance relationship in element space. We assume 
d S = 1, and therefore Ns = N - 1. The selection matrices are (N - 1) x N, 

1 0 l ** 0 0 
0 1 .a* 0 0 

Jsl - n . . . . . 7 (9.134) . . . . . 0 . 
0 

. . . . i . 
0 

and 

0 1 0 l ** 
0 0 1 l ** 

Js2 - n . . . . . . . . 

0 0 0 ..: 

0 
0 

. . . . 
1 d 

Then, 

ej+JsP(lq = Jszv($q. 

(9.135) 

(9.136) 
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We can transform v($) into a real array manifold vector by using the unitary 
matrix Q$ 

Recall from (9.54) and (9.55) that 

(9.137) 

K = N/2, for N even, and 

(9.138) 

where K = (N - 1)/2, for N odd? The QN matrices are unitary, 

H H QNQN = QNQN =I- 

Premultiplying v(+) by QE g ives a real array manifold vector, 

vR(+) = Q;v($h 

Because QN is unitary, we can write (9.136) as 

ej%Q~Q$v($) = &~QNQ:v($), 

or, using (9.140), 

Pre-multiplying by QE-, gives, 

(9.139) 

(9.140) 

(9.141) 

(9.142) 

(9.143) 

(9.144) 

(9.145) 

*There are two different J matrices in this section. We have added a subscript (in capital 
letters) to the exchange matrix J to denote its dimensionality. The selection matrices JSl 
and Js2 have lowercase subscripts. 
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we can writ’e 

T = QN-lJslQk 
- - (Q~-~J~~Q~)*. (9.146) 

We now define the real and imaginary parts of the left side of (9.146) 

K1 n Re - 1 QE-1Js2Q~ > 1 (9.147) 

K2 n I m  {  Q;-&QN} l -  (9.148) 

Using (9.147) and (9.148) in (9.143) an incorporating the result in (9.146) d 
gives 

ejf (K1 - jK2) V&/J) = e-jf (K1 + jK2) v&$), (9.149) 

which can be written as, 

(9.150) 

We now have the invariance relation, 

tan (9.151) 

which has only real-valued elements. Defining the array manifold matrix, 

vR(+) = [ vR(‘+l) vR($2) “- vR(tiD) ] 7 

we can write (9.151) as, 

(9.152) 

K1V&b)fI+ = KZVR(‘@)7 (9.153) 

where 

Q =diag[tan($) ,*Qan($)]. (9.154) 

The next step is to find the signal subspace eigenvectors corresponding 
to V&!Q. If we define X as the N x K data matrix and 

Y = Q;X, (9.155) 
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then tilt: largest left singular vectors of 

YE = [ReY, ImY], (9.156) 

are the real signal subspace eigenvectors. We denote the real signal subspace 

by aw* 
Alternatively, we can find the eigenvectors of 

A 
SR = Re {Q%$N) J (9.157) 

corresponding to the D largest eigenvalues, and they will define &S. 
‘l’h~ signal eigenvector matrix is related to V&/J) by the real-valued 

D x D unknown matrix T, 

URS = VRT, (9.158) 

or 
-1 VR =URST . 

Substit,uting (9.159) into (9.153) gives, 

(9.159) 

&URS* = K2URS, (9.160) 

where 
3P = T-%+T. (9.161) 

The eigenvalues of the DxD solution @ to (9.160) correspond to tan(&/2) 
Substituting tiRS for URS in (9.160) gives 

K&S@ = K#Rs. (9.162) 

The form of (9.162) is identical to that in (9.119). Thus, unitary LS-ESPRIT 
uses (9.121) with &I replaced by K&S and OS2 replaced by K&Rs, 

hs = [ [&cRS] [KIURS]] -I [&cRS]* [KZCRS] l 

For unitary TLS-ESPRIT, define c 

(9.163) 

C = [K#& K2fiRS]T[&cRS KPcRS]* (9.164) 

The eigendecomposition of C gives VIZ and V22 (see (9.122)-(9.125)). Then, 

-1 
%Y.LS = 452v22 ’ (9.165) 

We summarize the steps for the unitary ESPRIT algorithms: 
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1. Find &S by either finding the eigenvectors with the largest eigenvalues 

of me { Q~;%Q~} or by computing the largest left singular vectors of 

YE = [Re [Q%] ,Im [Q%]] 7 (9.166) 

2. Find either &JLS from (9.163) or $JTLS from (9.165), 

3. Compute&i = I,*** , D, the eigenvalues of the real-valued matrix $JLS 

or &ms, 

4. Compute & = 2tar+(&),i = l,~~*,D. 

We consider an example to illustrate the performance of unitary ESPRIT. 

Example 9.3.7 (continuation, Example 9.3.4) 
Consider the same model as in Example 9.3.4. We have a standard lo-element linear 

array with two equal-power uncorrelated signals impinging on the array from kA+/2, 
where A+ = A+R. 

In Figure 9.23(a), we plot the probability of resolution versus ASNR. In Figure 9.23(b), 
we plot the normalized RMSE versus RSNR. In Figure 9.24, we show a plot of the roots for 
100 trials. By imposing the conjugate symmetry constraint (recall the IQML discussion) 
the roots appear on the unit circle when we are above threshold. We see that the threshold 
performance is a little better than TLS-ESPRIT due to FB averaging. However there are 
significant computational savings. 

In the next example, we consider weighted unitary ESPRIT. 

Example 9.3.8 (continuation) 
Consider the same model as in Example 9.3.7. We use a weighted J,l matrix with 

J sl = 

1 0 l ” 0 - 

0 J2 
. . . 

. . . ti 
Jm, 

) 0 . . . 1 0, 

3 (9.167) 

where m, 5 N/2 and simulate m, = 2,. 9 l , 5. In Figure 9.25, we plot the probability of 
resolution and the normalized RMSE versus ASNR. We see that, for m, > 2, the RMSE - 
essentially equals the CRB. 

Gershman and Haardt [GH99] have developed a version of unitary ES- 
PRIT that uses pseudonoise resampling to try and eliminate outlier esti- 
mates. It relies on earlier work by Gershman [Ger98], Gershman and Biihme 
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Figure 9.24 Unitary TLS-ESPRIT: location of estimates for various ASNR: 
K = 100, 200 trials. 

[GB97], [GB98], and Efron [Efr79]. The technique offers some performance 
improvement in the vicinity of the threshold. The reader is referred to these 
references for further discussion. 

We have discussed unitary transformations in the context of root MUSIC 
and ESPRIT. Whenever FB averaging can be used, we can develop a unitary 
algorithm. Huarng and Yeh [HY91] d eveloped a unitary version of spectral 
MUSIC. Gershman and Stoica [GS99] developed a unitary version of MODE 
(see [SJ97] also). 

9.3.4.3 Summary of ESPRIT 

In Section 9.3.4, we have developed LS-ESPRIT and TLS-ESPRIT and uni- 
tary ESPRIT and studied their performance. The LS- and TLS-ESPRIT al- 
gorithms with row weighting achieve an RMSE that is very close to the CRB 
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for AsNRs above threshold. For SLAs, unitary ESPRIT using appropriate 
row weighting provides similar performance with reduced computation. 

ESPRIT can also be used in a broader class of array geometries. The 
requirement is that the array exhibit a shift invariance property. 

9.3.5 Algorithm Comparison 

In Sections 8.7 and 9.3, we have developed a number of algorithms that 
are computationally feasible and have good performance for SLAs. Some of 
these algorithms can be adapted for other array geometries, but our current 
discussion will focus on SLAs. 

Our examples up to this point suggest that the three algorithms that 
should receive further study are: 

(i) Unitary IMODE, 

(ii) Unitary root MUSIC, 

(iii) Unitary TLS-ESPRIT with d, = 1, m, = (N + 1)/2 for N odd and 

mS = N/2 for N even. 

We did not derive unitary IMODE in Chapter 8 because the issue of 
computational complexity was not emphasized. Unitary IMODE is derived 
in Gershmann and Stoica [GS99]. The derivation is summarized in Problem 
9.3.30. We have used unitary IMODE in this comparison because we want 
to compare computational complexity. 

Unitary IMODE is identical to FB-MODE, which is derived and analyzed 
in Stoica and Jansson [SJ97]. FB-IMODE is identical to standard IMODE 
except FB averaging is used to construct the estimate of the spectral matrix. 
As discussed in [GS99], FB-MODE (or unitary MODE) has better threshold 
performance for uncorrelated signals. We discuss the correlated signal case 
in Section 9.6. 

We consider two examples to compare their performance. In this section, 
we consider uncorrelated signals. The correlated and coherent signals case 
is discussed in Section 9.6. 

Example 9.3.9 (continuation) 
Consider a standard lo-element array. There are two uncorrelated equal-power plane- 

wave signals impinging on the array from f&/2. We assume that the number of signals 
is known. The three algorithms are simulated. In Figure 9.26(a), the normalized RMSE is 
plotted versus ASNR. In Figure 9.26(b), the flop count for the three algorithms is plotted 
versus ASAVL 

The unitary IMODE algorithm has the best threshold performance (ASN~=5 dB). 
The threshold of unitary root MUSIC is slightly higher (A%?~ = 6 dB). The RMSE of 
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0~: unit,ary TLS-ESPRIT algorithm approaches the CRB in a more gradual manner. All 
of t,he algorithms are close to the CRB above threshold. 

‘t‘hc unitary TLS-ESPRIT algorithm has the smallest flop count. Both unitary IMODE 
and unitary root MUSIC have a slightly higher flop count. 

Example 9.3.10 (continuat,ion) 
Consider the same model as in Example 9.3.9, except the number of signals, D, is 

unknown. We use one of the detection algorithms developed in Section 7.8 to find fi. We 
t,hen use D in the three parameter estimation algorithms from Example 9.3.9. 

It is important not to underestimate D, so we consider detection algorithms where pn/r 
is close to zero for all ASNRs above the resolution threshold of the estimation algorithms 
(ASYVZ< q = 5 dB in this example). In order to evaluate the performance, we assume that, if 
b > 11, that the RMSE of the D estimates that are closest to the true values are calculated 
and the other (fi - D) estirnates are ignored. The rationale for this approach is that a 
subscqucnt processing step will discard the extra estimates. We must also consider pn/r in 
order to evaluate the algorithm’s performance. Two detection algorithms are used: 

The results are shown in Figure 9.27. In Figure 9.27(a), the probability that 
is plotted. This curve is equal to 1-pn/r. In Figure 9.27(b), the normalized RMSE is 
plot,t,ed versus ASNR for the AIC-FB algorithm. In Figure 9.27(c), the normalized RMSE 
is plot,ted versus ASNR for the MDL-FB algorithm. In Figure 9.27(d), the normalized 
RMSE is plotted ASNR for the MDL-FB+l algorithms. 

For t,he AIC-FB detection algorithm, the threshold occurs at the same ASNR as in the 
known D case. Above the threshold, the IMODE algorithm and the unitary root MUSIC 
algorithm reach the CRB. The overestimation degrades the performance of the unitary 
‘I’LS-ESPRIT algorithm and the RMSE is slightly above the CRB. 

For the MDL-FB algorithm, the threshold occurs at an ASNR that is about 2.5 dB 
higher than the known D case. Above threshold, the probability that fi = D approaches 
one quickly, so the algorithms behave as in the known D case. 

Based on this example and other cases developed in the problems, it 
appears that the best approach is to use AIC-FB as the detection algorithm. 
The combined detection and estimation problem should be analyzed (or 
simulated) for the scenario of interest to see the effect of unknown D on the 
estimation performance. 

9.3.6 Summary 

In this section, we have developed several algorithms that provide good 
performance with reasonable computational complexity. 

Three versions of the MUSIC algorithm were developed: spectral MU- 
SIC, root MUSIC, and unitary root MUSIC. Spectral MUSIC is applicable 
t)o arbitrary arrays, but the threshold occurs at a higher ASNR than the 
ML algorithms. For uncorrelated signals and high ASNR, the RMSE of the 
spectral MUSIC algorithm is close to the CRB. The root MUSIC algorithm 
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detection. (c) RMSE versus ASNR, MDL-FB detection; (d) RMSE versus 
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was applied to standard linear arrays. The threshold occurs at a lower ASNR 

than spectral MUSIC and the two algorithms have the same asymptotic per- 
formance. FB root MUSIC uses FB averaging of the sample spectral matrix 
and has better threshold performance. Unitary root MUSIC uses a unitary 

transformation that leads to an implementation using real computation and 
provides a significant reduction in computation. All of the MUSIC algo- 

rithms degrade in the presence of highly correlated signals and do not work 
in the presence of coherent signals. 

Both LS- and TLS-ESPRIT were developed and the unitary versions of 
both algorithms were provided. All of our examples considered SLAs. TLS- 
ESPRIT has better threshold performance than LS-ESPRIT, with a slight 
increase in computational complexity. The two algorithms have the same 
asymptotic behavior. For uncorrelated signals, the row-weighted versions of 
ESPRIT were close to the CRB above threshold. The unitary versions of 
the algorithms provided a significant reduction in computational complexity 
and improved threshold performance. 

In Section 9.3.5, we compared the performance of the unitary IMODE 
algorithm, the unitary root MUSIC algorithm, and the unitary TLS-ESPRIT 
algorithm with row weighting for uncorrelated signals. For the example 
considered, the three algorithms had similar performance and computational 

complexity. For uncorrelated signals, the unitary version of the algorithms 
should be used. The correlated signal case is considered in Section 9.6. 
The issue of unknown D was also discussed. The AIC-FB algorithm did 
not impact the threshold performance, but caused some degradation above 
threshold. 

9.4 Linear Prediction 

Linear prediction is widely used in a number of different applications, such as 
time-series analysis, spectral estimation, speech processing, radar and sonar 
signal processing, and geophysical signal processing. There are excellent 
discussions of it in a number of articles and books. (e.g., [Mak75], [Kay88], 
[Mar87], fPRLN92], or [Hay96]). 

The application of linear prediction techniques to the DOA estimation 

problem in antenna arrays has been discussed by Schmidt [Sch81], Gabriel 
[Gab80], Tufts and Kumaresan [TK82], [KT83], Johnson and De Graaf 
[JD82]. We investigated these algorithms and considered both full-array lin- 

ear prediction and subarray linear prediction. We found that, for estimating 
the DOAs of plane-wave signals the LP algorithms did not perform as well 
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as MUSIC and ESPRIT. The reader is referred to the above references for 
further discussion. 

The comment does not imply that LP techniques would not be useful 
for spatial spectral estimation. These algorithms are the maximum en- 
tropy algorithms introduced by Burg (e.g., [Bur67] [Bur75]) and Van der 
Bos [VDB71]. W e d o not discuss the spatial spectral estimation problem. 

9.5 Asymptotic Performance 

Up to this point in our discussions we have relied on simulations to evaluate 
the performance of the various algorithms. We now want to derive some 
analytic comparisons.g 

In this section we discuss the asymptotic performance of the various 
subspace algorithms. Asymptotic performance analysis studies the behavior 
of the algorithms as K, the number of snapshots, goes to infinity. One 
way to study the asymptotic performance is to use a series expansion and 
retain the appropriate first-order and second-order terms and neglect terms 
of O(K-‘). We then compare these asymptotic expressions to simulations 
to assess their accuracy for smaller values of K. 

In Section 9.5.1, we discuss how the probability of resolution and the 
MSE are related. In Section 9.5.2, we analyze the resolution performance of 
some of the algorithms developed in Sections 9.2 and 9.3. In Section 9.5.3, 
we analyze the small error behavior of these algorithms. In Section 9.5.4, we 
summarize our results. 

Most of the analyses are reasonably detailed. Our approach is to outline 
the steps in the analyses, give the key results, and illustrate them with 
examples. 

9.5.1 Error Behavior 

In this section, we discuss how the probability of resolution and the MSE are 
related. We use spectral MUSIC as an example, but the principles apply to 
any estimator. We first consider the resolution behavior. Our experimental 
results in Figures 9.9 and 9.10 showed that, for this particular example, we 
could divide the ASNR axis into the following regions (the endpoints are 
approximate at this point in the discussion): 

‘This section contains a number of detailed analytic expressions. Sections 9.5.2 and 
9.5.3 can be omitted (or skimmed) at first reading without loss of continuity. 
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(i) ASNR > 20 dB; the RMSE is very close to the CRB for unbiased esti- - 
mation. P’ is equal to unity. 

(ii) 15 dB < ASNR < 20 dB; the RMSE increases slightly above the CRB. - - 
We find that this increase is due to a non-zero “local bias.” PR is still 
equal to unity. 

(iii) 10 dB < ASNR < 15 dB; the P’ decreases from unity to 0.5; the 
RMSE increases dramatically over this range (about 17 dB). We need 
to determine the cause of this increase. We refer to this as the upper 
threshold region. 

(iv) 0 dB < ASNR < 10 dB; the PR decreases from 0.5 to zero; the RMSE - - 
increases gradually. We refer to this as the lower threshold region. 

(v) ASNR < 0 dB; the RMSE for each signal approaches the variance of a 
uniform random variable (l/3 in u-space). We refer to this as the a 
priori region. 

The behavior in regions 1 and 2 can be accurately described by a local 
error analysis, which we carry out in Section 9.5.3. In this section, we 
characterize the behavior in the region 3, the upper threshold region. 

When the two sources are separated by much less than the beamwidth 
of the array, then a key issue in the threshold region is whether the null 
spectrum will exhibit one or two peaks in the region of the sources. This 
behavior is shown in Figure 9.28, where we show representative MUSIC 
spectra for four ASNRs. If we fix the number of snapshots and decrease the 
SNR, then the null spectrum proceeds from the representative shape in (a) 
to the shape in (d). Similarly, if we fix the SNR and decrease the number of 
snapshots, a similar progression occurs. 

We see that there are three types of behavior: 

(i) In (a) and (b), the signals are resolved. In this region, we can assume 
the errors are small, and we analyze the bias and variance using an 
asymptotic analysis. 

(ii) In (c), th e s ec rum contains a single peak in the region of the two p t 
signals. We analyze when this transition to a single peak occurs. We 
refer to this as the resolution problem. 

(iii) In (d), the single peak due to the signals is no longer distinguishable 
and the estimator selects two peaks due to noise. 
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Figure 9.28 Behavior of a typical MUSIC spectrum: (a) ASNR = 20 dB; (b) 
ASNR = 10 dB; (c) ASNR = 0 dB; and (d) ASNR = -10 dB. 

We first consider the probability of resolution, PR. We would like to 
determine the probability that there are two peaks in the MUSIC spectrum 
in the “correct region.” We use the experimental criterion that the two 
signals are resolved if there are two peaks and 

(9.168) 

In order to derive the PR analytically, we denote the actual location of 
the sources by $1 and $2 and then define the midpoint, 

+ 
$1 + +2 

m= 2 
. (9.169) 

One criterion of resolution is that 

D($m) L D(@i), i = 1Jj (9.170) 

where D(e) = (t&,&b))-‘. If (9.170) is satisfied, then our estimator would 
not resolve the two signals. A second criterion is 

(9.171) 
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Figure 9.29 Spectral MUSIC estimates for various ASNR: N = 10, I-( = 
100, p = 0, ul = 0.0433, ‘~2 = -0.0433, 200 trials. 

Once again, if (9.171) is satisfied, then our estimator would not resolve the 
two signals. We would like to compute the probability of the events described 
by (9.170) and (9.171). Note that we are concerned with the heights of the 
spectrum, not the accuracy of location of the peaks. 

Using (9.170), we can write, 

PR = pr (D(%h) < D($Q) ad D(&)) . (9.172) 

Similarly, using (9.171), we can write 

PR = f’r (D(+& < o> . (9.173) 

In order to understand the RMSE behavior, we examine the error behav- 
ior when the signals are not successfully resolved. In Figure 9.29 we show 
the location of the estimates for 200 trials at ASNRs going from 15 dB to -5 
dB. In Figure 9.30, we show the corresponding histograms. We now consider 
the behavior at each ASNR in the ‘LUpper threshold region.” 

(i) ASNR = 15 dB: The signals are resolved on all trials and the estimates 
are clustered around the correct value. 



Error Behavior 

.-0,6 70.4 T0,2, _,_ 0.2 0:4 0:s 03 1 

0.6 1 0.8 

-. ~0.8 7Ot6 70.4 ..-0.2 0 0.2 0.4 0.6 1 0,8 
g20- 

yo- '. 

0. I I I I Air I I I I  J 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
u 
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threshold region: N = 10, K = 100, p = 0, ur = 0.0433,~~ = -0.0433, 200 
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(ii) ASNR = 14 dB: The signals are resolved on most trials. On several 
trials, the signals are not resolved. If signal 1 is assigned the peak, 
then G2 N -0.374. If signal 2 is assigned the peak, then G1 N 0.374. 

(iii) ASNR = 12 dB and 13 dB: Similar behavior to 14 dB. More trials 
have unresolved signals. The outlying estimates are clustered around 
*0.374. 

(iv) ASNR = 10 dB and 11 dB: More trials have unresolved signals. The 
majority of the outlying estimates are at f0.374, but some estimates 
appear around ho.59 and one estimate is at +0.81. 

In order to understand this behavior we plot the MUSIC spectrum aver- 
aged over 500 trials at various ASNR in Figure 9.31. We see that there are 
sidelobes at f0.37, f0.59, f0.80, and &LO. Note that, in a normal plot that 
is scaled to show the peaks, the sidelobe structure can easily be overlooked. 

The importance of this observation is that the increase in RMSE is dom- 
inated by these sidelobe terms. 
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10, K = 100, p = 0, ~1 = 0.433, u2 - 0.0433, 500 trials. 

We first consider the case when the second estimate is near the first 
sidelobe. Then, for this example, the MSE for signal 1 is, 

MSE1 = pR. (1ocalMSE) + $1 - PR) (1ocalMSE) 

+;(I -pR){l%l1 -uli2} 7 (9.174) 

and a similar expression for MSE2. 
We can rewrite the local MSE as 

(1ocalMSE) = { (1 2 ocal bias) + local variance . 
> 

(9.175) 

The reason for this decomposition is that analytic expressions for both terms 
on the right side of (9.175) are available in the literature. An analytic ex- 
pression for pR is also available, so we can create an analytic expression for 
the MSE behavior in the critical part of the upper threshold region using 
(9.174). 

For the multiple-sidelobe case, we can write 

MSE1 = PR (1ocalMSE) + a(l - &) (1ocalMSE) 
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Figure 9.32 Comparison of “analytic” and empirical results: spectral MU- 
SIC, N = 10, K = 100, p = 0, ur = 0.0433, u4 = -0.0433, 500 trials. 

1 
K 

+2(l - pR) ‘);7 Pslk I%lk - ul I2 , 

k=l 

(9.176) 

where p,lC, is the conditional probability that the estimate is near the kth 
sidelobe, given the signals were not resolved. 

In Figure 9.32, we show the MSE calculated using (9.174)) (9.175)) and 
(9.176). In those equations we use measured quantities. Later we show how 
well the analytic expressions can predict performance. 

In Figure 9.33, we show the measured bias and standard deviation. We 
see that in the region just above the threshold point (in this case, 16 dB), 
the standard deviation is still essentially on the CRB, but the bias term 
increases the MSE by a small amount. In the upper threshold region, the 

variance is the dominant factor in the MSE. 
In Figure 9.32, we see that there is a dramatic increase in the MSE in 

the 3-dB region from 16 dB to 13 dB. The empirical probability of resolu- 
tion curve is shown in Figure 9.34. We see that PR goes from about 0.965 
to 1.0 in this region. Therefore, to predict the performance in the upper 
threshold region, we will need accurate expressions on the upper tail of the 
PR probability density. In addition, we need a large number of trials to get 
good empirical results in this region. 
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Figure 9.33 Bias and standard deviation versus A5’NR: spectral MUSIC, 
N = 10, K = 100, p = 0, u1 = 0.0433, u2 = -0.0433, 2000 trials. 
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Figure 9.34 Empirical probability of resolution versus ASNR: spectral MU- 
SIC, N = 10, K = 100, p = 0, u1 = 0.0433, u2 = -0.0433, 500 trials. 
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9.5.2 Resolution of MUSIC and Min-Norm 

In this section we study the resolution capability of MUSIC and Min-Norm. 
The first comprehensive study in this area was due to Kaveh and Barabell 
([KB86]). Th eir analysis is also available in Sections 5.4-5.8 in the chapter 
by Kaveh and Wang in [Haygl]. Their analysis emphasizes the importance of 
the mean-value of the null spectrum QMN($) and justifies its importance by 
showing that the standard deviation is small. Other studies that utilized the 
mean of the spectrum include Jeffries and Farrier [JF85], Biihme [Boh83], 
and Sharman et al. [SDWK83]. I n a much earlier paper Cox [Cox73] had 
analyzed the resolution behavior of various algorithms. Other resolution 
discussions include Marple [Mar77], Gabriel [Gab80], DeGraaf and Johnson 
[DJ85] and Johnson and DeGraaf [JD82]. 

A subsequent paper by Zhou et al. [ZHJSl] developed an expression 
based on the ensemble covariance matrix and compared thei:r results to 
Kaveh and Barabell’s work. 

None of above analyses actually computed a probability of resolution 
(or an approximation to it). Lee and Wengrovitz [LW91] developed a com- 
prehensive asymptotic statistical characterization of the null spectrum and 
then used a Gaussian approximation to compute the resolution probabil- 
ity. Zhang [Zha95a] derived the probability distribution without using the 
Gaussian approximation and got better results in the low SNR region. 

In this section, we use the sample covariance matrix, 

A 

S x- x- C (9.177) 

In other words, forward averaging only. 
The initial part of our analysis follows Kaveh and Barabell ([KB86]). 

In order to analyze the asymptotic behavior of subspace methods we need 
the asymptotic statistics of the estimated eigenvalues and eigenvectors. The 
original work on asymptotic behavior is due to Anderson [And63]. It has 
been extended by Brillinger [Bri8lh Gupta [Gup65], and Wilkinson [Wi165]. 
The estimated covariance matrix S, has a complex Wishart density whose 
elements are asymptotically jointly normal (see Section 7.2). 

We define h 
a i = *i + r)i, (9.178) 

and 

h 
x i = Ai +pi. (9.179) 
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We assume that &i is normalized. Then vi and pi have the following asymp- 
totic properties. 

The estimated eigenvalues are asymptotically Gaussian and statically 
independent, 

E [Pi] = 0, (9.180) 

(9.181) 

where K is the number of snapshots. 
The estimation error for the eigenvectors are asymptotically jointly Gaus- 

sian distributed with mean 

k# i 

and covariances 

(9.182) 

i 

D 
AI, 

N-D 

c 
k 1 (xk - h) 

,*k*F + c 
CT2 

( 
,2 n 

A> 

2+k@f t&j 

- k=D+l n - i - 

kf i 

e Wi6ij, (9.183) 

and 

E [vi VT] g eK (xxi ‘jA )2 +j +T (1 - S,j) k Vij. (9.184) 
i- j 

All of the approximations in (9.180)-(9.184) are of order O(K-l). Note that 
(9.184) means that the qi are not joint complex Gaussian random variables. 

Because of the normalization assumption, we can use (9.178) to obtain 

h 
II II 

2 
a i = 1 + 9”?& + #<pi + Tj”7& = 1. (9.185) 
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Therefore, 

2Re [+rqi] = -$Q. 

Taking the expectation of (9.186), using (9.182), and retaining terms of order 
K-l gives 

1205 

(9.186) 

me [@HE [%I] x N i - -m - 
K 

N 

x 

k-1 

x 
N 

i - -w - 
K x 

k=l 

(9.187) 

k# i 

We first consider the MUSIC algorithm. 

9.5.2.1 MUSIC 

The expected value of the null spectrum is obtained by substituting (9.178) 
in @MI/(~) in (9.43) and taking the expectation. Using (9.183) and (9.187), 
we obtain 

E [QMUW)] = QMuW) - 

(9.188) 

At the correct DOAs, q!+,i = 1,2, l - ,D, QM&+!J~) = 0. Therefore, in the 
vicinity of the correct value, when D = 2, (9.188) reduces to 

= g(N - a>vH($k) v(‘$k), 

k = 1,2, (9.189) 
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where the approximation is of O(K-l>. 
For two equal-power uncorrelated sources, we use Xi and *i from Chapter 

5 ((5.255) and (5.259)) in (9.189) to obtain 

2 

ASNRb%, 
W 

is assumed to be much larger than one and 

is a separation that is proportional to the normalized difference be- 

(9.191) 

(9.192) 

tween the wavenumbers. Here we are normalizing with respect to the ap- 
proximate HPBW (a/N) instead of SkVjv~ (4/N) that we normally use. 
Most of the papers dealing with this topic use this normalization, so we will 
also use it in order to simplify comparisons with the literature. 

It is difficult to obtain an expression of order KA2 for the variance (K-l 
for the standard deviation). Based on reasonably extensive simulation results 
one can argue that the standard deviation is small compared to the mean. 

Therefore, we develop a resolution criterion based on E [QMM($)]. 

Kaveh and Barabell [KB86] proposed that the resolution threshold be 
defined as the ASNR where 

* [EM&,] = * [6M&2)] = * [@MU($m)] (9.193) 

where 

Their logic was: 

$ 
$1+ $2 

m= 2 
. (9.194) 

(1) If the three variations were statistically independent, then the resolution 
probability would be 0.33 when (9.193) was satisfied. 

(2) If&&) ad gMU($ ) 2 were completely correlated, then the resolu- 
tion probability would be 0.5. 

(3) The MUSIC pR result is given in Figure 9.10 (this corresponds to Ex- 
ample 9.2.6 in Section 9.2). The curve is steep in the 0.33-0.50 range 
and the spread in ASNR is 1.2 dB between the ends of the range. 
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The threshold ASNR is denoted by ASNR To We find E [QMu($!J~)] from 

(9.189) and E [Q~u(+l)] (= E [QM~(&)]) from (9.190) and equate the 
two results. For N > 1, A << 1, and ASNR >> 1, we have 

ASNRTZ$ {20’~~2’ [I+//]}. (9.195) 

For large N, the threshold ASNR is proportional to N. For a small 
number of snapshots (K < 5N/A2), ASNRT varies as l/n4K. For a large 
number of snapshots (K >> 5N/n2), ASNRT varies as l/A3K1/2. 

This result (and extensions of it to other cases) has been widely used in 
the literature. However, if we examine the normalized MSE plot in Figure 
9.11 and the probability of resolution plot in Figure 9.10, we see that the 
definition of resolution threshold (9.193) and the subsequent expressions may 
give misleading results. When PR = 0.5, the MSE shown in Figure 9.11 has 
already increased dramatically above the CRB and is approaching the a 
priori variance. 

A better definition of threshold is the point at which the actual MSE 
is 3 dB above the CRB. The MSE curve is steep in this region so the use 
of 3 dB (as contrasted to 2 or 4 dB) is not critical. From Figure 9.10, we 
see that this choice corresponds to PR greater than 0.95. This is what we 
would expect because with probability (1 - PR) we are adding a large MSE 
to a very small MSE (e.g., from Figure 9.10, the “local” MSE in u-space is 
0.004 at an ASNR of 12 dB). Note that this point is about 4 dB higher than 
the PR = 0.4 value. This threshold definition requires us to examine the P” 
curve in the 0.95-1.00 region. 

In [LW91], L ee and Wengrovitz develop a comprehensive statistical char- 
acterization of the MUSIC spectrum using asymptotic properties. They find 
an expression for the joint probability density of &, &, and 0;. They com- 
pute the probability of the event, 

In their calculation, they approximate the joint density by a joint Gaussian 
density using a central limit theorem justification. Zhang [Zha95a] has done 
a detailed analysis that avoids the Gaussian assumption and obtains a better 
match between the analytic result and the simulation result in the low SNR 
region. 

In Figure 9.35, we show an example of Zhang’s result for a standard 8- 
element array with uncorrelated equal power sources. We see that there is 
good agreement between the analyses and the simulation. 
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Figure 9.35 Comparison of analytic probability of resolution result and sim- 
ulation result: 500 trials. 

To determine the threshold PR we can use the relationship 

(1 - PR) [biaslsl12 = IUS”~Oc, (9.197) 

and solve for PR. 

We use the 3-dB criterion as a threshold definition. We use the result in 
(9.195) to compare various algorithms, but not as an absolute measure. 

9.5.2.2 Min-Norm 

A similar analysis can be carried out for the Min-Norm algorithm. Kaveh 
and Barabell (e.g., [KB86]) h ave done this analysis. The expression for the 
mean value analogous to (9.190) is 

1 1 

(ASNR) + (ASNR)2L12 1 (9.198) 

(see (5.135) in Chapter 5 of [HaySl]). Comparing (9.190) and (9.198) we see 
that for large N, we might expect a lower Min-Norm threshold by a factor of 
N. This result is consistent with our simulations in Section 9.3 (see Figure 
9.10 at the PR = 0.5 point). 
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9.5.2.3 Root MUSIC and root Min-Norm 

In our simulations, we observed that root MUSIC and root Min-Norm had 
probability of resolution performance that was significantly better than the 
spectral versions. We now develop an asymptotic analysis to explain this 
behavior. lo 

An asymptotic analysis for root MUSIC was derived by Rao and Hari 
[RH89b]. They d erive an expression for the MSE in the asymptotic regime. 
They approach the problem by first finding the MSE in the location of the 
zeros and then show how it translates into the MSE in the DOA. Their re- 
sults retain terms of 0 (K-l) and assume the bias is zero. The key result is 
that the asymptotic MSE (which equals the variance) is the same as for spec- 
tral MUSIC. Thus, the advantage of root MUSIC is in improved threshold 
performance and computational simplicity rather than improved asymptotic 
performance. The reader is referred to [RH89b] for the detailed discussion 
of their analysis. 

In Figure 9.36 we show the effect of an error in the root location on the 

estimate of the angle. We need to examine both E { ]AZ,I”> and E { ]A$J~]~}. 

In the root case, only A& affects the DOA estimate. However, if Azi is large, 
it will cause the peaks in spectral MUSIC to be misplaced and degrade the 
probability of resolution performance. 

Krim et al. [KFP92] carry out an asymptotic analysis of root MUSIC 
and root Min-Norm by using a series expansion of the projection operators. 
Their results are in a useful form for comparing the two algorithms. 

For root Min-Norm, they show that for the nzth root 

VW- [Wrn] = Var [AT,] 

where 

[ 

. 

: 1 
T 

el- liOY+O , 0 , 

and the summation is familiar (see (9.214)) as 

(9.200) 

H 
y UP% (9.201) 

“This asymptotic analysis focuses on the mean and variance of the zero location. It 
only treats the probability of resolution qualitatively. 
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Unit circle AZ i 

Figure 9.36 Effect of error in the root location on the estimate of $i. 

with Up defined in (9.216). Note that the radial component of the error and 
the angular (wavenumber) component of the error has the same variance. 
[KFP92] also show that both components have zero bias and are uncorre- 
lated. 

For root MUSIC, one can show that 

E [WJm] = 0, (9.202) 

and 

CT2 D 
x . 

Var [Lb),] = 
2K (d$p@m) /pl (Xi -;g2 

c I I 
*,Hv 

2 
. 

m 

H 
oi vm UPVm - - 

2K h($m) ’ 

(9.203) 

In Section 9.5.3 we find that spectral MUSIC has the same variance. Thus, 
spectral MUSIC and root MUSIC have the same asymptotic variance. 

In addition, they show n$m and Arm are uncorrelated. However, 

E[nrmI = -4% Jm, (9.204) 

and 
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VW- (&4?2> 
Var [Lb,] = 2 . (9.205) 

This bias in the radial component explains the loss of resolution in spectral 
MUSIC because it changes the shape of the spectral plot. 

We will revisit the variance results for root MUSIC and root Min-Norm 
in Section 9.5.3.4. 

9.5.2.4 Summary 

In this section we have included analytic expressions for the probability of 
resolution for MUSIC and Min-Norm. The analyses used the asymptotic 
properties of the eigenvectors and eigenvalues. The results were consistent 
with our simulations and indicated the following ordering in representative 
cases. In decreasing order of performance: 

(i) Root MUSIC, 

(ii) Root Min-Norm, 

(iii) Min-Norm, 

(iv) MUSIC, 

for uncorrelated signals. Note that we did not prove that the above ordering 
always holds. 

There are a large number of analyses of these cases and other cases in 
the literature. For the case of FB averaging Pillai and Kwon [PKSSa] have 
derived similar results. Roy et al. [RPK86] and 
have compared MUSIC and ESPRIT. 

Roy and Kailath [kK87] 

If the algorithm has successfully resolved the 
analyze the bias and the variance of the estimates 
in the next section. 

signals, then we want to 
We discuss this problem 

9.5.3 Small Error Behavior of Algorithms 

In this section we analyze the error behavior of the various algorithms when 
the values of SNR and K are such that the algorithms are operating above 
threshold. In this case, the probability of resolution approaches unity. 

In Section 9.5.3.1, we repeat the relevant CRBs from Chapter 8. In 
Section 9.5.3.2, we analyze the variance of spectral MUSIC. In Section 
9.5.3.3, we analyze the bias of spectral MUSIC. In Section 9.5.3.4, we ana- 
lyze weighted MUSIC, which includes Min-Norm as a special case. In Section 
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9.5.3.5, we analyze root MUSIC and root Min-Norm. In Section 9.5.3.6, we 
analyze ESPRIT. 

9.5.3.1 Cram&-Rao bound 

In our discussion we use both the stochastic (or unconditional) CRB and 
asymptotic conditional CRB as a basis of comparison for the various algo- 
rithms. 

From (8.99), the unconditional CRB on the D x 1 DOA vector q!~ is, 

(9.206) 

where 
H-DHP+D - . (9.207) 

From (8.236), the asymptotic conditional Cramer-Rao bound is 

hX’R($‘) = 2 [R~{HoS;}]-~. (9.208) 

For the special case of uncorrelated sources, Sf is a diagonal matrix, 

Sf = diag af a; l l l 0; , 
[ I 

(9.209) 

and the asymptotic conditional Cramer-Rao bound for the variance of the 
ith source, can be written as 

&KER($%) = [2f=N&f&)]-', (9.210) 

where 

h(h) = DH($i) ps D(?k)* (9.211) 

9.5.3.2 Variance of spectral MUSIC 

In this section we derive the asymptotic properties of the spectral MUSIC al- 
gorithm. Our discussion follows Stoica and Nehorai [SN89]. Their derivation 
is also available in their Chapters 7 and 8 of [HaySl]. An earlier discussion 
that derived the asymptotic relative efficiency for uncorrelated signals is con- 
tained in Porat and Friedlander [PF88]. Another early asymptotic analysis 
is contained in Sharman et al. [SDWK84]. 

The MUSIC null spectrum is 

djhlu(~) = vH(+) Qv fJ; V(?ql (9.212) 
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in terms of the noise subspace, or 

(9.213) 

in terms of the signal subspace. 
The asymptotic behavior of the eigenvectors was given at the beginning 

of Section 9.5.2 (see (9.182)-(9.184)). 
In addition, we need the statistics of the projections of &, i = D + 

1 ) l l l , N onto the column space of US. Using (9.178) and (9.183) one can 
show that these projections are asymptotically jointly Gaussian with zero 
means and covariance matrices given by 

n a;, - - F up Sij, i,j = D + 1, ... , N, 

(9.214) 

) (UsU~d,,‘> =O, i,j=D+l,**e,N. (9.215) 

The matrix Up can also be expressed as 

-2 H 
Up=USA, ASUS, (9.216) 

(9.217) 

With these statistics as background one can derive the asymptotic variance 
of the MUSIC estimator. 

The derivation is due to Stoica and Nehorai [SN89] and relies on a tech- 
nique used by Sharman et al. [SDWK83] in an earlier analysis of eigenspace 
methods. Another early analysis is contained in Jeffries and Farrier [JF85]. 

We start with the necessary condition of the derivative of QMU(@), 

&wJ(4, = 0, (9.218) 

where 
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. (9.219) 

@=4 

We then expand &&J) in a Taylor series around & and retain the first- 
order terms. The reader is referred to [SN89] or Chapter 7 of [Hay911 for 
the detailed derivation. 

The result is that the MUSIC estimation errors, 

are asymptotically jointly Gaussian with zero means and correlation given 

bY 

Re [dH(‘@j) UN u$d(‘$%) l vH(‘$‘i) UP v($‘j)] 

h(lk) h(+j) 
) (9.221) 

where d(+) is the derivative of the array manifold vector, 

d(q) dv(lCI) - -- 
d@ 

7 

and 

h(‘+) = dH(+>U,u:d(‘+>. 

For the mean square of +ei, (9.221) reduces to 

Eq) { 
l vHws> UP v(Qi> 2 - - 

ei 2K Qtk) ’ 

or 

(9.222) 

(9.223) 

(9.224) 

(9.225) 

We observe that the numerator will be large if one or more of the D 
2 largest eigenvalues are close to 0,. The denominator in the numerator sum 

is just the eigenvalue of the source-signal matrix 

x f 2 
k= AI, - ow (9.226) 

This term will be small if: 
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(i) There are two or more closely spaced signals; 

(ii) The signals are highly correlated; 

(iii) The signal-to-noise ratio is low. 

(Recall our discussion of eigenvalues in Section 5.5.) 
The denominator will be small when d($) is close to the column space 

of V(q) (or equivalently Us). In this case, the projection onto UN will 
be small. This results in a QMU(+) with a relatively flat minimum around 
$J = $J+ If one or more of these conditions occur, then the variance of MUSIC 
estimator is large. 

We now want to put (9.225) in a more convenient form? We can rewrite 
(9.225) as12 

varMu(4i) = &{v”(liiz, [UsA;1u~+&JsA;2U~] v(&)} 
dH($%) UN u:: d($%) 

(9’227) . 
where, from (9.217), 

x1 0 

A f 
&A-&i ‘. [ 1 . +;I. (9.228) 

0 x0 

The spectral matrix S, is 

S x = VSfVH + CT;1 = U~AUf + a;u&i$ = u&u; + a$I. (9.229) 

Thus, 
VSfVH H 

=U&U,, (9.230) 

and 

VSfVHVSfVH =U,AyUg. (9.231) 

Therefore, 

(UP) Sf (VH us) = A,, (9.232) 

and 

“This derivation follows Section 7.7 of Stoica and Nehorai’s chapter in [HaySl], which 
originally appeared in [SN89]. 

121n (9.227) we have assumed K is large enough that the bias can be neglected. 
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(up) Sf (VW) Sf (VHUS) = A;. (9.233) 

Since V has full rank and the columns of V lie in the column space of US, 
the matrix Ug V is non-singular and 

us@ = v (v”v)-l VH. 

Inverting (9.232) and (9.233), we obtain 

(VHUS) “;’ (up) = s,l, 

and 

(VHUs) AT2 (USV) = s,l (vHv)-l s,l. 

Using (9.235) and (9.236) in (9.227) gives 

o2 { [qii +a; [sbl (vHv)-l v] 
Var~f&) = * 

. . } 

2K dH($!Ji) [I - v (vHv)-l VH] d($:) 7 

or 

2 { [s&+d [s;’ (vH v>-‘srl] ..} 

VQJXW(&) = g 
dH (+i> Pf d($i) 

? 

(9.234) 

(9.235) 

(9.236) 

(9.237) 

(9.238) 

which is the desired result. Using (9.211), (9.238) can be written as 

~2 { [‘Fl]ii +a~ [‘;l (VHV)-l ‘j’lii} 
VarMU(4i) = g h(@i) . 

(9 23g) . 

We observe that we can evaluate (9.237) or (9.238) directly from the 
original parameters of the model and eigenvector decomposition is not nec- 
essary. It is also in a form that is suitable to compare to the Cramer-Rao 
bound. For analytic simplicity, we use the asymptotic conditional CRB given 
by (9.208). H owever, our numerical examples will include the unconditional 
CRB. In the region of interest, the unconditional and conditional CRBs are 
essentially the same. In most of our examples, the threshold occurs before 
the two bounds separated. The results for uncorrelated signals are due to 
Porat and Friedlander [PF88]. 
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Similarly, from (9.239), 

- 
(1 + AsA&) 

- 
2Kh($) SNR l 

We first consider the case of a single source. In this case, (9.208) reduces 
to 

(9.240) 

1 . (9.241) 

Thus, for a single signal the asymptotic variance of MUSIC is identical 
to the CRB variance. 

We now consider the case of D uncorrelated signals. For the case of 
uncorrelated signals, Sf is a diagonal matrix whose iith element is & the 
power of the ith signal. In this case, (9.239) reduces to 

[l + ASNR;‘] 1 - - 
2Kh(+i) SNRi z 2(K 9 SNRi)(N 9 SNRi)h($i)’ 

(9.242) 

where the approximation is valid for ASNRi > 1. The SNR for the ith signal 
is 

2 
SNRi fi 3. 

W 

The asymptotic conditional CRB is 

VarmR @> = 2K 
1 

SN’ h($ )  l 

(9.244) 
. 

i l i 

Using (9.242) and (9.244), we have 

VaTMU (qi) 

Var AER (&) 

= 1+ ASNR,! (9.245) 
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Therefore, as the ASNRi increase, the variance of spectral MUSIC ap- 
proaches the Cramer-Rao bound. In many cases (e.g., Figure 9.10), the 
ASNR required to be above the threshold is such that the ratio in (9.245) is 
close to one. 

The last case of interest is D correlated signals. In this case, we use 
(9.239) with a non-diagonal Sf and the CRB expression in (9.206). In the 
examples, we verify that, for correlated signals, the variance of MUSIC does 
not approach the Cramer-Rao bound. The results for correlated signals are 
due to Stoica and Nehorai [SN89]. 

Before considering several examnles. we note that we can write the co- 
variance matrix given by (9.221) compactly as 

I 
(9.246) 

Gfu = 

(SfVHVSf)-l}] 

and (9.239) is the diagonal element of (9.246). This expression can be rewrit- 
ten as 

CA;Iu=2 & {[m@ [R~{HoF~}] [HOI]-l}, (9.247) 

where H is defined in (9.192) and 

F & S,l + ai S,l VHV ( > 
-1 

S,‘. (9.248) 

We now consider several examples to illustrate the asymptotic behavior 
of the MUSIC estimator. The examples consider the case of two signals of 
equal power and a linear uniform array. Then we can write 

1 P 
sf= *I’ [ 1 P 

(9.249) 

where p is correlation coefficient and we have assumed 0: = 1. For two 
signals, the variance in wavenumber space will depend on 

w = h- $9. (9.250) 

In the examples, we plot 

EFFw = 
vwkKJ (A) 

vwm3 pi) ’ 
(9.251) 
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where the numerator is given by (9.239) and the denominator 
Note that we use the vwxB in our plot rather than VarmRe 

by (9.210). 

Example 9.5.1 

We consider a lo-element standard linear array and consider several values of SNR 
and p. The three values of ASNR are 10 dB, 20 dB, and 30 dB. We consider five values of 
p: 0, 0.5, 0.5 exp( -@r/2), 0.9 and 0.9 exp(-jn/2). 

In the first set of figures, we plot the normalized Vary&&) as given by (9.239) 
(normalized by BW&. In Figure 9.37(a), we show the results for ASNR = 10 dB. In 
Figure 9.37(b) we show the results for ASNR = 20 dB. In Figure 9.37(c), we show the 
results forASNR = 30 dB. 

In the second set of figures, Figure 9.38(a), 9.38(b), and 9.38(c), we plot the efficiency 
as given by (9.251) for the same cases as in Figure 9.37. These figures are similar to those 
in [SN89] except they use asymptotic CCRB. 

We see that the efficiency that is higher for smaller A$/BWNN. Once the separation 
exceeds 2BW NN, the efficiency is reasonably constant, 

EFFw = 1 - IPI (9.252) 

for A$ > BWNN. 

Example 9.5.2 
In this example we plot the relative asymptotic efficiency of MUSIC versus the signal 

separation normalized by the BWNN for N = 10, and SNR = 0 and 20 dB. Figure 9.39 
corresponds to p = 0.5, and Figure 9.40 corresponds to p = 0.9. 

All of our examples have considered two signals. For large N, high SNR, 
and a+ 2 BWNN, one can show that, for D signals, 

P 1 f ii EFFMu = - 

[ I 
s IL 

9 
f ii 

(9.253) 

(see [SN89]). Note that for D = 2, (9.253) reduces to 

EFFMu = I - (p12, (9.254) 

which is consistent with the results in Figures 9.38-9.40. For D > 2, as Sf - 
approaches a singular matrix, the efficiency of MUSIC approaches zero. 

All of the asymptotic results for spectral MUSIC are valid for large K 
and used O(K-l) approximations. However, Xu and Buckley [XB92] pointed 
out that the treatment of bias term in the MUSIC derivation was a first- 
order approximation and that, as we moved closer to the transition region, 
a second-order approximation is more appropriate. In the next section we 
introduce their analysis. 
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Figure 9.37 Asymptotic variance of spectral MUSIC versus A@VVNN: N = 

109 IPI = 0,0.5 and 0.9: (a) ASNR = 10 dB; (b) ASNR = 20 dB; and (c) 
ASNR = 30 dB. 

9.5.3.3 Bias analysis of MUSIC 

A bias analysis of the MUSIC algorithm has been carried out by Xu and 
Buckley [XB92]. The bias of the MUSIC algorithm is a relevant performance 
issue when either the SNR or K, the number of snapshots is in a “medium” 
range so that the system is approaching the threshold. 

In [XB92], a bias analysis using a second-order Taylor series expansion 

of QMU (&n, 0s) around (qm, US) is carried out.13 The mid-point, q,, is 

defined in (9.169). The result is 

. . . 
QMU Wm Us) 

-6~Mu(hn, us) 
Var(nq > 7-n ') (9.255) 

where 

QiMU($m,US) = 2dH($‘m) [I - u,u;] d(+,), (9.256) 

13We have suppressed the overbar in 4,, (Gm, OS) to simplify the notation. 
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Figure 9.38 Asymptotic efficiency of spectral MUSIC algorithm versus 
Au/BW~~: N = 10, (p] = 0,0.5, and 0.9: (a) &‘NR = 10 dB; (b) ASNR = 
20 dB; and (c) ASNR = 30 dB. 

and 

Q,, (hmUs> = 6Re { ~H(&-n) [I - Us U;] d(ll,)) . (9.257) 

The reader is referred to [XB92] for the details of the derivation and further 
discussion of the results. 

9.5.3.4 Weighted eigenspace algorithms 

We have developed several weighted eigenspace (WES) algorithms in addi- 
tion to MUSIC. These included Min-Norm (9.95). In this section, we provide 
the asymptotic variance for WES algorithms and show that their variance 
is greater than or equal to the asymptotic variance of MUSIC. The initial 
discussion follows [SN90] ( see also Chapter 8 of [HaySl]). 

Note that this result does not imply that the composite MSE performance 
of MUSIC is better than the other WES algorithms. 

We use the spectral form for discussion. The WES algorithm constructs 
the null spectrum 
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where W is a positive definite weighting matrix. We search over $J to find 
the nulls. 

One can show that the asymptotic covariance matrix is 

CWES = 2 (H@I)-l l Re{HO (VHUV)T} +t@I)-l, (9.259) 

where U is defined implicitly by 

VHUV = s,l + a;sp (vv)-l s,l, (9.260) 

and 
H=DHuN~~fi~, (9.261) 

H=&~J~w~u~D, (9.262) 

(e.g., Appendix B of [SN90]). The elements of CW~ can be written as 

o2 Re [fiij (Vmqji] 
PW.lij = z ($$()I) (HOI) l . . ii jj 

(9.263) 

The variances are given by (9.263) with i = j. 
We can use the result in (9.259) for two purposes. First, we can compare 

the error variances for arbitrary W to the case when W = I. Second, we 
can compare the error variances for other WES algorithms. 

One can show that 

C~~~I~CI1/IuOI* (9.264) 

(e.g., Appendix C of [SN90]). Th us, if we are in the asymptotic regime, the 
best weighting is the identity matrix of conventional MUSIC. As pointed out 
in [SN90], the optimal weighting might be different for small- or medium- 
sized samples. 

We consider a simple example to illustrate the asymptotic behavior of 
the algorithms. 

Example 9.5.3 
We consider a lo-element standard linear array. We assume that there are two uncor- 

related equal-power signals located at &A@/2 where &LJ = A$JR. In Figure 9.41, we plot 
[Cw,& from (9.263) for MUSIC and Min-Norm. The unconditional CRB is shown for 
comparison. 

We see that the simulated results and the analytic results are the same 
above 15 dB. MUSIC achieves the CRB, while Min-Norm is 1.9 dB above it. 
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Figure 9.41 Asymptotic variance of MUSIC and Min-Norm algorithms versus 
ASNR : N = 10, K = 100, p = 0, Au = 0.2165BVVNN. 

9.5.3.5 Root MUSIC and root Min-Norm 

In Section 9.5.2.3 we provided expressions for the mean and variance of the 
roots in root MUSIC and root Min-Norm. We repeat the results here for 
convenience. 

For root Min-Norm, for the mth root, 

var [w+n] = Var [Lb,] 

_ a: (elp’el) f: xi l@Hve12, (9 265) - .  

2K (eTP+d,12 i=l (Ai - o$)~ a ’ l 

where 

[ ’ : : I 

T 
el= liO:**e:O , 

and the summation is familiar (see (9.214)) as 

(9.266) 

H vi UP&, (9.267) 

with Up defined in (9.216). Note that the radial component of the error and 
the angular (wavenumber) component of the error has the same variance. 
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Krim et al. [KFP92] 1 a so show that both components have zero bias and are 
uncorrelated. 

For root MUSIC, one can show that 

E p/m] = 0, (9.268) 

and 

D 

Var [&J~] = 
o2 

2K (q&d,) i=l (Xi -be,z 
x 

x- 
l I 
@f% 

2 

* m 

o2 H 
uf VmUPVm 

2K h($m) ’ 

- - (9.269) 

which is identical to (9.238), so root MUSIC and spectral MUSIC have the 
same asymptotic variance. 

In addition, one can show that A$, and Arm are uncorrelated. However, 

E[LLrm]=- 2(N-D)-$/m, 
J 

(9.270) 

and 
Var @$rn> 

Var [Lh,] = 2 . (9.271) 

This bias in the radial component explains the loss of resolution in spectral 
MUSIC because it changes the shape of the spectral plot. 

Using the result in (9.265) and (9.269), we can compare the performance 
of root MUSIC and root Min-Norm. The ratio of the two variances is 

VarRMU {b!)rn} 
eTP*d 2 1 vm 

’ = VarRMN {Atim} = (erP+el) (dmP+dm) l 

(9.272) 

Using the Schwarz inequality on the numerator and remembering that pfpf 
P$, we have 

eTPLd 2 1 Vm I I 
= eTPLPLd 1 V V (9.273) 

Thus, y < 1. Note that y is independent of the SNR. In addition, as N - 
increases, the performance difference increases. 

We consider an example to illustrate the behavior. 

Example 9.5.4 
Consider a lo-element standard linear array with two equal power uncorrelated sources 

separated by A& impinging on the array. The results predicted by (9.265) and (9.269) 
are shown in Figure 9.42. For this scenario, y  = 1.9 dB. 
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Figure 9.42 Theoretical and simulated RMSE for root MUSIC and root Min- 
Norm: N = 10, K = 100, All, = A$Q, 200 trials. 

In addition, we show the results of the previous simulations. We see that the simula- 
tions are consistent with the analytic results. 

The results in this section and Section 9.5.1 lead to two observations: 

(i) Root MUSIC has advantages over spectral MUSIC in terms of compu- 
tational complexity and probability of resolution. The two versions of 
MUSIC have the same asymptotic MSE. 

(ii) The asymptotic variance of root Min-Norm is always greater than or 
equal to the variance of asymptotic root MUSIC. In many scenarios of 
interest, the difference is significant. 

The asymptotic behavior of unitary root MUSIC is derived in Pesavento et 
al. [PGHOO]. 

9.5.3.6 Asymptotic behavior of ESPRIT 

The ESPRIT algorithm was described in Section 9.4.3. A sequence of pa- 
pers has analyzed the asymptotic performance. We briefly summarize the 
results of four of these references: Rao and Hari [RH89a], Stoica and Nehorai 
[SNSlb], Ottersten et al. [OVK91], and Viberg and Ottersten [VO91]. Other 
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references that discuss the asymptotic behavior include Yuen and Friedlan- 
der [YF96b], Li et al. [LVTSl], and Gavish and Weiss [GW93]. 

The first results are in [RH89a]. They consider the asymptotic behavior 
of ESPRIT, TLS-ESPRIT, and TAM (Toeplitz Approximation Method). 
They show: 

(a) TLS-ESPRIT and ESPRIT have the same asymptotic variance; 

(b) ESPRIT and TAM have the same statistical properties and the same 
MSE (without an asymptotic assumption). 

They derive an asymptotic formula for the MSE using a first-order approx- 
imation. 

Stoica and Nehorai [SNSlb] d erived results for the asymptotic variance. 
Their results are more general than [RH89a] and the expressions are in the 
same format as the MUSIC results in Section 9.5. Their analysis is for least 
squares ESPRIT, but [RH89a] showed the asymptotic variances are equal, so 
the results hold for the TLS-ESPRIT algorithm developed in Section 9.4.4. 

We assume the subarrays contain Ns elements where D < r\r, < N - 1 - - 
and Ns = N - d,. The subarray manifolds are given by 

V Y= i 
oj~,]v=[~~sjo]v~=v,~, (9.274) 

where the various matrices were defined in (9.103)-(9.107). Then, using the 
same approach as in Section 9.5.3.2, we obtain4 

E [(4k - +k) (A - &jj = $$$$e [ejcql+k) (Cf%&) (v~UJWJ , 
S 

(9.275) 

where 

1 
( > r 

-lv,HFI, , (9.276) 
k 

( > and [Xl,’ denotes the kth row of X. The l!‘k matrix is 

I _ e.?ds@k IN ; () 
s I I 1 (9.277) 

where IN, is an Ns x Ns identity matrix. As before, 

-2 H 
Up=USllf &?u,, (9.278) 

14The result in (9.275) is given in [SNSlb]. The 8k in their notation corresponds to d&k 
in our notation. 
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and 

H vk upvl = [s& + 0: [SF1 (v~vx)-l s;‘]kz l (9.279) 

We consider two simple examples to illustrate the result. Before doing 
that, it is useful to compare the asymptotic variance of ESPRIT to the 
asymptotic variance of MUSIC. We can write the ratio of the variance as 

?‘k = 
varES(‘$k) 

Va%iTJSIC(~k) l 

(9.280) 

The numerator is given by (9.275) with k = I, and the denominator is given 
by (9.238). Cancelling common terms, we have 

?‘k = (cr Ck) (@UN u; dk) , k = 1,2,-m l , D. (9.281) 

In Appendix B of [SNSlb], the Schwarz inequality is used to show that 
yk > 1. Note that the ratio does not depend on 0; or !$. - 

We now illustrate the behavior with two examples. 

Example 9.5.515 
Consider a single source at wavenumber $ impinging on a ULA with N sensors. 

Assume that Ns = N - 1 and that row weighting is not used. 
From (9.276), 

. 
([ ’ 0 ; 

1 - - 
N-l 

C 
1 I ,-j+ ; . . . ; ,-m-w ] . I 

IN-1 I 
- f?j’ [ IN-1 ; 0 ]) 

C 
p I 0 ; . . . ; 0 ; ,-m-w 1 . * I (9.282) 

Then 

2 
cHc=@qT- (9.283) 

We evaluated the asymptotic variance of MUSIC in Example 9.5.1. For a linear array, 
we have 

(9.284) 

(9.285) 

15This example is taken from [SNSlb]. 
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and 

dHUNU;d = dH (I-v (v”v) v”) d 

I I dHv2 
= dHd-r 

N(N - 1;2;- 1) N2(N - 1)” - - - 
6 4N 

N(N2 - 1) - - 
12 ’ 

(9.286) 

Using (9.283) and (9.286) in (9.281), 

Y= 
N(N + 1) 
6(N - 1) * 

(9.287) 

Thus, for large values of N, y  approaches N/6. Since MUSIC achieves the CRB for a 
single source, the variance of the ESPRIT estimator remains a fixed distance above the 
CRB bound in the asymptotic region. 

Example 9.5.6 

We consider a lo-element SLA with two equal-power sources separated by A$R. In 
Figure 9.43, the RMS error is plotted versus ASNR. We show the asymptotic results for 
TLS-ESPRIT and MUSIC, as well as the stochastic CRB. We also show the points from 
our simulations in Sections 9.4.1 and 9.4.3. We see that the threshold behavior of ESPRIT 
with d, = 1 is similar to root MUSIC, but its asymptotic variance is 1.0 dB higher. Note 
that ESPRIT with d, = 5 exhibits a more gradual threshold behavior. This is because we 
have used the a priori knowledge to limit the range of ZL (see (9.130)). 

To improve the asymptotic performance for the d, = 1 case, we use the 
weighting discussed in (9.133). We illustrate this in the next example. 

Example 9.5.7 (continuation) 

Consider the same model as in Example 9.5.8. We let d, = 1 and analyze the per- 
formance for various m,. The results are shown in Figure 9.44(a). In Figure 9.44(b) we 
show the difference between the normalized standard deviation and the normalized CRB. 
We see that, for m, = 3,4, and 5, the variance is very close to the CRB and provides a 
factor of 5 improvement over the m, = 1 case. 

A thorough asymptotic analysis of TLS-ESPRIT has been done by Ot- 
tersten et al. [OVK91] and Viberg and Ottersten [VO91]. The results are 
in a form that is suitable for numerical calculation, but is not conducive to 
an easy analytic summary. We refer the reader to the above reference for a 
detailed discussion. 

Several examples are given in [OVK91] including correlated signals, dif- 
ferent subarray choices, and constrained CRB results. 
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Figure 9.43 Analytic and simulated performance of TLS-ESPRIT and root 
MUSIC: normalized RMSE versus ASNR, N = 10, K = 100, various d,, 500 
trials. 

9.5.4 Summary 

In this section we have derived a number of quantitative results to predict the 
probability of resolution and RMSE behavior of various algorithms. These 
results provide the theoretical basis for understanding the algorithms. In 
most cases, we must still simulate the algorithms to verify the assumptions in 
the analyses. Our theoretical results enable us to structure these simulations 
more efficiently. 

9.6 Correlated and Coherent Signals 

9.6.1 Introduction 

In this section, we study the problem of correlated and coherent signals. 
Correlated signals are signals whose correlation coefficient p is non-zero. 
Coherent signals are signals where the magnitude of correlation coefficient, 
]p], equals one. Signal correlation occurs in a multipath environment. In 
[Hay85], Chapter 3 discusses multipath models in the sonar environment and 
Chapter 4 discusses multipath models in the radar environment. Correlated 
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Figure 9.44 Performance of row-weighted TLS-ESPRIT and root MUSIC: 
N = 10, K = 100, d, = 1 various m,, 500 trials: (a) analytic and simulated 
performances, normalized RMSE versus ASNB; (b) analytic asymptotic per- 
formance (normalized RMSE-normalized CRB1~2) versus ASNR. 
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signals can also arise in systems where smart jammers are utilized to interfere 
with radar or communication systems. In cellular communication systems, 
multipath is usually present (e.g., (20951 or [Win87]). 

In Chapter 8, we derived the CRB for correlated and coherent signals. 
The algorithms that have been developed in Chapters 8 and 9 were adversely 
affected by correlation or coherence between the signals in the examples that 
we studied. 

In some cases, the algorithm did not work when the signals were coherent. 
In other cases, the algorithm worked but the threshold occurred at a higher 
ASNR than in the uncorrelated signal case. In other cases, the RMSE did 
reach the CRB above threshold. 

In this section, we develop algorithms to preprocess the data to remove 
the coherency. We focus our attention on a spatial smoothing algorithm that 
was invented by Evans, Johnson, and Sun ([EJS82], [EJS81]) in the context 
of angle of arrival estimation in air traffic control systems. Later Shan et 
al. [SWK85] and [SK851 studied a similar algorithm. Evans’ algorithm 
was analyzed by William et al. [WPMS88] and Pillai and Kwon [PKSSa] 
and [PK89b] ( see also [Pi189]). R ao and Hari [RH89b] obtain expression 
for the variance of the DOA estimate. Weiss and Friedlander [?] analyze 
the performance in the context of their work with interpolated arrays (e.g., 
[FriSO], [FW92], and [FW94]). W e p reviously encountered spatial smoothing 
in the context of beamforming in Section 6.12. 

A second approach to the problem is to remove the coherency by moving 
the array. This approach is discussed by Gabriel ([Gab80], [Gab81]) and is 
analyzed in detail by Haber and Zoltowski [HZ86]. 

A third approach utilizes constrained ML techniques (e.g., [Hay85]). 
A fourth approach proposed by Cadzow [Cad801 uses a generalized eigen- 

vector approach and obtains good results. However it requires the solution 
of a nonlinear programming problem. We do not discuss the last three ap- 
proaches in the text. 

In Section 9.6.2, we briefly review the spatial smoothing model. We then 
consider the three algorithms, FB-IMODE, unitary root MUSIC, and uni- 
tary TLS-ESPRIT, and compare their performance using forward-backward 
spatial smoothing (FBSS) to their performance using only FB averaging. In 
Section 9.6.3, we summarize our results. 

9.6.2 Forward-Backward Spatial Smoothing 

We previously encountered spatial smoothing in Chapter 6 in our discussion 
of optimum beamforming. The original use of spatial smoothing was in the 
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Figure 9.45 (a) Linear array; (b) subarrays; (c) reference subarray: M odd; 
(d) reference subarray: M even. 

parameter estimation context and, although the basic model is the same as 
in the beamforming case, the performance issues are different. 

The model of interest for forward-backward spatial smoothing was given 
in Section 6.12.4. The linear array of interest is shown in Figure 9.45(a). 
We construct a set of L subarrays of length M > D + 1 as shown in Figure - 
9.45(b). Each subarray is shifted by one from the preceding subarray. The 
ith subarray has the ith element as its initial element. Typical reference 
subarrays are shown for M odd and M even. 

For forward-only spatial smoothing, we compute 

h sss n - iL FeX;(k) [XE(k)lHJ 
k=l i=l 

(I where XL (k) is the kth snapshot vector at the ith subarray. 
For forward-backward spatial smoothing, we compute 

(9.288) 

h 

SFBSS = &&-c {X!(k) [XE(k)lH + J [X$(k)]* [X$$(k)lTJ}. 
i=l k=l 

(9.289) 
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Note that the various subarrays have a large number of snapshots in 
common. This commonality should be exploited in the numerical calculation 
of (9.288) and (9.289). 

We use the sample spectral matrix in either (9.288) or (9.289) in one 
of the algorithms that we have developed previously. We use a symmetric 
steering vector for a centered M-element array, 

vs(+) = [ ,--jvli, . . . ,F-& IT. (9.290) 

The advantage of spatial smoothing is that the correlation between the 
signals will be reduced. For most algorithms, smaller correlation improves 
both the threshold behavior and the RMSE above threshold. The disad- 
vantage of spatial smoothing is that the aperture of the subarray is smaller, 
which will degrade the performance. The trade-off between these two effects 
will depend on the algorithm that is used. 

The spectral MUSIC algorithm provides a simple example of the behav- 
ior. To use MUSIC we perform an eigendecomposition of (9.288) and use 
the D eigenvectors corresponding to the D largest eigenvalues to construct 
a A4 x D signal subspace matrix, &~s,s. We use the A4 - D remaining 

eigenvectors to form a noise subspace matrix GFBSS,JL 
The spectral MUSIC algorithm using FBSS is 

(9.291) 

We consider a simple example using the MUSIC algorithm to illustrate 
a typical result. We need to consider a case where D 2 3 in order to ‘study 
the effect of spatial smoothing. 

Example 9.6.116 
In this example, we have a coherent source located at 0”. It undergoes multipath 

reflection, resulting in three additional coherent arrivals along -25”, 45”) and 60”. A 
standard lo-element linear array is used to receive these signals. The input SNR of the 
direct signal is 5 dB, and the attenuation coefficients of the three coherent sources are taken 
to be (0.4,0.8), (-0.3, -0.7), and (0.5, -O.S), respectively. In the notation a = (a, b), a 
and b represent the real and imaginary parts, respectively, of the complex attenuation 
coefficient o.. The result is shown in in Figure 9.46. We use a FBSS scheme with two 
subarrays of nine sensors each, and then use the MUSIC algorithm. All four directions of 
arrival can be directly identified. 

This example illustrates the ability of the FBSS-MUSIC algorithm to 
estimate the DOAs of four coherent sources that are separated by a moderate 

“This example is similar to the example in Pillai and Kwon (p.12 of [PK89a]). 
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Figure 9.46 FB-MUSIC and FBSS-MUSIC: four coherent signals, N = 10, 
M = 9, K = 300, SNRl = 5 dB; (&&L))-~ versus u. 

amount in angle space. There are two effects that occur in FBSS. The 
first effect is the decorrelation that occurs because of the SS. For uniform 
weighting, the correlation coefficient after SS is given by (6.636) or (6.639). 
It is a function of the L l A&j product, where L is the number of subarrays 
and A$Q~ is the separation between the ith signal and the jth signal in +- 
space. The second effect is the FB averaging that reduces the correlation 
between the signals when (&>ij is unequal to zero. 

These effects indicate that FBSS will be most effective when the coherent 
signals are separated by a distance in $-space such that L can be chosen large 
enough to reduce the correlation significantly and the resulting subarray 
length will still allow the signals to be resolved. Thus, we anticipate that 
FBSS will be most useful when IA&j 1 > BW’N. 

Spatial smoothing exploits the uniform spacing in a SLA. Several of the 
algorithms developed in Chapters 8 and 9 exploit the same characteristics. 
Therefore it is logical to compare the performance of some of these algorithms 
with spatial smoothing to their performance without spatial smoothing. In 
the next example, we consider the IMODE algorithm from Section 8.7.3, 
unitary root MUSIC from Section 9.3.2.3, and the unitary TLS-ESPRIT 
algorithm from Section 9.3.4.2. 
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Figure 9.47 FB-root MUSIC, unitary TLS-ESPRIT with row weighting 

( mS = 5), FB-IMODE: N = 10, Au = 0.3, IpI = 1, q& = 0; normalized 
RMSE versus ASNR. 

Example 9.6.2 
Consider a standard lo-element linear array. There are two equal-power coherent 

plane-wave signals impinging on the array. The magnitude of p equals one and & = 0.17 
We consider two values of signal separation, Au = 0.3 and Au = 0.5. 

In Figures 9.47 and 9.48,18 Au = 0.3. In Figure 9.47, no spatial smoothing is used. 
The normalized RMSE for IMODE with FB averaging and root MUSIC and unitary 
TLS-ESPRIT (with row weighting) with FB averaging are plotted versus ASNK Because 

4 = 0, FB averaging does not reduce the correlation and root MUSIC and unitary 
T&S-ESPRIT are not useful. For &, = 0, FB-IMODE and FO-IMODE have the same 
performance. IMODE has a threshold at 0 dB and reaches the CRB for ASNR > 4 dB. 
In Figure 9.48, FBSS is used. In Figure 9.48(a), the subarray length is 8 and Ls 3. In 
Figure 9.48(b), the subarray length is 6 and L = 5. The normalized RMSE is plotted 
versus ASNR. The performance of the IMODE algorithm is poorer due to the decrease 
in aperture, so SS should not be used. The performance of root MUSIC and unitary 
TLS-ESPRIT is better with L = 5 than with L = 3. The threshold is at ASNR = 2 
dB. However, the RMSE remains about 2 dB above the CRB because of the decreased 
aperture. 

In Figures 9.49 and 9.50, Au = 0.5. The same results are shown. As expected, the 
performance is improved but the same conclusions apply. 

17We have used &, = 0 so that the comparison can focus on the smoothing issue. 
‘*The results in Figures 9.47-9.50 are due to J. Hiemstra and D. Bray (private 

communication). 
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Figure 9.48 FB-root MUSIC, unitary TLS-ESPRIT with row weighting 

( mS = 5), FB-IMODE: N = 10, Au = 0.3, IpI = 1, & = 0; FBSS; nor- 
malized RMSE versus ASNR: (a) L = 3, M = 8; (b)L = 5, M = 6. 
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9.6.3 Summary 

In this section, we have demonstrated how spatial smoothing provides a 
method for decorrelating coherent signals prior to implementing various 
DOA estimation algorithms. 

For algorithms, such as IMODE, that work well in the coherent signal en- 
vironment the decrease in array length causes a performance degradation and 
SS and FBSS should not be used. For algorithms that do not perform well 
in a coherent environment, such as root MUSIC and unitary TLS-ESPRIT, 
FBSS is a useful technique. 

There are several topics of interest that are addressed in the problems 
and in various references. 

(i) Weighted spatial smoothing In Section 6.12.4, we discussed weighted 
spatial smoothing in the beamforming context. One can use classi- 
cal weights such as Dolph-Chebychev or the approach of Takao and 
Kikuma [TK87] to choose weights to Toeplitize the array (similar ideas 
are discussed in [RR921 and [PRK87]). One can adapt this approach 
to the DOA problem. 
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( mS = 5), FB-IMODE: N = 10, Au = 0.5, IpI = 1, q$ = 0; FBSS; nor- 
malized RMSE versus ASNR: (a) L = 3, M = 8; (b)L = 5, M = 6. 
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(ii) Detection of number of signals Several of the detection algorithms 
discussed in Section 8.8 do not work in a coherent environment. Shan 
et al. [SPK87] d escribe a smoothed rank profile test for determining 
the rank and coherency structure of the incoming signals. 

. . . 
( > 111 

( ) iv 

2-D spatial smoothing Spatial smoothing is also applicable to pla- 
nar arrays with a regular structure (e.g., Haardt et al. [HZMN95], 
Zoltowski et al. [ZHM96], or Fuhl et al. [FRB97]). 

Interpolated arrays When the array is not uniform, we can con- 
struct a virtual standard linear array by interpolating the snapshot 
vector. We can then use spatial smoothing on the interpolated array 
(e.g., Friedlander [FriSO] , [Fri93] and Weiss and Friedlander [?] and 
Friedlander and Weiss [FW92]). 

97 0 Beamspace Algorithms 

In Section 8.10, we introduced parameter estimation using beamspace pro- 
cessing. We discussed the choice of beamspace matrices and computed the 
beamspace Cramer-Rao bound for several scenarios. We also derived the 
beamspace ML estimator and examined its performance. The reader should 
review that discussion. 

In this section, we focus on two algorithms, beamspace MUSIC and 
beamspace unitary ESPRIT. In Section 9.7.1, we develop beamspace MUSIC 
and study its performance. In Section 9.7.2, we develop beamspace unitary 
ESPRIT and study its performance. In Section 9.7.3, we summarize our 
results. 

9.7.1 Beamspace MUSIC 

In this section, we discuss beamspace MUSIC. The beamspace snapshots are 

xbs (k) = BE x(k). (9.292) 

The beamspace array manifold vector is 

vbs ($‘> = BE v(‘+) l 
(9.293) 

The beamspace spectral matrix is 

A 
s H- 

“bs = Bbs sx Bbse (9.294) 
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If the columns of the beamspace matrix are conjugate symmetric, then the 
real part of gxbs can be used to achieve FB averaging. h 

An eigendecomposition of Qs is performed. The D eigenvectors corre- 
sponding to the D largest eigenvalues are the columns of the Nbs x D signal 
subspace matrix Gbs S. The remaining eigenvectors are the columns of the 7 
Nbs x (Nbs - o> noise subspace &JV. 

The beamspace null spectrum is 

(9.295) 

We find the locations of the D minima of gbs,~&+L~). Those values are 
h 
$ i 7 i = 1, l l l , D. 

We consider an example of a linear array to illustrate the behavior. We 
utilize a DFT beamspace matrix that was discussed in Sections 6.9 and 
8.10.3.3 (e.g., Figure 6.80). 

Example 9.7.1 
We consider a lo-element SLA. Two equal-power uncorrelated signals are impinging 

on the array from k&~/2 where &!J corresponds to A$Q. We use a DFT beamformer 
and consider a 3-beam case and a 5-beam case. 

In Figure 9.51, we show the probability of resolution versus MNR for Nbs = 3 and 5. 
In Figure 9.52, we show the normalized RMSE versus ASNR for K = 100. 

As expected, the threshold occurs at a lower ASNR than element-space MUSIC, and 

Nbs = 3 is better than Nbs = 5. Above threshold, the beamspace algorithms are essentially 
on the CRB. 

Asymptotic expressions for beamspace MUSIC covariance matrix are 
given by Stoica and Nehorai [SNSla], Xu and Buckley [XB93], and Weiss 
and Friedlander [WF94b]. Our discussion follows the latter reference. 

From Section 9.5 (9.259), the asymptotic covariance matrix for element- 
space MUSIC is 

CI1/Iu=x ri (H 0 1)-l Re {H 0 FT} (H 0 1)-l, 

where 

HnDHPl-D - v 7 

and 
F i SF1 + a$Sfl (V”V)-1 S;l. 

The diagonal elements are given by 

Cn/ru@I=~ O2 (F 0 I) (Ha I)-‘. 

(9.296) 

(9.297) 

(9.298) 

(9.299) 
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Figure 9.51 Beamspace spectral MUSIC, DFT beamspace matrix: N = 10, 

Nbs = 3 and 5, two equal-power uncorrelated plane-wave signals spaced at 
AR, K = 100; probability of resolution versus ASNR. 

For beamspace MUSIC, the corresponding result is 

(9.300) 

where 

HBS E DHBPS,BWD, (9.301) 

and 

FBS fi S,’ + a&’ (VHPBV)-l S,‘. (9.302) 

One can then show that, assuming Sf is positive definite, that 

For standard linear arrays using element-space processing, the root MU- 
SIC algorithm has better threshold performance than spectral MUSIC and 
is comput at ionally simpler. We would anticipate similar improvement in 
beamspace. Beamspace root MUSIC is discussed in several references. 
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Figure 9.52 Beamspace spectral MUSIC, DFT beamspace matrix: N = 10, 

Nbs = 3 and 5, two equal-power uncorrelated plane-wave signals spaced at 
AR, K = 100; normalized RMSE versus ASNR. 

The difficulty with beamspace root MUSIC is that the Vandermonde 
structure of the array manifold may not be preserved during the beamspace 
transformation. In addition, if we can obtain a polynomial to be rooted, we 
would like it to be (2Nb, - 2)-dimensional rather than (2N - 2)-dimensional. 

Lee and Wengrovitz [LW88] approached the problem by using orthogonal 
matrix beamformers that can be factored. Their approach leads to a 2Nbs -2 
polynomial. 

Zoltowski et al. [ZKS93] use a set of shifted DFT beams to construct Bbs. 
They develop a 2N - 2 polynomial and reduce it to a 2Nb, - 2 polynomial. 
The construction of the C matrix was discussed in Section 8.10.4.2 in the 
context of beamspace IQML. In a later paper, Kautz and Zoltowski [KZ96] 
(see Zoltowski et al. [ZKK94]) point out that the numerical instabilities in 
the beamspace root MUSIC algorithm limit its practical application. They 
develop a DOA algorithm that is based on telescoping the beamspace noise 
eigenvector into an element-space eigenvector. They refer to their algorithm 
as beamspace multirate eigenvector processing and show that it has good 
performance and is computationally stable. It also allows tapered beams in 
the beamspace matrix. The technique was extended to 2-D estimation using 
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URAs in Gansman et al. [GZK96]. W e refer the reader to these references 
for further discussion. 

In this section, we have developed beamspace spectral MUSIC and con- 
sidered a simple example to illustrate its behavior. Although the example 
used a SLA, the algorithm can be used with arbitrary array geometries and 
beamspace matrices. 

9.7.2 Beamspace Unitary ESPRIT 

Several authors have proposed beamspace ESPRIT algorithms and analyzed 
various aspects of the algorithm’s performance. Two references of interest 
are Li [Li92b] and Xu et al. [XSRK94]. 

Zoltowski et al. [ZHM96] developed a beamspace unitary ESPRIT algo- 
rithm using DFT beams that is computationally efficient and provides good 
performance. 

The advantage of beamspace unitary ESPRIT is that, for many beamspace 
matrices of interest, the primary steps in ESPRIT can be done using real- 
valued calculations because the beamspace array manifold vector is real. In 
addition, the computational complexity is significantly reduced because of 
the reduced dimension of the beamspace. We develop the algorithm in this 
section. Our discussion follows Section IV of [ZHM96]. 

The beamspace matrix consists of Nbs orthogonal conventional beams 
whose MRAs are at 2xm/N in $-space. The mth row of the beamspace 
matrix is 

where ‘&, denotes the set of integers designating the beam locations. 
This vector is just the Hermitian transpose of the steering vector for 

+ S = 2rmlN, 

H [ 1 Bbs 
1 

= ova, Y& = 2nmlN. (9.305) 
m 

The values of m depend on the location of the center of the beamspace 
sector. For example, if the beamspace sector is centered at 1c) = 0 and Nbs 
is odd, 

- (N bs - 1)/z < m 5 (Nbs - 1)/z. - (9.306) 

To simplify the notation, it is convenient to denote the beam whose MRA 
is closest to $J = --7r as the left beam and use mL for the value of m that 



1248 9. ‘7 Beamspace Algorithms 

specifies its location. Then, the indexing on m is 

m,+m<mL+Nbs. - - (9.307) 

Two points should be noticed: 

(i) If the center of the beamspace sector is near endfire, then m/L + Nbs may 
be greater than N and the beams wrap around in $-space. 

(ii) This notation assumes the MRAs are at m2r/N. The case for MRAs 
at (m- ~)27r/N is a straightforward modification. 

The m.th beam in $-space is 

b,(q) = [BE] v($) = 7 m= 
m 

mL,mL+l, l ” ,mL+Nb,e 

(9.308) 

The total beamspace matrix is denoted by the Nbs x N matrix, BE. 
The beamspace array manifold vector is a real vector, 

where the rows of BE are given by (9.304) and bm($) is given by (9.308). 
Note that vbs is real. The key to beamspace ESPRIT is the observation 

that 

b m+l = w> 
sin [$ (II, - (m + l)@] 

sin [f ($ - (m + l)$] ’ 
(9.310) 

and that the numerator in (9.310) is the negative of the numerator in (9.308). 
Therefore, the two successive components are related by 

sin[Jj($--m$)]bm(+)+ 

sin - 
[ ( 

i $J - (m + l)$)] bm+l($) = 0. 

This equation can be manipulated into 

(9.311) 

tan(g) {cos(m$)bm($Q+cos((m+1)-$m+&$)} 
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= sin m- 
( > 

i &.@)+sin((m+l)$)bm+l(@)~ (9.312) 

We want to define two (NbS - 1) x NbS selection matrices relating successive 

beams, bYl(lq and b,+1($)* 

Define 

I-1 0 = 

. 
. . 

0 . . . cos +L + Nbs) 5 

r2 0 0 - a - 0 = 

. . . . . . . . . 

0 0 0 . . . sin ( (mu + Nbs) 3 > 

) (9.313) 

d 

, (9.314) 

The relation in (9.312) can be written in matrix form as 

tan 

For D sources, the beamspace array manifold matrix is 

Vbs($‘) = [ vbs(‘$l) vbs(‘h) ‘-’ vbs(‘hd ] l 

Using (9.316) with (9.315) gives 

rl Vbs($‘) n+ = rl Vbs($‘), 

where 

(9.316) 

(9.317) 

n+=diag[tan($),*Qan($)]. (9.318) 

The signal eigenvectors are the eigenvectors corresponding to the D 
largest eigenvalues of 

Re [%c,bs] = Re [BE %c Bbs] . (9.319) 

Then, the signal subspace is an Nbs x D matrix, 

cbs,s = vbs T, (9.320) 
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where T is a non-singular D x D matrix. Substituting 

Vbs 
-1 

= &,sT 7 (9.321) 

into (9.317) gives 

r1 &,s 6 = r2 as,s, (9.322) 

where 

*=T-‘fQT. (9.323) 

Note that (9.322) h 

ms s, 

as the same form as (9.119) with fisr replaced with 

7 and cs2 replaced with I’&bs s. ! The beamspace unitary LS-ESPRIT 
solution is 

%,ULS = [[rl&,s]T [r106a.r]]-1 [rlObs,s]T [rzbs,s] l (9-w 

The beamspace unitary TLS-ESPRIT solution is obtained by replacing & 
with I?& s, 
Then, ’ 

and Gs2 with l?2& s , in the formula for C given in (9.123). 

-1 
QJTLS = -VI2 v22 l 

(9.325) 

The steps in beamspace ESPRIT can be summarized: 

1. Find 6bs,s, the Nbs x D signal subspace whose columns are the 
eigenvectors corresponding to the D largest eigenvalues of 

Re [  %,bs] = me [BE % % ]  l 

2a. For unitary LS-ESPRIT, \f;bs ULS is given by (9.324). 1 

2b. For unitary TLS-ESPRIT, @bs UTLS is given by (9.325), which is ob- 
tained by a 20 x 20 eigendecdmposition of C. 

3. Find the D eigenvalues, z&, of the real-valued matrix in step 2; either 

*bs,ULS 01: &JTLS~ 

4. Compute the estimated DOAs in $-space, 

& = 2tan-l (tii) , i = 1, l l l , D. 
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We consider an example to illustrate the performance of beamspace uni- 
tary TLS-ESPRIT. 

Example 9.7.2 
Consider a standard lo-element linear array. Two equal-power uncorrelated plane- 

wave signals are impinging on the array from &A$/2 where A+ = A$R. We use the 
beamspace matrix described by (9.304) and implement the 3-beam and 5-beam case. The 
results are shown in Figure 9.53. Note that the three beams centered at $J = 0 correspond 
tp m = -1, 0, and 1 in our indexing scheme. For five beams, m = -2, -1, 0, 1, and 2. 

We see that the resolution performance is slightly better than element-space TLS- 
ESPRIT. In the 3-beam case, the RMSE approaches the CRB above threshold. In the 
5-beam case, the RMSE remains slightly above the CRB above threshold. 

9.7.3 Beamspace Summary 

In this section, we have discussed beamspace processing. For the models 
considered, we have seen that beamspace processing can provide improve- 
ment in resolution and almost no loss in estimation accuracy. In addition, 
the computational complexity is reduced and the statistical stability for a 
given number of snapshots is increased. 

For arbitrary array geometries and uncorrelated signals, beamspace spec- 
tral MUSIC can be used. For correlated signals, SS can be utilized. 

For ULAs and a DFT beamspace matrix, beamspace IQML (or beamspace 
MODE) provides the best threshold performance and approaches the beamspace 
CRB above threshold. Beamspace unitary ESPRIT also provides good per- 
formance with less computation and is close to the CRB above threshold. 

We discuss beamspace processing for planar arrays in Section 9.9. 

9.8 Sensitivity and Robustness 

In Section 8.11, we developed models for array perturbations and environ- 
mental perturbations. We developed Cramer-Rao bounds for the case in 
which we jointly estimated the DOAs and the array parameters. We then 
developed joint estimation algorithms. In this section, we revisit the sen- 
sitivity problem in the context of the estimation algorithms that we have 
developed in this chapter. 

The sensitivity discussion can be divided into three parts. In the first 
part, we assume that we use one of the estimation algorithms developed in 
this chapter and use the nominal array manifold in the calculation. We per- 
turb the array using the perturbation model in Section 8.3.2 ((8.72)-(8.81)) 
and analyze (or simulate) the performance of the algorithm. We compare 
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the resulting performance to the hybrid Cramer-Rao bounds derived in Sec- 
tion 8.11.2. In the second part, we modify the algorithms in some manner to 
make them more robust to the array perturbations. The robust algorithms in 
this second part do not explicitly estimate the perturbed array parameters. 
In the third part, we consider algorithms that treat the problem as a joint 
estimation problem and try to estimate both the DOAs and the perturbed 
array parameters. 

Papers that focus on the first two parts of the problem include Swindle- 
hurst and Kailath [SK921 (MUSIC), S windlehurst and Kailath [SK93b] (mul- 
tidimensional algorithms), Hamza and Buckley [HB95] (weighted eigenspace), 
Jansson et al. [JSO98] (WSF), Ng [Ng95], Ratnarajah [Rat981 (MUSIC), 
Viberg and Swindlehurst [VS94], Rockah et al. [RMS88], Rockah and Schul- 
theiss [RS87], Weiss and Friedlander [WF94a] (resolution of MUSIC), Zhang 
and Zhu [ZZ95], Kuroc [Kur89] (lower bounds), and Friedlander and Weiss 
([FW90], [FW93a]). W e refer the reader to those references for a complete 
discussion. We consider a single example to illustrate the performance of 
root MUSIC and unitary TLS-ESPRIT. 

Example 9.8.1 (continuation, Example 8.11.1) 
In this example, we consider the same perturbation model as in Example 8.11 .l. The 

array is a lo-element SLA on the x-axis. There are two equal-power uncorrelated plane- 
wave sources at *A$/2, where A$ = AY+!JR. The perturbations of the each sensor in the 
X- and y-direction are independent zero-mean Gaussian random variables with standard 
deviation q,. We let + = 0.05X. This value corresponds to lo%, respectively, of the 
nominal interelement spacing. 

In Figure 9.54(a), we plot PR versus ASNR for up = 0.05k1’ In Figure 9.54(b), we 
plot the normalized RMSE versus ASNR for root MUSIC and unitary TLS-ESPRIT. We 
also plot the hybrid CRB and the nominal CRB. There is very little degradation in the 
threshold behavior of root MUSIC and unitary TLS-ESPRIT. The RMSE for the two 
algorithms levels off above an ASNR = 20 dB. 

The gap between the RMSE of the algorithms and hybrid CRB suggests that there may 
be improved algorithms that provide better performance. Several of the above references 
suggest modifications to improve robustness. 

In Section 8.11, we introduced two algorithms, the MAPprox algorithm 
and Weiss-Friedlander iterative algorithm that used joint (or alternating) 
estimation. The generalized WSF algorithm [JSO98] was also discussed. 
(This paper has an extensive list of references.) In that discussion either an 
ML or WSF algorithm was used for estimation. Modifications to incorporate 
MUSIC or ESPRIT can be derived. References that deal with the calibration 
problem or the joint estimation problem include Fuhrmann [Fuh94], Hung 
[Hun94], Huang and Williams [HW94], McCarthy et al. [MRP94], Soon et 

lgThe results in Figure 9.54 are due to D. Bray (private communication). 
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Figure 9.54 Unitary root MUSIC and unitary TLS-ESPRIT (d, = 1, m, = 
5); SLA on z-axis, N = 10, two equal-power uncorrelated plane-wave signals, 
h,h = A$Q, sensor position perturbations, cr, = ay = 0.05X, 100 trials: (a) 
probability of resolution versus ASNR; (b) normalized RMSE versus ASNR. 
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X 

Figure 9.55 Geometry of a uniform rectangular array. 

al. [STHL94], T 1 a war et al. [TPG93], Tseng et al. [TFG95], Weiss and 
Friedlander [WFSla], [WFSlb], Wylie et al. [WRM94]. We refer the reader 
to these references for a discussion of these techniques. A recent dissertation 
by Flanagan ([FlaOO]) t d s u ies the problem and contains an extensive list of 
references. 

9.9 Planar Arrays 

In this section, we extend some of the results in the earlier sections of the 
chapter to planar arrays. Some of the algorithms, such as spectral MUSIC, 
extend in an obvious manner. However, the extension to 2-D of algorithms 
such as root MUSIC that rely on a polynomial representation are less clear. 

In Section 9.1, we study standard rectangular arrays and develop various 
2-D algorithms. In Section 9.9.2, we discuss hexagonal arrays. In Section 
9.9.3, we summarize our results. 

9.9.1 Standard Rectangular Arrays 

The geometry of a uniform rectangular array was shown in Figure 4.5 and 
is repeated in Figure 9.55 for convenience. In a standard rectangular array, 
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d d 
x 

x- y=-’ 2 
(9.326) 

It is useful to define an array manifold matrix, 

n=O,~~~,N--1, m=O,*~*,M-1, (9.327) 

where 

(9.328) 

Note that the matrix descriptor is used in a different manner than in previous 
discussions. 

The array manifold matrix can be written as a product of two vectors, 

v(+x, +y> = vx(~x~v;wY)~ (9.329) 

where v,($x) and v,($y) are given by (2.72) or (2.73). 

We can write V(gbx, $,> as an NM x 1 array manifold vector, 

vet(Q)  f2 vet (v(+x, Qy>> l 

(9.330) 

Note that vet(+) is conjugate symmetric. 

We can also write the kth snapshot of the input to the array as either an 
N x M matrix XI, or a NM x 1 vector vec(Xk). For notational simplicity 
we define 

zk fl vec&). (9.331) 

We can write the sample spectral matrix of ZI, as 

h 1 N 
sz = - 

K x 
H 

zkzk . 

k=l 

(9.332) 

since zk is conjugate symmetric, we can use FB averaging on zk to 
obtain 

A 1 K 

sZ,fb = s c (Z,Z,H + Jz;zTJ) . 
k=l 

(9.333) 
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9.9.1.1 2-D spectral algorithms 

The various spectral algorithms follow directly. For example, for spectral 
MUSIC, we find either the NM x D signal subspace matrix, &, or the 
NMx(NM-D) noise subspace matrix, ON, and use either (9.44) or 
(9.45). The spectral MUSIC algorithm for SRAs is 

or 

(9.334) 

(9.335) 

In almost all cases, the form in (9.335) will be used because normally 
D << NM. The disadvantage of using spectral MUSIC directly is that we 
must search over a 2-D surface. 

A logical approach is to implement two 1-D algorithms such as root 
MUSIC or IMODE to generate preliminary estimates of ez and ey, and 
then use (9.335) to correctly pair the estimates. A scenario for two sources 
is shown in Figure 9.56. We substitute the four possible pairings of &, , 
&, &, and qyz into the bracket expression on the right side of (9.335) and 
choose the two points with the smallest values. 

In order to implement the 1-D algorithm, we compute the sample spectral 
matrix of each row, which we denote as & 72’ We then sum over the N rows 1 
to obtain 

N A 
S X- c- S x,n l 

(9.336) 

n=l 

We use root MUSIC with s, to find a preliminary estimate of &, which 
we denote as &. Similarly, we compute the sample spectral matrix of each 
column, which we denote as gY m. We then sum over the M columns to 9 
obtain 

M 
h 
S Y= c^ s YF- (9.337) 

m=l 

We use root MUSIC with gy to find a preliminary estimate of Qy, which we 

denote as $Y. 2o Because the rows and columns are standard linear arrays, 
FB averaging can be used. Any of the 1-D algorithms such as unitary TLS- 
ESPRIT or IMODE could be used to generate the 1-D estimates. 

20A similar approach is used by Yeh et al. [YLC89] f  or spatial smoothing of coherent 
signals. 
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Figure 9.56 Pairing of 1-D estimates. 

The next step is to pair the estimates. One approach is to evaluate 
(9.335) at the four locations in Figure 9.56: (&I, &l): (7221, &z), (7222, $&I), 
and (&,&& and choose the two points with the smallest values. 

If we stop at this point we have not exploited the coupling in the model. 
Thus, a second approach is to use the two points as the initial value for 
a localized gradient algorithm to find the minimum of (9.335). It turns 
out that in many cases, a coupled spectral approach has poorer resolution 
performance than the 1-D root algorithms, so the first approach is preferable. 

We consider a simple example to illustrate the technique. 

Example 9.9.1 
Consider a standard 10 x 10 rectangular array. Two equal-power uncorrelated plane- 

wave sources impinge on the array. The source locations are 

(wrA,Uyl) = (w), (%2,Uy2) = (0,0.0866). 

The RMSE of ith source is, 

RiMSEi = N ti,i - uzij2 + (tiyi - ~yi)'] ’ . (9.338) 

The first approach (paired 1-D roots) has better performance, so we have plotted its 
behavior. In Figure 9.57(a), we plot the probability of resolution versus SNR. In Figure 
9.57(b), we plot the RMSE versus SNR. Note that the plot is not normalized and the 
horizontal axis is SNR. 
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Figure 9.57 Performance of paired 1-D root MUSIC versus SNR; standard 
rectangular array, N = 10, Ad = 10, u1 = [0 OIT, 24 = [0 0.08661T, K = 100, 
200 trials: (a) probability of resolution versus SNR; (b) RMSE versus SNR. 
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For a larger number of signals this technique becomes cumbersome. In 
the next subsection, we develop a 2-D unitary ESPRIT algorithm that elim- 
inates the pairing problem. 

9.9.1.2 2-D unitary ESPRIT 

In this section, we develop a 2-D extension of the unitary ESPRIT algo- 
rithm developed in Section 9.3.4.2. The extension is due to Zoltowski et al. 

[ZHM96] and our discussion follows that reference. 
The array manifold of an N x M rectangular array can be written as 

We have changed the subscripts of the vectors to emphasize their dimension. 
We pre-multiply V(q) by QE and post-multiply by Qh to obtain a real 
array manifold. 

NOW VRN(‘$J,) SatiSfieS (9.151), where K1 and K2 are defined in (9.147) and 
(9.148). Therefore, 

[ 0 IJan 2 ‘, KlvRN(‘+x) 
I 

V~jd’+y) = [K2VRN(‘b)] V:~(‘+y)~ (9.341) 

or 

tan KlVR($‘) = K2VR(7/‘)- (9.342) 

We now rewrite (9.342) using vec() notation and use (A.108),21 

tan VeC (&V&!J)IM) = VeC (&&#‘)IM) . 

This can be rewritten as 

(9.343) 

tan 

where 
K,ln1~@K1, (N-l)MxMNy (9.345) 

Kx2 * IM 8 K2, - (N - l)M x MN. (9.346) 

21From (A.108), vec(ABC) = (CT @ A)vec(B). 
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Note that (9.344) defines (N - 1)M equations. 
Similarly, 

(9.347) 

where 

K3 = Re { Q&.J$%~} 7 (9.348) 

K4 = Im Qii-~J:y)Qhl) 7 1 (9.349) 

where J,, (M) is given by (9.135) with N replaced by M. Then (9.347) can be 
rewritten as 

K,lvec(V~(Q))= Ky2~~~(~~(~)), (9.350) 

where 

KJl n K3 @ bv, - N(M - 1) x NM, (9.351) 

K,2nK4@h, - N(M - 1) x NM. (9.352) 

Note that (9.350) represents N(M - 1) equations. 
The next step is to specify an NM x D array manifold matrix, 

Each column in V satisfies (9.344). Therefore we can write 

Similarly, each column in V satisfies (9.350), so we can write 

K,lVn, = K,2V, (9.356) 

where 

a, A drag tan - l { (+) ,tan(y) ,~Qan(~)}. 

(9.353) 

(9.354) 

(9.355) 

(9.357) 



1262 9.9 Planar Arrays 

Just as in Section 9.9.2.1, we find Us, the NM x D signal subspace 
estimate. Now 

U s=VT, (9.358) 

where T is an unknown D x D matrix. Replacing U, with U, gives 

A 

U s=GT, (9.359) 

G = c,T-‘. (9.360) 

Substituting (9.360) into (9.354) and (9.356) gives 

K216si6x = K&, (N - 1)M x D, (9.361) 

where 
6, n T-‘&T, - (9.362) 

Kyle& = K&s, (N - 1)M x D, (9.363) 

where 
iiy n T-‘i&T. - (9.364) 

After solving (9.361) and (9.363) for GX and Gy, we find the eigenvalues 

of the D x D complex matrix GX + j%,, 

iiix + jGy = T-l (fix + &) T. (9.365) 

From the resulting eigenvalues, ii, i = 1,2, . . . , D, we can find &- and h 
ti yi, 

h 
+ Xi = 2tan-l {-@i)} j (9.366) 

and h 
+ Yi = 2tar-Cl 

{  I m ( % ) }  l 
(9.367) 

In order to find U,, we use the N x M data matrix at the &h snapshot, 
Xk. Define the NM x 1 vector, 

Y(k) = vet (Qg XI, Qh) , k = 1,. l , K. (9.368) 
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Using (A.108), 

Y(k) = (Qf& @ Q$) wec&) = (Q$ 8 Q$) X(k), k = 1,. l l , I(. 

(9.369) 
Now define an NM x K matrix, 

Y = Y(1) l .* 
[ Y(K) ] . (9.370) 

The signal subspace is computed by an eigendecomposition of Re[Q or from 
an SVD of the ND x 2K matrix [Re Y, Im Y]. 

We summarize the 2-O unitary ESPRIT algorithm: 

1. Compute &. The columns of cs are the “largest” left singular vectors 
of [Re Y, Im Y] or the eigenvectors corresponding to the D largest 
eigenvalues of Re [ s^,] . 

2. Compute G, and Gy as the solutions to (9.361) and (9.363). We use the 
TLS solution in all of our examples. 

3. Compute the eigenvalues, &, i = 1,2,. l l , D of Gz + jGy. 

4. Compute &i and &i using (9.366) and (9.367). 

We consider an example with three sources to illustrate the performance 
of the 2-D unitary TLS-ESPRIT algorithm. 

Example 9.9.222 
Consider an 8 x 8 standard rectangular array. Three equal-power uncorrelated plane- 

wave signals impinge on the array from (~~1, ~~1) = (O,O), (7.~~2, uY2) = (0.125,0), and 
(u~~,zQ,~) = (0,0.125). The RMSE of the ith source is defined as 

RMSK = K iizi - uzi)” -j- (iiyi - ugi,“] 4 , (9.371) 

In Figure 9.58, we plot the probability of resolution and normalized RMSE versus SNR 
for K = 100 snapshots. We also show the CRB. As we would expect, the RMSE of the 
first signal is slightly higher. 

We do not show the spectral MUSIC or paired root MUSIC result to keep the plot 
uncluttered. However, there is significant improvement in the threshold behavior compared 
to spectral MUSIC, and the above threshold RMSE is close to the CRB. 

In the next example we show how we can use row weighting with unitary 
ESPRIT to achieve performance that essentially achieves the CRB. 

22This example corresponds to the example on p. 326 of [ZHM96]. 
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Figure 9.58 Performance of 2-D unitary TLS-ESPRIT; d, = 1, m, = 1, 
standard rectangular array, N=M=8, u1 = [0 OIT, u2 = [0.125 OIT, u3 = 
[0 0.1251T, K = 100, 500 trials: (a) probability of resolution versus SNR; (b) 
RMSE versus SNR. 
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Example 9.9.3 (continuation) 
Consider the same model as in Example 9.9.2. We use weighted unitary TLS-ESPRIT 

with ms = 3. 
In Figure 9.59, we plot the probability of resolution and the normalized RMSE versus 

SNR. We also show the CRB. 
We see that weighting improves the RMSE behavior and essentially achieves the CRB. 

The performance of unitary TLS-ESPRIT is good. However, a disadvan- 
tage is the dimension of the problem for many arrays of practical interest. 
In the next section, we consider the beamspace implementation of ESPRIT. 

9.9.1.3 2-D beamspace ESPRIT 

In this section, we develop 2-D beamspace unitary ESPRIT. The algorithm 
is due to Zoltowski et al. [ZHM96] and our discussion follows that reference. 

The beamspace array manifold matrix consists of NbsMbs orthogonal 
conventional beams whose MRAs are spaced at 27r/N intervals in &-space 
and 27r/ 
are: 

‘M in &-space. The two matrices used to construct the beamspace 

,j( y)*g ej(++z+f . . . 7 ,-j( A&$)ni?$ ],ncc* 
Nbs 

(9.372) 

where &,, specifies the set of values on n used in the matrix. If the 

beamspace sector is centered at Gx = 0 and Nbs is odd, then 

-(Nb - 1)/2 < n < - 

is an Nbs X N matrix. Similarly, 

[ 1 

BH 
1 

bsy m = G 
,j(M.$)mg ej(y)ms 

[ 1 BH bsy is an Mbs X M matrix. 
The beamspace array manifold matrix is an Nbs x Mbs matrix, 

Vbs(+x, tiy> = BbH,x v(‘hm +,> Biisy, (9.375) 

where V($J~,$J,) is defined in (9.339). 

(Nb - 1)/z. 

. .  .  
7 

Mbs 

(9.374) 
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Figure 9.59 Performance of 2-D unitary TLS-ESPRIT with row weighting; 
d = l,m, = 3, standard rectangular array, N = M = 8, u1 = [0 OIT, 

u; = [0.125 OIT, u3 = [0 0.1251T, K = 100, 500 trials: (a) Probability of 
resolution versus SNR; (b) RMSE versus SNR. 
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The components of beamspace array manifold matrix are 

The beamspace array manifold matrix can be expressed as 

vbs ($‘x, $,> = vbsx@x)v&(&)~ (9.377) 

where VbSx ($$) is defined in (9.309) and vbSy(?+&) has the same form. Because 
Vbsx($x) satisfies the invariance relationship in (9.315), we can write 

tan 
( > 

$ hvbs (+x, $,> = r2Vbs ($x7 +,> 1 

where rr and r2 are defined in (9.313) and (9.314). 

We define an &&!bS x 1 beamspace manifold vector, 

(9.378) 

vbs (‘$x, $9) = vectVbs (‘+m +y)). (9.379) 

Using (A-108), we can rewrite (9.378) as 

where 

r*d = INb, @ rl, (9.381) 

and 

rw = INb, @ r2, (9.382) 

are (Nbs - l)i& X i&&bs matrices. We now repeat the process with the 
tiy component, 

tan r4Vbsy (+y) I (9.383) 

where I’3 and I?4 are defined as in (9.313) and (9.314) with Nbs replaced by 
Mbs. we can write 

tan 

Then, using @X)8), 

(9.384) 

tan q!+,Jvbs ($‘x, &j) = r&,ZVbs (‘@XT $9) 7 (9.385) 
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where 

Qd = r3@IA.&, (9.386) 

and 

bY 12 = r4@IMbs, (9.387) 

are Nbs(Mbs - 1) x N&& matrices. 
Now define the NbsMbs x D real beamspace array manifold matrix, 

vbs (‘+xl,‘&.jl) “’ vbs (‘+xD,‘+yD) ] l 

(9.388) 

From (9.380)) 

r&,.,l~bsf$Z = rlLz,2vbs, 

where Qz is defined in (9.355). Similarly, from (9.385), 

(9.389) 

(9.390) 

where C&J+, is defined in (9.357). 

The signal subspace estimate, 6bs s, is an N&!bs x D real matrix, 9 

Ubs,s = vbs T, (9.391) 

where T is a non-singular D x D real matrix. Replacing Ubs,s with &s,s 
gives A 

Gbs,s =&T (9.392) 

h 

Vbs 
-1 

= 6bs,sT . (9.393) 

Then, (9.389) can be written as 

r+-Jcbs s&x bs = &,&,2cbs ST ) 7 > (9.394) 

where h 
xl? x,bs = T-$,T. (9.395) 

Similarly, (9.390) can be written as 

(9.396) 

where h 
9 Y,bS = T-lfl+yT. (9.397) 



Standard Rectangular Arrays 1269 

The next step is to construct the beamspace data matrix Ybs. The 
element-space data matrix for the kth snapshot is the N x M matrix X(k). 
The beamspace data vector for the kth snapshot is 

xb&) = vet B* bsx x(k) Bb*sy> l 

(9.398) 

Using (A.l08), (9.398) can be written as 

x,,(k) = [BE, @ BE,] vec(x(k)) = [B& @ Bgx] %lc)* (9.399) 

The complete beamspace data matrix is the N&k?,s x E( matrix, 

We now proceed in an analogous manner to the 1-D beamspace and the 

xbs = xbs(l) l ’ -b,(K) ] l 
(9.400) 

2-D element-space algorithms. We can summarize the beamspace unitary 
ESPRIT algorithm: 

1. Compute 

Xb,(k) = (Bgx 8 B&) vec(X(k))X(k), k = 1, l l l , K, (9.401) 

and construct Xbs. 

2. construct 6bs s 9 by finding the D largest left singular 

Zbs,E n - [Re [Xbs] Im [xd 
or, by finding the eigenvectors corresponding to the 
values of 

vectors of Xbs,E, 

(9.402) 

D largest eigen- 

Re [hbs] = Re { $- gxbs(k)xg(k)} s 
= 

(g-403) 

3. Compute \Eqz bs 7 as the solution to the (Nbs - l)Mb, x D matrix equa- 
tion, 

(9.404) 

4. Compute @qy bs 9 as the solution to the Nbs(Mbs - 1) x D matrix equa- 
tion, 

(9.405) 

We use either the LS or TLS solution in steps 3 and 4. 
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5. Compute Xi = 1,2,*9= , D as the eigenvalues of the D x D complex 
matrix, A 

XP + x,bs + .&& bs’ 9 
(9.406) 

. 6. Compute the estimates of the directional cosines as 

{ 

h 
ti xi = 2 tan-r Re ii) , i= l,ee*,D, 

i 

( > h 
1cI yi = 2 tan-r Im Xi) , i= l,e**,D. 

( > 
(9.407) 

To illustrate the beamspace unitary ESPRIT algorithm, we use the same 
model as in Example 9.9.2. 

Example 9.9.4 (continuation, Example 9.92) 
Consider an 8 x 8 SRA. Three equal-power uncorrelated plane-wave signals impinge 

on the array from (O,O), (0.125, 0), and (0, 0.125). 
A 3 x 3 beamspace centered at (0, 0) is used. The indices are 

n= -LO, 1, 
m= -l,O, 1. (9.408) 

The RMSE and probability of resolution are plotted versus SNR in Figure 9.60. The 
performance is very similar to element-space unitary ESPRIT with d, = 1 and m, = 1. 
This result is expected because the three signal DOAs are in the central area of the 
beamspace. 

The 2-D beamspace unitary ESPRIT provides a computationally efficient 
solution to the 2-D estimation problem. It provides the 2-D estimates di- 
rectly so the pairing problem is eliminated. Abovesthreshold, its performance 
is close to the CRB. 

9.9.1.4 Summary: Rectangular arrays 

In the preceding subsections, we have introduced the problem of parameter 
estimation using planar arrays. We discussed MUSIC, 2-D unitary ESPRIT, 
and beamspace ESPRIT. The ESPRIT algorithms have good threshold per- 
formance and the weighted versions approach the CRB above threshold. 

There is a large number of papers in the literature concerning various 
aspects of the 2-D problem. Representative references include Rao and Kung 
[RK84], Swindlehurst and Kailath [SK89], Yeh et al. [YLC89], Zoltowski 
and Stavrinides [ZS89], Hua [HuaSl], Clark [Cla92], Hua [Hua92], Sacchini 
[Sac92], van der Veen et al. [vdVOD92], S windlehurst and Kailath [SK93a], 
Clark and Scharf [CS94], Hatke and Forsythe [HF96], Clark et al. [CES97], 
and Fuhl et al. [FRB97]. 
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Figure 9.60 Performance of 2-D beamspace unitary ESPRIT; d, = 1, m, = 1, 
standard rectangular array, N=A4=8, u1 = [0 OIT, u2 = [0.125 OIT, u3 = 
[0 0.125]*, 3 x 3 beamspace centered at u = [0 O]*, K = 100, 500 trials: (a) 
probability of resolution versus SAX; (b) RMSE versus SNR. 
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9.9.2 Hexagonal Arrays 

In this section, we consider direction-of-arrival estimation using hexagonal 
arrays. In the text, we emphasize standard hexagonal arrays. Two examples 
lying in the zy-plane are shown in Figure 9.61. We use the symmetric 
indexing scheme shown in the figure (This is same technique as in Section 

44) . . 

We identify the elements in a hexagonal array manifold as 

[ nu,+m a 2 uy 1 7 m even, 

C 
(n+~)u,+m~uy 

I , m odd. 

(9.409) 

We can define an array manifold vector by stacking the transposes of the 
row vectors of the array. We denote this vector as vecH(uz, uY) and note 
that it is conjugate symmetric. 

For the 19-element array in Figure 9.61(b), 

T 

T 
v2 

= ejAdUy 
[ 

e-jrUx 1 e--jrUx , 
I 

(9.410) 

(9.411) 

Vl 
= ej+$uv e-jn+ 

[ 
e-j&f ej”y ejn* 1 

T 
7 (9.412) 

[ I 
T 

vo = e- j27T?.Lx e-jrUx 1 e-jnUx ej2nzL, , (9.413) 

. a vAl = e--3’lr 2 uY I 
,-jr+ e-jd!f ej"";" ejfl+ 1 

T 9 (9.414) 

T 
v-2 = e - j~~uy 

[ 
e-jr% 1 e-jnux , 1 (9.415) 

We can use the spectral algorithms directly by defining a corresponding 
v&X), computing the sample covariance matrix, the noise subspace and 
applying the appropriate subspace algorithm. 

However, in order to improve the threshold performance, a version of 
unitary ESPRIT is useful. In order to apply the rectangular results we 
transform the hexagonal array into an equivalent rectangular-grid array. 
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Figure 9.61 Standard hexagonal arrays: (a) 7 elements; (b) 19 elements. 
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9.9.2.1 Hexagonal-rectangular transformation 

We use the transformation discussed in Section 4.4 and apply the unitary 
ESPRIT algorithms to the equivalent array. The algorithm estimates the 
signal DOAs in the (v,, vY) space and then finds the corresponding points 
in the (uX,uY) space. The transformation is shown in Figure 9.62 for the 
19-element hexagonal array. 

For the hexagonal-rectangular transformation, 

VX = ux, 

and 

[ 

1 0 
v= 1 

a 
z 2 

and 

1 u, 

(9.416) 

(9.417) 

(9.418) 

r 1 0 
U= 

L 

1 2 v* -- 
lb YE 1 (9.419) 

The estimation algorithm is implemented on the rectangular grid array 
in Figure 9.62(a) to find G and then uses (9.419) to find ti. 

9.9.2.2 Unitary ESPRIT 

In this section, the 2-D unitary ESPRIT discussed in Section 9.9.2 is adapted 
to the hexagonal array model. 

In Figure 9.63, we show the subarrays that provide the necessary invari- 
antes. For u x, we require 

ejuz JxP($) = Jx2v($9, (9.420) 

and 
H 

QMJx2QN = Jxu (9.421) 
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Figure 9.62 Hexagonal-rectangular transformation. 
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Figure 9.63 Subarrays for unitary ESPRIT. 
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The 14-element subarrays labeled J,l and Jz2 in Figure 9.63(a) provide the 
necessary invariance. The elements are 

2 3 
5 6 7 
9 10 11 12 

14 15 16 
18 19 

Similarly, for uyI we require 

(9.422) 

(9.423) 

The 14-element subarrays labeled J,l and J,z in Figure 9.63(b) provide the 
necessary invariance. The elements are 

12 3 

An example illustrates the performance. 

456 7 
9 10 11 12 

14 15 16 

(9.424) 

Example 9.9.5 
Consider the 19-element hexagonal array in Figure 9.62(b) and the corresponding 

rectangular array in in Figure 9.62(a). There are two equal-power uncorrelated signals 
impinging on the array from ur and u2 where 

Ul = Lo OIT 

u2 = [ 0 0.0866 I 
T  

. (9.426) 

We use subarrays 1 and 2 in Figure 9.63 in the rectangular grid version of 2-D unitary 
ESPRIT. Unitary ESPRIT is implemented in v-space to the transformed subarrays and 
the result is transformed to u-space. In Figure 9.64, the probability of resolution and 
RMSE versus SNR are plotted. 

The threshold occurs at SNR = 0 dB. Above threshold, the RMSE is about 1 dB 
above the CRB. The use of row weighting will move the RMSE closer to the CRB. 

? (9.425) 

One can also develop a 2-D unitary ESPRIT algorithm for the hexagonal 
array without going through the hexagonal-rectangular transformation. The 
subarrays and performance are identical. 

9.9.2.3 Summary: Hexagonal arrays 

By using the transformation in Section 9.9.2.1, we can adapt most of the 
algorithms derived for rectangular grids to hexagonal grids. We discussed 
hexagonal unitary ESPRIT and showed that it provided good performance. 
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Figure 9.64 2-D unitary ESPRIT for a 19-element standard hexagonal array: 
Ul = P 01 

T , u2 = [0 .08661T, mS = 1, K = 100, 500 trials: (a) probability of 
resolution versus SNR; (b) RMSE versus SNR. 
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9.9.3 Summary: Planar Arrays 

In this section, we have discussed parameter estimation for planar arrays 
with either rectangular or hexagonal grids. We focused our attention on the 
2-D unitary ESPRIT algorithm and the 2-D beamspace unitary ESPRIT 
algorithm. Both algorithms provided good performance with a reasonable 
amount of computation. Zoltowski et al. [ZHM96] also develop a version of 
beamspace ESPRIT that is applicable to cross arrays. 

Uniform circular arrays are used in some applications. We can utilize 
the phase-mode excitation beamformer developed in Chapter 4 to provide 
an array manifold similar to a ULA. We then apply root MUSIC and ES- 
PRIT to estimate the DOA. The principal references are Tewfik and Hong 
[TH92] and Mathews and Zoltowski [MZ94]. The ESPRIT technique has 
also been extended to filled circular arrays (FCA) whose sensors are located 
on rectangular, hexagonal, polar, or random lattices. Ramos et al. [RMZ99] 
have developed an FCA-ESPRIT algorithm that simultaneously estimates 
azimuth and elevation. 

Wong and Zoltowski [WZ99] h ave developed a root MUSIC algorithm 
for azimuth and elevation estimation for an array of velocity hydrophones. 
The paper also contains a useful discussion of velocity hydrophones. 

The reader is referred to these references for further discussion. 

9.10 Summary 

In Section 9.10.1, we summarize the major results in Chapter 9. In Section 
9.10.2, we briefly discuss some related topics. In Section 9.10.3, we provide 
a brief introduction to Chapter 10. 

9.10.1 Major Results 

In Chapters 8 and 9, we discussed the parameter estimation problem. Chap- 
ter 8 focused on ML techniques and bounds. In Chapter 9, we developed 
algorithms that are computationally simpler. In many cases, some of these 
algorithms perform almost as well as the ML algorithms. We emphasized 
the performance of the algorithms for a moderate number of snapshots (gen- 
erally K = 10N) as a function of ASNR. Although we discussed asymptotic 
behavior (K --+ oo), we did not emphasize it. Our examples focused on the 
case of plane waves whose DOAs were closely spaced (u < O.~BVVNN) be- 
cause it stressed the algorithms. We evaluated the various algorithms using 
two criteria: 
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(i) How close did the RMSE approach the CRB as the ASNR increased. 

(ii) At value of ASNR did the threshold behavior occur? 

We also considered other cases, such as correlated or coherent signals, 
unequal signal powers, and low sample support, which stressed the algo- 
rithms. 

In addition to the two criteria listed above, we must consider the behavior 
of the algorithms when the number of signals are unknown or the array is 
subject to perturbations. An important result from the discussion in Section 
9.3.5 is that all estimation algorithms should be tested in conjunction with 
one or more detection algorithms and their robustness to overestimation of 
D should be measured. The discussion in Section 9.8 shows the importance 
of measuring the robustness of the algorithm to model perturbations. 

Table 9.3: Parameter Estimation Algorithms for Standard Linear Arrays 
Algorithm 

IQML-QC 

IMODE 

Unitary IMODE 

Two-step MODE 

Root MUSIC 

Unitary root MUSIC 

Weighted LS & TLS ESPRIT EVD 

Weighted unitary LS & TLS ESPRIT Real EVD 

Computation 

Iterative 

EVD, iterative 

Real EVD, iterative 

EVD 

EVD, polynomial rooting 

EVD, polynomial rooting 

Section 

8.7.2 

8.7.3 

8.7.3 

8.7.3 

9.3.2 

9.3.2 

9.3.4.1 

9.3.4.1 

The majority of the discussion considered estimation in element space. 
Section 9.7 developed the corresponding algorithms in beamspace. The ad- 
vantage of beamspace processing is a reduction in computational complexity. 

Because of these issues the choice of the algorithm will depend on the 
particular application. We have provided the designer with an algorithm tool 
kit that can be utilized to choose the appropriate algorithm. Tables 9.3-9.6 
list the algorithms with their computation and give a section reference. 

Table 9.3 lists the algorithms that are most appropriate for standard 
linear arrays. For uncorrelated signals, all of the algorithms have similar 
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thresholds (within 2-3 dB) for the examples that we studied. Above thresh- 
old, all of the algorithms are close (1 or 2 dB) to the CRB. The unitary 
versions of the algorithms allow real computation and reduce computational 
complexity. 

Table 9.4: Parameter Estimation Algorithms for Standard 
Rectangular and Hexagonal Arrays 1 

Algorithm Computation Section 
1-D root MUSIC 

with pairing EVD, polynomial rooting 9.9.1.1 

2-D unitary LS 
or TLS ESPRIT Real EVD 9.9.1.2 

Table 9.5: Parameter Estimation Algorithms for Arbitrary Arrays 

Algorithm Computation Section 

AML D-dim. search 8.5.1 

CML D-dim. search 8.5.2 

WSF(MODE) EVD, D-dim. search 8.5.3 

AML-AM Successive 1-D searches 8.6.2 

CML-AP Successive 1-D searches 8.6.2 

MODEAP Successive 1-D searches 8.6.2 

CML-EM Parallel 1-D 8.6.3 
I 

Bartlett 1-D search 9.2.2 

~ MVDR (Capon) 1-D search 9.2.3 

MUSIC EVD, 1-D search 9.3.2 

Min-Norm EVD, 1-D search 9.3.3 

In the case of correlated or coherent signals, the threshold performance 
is degraded for all of the algorithms. The IMODE algorithm reaches the 
CRB in the examples that we studied. 



1282 9.10 Summary 

We have discussed more of the characteristics of the algorithms in the 
various sections. By running test scenarios that correspond to given appli- 
cations and reviewing other constraints such as computational complexity 
and robustness, we can choose an appropriate algorithm. In the problem 
section, we provide a set of test scenarios to illustrate these ideas. 

Our discussion of rectangul 81: arrays was not as extensive as the SLA 
discussion. The 2-D unitary ESPRIT algorithm provided good performance 
with reasonable computational complexity in the examples studied. 

For arbitrary arrays, and uncorrelated signals, either CML-AP or MODE- 
AP provided the best threshold behavior. Above threshold, CML-AP was 
close to the CRB and MODE-AP reached the CRB. An adequate initial- 
ization was essential to the satisfactory performance of the AP algorithms. 
The threshold of the MUSIC algorithm occurs at a higher value of ASNR. 
Above threshold, the RMSE of the MUSIC algorithm is close to the CRB 
for uncorrelated signals (ASNRLl above it). 

Both beamspace unitary ESPRIT and beamspace IQML required a DFT 
beamspace matrix. The algorithms provided good performance with reason- 
able computational complexity. 

It is important to re-emphasize that the choice of the appropriate al- 
gorithm will depend on the scenarios that are encountered in a particular 
application. Our objective was to provide a collection of useful algorithms 
and study their behavior for a limited set of scenarios. 

Table 9.6: Beamspace Algorithms 
Algorithm Computation Section 

BS-MUSIC EVD 9.7.1 

BS-unitary ESPRIT EVD 9.7.2 

BS-IQML EVD 8.10.4 

9.10.2 Relatea -topics 

In Section 8.12.2, we discussed three related topics in the context of ML esti- 
mation; structured adaptive beamforming, nonlinear estimation, and corre- 
lated noise environments. All of the topics are also relevant to the parameter 
estimation algorithms discussed in this chapter. In this section, we briefly 
introduce several other related topics. 
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We have selected this particular set of topics because they provide inter- 
esting extensions of the discussion in the text. The topics are not of equal 
importance and the level of discussion varies among topics. We have tried 
to provide a very brief description of the problem and list several references 
that will enable the interested reader to get started. 

9.10.2.1 Spatially spread sources 

In Section 8.9, we introduced a parametric model for spatially spread sources 
and derived the Cramer-Rao bound. We formulated the ML problem but it 
appeared to be too complex to be practical. Various references have explored 
more techniques based on maximum likelihood or weighted subspace fitting 
techniques (e.g., Trump and Ottersten [T096a], [T096b], Swindlehurst and 
Stoica ([SS97], [SS98]), Bengtsson and Ottersten ([B097], [BOOl]), Besson 
and Stoica [BS99], Stoica et al. [SOR98], and Stoica and Besson [SBOO]). 

Several papers develop MUSIC-like algorithms. Janti [Jan921 models the 
spatially spread signal with a finite number of point sources and uses MU- 
SIC and ESPRIT to estimate their location. Wu et al. [WWMR94] also 
use a discrete model and develop an algorithm called Vet-MUSIC. Valaee 
et al. [VCK95] use a continuous model for the distributed sources and de- 
velop a distributed-MUSIC which they call the distributed signal parameter 
estimation (DSPE) algorithm. 

Meng et al. [MSW96] develop an improved algorithm called DISPARE 
(distributed signal parameter estimation). Bengtsson and Ottersten [BOOO] 
developed a rank-two model which utilizes root MUSIC for estimation. Beng- 
tsson and Ottersten [BOO11 analyze the performance of weighted subspace 
fitting with full-rank models. 

Other papers dealing with various aspects of spread signal estimation 
include Lee et al. [LCSL97], Messer et al. [MRGOO], and Shahbazpanahi et 
al. [SVBOl]. 

9.10.2.2 Broadband direction finding 

Several papers address techniques for coherent subspace processing of broad- 
band signals to estimate their DOA. Wang and Kaveh [WK85] develop a 
coherent signal subspace algorithm using focusing matrices. A number of re- 
finements and extensions of this approach are described in Hung and Kaveh 
[HK88], Pierre and Kaveh [PK92], Bassias and Kaveh [BK91], and Doron 
and Weiss [DW92]. A discussion of focusing techniques is given by Krolik in 
Chapter 6 of [HaySl]. 
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9.10.2.3 Sparse linear arrays 

In many applications we use sparse linear arrays to obtain improved reso- 
lution with fewer sensors. The MRLAs that were discussed in Section 3.9.2 
were examples of a sparse linear arrays. Chambers et al. [CTSD96] have 
considered various sparse geometries. They computed the CRB and simu- 
lated MUSIC. The results demonstrated improvements over ULAs. Fuchs 
[Fuc97] extended the Pisarenko method to sparse arrays. Abramovich et al. 
[AGSG96] [AGGS98] [ASG99] considered ambiguity issues and developed 
techniques for positive definite Toeplitz completion. 

9.10.2.4 Non-Gaussian noise 

Our discussion has assumed that the additive noise is a sample function of 
Gaussian random process. There are a number of references that extend 
some of the techniques to non-Gaussian environments. 

Tsakalides and Nikias [TN961 considered a class of noise processes called 
alpha-stable processes that include Gaussian processes as a special case. 
A discussion of alpha-stable processes is given in Shao and Nikias [SN95]. 
Tsakalides and Nikias [TN961 d evelop a version of MUSIC and analyze its 
performance. 

Other approaches utilize the higher order statistics of the non-Gaussian 
process. References include Porat and Friedlander [PF91], Forster and Nikias 
[FN91], Cardoso and Moulines [CM95]. 

9.10.2.5 Virtual Arrays 

For standard linear arrays, we were able to find computationally efficient 
parameter estimation algorithms. Another approach is to create a virtual 
SLA by interpolating the outputs of the actual array. Friedlander, Weiss, and 
Stoica have published work using this idea (e.g., [Fri93], [WFS95], [FW92], 
[WF93b], or [FW93a]). 

9.10.2.6 Near-field sources 

For near-field sources, the curvature of the wavefront can be exploited to 
do range and bearing (DOA) estimation. There are a large number of refer- 
ences that discuss this problem. A representative list includes Hahn [Hah95], 
Swindlehurst and Kailath [SK88], Huang and Barkat [HB91], Weiss and 
Friedlander [WF93a], Starer and Nehorari [SN94], Chuberre et al. [CFF95], 
LeCadre [LeC95], Hung et al. [HCW96], Haardt et al. [HCS96], Yuen and 
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and Friedlander [YF96a], Haug and Jacyna [HJ96], Abed-Meraim and Hua 
[AH97], and Lee et al. [LYLOl]. 

9.10.3 Discussion 

This completes our two-chapter discussion of parameter estimation. In the 
next chapter we discuss optimum detection briefly and outline some related 
topics that are not covered in the book. 

9.11 Problems 

Pg.2 Quadratic Algorithms 

Problem 9.2.1 (continuation, Example 9.2.3) 
Consider a lo-element standard linear array and assume that there are two equal-power 

uncorrelated plane-wave signals impinging on the array from &A+/2 where A$ = A&. 
Simulate the beamscan algorithm with FB averaging (9.10). 

(a) Plot the probability of resolution and the normalized RMSE versus ASNR for K = 
100. Plot the CRB. 

(b) Plot the normalized RMSE versus K for ASNR = 20, 30, and 40 dB. Plot the CRB. 

Discuss your results. Compare the results to those in Figures 9.2-9.4. 

Problem 9.2.2 (continuation) 
Consider the same model as in Problem 9.2.1 except A$ is varied. Simulate the 

beamscan algorithm. Plot the probability of resolution and the normalized RMSE versus 
A+/BWNN for ASNR = 10, 20, and 30 dB. 

Problem 9.2.3 
Read the paper by Zhang [Zha95b] on the resolution capability of the Bartlett beam- 

former. Simulate the beamscan for his parameter values. Discuss his results and their 
practical application. 

Problem 9.2.4 
Consider a lo-element standard linear array and assume that there are two equal- 

power uncorrelated plane waves impinging on the array from fAu/2 where Au = 0.3. 
Simulate the MVDR and root MVDR algorithm using FB averaging. 

(a) Plot the normalized RMSE versus ASNR for K = 100. Include the CRB on the 
plot. 

(b) Plot the normalized RMSE versus K for ASNR = 10 dB, 20 dB, and 30 dB. 

Discuss your results. 

Problem 9.2.5 
Consider a standard lo-element linear array. The following uncorrelated plane-wave 

signals are impinging on it: 

Signal 1 u1 =0 SNRl = 10 dB 
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Signal 2 u2 = 0.3 SNR2 = 20 dB 

Signal 3 u3 = 0.7 SNR3 = 5 dB 

Signal 4 u3 = -0.5 SNR4 = 0 dB 

Simulate the MVDR algorithm for K = 20, 100, and 500. Plot the MVDR spatial spectrum 
versus u. Estirnate: ~~,u~,~**,u+ and &*.,a~. Plot the normalized RMSE versus 
ASNR. 

Compare your estimate of ai to that obtained from (8.324). Compare your estimate 
of ui,i = 1,.*.,4 to the CRB. 

Problem 9.2.6: (Adaptive angular response (AAR) estimation) 
The component of the output of the MVDR algorithm due to the white noise input is 

and varies as a function 
suggested maximizing 

h4v(~) = ~wnvdr(*)12 ) (9.427) 

of q/j in the MVDR estimator. Borgiottia and Kaplan [BK79] 

- - WH c, w, (9.428) 

subject to a constraint on the white noise gain, 

( > a 

(b) 

( > C 

WHW=l. 

Carry out the constrained maximization and show that, 

(9.429) 

FAAR($) = vH($) G?v(@) 
vH ($J) Gi2 v($J> ’ 

(9.430) 

The estimator in (9.430) is referred as the adapted angular response (AAR) esti- 
mator. The ternporal version of this estimate is in [SM97](5.4.17). 

Consider the same model as in Example 9.2.1. Plot the results for a typical trial. 

Consider the same model as Example 9.2.2. Plot the probability of resolution and 
normalized RMSE versus ASNR for E( = 100. Plot the normalized RMSE versus E( 
for ASNR = 20, 30, and 40 dB. Discuss your results. 

A . . 
Note that P AAR(I,~I) does not provide a spatial spectrum estimate. 

Problem 9.2.7 (Thermal noise algorithm (TNA) estimation) 
Haykin and Reilly [HR80] used a pole-zero argument to suggest that the denominator 

in (9.430) was the key element in locating the peaks of the spectra. They suggested an 
algorithm that is referred to as the thermal noise algorithm (TNA). 

&VA(‘+) = 
1 

vH ($) Gi2 v(g)) ) 

(9.431) 

and 
&IVA(‘+) = vH($)c,2v(@)- (9.432) 
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Gabriel [Gab801 [Kes86] independently approached this algorithm by considering the out- 
put of the MVDR filter 

yaw> = wH v(*) = A [vH(?I) c,l +I)] ) (9.433) 

and observing that in the asymptotic regime it approaches zero as v(q) moves through a 
source location. It approaches zero because the weight vector w approaches zero. Gabriel 
suggests using the reciprocal of the magnitude of w squared as an estimator. (The constant 
A is omitted) 

kc4(~) = 
1 1 

- = VH($q C;“v(*) WF wo 
(9.434) 

The corresponding null spectrum is 

&lvA(*) = vH(+) CL2 v($$ (9.435) 

A root version of TNA follows directly. 

(a) Repeat part (b) of Problem 9.2.6. 

(b) Repeat part (c) of Problem 9.2.6. 

Note that the TNA algorithm is not a spatial spectral estimator. 

Problem 9.2.8 
In the region of small sample support, we may be able to improve the performance 

by using diagonal loading. The various quadratic algorithms can be modified by replacing 
C, with C, + 021. 

Consider the same model as in Example 9.2.2. Plot the normalized RMSE versus E( 
for ASNR = 20 dB and 30 dB with 

d/d = SNR x 10-2. (9.436) 

Discuss your results. 

Problem 9.2.9 
An enhanced MVDR was proposed by Owsley (e.g., [Ows85], [Hay85]).23 For simplic- 

ity, we assume that S, is available in order to derive the structure of the estimator. We h 
then use SX to implement the estimator. 

The enhanced MVDR starts with an eigenvector decomposition of the covariance ma- 
trix, 

SX =UsAUf+a~I, (9.437) 

where US is the N x D matrix of eigenvectors corresponding to the signal subspace and 
A=hS-U: is the diagonal matrix of the eigenvalues. 

(9.438) 

Owsley defines an enhanced data covariance matrix, 

sx (4 ~eUsAU~+a~I, (9.439) 

where e is called the modal enhancement factor and has a range 1 5 e < 00. 

230ur discussion of the enhanced algorithm follows pp.168-177 of Owsley’s chapter in 
[Hay85]. He refers to it as the enhanced MV filter. 
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(a) Find S:‘(e). Substitute S,‘(e) in the MVDR algorithm and obtain, 

(9.440) 

(b) The enhanced MVDR (EMV) estimator is the limit of (9.440) as e -+ 00. Find 
PEMV($J) and QEMV($J). 

(c) In practice, we perform an eigendecomposition of GX, 

&c -H -H 
= i&A& + &&ujv, (9.441) 

and use the estimated eigenvectors. Show that QEMV(+) can be written as 

QE~(*)~v~(*)~,~~v(~)= vH($&v 2, (9.442) 

QEMV($) A vH($) 
i 
I- G-Js -H v(l@ 1 (9.443) 

The algorithm defined by (9.442) or (9.443) is identical to the MUSIC algorithm 
that we develop and analyze in Section 9.3. 

(d) Consider the array and signal model as Problem 9.2.1. Repeat Problem 9.2.1 for 
e= 10, 100, and 00. Compare your results to Example 9.2.3. Discuss your results. 

Pg.3 Subspace Algorithms 

Problem Note 9.3.1: The first set of problems considers some of the test scenarios 
in Table 8.3 so that we can compare these results to the various ML results in Chapter 
8. We also explore scenario excursions suggested by the results. We also use these test 
scenarios in problem Sections P.9.6, P.9.7, and P.9.8. Table 9.7 shows where the various 
test scenarios are used. 

Problem 9.3.1 
Consider a lo-element standard linear array. There are two equal-power uncorrelated 

plane-wave signals impinging on the array from &A$/2, where A+ = 0.05BlVN~. Sim- 
ulate the performance of MUSIC, root MUSIC, Min-Norm, and root Min-Norm. Assume 
K = 100. 

(a) Plot the normalized RMSE versus ASZVK Compare your results to the AML and 
CML results in Chapter 8. 

(b) Plot the probability of resolution. Discuss the behavior of the curve. Is the PR 
definition useful for this scenario? 

Problem 9.3.2 (continuation) 

(a) Repeat Problem 9.3.1 for the TLS-ESPRIT algorithm. Investigate appropriate row 
weightings. 

(b) Repeat part (a) for unitary TLS-ESPRIT. 
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Table 9.7 

TSl TS2 TS3 TS4 TS5 
9.3 Ex.9.3.1 P.9.3.1 P.9.3.3 P.9.3.6 

Subspace P.9.3.2 P.9.3.4 P.9.3.7 
Ex.9.3.2 

9.6 P.9.6.1 
Spatial 

Smoothing 
9.7 Ex.9.7.2 P.9.7.4 P.9.7.5 P.9.7.6 

Beamspace P.9.7.1 P.9.7.7 
P.9.7.2 

9.8 Ex.9.8.1 P.9.8.1 P.9.8.2 P.9.8.3 
Sensitivity P.9.8.5 P.9.8.10 P.9.8.7 P.9.8.8 

P.9.8.11 P.9.8.12 
P.9.8.14 P.9.8.16 P.9.8.17 

TS6 TS7 TS8 TS9 TSlO 
9.3 P.9.3.8 P.9.3.10 P.9.3.11 P.9.3.12 P.9.3.13 

Subspace 

9.6 P.9.6.3 
Spatial 

Smoothing 
9.7 P.9.7.8 P.9.7.3 P.9.7.10 P.9.7.11 P.9.7.12 

Beamspace 

9.8 
Sensitivity 

P.9.8.4 
P.9.8.6 

P.9.8.13 
P.9.8.15 

Problem 9.3.3 
Consider a lo-element standard linear array. There are two uncorrelated plane-wave 

signals impinging on the array from &A$$,?, where A$ = A$R. SW& = lOOSN&. Sim- 
ulate the performance of MUSIC, root MUSIC, Min-Norm, and root Min-Norm. Assume 
K = 100. 

(a) Plot the normalized RMSE for signal 1 versus ASNRI and signal 2 versus ASNRz. 

(b) Repeat for the case in which SNR1 = lOOOSNR2. 

Problem 9.3.4 (continuation) 

(a) Repeat Problem 9.3.3 for the TLS-ESPRIT algorithm. Investigate appropriate row 
weightings. 

(b) Repeat part (a) for unitary ESPRIT. 
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Problem 9.3.5 (continuation, Problem 9.3.3) 
Consider the same model as in Problem 9.3.3. Design a sequential MUSIC algorithm 

that estimates the DOA of signal 1 first. The algorithm then removes signal 1 from the 
data and estimates the DOA of signal 2. Simulat,e the performance of your algorithm and 
discuss its behavior. 

Problem 9.3.6 (continuation, Example 9.3.2) 
Consider the same model as in Example 9.3.2, except the phase angle of p is not zero. 

In case 1, p = 0.95 exp(jn/4). In case 2, p = 0.95 exp( jn/2). We utilize FB averaging. 
Simulate the performance of MUSIC, root MUSIC, Min-Norm, and root Min-Norm. 

(a) Plot the normalized RMSE versus ASNK Compare your results to the AML and 
CML results in Chapter 8. 

(b) Repeat part (a) with 1~1 = 0.99. 

Problem 9.3.7 (continuation) 
Repeat Problem 9.3.6 for TLS-ESPRIT and unitary ESPRIT. 

Problem 9.3.8 (continuation, Example 9.3.1) 
Repeat Example 9.3.1 for the low sample support case in which K = 20. 

Problem 9.3.9 (continuation, Example 9.3.4) 
Consider the model as in Example 9.3.4 and assume d, = 1. Simulate the performance 

of the LS-ESPRIT algorithm (9.121). Compare the results to the results using the TLS- 
ESPRIT algorithm. Discuss the computational difference. 

Problem 9.3.10 
Consider a lo-element standard linear array. There are three equal-power uncorrelated 

plane-wave signals impinging on the array from $1 = -A$, $2 = 0, and $3 = A$, where 
A$ = A$JR. (Test scenario 7.) 

(a) Simulate the performance of MUSIC, root MUSIC, Min-Norm, and root Min-Norm. 
Plot the normalized RMSE versus RSNR for each of the three signals. Discuss your 
results. 

(b) Repeat part (a) for TLS-ESPRIT and unitary TLS-ESPRIT. 

Problem 9.3.11 (continuation) 
Consider the same model as in Problem 9.3.10 except the signals are correlated with 

unequal power. (Test scenario 8.) 

SNR1 = SNR3 = 0.5SNR2 

PI2 = 0.9, P23 = 0.9, ~13 = 0.5exp(jn/2) 
Simulate the performance of MUSIC, root MUSIC, and ESPRIT. Plot the normalized 

RMSE versus ASNR for each of the three signals. Discuss your results. 

Problem 9.3.12 (continuation; Problem 9.3.10) 

(a) Repeat Problem 9.3.10 for the case in which the two plane waves at *A$ have an 
SNR that is 10 dB higher than the plane wave at $ = 0. (Test scenario 9.) 

(b) Apply the algorithm derived in Problem 93.5 to this model. 
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Problem 9.3.13 (continuation, Problem 9.3.10) 
Consider the model in Problem 9.3.10. Repeat the problem for the case of five equal- 

power uncorrelated plane waves located at $J = 0, &A+, k2A$, where A$ = A$R. (Test 
Scenario 10) 

Problem 9.3.14 
Consider a standard lo-element array. There are two equal-power correlated signals 

impinging on the array from &A+, where A$ = SWNN. Let K = 100. Consider two 
phase angles for p; &, = 0 and &, = j7r/%. Utilize FB averaging and implement MUSIC 
and root MUSIC. The ASNR = 10 dB. 

(a) Plot the normalized RMSE versus IpI for the two phase angles. 

(b) Compute the CRB versus 1~1 for the two phase angles and plot the relative efficiency 
of the MUSIC estimator. In Example 9.5.1, we will show that 

EFFh/ru = 1 - (~1~. 

Compare your results to that formula. 

Problem Note 9.3.2: The next set of problems consider a 32-element SLA. The problem 
with two and three signals are similar to the earlier problems. The larger array size allows 
us to consider more complicated scenarios. 

Problem 9.3.15 
Consider a standard 32-element linear array. There are two equal-power uncorrelated 

signals impinging on the array at &AU/~, where Au = l/32. Consider K = 320 and 960. 

(a) Simulate MUSIC and root MUSIC. Plot the normalized RMSE versus RSNR. 

(b) Simulate TLS-ESPRIT. Plot the normalized RMSE versus ASNR. 

Problem 9.3.16 (continuation) 
Repeat Problem 9.3.15 with Au = l/128. 

Problem 9.3.17 (continuation, Problem 9.3.15) 
Repeat Problem 9.3.15 with Au = l/32 and ASNRl = lOOASNR2. 

Problem 9.3.18 (continuation, Problem 9.3.15) 
Repeat Problem 9.3.15 with Au = l/32 and p = 0.95, p = 0.95exp(j7r/4), and 

p = 0.95exp(jr/2). 

Problem 9.3.19 (continuation, Problem 9.3.15) 
Repeat Problem 9.3.15 with Au = l/32 and K = 64. 

Problem 9.3.20 (continuation, Problem 9.3.15) 

(a) Repeat Problem 9.3.15 with three equal-power uncorrelated signals located at -l/32, 
0, l/32. 

(b) Repeat part (a) with ASNRl = ASNRa = lOOASNR2. 

Problem 9.3.21 (continuation, Problem 9.3.15) 
Repeat Problem 9.3.15 for the following cases: 
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(a) Five equal-power uncorrelated signals located at f2/32, f1/32,0. 

(bj Seven equal-power uncorrelated signals located at f3/32, f2/32, H/32,0. 

(c) Fifteen equal-power uncorrelated signals located at &m/32, m = 0, l l l , ‘7. 

Problem Note 9.3.3: Our discussion and most of the discussion in the literature assumes 
that the number of signals, D, is known. In practice, we usually have to estimate D. The 
next three problems consider this issue. 

Problem 9.3.22 (continuation, Example 9.3.1) 
Repeat Example 9.3.1 under the assumption that we do not know that there are two 

plane waves. Process the data using AIC-FB and MDL-FB to generate b. Simulate 
MUSIC, root MUSIC, and TLS-ESPRIT assuming fi is correct. Plot the results. Discuss 
your results. 

Problem 9.3.23 (continuation) 
Repeat Problem 9.3.22 for the signal model in Problem 9.3.6. 

Problem 9.3.24 
Repeat Problem 9.3.22 for the signal model in Problem 9.3.10. 

Problem Note 9.3.4: The next several problems consider low redundancy arrays that 
were introduced in Section 3.9.2. We would expect that the larger aperture would improve 
resolution but would require a larger number of snapshots to achieve the same estimation 
accuracy. 

Problem 9.3.25 
Consider the 5-element linear array in Table 3.8. The sensor spacing is 

Two equal-power uncorrelated signals impinge on the array from &AU/~, where Au = 
0.0866. Simulate the performance of the MUSIC algorithm for K = 100, 300, and 500. 

Plot the normalized RMSE versus ASNR for each value of K. Compare your results 
to those in Example 9.3.1 and the CRB derived in Chapter 8 (Problem 84.10). Discuss 
the trade-off between the number of elements and the number of snapshots. 

Problem 9.3.26 (continuation) 
Repeat Problem 9.3.25 for the 7-element linear array in Table 3.8. The sensor spacing 

is 

Consider larger values of K, if necessary. 

Problem 9.3.27 (continuation, Problem 9.3.25) 
Repeat Problem 9.3.25 for the g-element linear array in Table 3.8. The sensor spacing 

Consider larger values of K, if necessary. 
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Problem 9.3.28 (continuation, Problem 9.3.25) 
Repeat Problem 9.3.25 for the N-element linear array in Table 3.8. The sensor spacing 

Consider larger values of K, if necessary. 

Problem 9.3.29 
The sensor spacing in a MRLA allows us to construct the 8, matrix corresponding 

to a uniform linear array on the same grid as the MRLA. Use this result to design a root 
MUSIC algorithm for the MRLA. 

(a) Simulate your algorithm for the MRLA in Problem 9.3.25. Compare your results 
to those in Problem 9.3.25. 

(b) Simulate your algorithm for the MRLA in Problem 9.3.26. Compare your results 
to those in Problem 9.3.26. 

(c) Simulate your algorithm for the MRLA in Problem 9.3.27. Compare your results 
to those in Problem 9.3.27. 

(d) Simulate your algorithm for the MRLA in Problem 9.3.28. Compare your results 
to those in Problem 9.3.28. 

Problem 9.3.30: Unitary IMODE ([GS99]) 
The cost function for MODE is given in (8.524) as 

(9.444) 

where B is given in (8.488) and satisfies 

BHV = 0. (9.445) 

The FB backward averaged spatial spectral matrix is given by (7.40) as 

C 
1 K 

x,fb = - 2K 
c (X,X,” + JX;X;J) = f  (C, + JC:J) l 

k=l 

(9.446) 

From (9.58) 

C x,Re = QHcX,fbQ = Re [QHcxQ] ? (9.447) 

where Q is given by (9.54) and (9.55). The eigendecomposition of Cx,~e is given by (9.64) 
as 

C x,Re = fiS,ReiS,RefJgRe + ~lV,Re~N,Refi~,Re- (9.448) 

(a) Show that 

(BHQ)(QHV) = (BHQ)V = 0, (9.449) 

Zi A QHV. - (9.450) 
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(b) Show that the unitary MODE cost function is 

Jmzom(b) = tr [QHP~Q&,~~w~~$~~] j (9.451) 

2 1 A-- 
WRe = &Re - u b,Re. (9.452) 

(c) Unitary IMODE uses (8.524)-(8.544) with the above cost function. Write out the 
appropriate equations. 

(d) Repeat Example 8.7.1 and 8.7.2 using unitary IMODE. 

Pg.4 Linear Prediction 

Problem 9.4.1 
Read Gabriel’s [Gab801 development of linear prediction algorithms (see also Johnson 

and Degraaf [JD82]). 

(a) Show that the LP null spectrum can be written as 

(9.453) 

eg = 0 0 -aa [ 0 11, 
is a 1 x N matrix whose first N - 1 elements are equal to zero. or 

(9.454) 

2 

&a~(~) = IBFBLP($)I~ = v”(“&& y (9.455) 

if FB averaging is appropriate. 

(b) Consider the same model as in Example 9.2.2. . Plot the probability of resolution 
and normalized RMSE versus ASNR for K = 100. Compare your results to root 
MUSIC and the CRB. 

(c) Plot the normalized RMSE versus E( for an &‘NR = 20 dB. 

Discuss your results. 

Problem 9.4.2 
Read Tufts and Kumaresan [TK82]. Develop the root version of the LP algorithm. 

Repeat parts (b) and (c) of Problem 9.4.1. Discuss your results. 

Problem 9.4.3 
Read Kumaresan and Tufts [KT83] and show how they derive the Min-Norm algorithm 

from the linear prediction algorithm. 

Problem 9.4.4 
There is also a family of algorithms that we refer to as the subarray linear prediction 

(SALP) family. 
The basic algorithm is essentially the same as the maximum entropy algorithm devel- 

oped by Burg (e.g.,[Bur67], [Bur75]) for spatial or temporal spectral estimation. Van den 
Bos [VDB71] h s owed that it could be interpreted as a linear predictor. In the spatial (or 
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temporal) estimation context, most discussions start with an underlying autoregressive or 
ARMA model for the spectra and assume a noiseless observation. Books by Kay [Kay83], 
Marple [Mar87], Haykin [HaySG], and Proakis et al. [PRLN92] contain extensive discus- 
sions. Although the emphasis is on temporal spectral estimation, most of the ideas map 
directly to the spatial problem in the case of SLA. 

The algorithms are the multiple snapshot version of the frequency estimation algo- 
rithms contained in Tufts and Kumaresan [TK82]. 

(a) Read [TK82] and d erive the formula for the null spectra. Use the subarray model 
in Figure 6.102. 

(b) Repeat parts (b) and (c) of Problem 9.4.1. Discuss your results. 

Pg.5 Asymptotic Performance 

Problem 9.5.1 
Read Lee and Wengrovitz [LW91] and Zhang [Zha95a]. Reproduce the results in 

Figure 9.35. 

Problem 9.5.2 
Read Krim et al. [KFP92]. Derive (9.199). 

Problem 9.5.3 
Read Pillai and Kwon [PK89a]. Derive the appropriate equations for the FB averaging 

case. 

Problem 9.5.4 
Consider the model in Example 9.5.1. Read the discussion in Section 9.6.3.2 of FBSS 

MUSIC. Plot the relative asymptotic efficiency of FBSS MUSIC for the same parameters 
as in Figure 9.38. Discuss your results. 

Problem 9.5.5 
Read the bias analysis in Xu and Buckley[XB92]. Discuss the ASNR regions where 

the bias is a factor. Does their analysis reflect the bias behavior in the threshold region? 

Problem 9.5.6 (continuation, Problem 9.3.3) 
Consider the model in Problem 9.3.3. Compute the asymptotic variance of MUSIC 

and ESPRIT (with row weighting). Discuss your results. 

Problem 9.5.7 (continuation, Problem 9.3.1) 
Consider the model in Problem 9.3.1. Compute the asymptotic variance of MUSIC 

and ESPRIT (with row weighting). Discuss your results. 

Pg.6 Correlated and Coherent Signals 

Problem 9.6.1 
Consider a lo-element standard linear array with two equal-power correlated signals 

impinging on the array. The signal separation is Au. Consider three cases of signal phase; 

4 = 0, 7r/4, and 7r/2 and two values of 1~1; 0.9 and 0.99. We use FBSS as a preliminary 
p:ocessor. Consider four values of A4; 3, 5, 7, and 9. (Test scenario 4.) 
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Simulate the MUSIC, root MUSIC, and ESPRIT algorithms on the output of FBSS 
processor. 

(a) Plot the normalized RMSE versus Au for an ASNR = 20 dB and 30 dB. Discuss 
your results. 

(b) Consider the parameter set in Example 9.3.2; p = 0.95, Au = ~A$Q, and K = 100. 
Plot the normalized RMSE for the three algorithms and the four values of &?. 
Compare your results to those in Figure 9.13 and 9.20(a). 

Problem 9.6.2 (continuation) 
Consider the same model as in Problem 9.6.1 with Au = ~HVNN. Recall that the 

relative efficiency of MUSIC was essentially flat and equal to (1 - 1~1”) for Au > BWNN. 
Simulate the MUSIC and root MUSIC algorithms and develop relative efficiency results 

for the FBSS algorithms with various M, 1~1, and &,. Discuss your results. 

Problem 9.6.3 (continuation, Problem 9.3.11) 
Consider the same model as in Problem 9.3.11. Use FBSS with various values of kk 

Simulate the performance of MUSIC, root MUSIC, and TLS-ESPRIT. Plot the normalized 
RMSE versus ASNR for each of the three signals. Compare your results to those in Problem 
9.3.12. (Test scenario 8.) 

Pg.7 Beamspace Algorithms 

Problem Note 9.7.1: We consider many of the same problems as in Problem Section 
P.9.3 so we can compare the beamspace performance to the element-space performance. 

Problem 9.7.1 (continuation, Example 9.7.2) 
Consider a lo-element standard linear array. Two equal-power uncorrelated plane- 

wave signals impinge on the array from *A$/2 where A$ = A$R. We use an Nbs x N 
DFT beamspace matrix (9.304). We consider Nbs = 3 and 5. Assume K = 100. 

(a) Simulate the beamspace MUSIC algorithm. Plot the normalized RMSE versus 
ASNR. Compare your results to the results in Example 9.7.1 and 9.7.2. 

(b) Assume that the two plane-wave signals are located at uc - A$/2 and uc + A$/2. 
Simulate the beamspace unitary ESPRIT algorithm. Plot the normalized RMSE 
versus ASNR for representative u c inside and outside the beam fan. Discuss your 
results. 

Problem 9.7.2 (continuation) 
Consider the same model as in Problem 9.7.1 except we use Nbs = 4 and 6 (see 

(3.322)). Assume K = 100. (Test scenario 1.) 
Simulate the beamspace MUSIC algorithm and the beamspace unitary ESPRIT algo- 

rithm. Plot the normalized RMSE versus ASNR. Compare your results to Problem 9.7.1 
and Example 9.7.2. 

Problem 9.7.3 (continuation) 
Consider the same model as in Problem 9.7.1 except that there are three equal-power 

uncorrelated signals located at + = 0 and *A$, where A$ = A&. We consider Nbs = 4, 
5, and 6. (Test scenario 7.) 
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Simulate the beamspace MUSIC algorithm and beamspace unitary ESPRIT algorithm. 
Plot the normalized RMSE versus ASNR. Discuss your results. 

Problem 9.7.4 (continuation, Problem 9.3.1, Problem 9.7.1) 
Consider the same beamspace matrix as Problem 9.7.1 and the same input signal 

model as Problem 9.3.1 (A+ = O.OSBWJJ~). S imulate beamspace MUSIC and beamspace 
unitary ESPRIT. Plot the normalized RMSE versus ASNR. Compare your results to the 
element-space results in Problems 9.3.1 and 9.3.2. (Test scenario 2.) 

Problem 9.7.5 (continuation, Problem 9.3.3, Problem 9.7.1) 
Consider the same beamspace matrix as Problem 9.7.1 and the same input signal 

model as Problem 9.3.3 (SNR1 = 100sNR~ and lOOOSNR2). Simulate beamspace MUSIC 
and beamspace unitary ESPRIT. Plot the normalized RMSE versus ASNR. Compare your 
results to the element-space results in Problems 9.3.3 and 9.3.4. (Test scenario 3.) 

Problem 9.7.6 (continuation, Problem 9.3.6, Problem 9.7.1) 
Consider the same beamspace matrix as Problem 9.7.1 and the same input signal model 

as Problem 9.3.6 (p = 0.95, 0.95exp(j7r/4), and 0.95exp(j7r/2)). Simulate beamspace MU- 
SIC and beamspace unitary ESPRIT. Plot the normalized RMSE versus ASNR. Compare 
your results to the element-space results in Problems 9.3.6, 9.3.7, and Example 9.3.2. (Test 
scenario 4.) 

Problem 9.7.7 
Consider the same model as in Problem 9.7.6. Assume that a beamspace matrix with 

Nbs = 7 is available. Design an algorithm which implements beamspace spatial smoothing. 
Plot the normalized RMSE versus ASNR. Compare your results to those in Problem 9.7.6. 
(Test scenario 4.) 

Problem 9.7.8 (continuation, Problem 9.3.8, Problem 9.7.1) 
Consider the same beamspace matrix as Problem 9.7.1 and the same input signal 

model as Problem 9.3.8 (K = 20). Simulate beamspace MUSIC and beamspace unitary 
ESPRIT. Plot the normalized RMSE versus MNR. (Test scenario 6.) 

(a) Compare your results to the element-space results in Problem 9.3.8. 

(b) Repeat Problem 9.3.8 and part (a) for various values of K. Discuss your results. 

Problem 9.7.9 (continuation, Problem 9.7.2) 
Consider the same beamspace matrix as Problem 9.7.2. The input is three equal- 

power uncorrelated plane-wave signals arriving from $J = 0, A+, 2A7,!~, where A+ = A$Q. 
Simulate beamspace MUSIC and beamspace unitary ESPRIT. Plot the normalized RMSE 
versus ASNR. Compare your results to the element-space results in Problem 9.3.10. 

Problem 9.7.10 (continuation, Problem 9.7.9) 
Repeat Problem 9.7.9 for the signal model in Problem 9.3.11. (Test scenario 8.) 

Problem 9.7.11 (continuation, Problem 9.7.10) 
Repeat Problem 9.7.9 for the signal model in Problem 9.3.12. (Test scenario 9.) 

Problem 9.7.12 (continuation, Problem 9.7.2, Problem 9.3.13) 
Consider the same beamspace matrix as Problem 9.7.2 and the same input signal model 

as Problem 9.3.13 (five signals at $J = 0, &A$, &2A$). Simulate beamspace MUSIC and 
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beamspace unitary ESPRIT. Plot the normalized RMSE versus ASNR. Compare your 
results to the element-space results in Problem 9.3.13. (Test scenario 10.) 

Problem 9.7.13 
All of the beamspace estimation algorithms have assumed that the number of signals 

are known. If  we assume that all of our processing is done in beamspace then we need to 
implement either AIC-FB or MDL-FB in beamspace. We investigate the performance of 
the detection algorithms as a function of Nbs and ASNR in this problem. 

Consider a lo-element SLA and an Nbs x N DFT beamspace matrix. We utilize FB 
averaging of the data (see Section 8.10.2.5) and consider values of Nbs = 3, 4, 5, 6, and 7. 
In each part, we plot b versus ASNR for various values of Nbs. The signals are plane-wave 
signals with the following characteristics (in all cases, Au = A$Q): 

(a) two uncorrelated signals at ur = -AU/~, u1 = AU/~. 

(b) two uncorrelated signals at uc - AU/~, uc + AU/~. 

Problem 9.7.14 
Consider the same beamspace and signal model as in Problem 9.71. Assume Nbs = 7 

and K = 100. We assume that the number of signals is unknown. Implement the following 
algorithm and simulate its performance: 

(a) Implement AIC-FB and MDL-FB in beamspace. Denote the estimate of the number 
of signals as fi. 

(b) Choose the (Ij + 1) beams with the largest output. 

(c) Process these beams to estimate the DOAs. 

(d) Plot the RMSE versus ASNR. 

Problem 9.7.15 
Read the paper by Zoltowski et al. [ZKS93] on beamspace root MUSIC. Repeat 

Problem 9.7.1(a) using beamspace root MUSIC. Compare your results to those in Problem 
9.7.1 and Example 9.7.2. Compare the computational complexity. 

Problem 9.7.16 (continuation, Example 8.10.6 and Example 9.7.2) 
Consider a standard 32-element linear array and a Nbs x N DFT beamspace matrix. 

There are two equal-power uncorrelated plane-wave signals impinging on the array from 
U = *AU/~, where Au = I/32, K = 100. 

(a) Simulate the performance of beamspace MUSIC and beamspace unitary ESPRIT 
for the Nbs = 3 and 5 cases. Plot the normalized RMSE versus ASNR. Discuss your 
results. 

(b) Repeat part(a) for Au = l/128. Discuss your results. 

(c) Repeat part(a) for Au = l/8. Discuss your results. 

Pg.8 Sensitivity and Robustness 

Problem Note 9.8.1: The first set of problems consider position perturbations using the 
perturbation model in Examples 8.11.1 and 9.8.1. We let + = 0.05X. All of the problems 
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have been simulated in an earlier section for the case of no pertu rbations. In 
compare your result to the OP = 0 case and the hybrid CRB from Section 8 .ll. 

each case, 

Problem 9.8.1 
Repeat Problems 9.3.1 and 9.3.2 for the position perturbation case. (Test scenario 2.) 

Problem 9.8.2 
Repeat Problems 9.3.3 and 9.3.4 for the position perturbation case. (Test scenario 3.) 

Problem 9.8.3 
Repeat Problems 9.3.6 and 9.3.7 for the position perturbation case. (Test scenario 4.) 

Problem 9.8.4 
Repeat Problem 9.3.10 for the position perturbation case. (Test scenario 7.) 

Problem Note 9.8.2: The next five problems consider beamspace processing and position 
perturbations. One objective is to compare the performance of beamspace processing and 
element-space processing for identical models. 

Problem 9.8.5 
Repeat Problem 9.7.1 for the position perturbation case. Compare your results to 

those in Example 9.8.1. (Test scenario 1.) 

Problem 9.8.6 
Repeat Problem 9.7.9 for the position perturbation case. Compare your results to 

those in Problem 9.8.4. (Test scenario 7.) 

Problem 9.8.7 

Repeat Problem 9.7.5 for the position perturbation case. Compare your results to 
those in Problem 9.8.2. (Test scenario 3.) 

Problem 9.8.8 
Repeat Problem 9.7.6 for the position perturbation case. Compare your results to 

those in Example 9.8.3. (Test scenario 4.) 

Problem 9.8.9 
Repeat Problem 9.7.3 for the position perturbation case. 

Problem Note 9.8.3:The next set of problems consider sensor gain and phase perturba- 
tion. We use the model in Section 6.6.3 with no sensor perturbations. We let Q = 0.05 
and err = 2”. In each case, compare your results to the CQ = or = 0 case and the hybrid 
CRB. 

Problem 9.8.10 
Repeat Problems 9.3.1 and 9.3.2 for sensor gain and phase perturbations. Compare 

your results to those in Problems 9.3.1 and 9.3.2. (Test scenario 2.) 

Problem 9.8.11 
Repeat Problems 9.3.3 and 9.3.4 for sensor gain and phase perturbations. Compare 

your results to those in Problems 9.3.3 and 9.3.4. (Test scenario 3.) 



1300 9.11 Problems 

Problem 9.8.12 
Repeat Problems 9.3.6 and 9.3.7 for sensor gain and phase perturbations. Compare 

your results to those in Problems 9.3.6 and 9.3.7. (Test scenario 4.) 

Problem 9.8.13 
Repeat Problem 9.3.10 for sensor gain and phase perturbations. Compare your results 

to those in Problem 9.3.10. (Test scenario 7.) 

Problem Note 9.8.4: 
The next several problems consider beamspace processing and sensor gain and phase 

perturbations. 

Problem 9.8.14 
Repeat Problem 9.7.1 for sensor gain and phase perturbations. Compare your results 

to those in Example 9.8.1. (Test scenario 1.) 

Problem 9.8.15 
Repeat Problem 9.7.3 for sensor gain and phase perturbations. Compare your results 

to those in Problem 9.8.13. (Test scenario 7.) 

Problem 9.8.16 
Repeat Problem 9.7.5 for sensor gain and phase perturbations. Compare your results 

to those in Problem 9.8.11. (Test scenario 3.) 

Problem 9.8.17 
Repeat Problem 9.7.6 for sensor gain and phase perturbations. Compare your results 

to those in Example 9.8.12. (Test scenario 4.) 

Pg.9 Planar Arrays 

Problem 9.9.1 
Consider a standard 10 x 10 rectangular array. There are two equal-power uncor- 

related plane waves impinging on the array. Their (0,& directions are (34”, 45”) and 
(26”, 45”), respectively. Simulate the performance of 2-D spectral MUSIC and paired 1-D 
root MUSIC. 

(a) Plot the RMSE (9.338) for each source versus SNR for K = 100. Discuss your 
results. 

(b) Plot the RMSE (9.338) f  or each source versus K for an SN.. = 20 dB. 

(c) Repeat part (a) for source locations of (34”, 0’) and (26”, 0’). 

Problem 9.9.2 
Repeat Problem 9.9.1 for the case in which AN& = lOOA!%!&. 

Problem 9.9.3 
Repeat Problem 9.9.1 for the case in which the sources are correlated. Consider 

p = 0.95 and 0.95exp(jn/2). 

Problem 9.9.4 
Consider a standard 10 x 10 rectangular array. There are three equal-power uncorre- 

lated plane waves impinging on the array. Their (0,4) directions are (45”, 500), (45’, 45’), 



9.11 Problems 1301 

(45’, 400), respectively. Repeat parts (a) and (b) of Problem 9.9.1. 

Problem 9.9.5 
Repeat Example 9.9.1 for 2-D weighted unitary ESPRIT. Compare your results to 

those in Example 9.9.1. 

Problem 9.9.6 
Repeat Problem 9.9.1 for 2-D weighted unitary ESPRIT. Compare your results to 

those in Problem 9.9.1. 

Problem 9.9.7 
Repeat Problem 9.9.2 for 2-D weighted unitary ESPRIT. Compare your results to 

those in Problem 9.9.2. 

Problem 9.9.8 
Repeat Problem 9.9.3 for 2-D weighted unitary ESPRIT. Compare your results to 

those in Problem 9.9.3. 

Problem 9.9.9 
Repeat Problem 9.9.4 for 2-D weighted unitary ESPRIT. Compare your results to 

those in Problem 9.9.4. 

Problem Note 9.9.1: The next four problems implement 2-D beamspace ESPRIT using 
nine beams. The advantage is a significant reduction in computational complexity. 

Problem 9.9.10 
Repeat Problem 9.9.1 for 2-D beamspace weighted unitary ESPRIT. Compare your 

results to those in Problem 9.9.1. 

Problem 9.9.11 
Repeat Problem 9.9.2 for 2-D beamspace weighted unitary ESPRIT. Compare your 

results to those in Problem 9.9.2. 

Problem 9.9.12 
Repeat Problem 9.9.3 for 2-D beamspace weighted unitary ESPRIT. Compare your 

results to those in Problem 9.9.3. 

Problem 9.9.13 
Repeat Problem 9.9.4 for 2-D beamspace weighted unitary ESPRIT. Compare your 

results to those in Problem 9.9.4. 

Problem Note 9.9.2: The next several problems consider hexagonal arrays. In order to 
get some comparison with the 10 x 10 rectangular array, we use the standard 91-element 
hexagonal array in Example 4.4.1. 

Problem 9.9.14 
Repeat Problem 9.9.1 for 2-D unitary ESPRIT. Compare your results to those in 

Problem 9.9.1. 

Problem 9.9.15 
Repeat Problem 9.9.2 for 2-D unitary ESPRIT. Compare your results to those in 

Problem 9.9.2. 
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Problem 9.9.16 

Repeat, Problem 9.9.3 for 2-D unitary ESPRIT. Compare your results to those in 
Problem 9.9.3. 

Problem 9.9.17 

Repeat Problem 9.9.4 for 2-D unitary ESPRIT. Compare your results to those in 
Problem 9.9.4. 

Problem 9.9.18 

Design a beamspace unitary ESPRIT algorithm for hexagonal arrays. Apply it to one 
or more of the models in Problems 9.9.14-9.9.18. 

Problem 9.9.19 
Read Tewfik and Hong [TH92] and Mathews and Zoltowski [MZ94]. Implement the 

algorithms for uniform circular array. Discuss your results. 
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Chapter 10 

Detection and Other Topics 

In this chapter we discuss several areas of interest that we have not consid- 
ered previously. The optimum detection problem is an obvious topic that we 
have not discussed up to this point. In addition to its importance, it is the 
first word in the title of the “Detection, Estimation, and Modulation” series, 
so the reader may be misled. We discuss the detection problem briefly in 
Section 10.1. 

In Section 10.2, we discuss five topics: target tracking, space-time pro- 
cessing for radar, space-time processing for wireless communications, matched 
field processing, and spatial spectrum estimation. These topics are closely 
related to the subjects in this book. 

In Section 10.3 we make some concluding comments. 

10.1 Optimum Detection 

An important problem that we have not discussed is the detection problem. 
The detection problem was discussed in detail in DEMT I [VTSS], [VTOla] 
and DEMT III [VT71], [VTOlb]. I n many array processing models of in- 
terest, the optimum detection consists of a beamformer designed using the 
techniques in Chapters 6 and 7, followed by a scalar detector designed using 
the techniques of DEMT I and DEMT III. Because of this overlap we restrict 
ourselves to a very brief discussion of the various models and issues involved. 

In Section 10.1.1, we discuss the classic binary detection problem. In 
Section 10.1.2, we discuss matched subspace detectors. In Section 10.1.3, 
we discuss the detection of spatially spread Gaussian random processes. In 
Section 10.1.4, we discuss adaptive detection techniques. In Section 10.1.5, 
we summarize our comments. 
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Historically, the early results on optimum detection for arrays were de- 
rived by Bryn [Bry62], Vanderkulk [Van63], Middleton and Groginsky [MG65], 
and Van Trees ([VT66], [VT64]). Wolf [Wo159] derived results for multiple 
non-stationary processes. The detection of Gaussian signals in noise has 
been studied earlier by Price (e.g., [Pri53], [Pri54], and [Pri56]). Other early 
references include Stocklin [Sto63], Cox ([Cox64], [Cox69]), Mermoz [Mer64], 
Young and Howard ([YH70a], [YH70b]), Gaarder ([Gaa67], [Gaa66]), Nuttall 
and Hyde [NH69], and Lewis and Schultheiss [LS71]. 

10.1.1 Classic Binary Detection 

In this section, we discuss the array processing version of the classic binary 
detection problem from DEMT 1.l For simplicity, we restrict our attention 
to the narrowband case. 

We use the frequency-domain snapshot model, but we suppress the k 
variable in our discussion. The signals on the two hypotheses are 

x(4 = v(&)F(w) + N(w) : HI 
x(w) = N(w) : Ho. (10.1) 

This corresponds to a single plane-wave signal impinging on the array 
from &, which is assumed to be known. The noise is a sample function from 
a zero-mean Gaussian random process whose spatial spectral matrix S,(w) 
is known. The signal is one of the following types: 

(i) A known signal, 

(ii) A known signal contains unknown random parameters, 

(iii) A sample function of a zero-mean Gaussian random process that is 
statistically independent of N(w). 

This model is appropriate for the case in which we have steered the array 
in a specific direction and want to determine whether a signal is present or 
not. In all of these cases, the MVDR beamformer from Chapter 6 generates a 
sufficient statistic. The scalar output of the MVDR beamformer is processed 
by the appropriate optimum detector. All of the results in DEMT I and III 
apply directly. The effect of the beamformer is completely characterized by 
the array gain. Note that the beamformer is an MVDR beamformer so that 
knowledge of S, or an ability to estimate it is necessary. 

‘The reader may want to review DEMT I [VT68], [VTOla]. 
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If the signal direction is mismatched, we can use an LCMV beamformer 
to combat the uncertainty. This approach is generally not optimal, but 
provides almost optimum performance for small values of mismatch. Two 
approaches that develop optimal processors are described by Nolte and his 

colleagues (e.g., [HN78], [HN76b], [HN76a], [GN74]) and Bell et al. [BEVOO]. 
In some applications, array perturbations must be considered. If the 

perturbations are modeled as complex Gaussian random vector, then the 
optimum detection contains a linear term and a quadratic term. A similar 

result is obtaained if there is imperfect spatial coherence of the wavefronts. 
Refrences that discuss theses issues include Morgan [Mor90], Gershman et 
al. [GMB97], Paulraj and Kailath [PK88], and Rao and Jones [RJOl]. The 
last paper derives a DFT approximation to the optimum receiver that is 
computationally feasible. 

In some applications (e.g., multipath) the signal consists of multiple plane 
waves. If the N x D array manifold matrix is known, we construct a D- 
dimensional subspace and solve for the optimum binary detector in that 
subspace. The form of the optimum detector depends on the temporal signal 
model that is assumed. We discuss one of these models in the next section. 

10.1.2 Matched Subspace Detector 

In this section, we discuss a detector that is referred to as the matched 
subspace detector. Our discussion is based on Sections 4.11 and 4.12 of 
Scharf’s book [Schgl]. The history of the development is given on pp.l66- 
167 of [SchSl]. We will summarize the result. 

The hypothesis testing problem of interest is 

x(k) = Vf(k) + w(k), k = I,.. l , K : HI 

X(k) 
- - w(k), k = I,.. l , K : Ho, 

(10.2) 

where we have used a narrowband time-domain model. The matrix V is an 
N x D array manifold matrix and f(k) is a D x 1 signal vector. We assume 
that the array manifold, and therefore the signal subspace, is known. The 

additive Gaussian noise w(k) is uncorrelated with variance g;I. The new 
factor in this model is that the signal vector f(k) is unknown but nonrandom. 

We know that the projection onto the signal subspace will generate a 
sufficient statistic. Thus, 

Y,(lc) = Pvx(k> 7 (10.3) 

where PV is the projection matrix onto the signal subspace, 

Pv = v [vHv]-l VH . (10.4) 
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Because f(k) is unknown, but nonrandom, we use a generalized likelihood 
ratio test (GLRT) ( see Section 2.5 of DEMT I [VT68], [VTOla]). The GLRT 
approach to this problem is due to Scharf and Friedlander [SF94]. 

The resulting test consists of constructing the test statistic, 

t e e x2(k) = xHPvx. (10.5) 

The statistic x2 is a quadratic form in the vector PVX, which is a Gaussian 
random vector with mean Vf (k) and covariance matrix a$Pv. 

Then, x2/a: is chi-squared distributed with N degrees of freedom and 
the noncentrality parameter E,/oi where 

Es e 5 fH(k,VHVf(k) . 
k=l 

(10.6) 

The chi-squared distribution has a monotone likelihood ratio so the test, 

K 
X 2 Hl 

c 

> 2 

7 
5 x0, 

k=l W HQ 

(10.7) 

is a uniformly most powerful (UMP) detector. This test is referred to as a 
matched subspace detector (see discussion of p. 166 on [SchSl]. Note 
that the detector is computing the energy in the signal subspace, so we can 
also refer to it as a generalized energy detector. 

In many cases, the variance of the noise ai is unknown. If possible, we 
would like to construct a test that has a constant false alarm rate. Scharf 
(pp. 148-152 of [SchSl]) 1 d a so erives a constant false alarm rate (CFAR) 
version for the case of unknown ai. 

The reader is referred to the above references for a further discussion of 
the matched subspace detector. 

10.1.3 Spatially Spread Gaussian Signal Processes 

In this section we consider the binary detection problem for the case in which 
the signal is a sample function of Gaussian random process. The plane- 
wave models in Section 10.1, in which the temporal signals were Gaussian 
processes are special cases of the model in this section. In this subsection, 
we focus on the case where the signal has significant spread in $-space. 

In many physical situations the signals that are the object of the op- 
timum array processing are not true plane waves. This may occur in an 
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acoustic environment in which local spreading is due to scattering or in 
wireless communication scenarios. 

The principal difference in analyzing spatially spread signals involves 
their representation across the receiving array. In the plane-wave situation, 
the statistical representation in terms of an eigenvector expansion is one- 
dimensional, that is, only one eigenvector is required in the representation. 
In the spatially spread situation, more than one eigenvector is required. The 
number of eigenvectors required is determined by the area of the array and 
the spatial extent of the spreading. 

In many situations, we can model the spatial spreading with a channel 
or target-scattering function. The model is similar to the singly-spread and 
doubly-spread delay-Doppler models that we studied in Chapters 11-13 of 
DEMT III [VT71], [VTOlb]. In the current situation, the scattering func- 
tion can be represented in either frequency-wavenumber space or w-$-space. 
An idealized scattering function in w-$-space is shown in Figure 10.1. We 
limit our discussion in this section to the narrowband case so the scattering 
function is 1-D. Although we will only discuss 1-D ($J) scattering functions, 
all of the results can be extended easily to 2-D functions. An idealized 1-D 
rectangular scattering function is shown in Figure 10.2. In Figure 10.2(a), 
the width of the scattering function is less than the width of the main lobe, 
so one eigenvector will be adequate. In Figure 10.2(b), the width of the scat- 
tering function is much wider than the main lobe, so multiple eigenvectors 
will be required. 

This model is a Gaussian signal in Gaussian noise problem that we stud- 
ied in Chapters 2-5 of DEMT III [VT71], [VTOlb]. The resulting processor 
is the spatial analog to the diversity receiver that we encountered in our anal- 
ysis of doubly-spread channels in Chapter 13 of DEMT III [VT71], [VTOlb]. 
The detector first forms a set of eigenbeams determined from the signal spec- 
tral matrix (a spatially “coherent” operation), then weights them, squares 
the signals, and sums the squares. 

The cases of non-white noise (with a known spatial spectral matrix), the 
generalized binary detection problem, and the broadband signal model can 
be all be solved in a similar manner. 

In order to evaluate the performance of these detectors, we utilize bounds 
and approximate error expressions that depend on a function p(s) which we 
encountered previously in Section 2.7 of DEMT I [VT68], [VTOla]. The 
derivation of the necessary approximate expressions is given of pp. 38-42 on 
DEMT III [VT71], [VTOlb]. W e can also derive a closed-form expression for 
p(s) for the spatially-spread signal case. Some of the expressions of interest 
are contained in the problems. 
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Figure 10.1 Scattering functions in w-$-space. 

The discussion in this section has assumed that the required spatial spec- 
tral matrices are known. In the next section, we consider the adaptive de- 
tection problem in which the statistics are estimated from the input data. 

10.1.4 Adaptive Detection 

In this section we introduce the problem of adaptive detection. We restrict 
our attention to the case of a narrowband signal propagating along a single 
plane wave. We assume that the wavenumber of the plane wave is known. 

We use a time-domain snapshot model 

X(lc) = W(k) + n(k), k = 1, l l , K : HI (10.8) 

x(lc) 
- - 4lc> , k=l,-,K:Ho (10.9) 

where f(k) is a known vector, 

f(k) = a4f (k) 7 (10.10) 

and b is an unknown complex scalar. For simplicity, we let 

f(k) = 1, k= l,mam,K, (10.11) 
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Figure 10.2 Spatial spreading versus array resolution: (a) spatially spread; 
(b) minimal spread. 
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SO 

f(k)  = v(h) l 
(10.12) 

The noise n(k) is a zero-mean complex Gaussian random vector whose 
covariance is R,. The snapshots are statistically independent. We denote 
the collection of snapshots by the NK x 1 vector X. Thus, 

(10.13) 

{- [xH(k) - b*vH] R,l [x(k) - bv]} , 

(10.14) 
where we have suppressed 4s in the argument of the array manifold vector. 

If R, were known, we would use a generalized likelihood ratio test 
(GRLT). From Section 2.5 of DEMT I [VT681 [VTOla], 

max 

A(X) = 

b I?XIH1(X, biHd HI 

2 7 
PXIHo(XiHd Ho 

(10.15) 

Substituting (10.13) and (10.14) into (10.15), cancelling common terms, 
and taking the logarithm gives 

K 

lnR(X) = 2b*Re C vHRilx(k) - Klb12~HR,1~. 1 (10.16) 
k=l 

Differentiating with respect to b’ and setting the result to zero gives 

h 

b - - 
vHR,% 

vHRnlv ’ 

;ci: n f 5 x(k), - 
k=l 

(10.17) 

(10.18) 

which is implemented using an MVDR beamformer. 
Substituting (10.17) into (10.16) and (10.15) gives the GLRT for known 

R n7 
2 

vHR,% ~1 
-1 vHRn V 

’ a. 
20 

(10.19) 
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We now consider the case in which R, is unknown and must be esti- 
mated. This problem has been studied in a number of application areas. 
An early solution in the sonar area was derived by Liggett [Lig72] (see also 
Chang and Tuteur [CT71], Bryn [Bry62], Middleton and Groginsky [MG65], 
Edelblute et al. [EFK67], Cox [Cox69] and McDonough [McD71], Lewis 
and Schultheiss [LS71], and Vanderkulk [Van63]). In the radar area, an 
early solution was given by Brennan and Reed [BR73] (see also Reed et al. 
[RMB74]). 

The model that is normally used in the literature assumes that, in order 
to estimate R,, we receive E( independent vector snapshots, xl, x2, l l 9 , XK, 
that do not contain a signal component. We refer to these vectors as sec- 
ondary vectors. The subsequent snapshots that may contain the signal are 
referred to as the primary vectors. 

This model can be used to derive several adaptive detectors. We briefly 
discuss two of these detectors, the adaptive matched filter (AMF) and the 
GLRT detector. 

The adaptive matched filter is due to Robey [Rob911 (see Chapter 4 of 
Robey [RobSl], which utilizes techniques from Kelly [Ke186]) (see [RFKN92] 
also). The AMF forms a ML estimate of R, using the K secondary vectors, 

h 

R n= ; i: x(k)xH(k) . (10.20) 
k=l 

The test is obtained by substituting Rn into (10.19). The result is 

Robey [Rob911 
for Po(AMF) 
referred to this 

The GLRT 
1 1 

ana seconaary vectors and jointly estimating b and Rn. This detector was 

2 
vHii,% HI 

t4lLfF = z a. 
VHii,h Ho 

(10.21) 

shows that the AMF is a CFAR test and derives expressions 
and PF(AMF). (see pp. 37-42 of [RobSl]) The reader is 
reference for further discussion. 
adaptive detector is obtained by utilizing both the primary 

derived and analyzed by Kelly [Ke186]. ( see also [Ke181], [Ke185], [Ke187a], 
[Ke187b]) Th e reader is referred to these references for further discussion. 

In this section we have introduced the topic of adaptive detection. Our 
discussion is so brief that it requires the reader to explore the literature to 
understand the issues. 

In addition to the references list above, relevant references include Haykin 
and Steinhardt [HS92], Kelly and Forsythe [KF89], Monticciolo [Mon94], 
Tufts and Kristeins [TK85], and Fuhrmann [FuhSl]. 
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10.2 Related Topics 

In this section we identify several array processing problems that are of 
interest. 

Target Tracking 
In many applications the signals originate from moving sources. As the 

array receives data, we want to track the location of these sources. The two 
components of the problem are: 

(i) A tracking component that incorporates the target dynamics into the 
algorithm; 

(ii) A data association component that assigns new data to the appropriate 
target 

There are a large number of books and papers that address this prob- 
lem. Books include Blackman [Bla86], Bar-Shalom and Fortmann [B-SF88], 
Bar-Shalom and Li [B-SL98], Bar-Shalom [B-S98a], [B-S98b], Stone et al. 
[SCB99]. P p a ers that deal with the tracking problem include Reid [Rei79], 
Sword et al. [SSK93], R ao et al. [RZZ93], [RSZ94], and Zhou et al. [ZYL99a], 
[ZYL99b]. 

Most of these discussions treat the problem as a detection problem fol- 
lowed by a tracking problem. A Ph.D. thesis by Zarnich [ZarOO] (Zarnich et 
al. [ZBVOl]) treats the problem as a joint problem and obtains interesting 
results. 

Space-Time Processing for Radar 
Airborne radars detect targets in an environment that is dominated by 

clutter and jammers. Space-time adaptive processing (STAP) uses algo- 
rithms, which combine the outputs from an antenna array and multiple 
pulses of a coherent radar waveform to achieve target detection. This ap- 
proach leads to a 2-D problem in the Doppler-azimuth domain. Many of our 
results can be extended to this problem. Ward [War941 provides a compre- 
hensive discussion in his Lincoln Laboratory report. The book by Klemm 
[Kle98] discusses the space-time adaptive processing in detail and has an 
extensive list of references. There is a collection of papers on STAP in the 
April 2000 IEEE Transactions on Aerospace and Electronic Systems [MelOO]. 

Space-Time Processing for Wireless Communications 
There has been a significant amount of research on space-time process- 

ing for wireless communications. It is predicted that many of the third- 
generation systems will implement some type of adaptive spatial processing 
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in addition to the adaptive temporal processing already in use. These space- 
time processors are often referred to in the literature as smart antennas. 

The biggest challenges faced by these systems are intersymbol interfer- 
ence (ISI) and signal fading due to multipath propagation, and multiuser 
interference (MUI). The spatial processing at the receiver can reduce MU1 
by separating user signals arriving at the antenna from different directions. 
Combined space-time processing can reduce channel fading by suppressing 
multipath components of the desired signal, or by combining the multipath 
components in a constructive rather than destructive manner. Performance 
improvements can also be achieved by using space-time coding with a trans- 
mit antenna array. In fixed wireless systems, it is possible to employ antennas 
at both the transmitter and receiver. Recent research has shown that signif- 
icant capacity increases can be achieved in these systems by exploiting the 
diversity gain in rich multipath channels (Foschini et al. [FGVW99]). 

Space-time processing for wireless communications has grown to be a 
significant research area in both the signal processing and communications 
communities, and promises to be a compelling and challenging problem well 
into the future as demand for wireless services continues to increase dramat- 
ically. 

There are a number of papers and books in the area. Books include 
Liberti and Rappaport [LR99] and Rappaport (ed.) [Rap98]. Papers include 
Paulraj and Papadias [PP97] and the special issue of the IEEE Personal 
Communications magazine on Smart Antennas [Go198]. 

Matched Field Processing 

In the sonar environment, we can construct a reasonably accurate model 
of the propagation of the signal. Therefore, instead of matching the array 
processor to a plane wave, we match it to the propagation model. This 
technique is referred to as matched field processing. The original work is by 
Baggeroer et al. [BKS88]. Later papers include Schmidt et al. [SBKSSO] 
and Preisig [Pre94]. 

Spatial Spectral Estimation 
In Chapter 5, we discussed space-time processes. In some applications, 

we would like to estimate the spatial correlation function at a particular 
frequency, Sf (w : Ap) (5.91). A more general problem is tc 
frequency-wavenumber spectrum, (5.93). 

For a standard linear array, the problem is identical to 
spectrum estimation problem (e.g., Kay [Kay881 or Marple 
can use the parametric wavenumber models in Section 5.6. 

estimate the 

the temporal 
Mar87]). We 

Most of the 
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estimation techniques carry over to the spatial problem. 

In each of these areas, the techniques that we have developed 
book will provide the necessary background to explore these areas. 

in this 

10.3 Epilogue 

Thi s chapter concludes our development of optimum array processing and 
the set of books on detection, estimation, and modulation theory. 

We hope that, in spite of the thirty-year gap between volumes, that 
the collection will prove useful to practicing engineers, researchers, and new 
students in the area. 

In the thirty-year period, there has been a dramatic change in the array 
processing and signal processing areas. Advances in computational capabil- 
ity have allowed the implementation of complex algorithms that were only 
of theoretical interest in the past. In many applications, algorithms can be 
implemented that reach the theoretical bounds. In spite of these advances, 
there are still a number of challenging problems that these books should help 
the reader solve. 

The advances in computational capability have also changed how the 
material is taught. In Parts I and III, there was an emphasis on compact 
analytical solutions to problems. In Part IV, there is a much greater empha- 
sis on efficient iterative solutions and simulations. We have tried to achieve 
the correct balance between theory and experiment (simulation) in our pre- 
sentation. 

10.4 Problems 

PIO.l Optimum Detection2 

Problem 10.1.1 
Consider the following detection problem: 

X(4 = +,h)Fl(w) + W(w) : HI, 
X(4 = v($+‘o(w) + W(w) : Ho. 

(10.22) 

The array is a standard lo-element linear array. The sensor outputs have been processed 
by a quadrature demodulator. The two signals, Fe(w) and Fl(w), are known complex 
signals with energy E,, and Fe(w) = -Fl (w). The additive noise is a sample function 

2Most of the problems will require a review of appropriate material from DEMT I, 
[VT68], [VTOla] or DEMT III, [VT71], [VTOlb]. 
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from a complex zero-mean Gaussian process with spectral matrix, 

sn(w) =&I. (10.23) 

(a) Find the optimum detector to minimize the probability of error. The two hypotheses 
are equally likely. 

(b) Plot Pr(c) versus &IN,. 

(c) Repeat parts (a) and (b) for the case in which Fe(w) and Fl(w) are orthogonal. 

Problem 10.1.2 (continuation) 
Repeat Problem 10.2.1 for the case in which 

(a) L(w) = &I + M&J)v($I)v~($JI). 

(b) Specialize your results in part (a) to the case in which Ml(w) is constant over the 
frequency range of Fe(w) and Fl(w). 

(c) Specialize your results in part (a) to the case in which Ml (w) corresponds to sine 
wave with random phase at carrier frequency. 

(d) Specialize your results in part (a) to the case in which the interfering signal propa- 
gating along ~($1) consists of either Fe(w) or Fl(w) with equal probability. 

Problem 10.1.3 
Consider the following detection problem: 

x(w> = v(&)F(w 
X(w) = 

The array is a standard lo-element linear array 
with energy E, and a uniform phase angle, 

) + W(w) : HI j 
W(w) : Ho. 

(10.24) 

. The signal f(t) is a known complex signal 

f(t) = f&Q' ) (10.25) 

and 0 has uniform density over (0,27r). The additive noise is a sample function from a 
complex zero-mean Gaussian process with spectral matrix, 

Sn (4 =&I. (10.26) 

(a) Find the optimum Neyman-Pearson detector. 

(b) Plot PO versus PF for various Es/No. 

(c) Repeat parts (a) and (b) for the case in which 

Sri(w) = &I + Mov(**)vH(*l) l (10.27) 

Problem 10.1.4 
Consider the model in Problem 10.2.1 and assume F,(w) = 0. 

(a) Find the optimum Neyman-Pearson detector. 

(b) Plot PD versus PF for various Es/&. 
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Problem 10.1.5 
Consider a standard lo-element linear array. The signals on the two hypotheses can 

be written in the frequency domain as 

X(/c, mwo) = v(h)F(kmwo) + W(mw0) : HI , 
X(k, mwo) = W(mwo) : HO. 

(10.28) 

The signal f(k) is a zero-mean complex Gaussian AR(l) temporal random process (see 
(5.308)). The add t i ive noise is a sample function from a white Gaussian random process 
with spectral height a$ 

(a) Find the optimum Neyman-Pearson detector. Assume a:/& = 10 dB. 

(b) Simulate its performance for a( 1) = 0.9, & = 0, and PF = 10m3. 

Problem 10.1.6 
Consider a standard lo-element linear array. The signals on the two hypotheses can 

be written in the frequency domain as 

X(k, mwo) = v(~s)F~(kmw) + W(mw0) : HI, 
X(b mw0) = v(h)Fo(k mwo) i- W(mwo) : Ho. 

(10.29) 

The signals fr (k) and fo( Ic) are zero-mean complex Gaussian AR(l) temporal random 
processes. The difference is that & = 0.1 and +ao = -0.1. For both signals la(l)] = 0.9. 
The additive noise is a sample function from a white Gaussian random process with spectral 
height 02. 

(a) Find the minimum probability of error receiver. Assume the two hypotheses are 
equally likely. Assume (T:~ /ai = c&/a: = 10 dB. 

(b) Simulate its performance. 

Problem 10.1.7 
Consider a standard lo-element linear array. The nominal detection problem of in- 

terest is given by the model in Problem 10.2.4 with $J~ = 0. However, the actual arrival 
angle 8 of the plane wave is a random variable whose probability density is 

(10.30) 

where 8 is measured from broadside. 

(a) Choose 11, so that the probability is 0.9, that 8, the actual arrival angle, is within 
the main lobe. Design a constrained beamformer followed by an optimum scalar 
detector. Compute the resulting performance. 

(b) Compare your result to a detector that treats 0 as a nuisance parameter and averages 
over its probability (e.g., p. 335 of DEMT I [VT68], [VTOla], or [HN78]). 

Problem 10.1.8 
Consider the following detection problem 

r(t) = fl (t> + n(t), Ti < t -c T” - - : HI, (10.31) 

r(t) = fo(t) + n(t), Ti < t < T” - - : Ho, (10.32) 
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where 

Fl(w> = eh)F(w) , 
F2 (w> = ++52)F(4) 

(10.33) 

(10.34) 

and F(w) is a rectangular pulse with energy E, and duration T. 
The noise process is stationary 

S&J) = SC(W) + 021, (10.35) 

and Ti = -oo and Tf = co. 

(a) Find the optimum receiver to minimize the Pi. 

(b) Find an expression for d2. 

(c) Assume S,(w) = 0. Plot d2 as a function of ~12 and T for a standard linear array. 

Problem 10.1.9 
Consider the problem of detecting a Gaussian random process in non-white Gaussian 

noise. 

r(t) = f(t) + n,(t) + w(t), Ti < t < Tf : - - HI, (10.36) 

r(t) = n,(t) + w(t), Ti 5 t 5 Tf : Ho, (10.37) 

where 

and the spectrum of f(t) is 

F(w) = +h)F(w) 7 (10.38) 

EL 
2w ’ -27Tw<w<2rw, - - 

Sf (4 = 
0, elsewhere. 

(10.39) 

The colored noise is a single plane-wave signal, 

N,(w) = +,h+L(w) a (10.40) 

where 

P, 
2w ’ -27rw<w<27rw, - - 

s-&) = (10.41) 

0, elsewhere. 

Assume T = Tf - Ti is large. 

(a) Find the optimum receiver. 

(b) Compute p,(s). 

(c) Assume the criterion is minimum PT(E) and the hypotheses are equally likely. Find 
an approximate expression for Pr (c) . 

Problem 10.1.10 
Consider the problem of deciding which of two Gaussian random processes are present. 

r(t) = fl (t) + W(t), Ti < t < Tf : - _ HI , (10.42) 

r(t) = fo(t) + w(t), Ti < t < Tf : - - HO, (10.43) 
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where 

Fl (4 = V(~l)Fl(W) , (10.44) 

Fo cw> = v($~o)Fo(w) . (10.45) 

The signals fl (t) and fo(t) are independent with identical spectrum, 

P 
2w) -2nW<w<2rW, - - 

$1 (4 = Sfo (4 = (10.46) 

0, elsewhere. 

Assume T = Tf - Ti is large, the hypotheses are equally likely, and the criterion is min 
Pr(6). 

(a) Find the optimum receiver. 

(b) Find p&). 

(c) Find an approximate expression for the Pr(c). 

(d) Consider a standard lo-element linear array. Plot Pr(e) as a function of 

A$=+,, -$o. (10.47) 

Problem 10.1.11 
The received waveforms on the two hypotheses are: 

r(t) = fi(t) + fz(t) + w(t), 0 < t < T : - - HI > (10.48) 

r(t) = w(t), - - O<t<T: Ho, (10.49) 

where the N x 1 signal vectors can be written in the transform domain as, 

Fl (ne) = v(nwo,$l)Fl(nw,) (10.50) 

Fz(nw,) = v(nwo,$@'2(nw0) (10.51) 

where w0 = $ and n = l,***, M. 
The source signals fr (t) and fi (t) are statistically independent Gaussian random pro- 

cesses with spectra, 

Si(W) = 
g, IWI 5 2TW) 

(10.52) 

0, elsewhere, i = 1,2 . 

The noise process w(t) is a Gaussian random process that is temporally and spatially 
white, 

E [w(t)wT(u)] = &(t - u)I. 

The hypotheses are equally likely and T is large. 

(a) Find the minimum Pr(c) test. 

(b) Evaluate the performance. 

(10.53) 
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Appendix A 

Matrix Operations 

A.1 Introduction 

Most of the analysis that we do in the array processing area utilizes vec- 
tors and matrices extensively. In this appendix, we have summarized the 
definitions and properties that will be useful in the text. We also develop 
the ideas of matrix algebra and matrix calculus. We assume that the reader 
has some familiarity with vectors and matrices, and many results are stated 
without proof. 

There are almost no new results in this appendix. We have compiled 
(and borrowed) results from three types of sources. The first class of sources 
are books and articles that deal with matrices and linear algebra without a 
particular application focus. Representative books and articles of this type 
include Bellman [Be172], Marcus [MarGO], Hohn [Hoh73], Noble and Daniel 
[ND77], Lancaster and Tismenetsky [LT85], Golub and Van Loan [GVL89], 
Grenander and Szego [GS58], Graham [Gra81], Rao and Mitra [RM71]. 

The second class of sources are books on adaptive antennas, spectral 
estimation, adaptive filtering, automatic control, or system identification 
that have included a chapter or appendix on matrices because they need 
matrix results for their respective applications. Representative books of this 
type include Kay [Kay88], Hudson [Hud81], Marple [Mar87], Haykin [Hay96], 
and Scharf [SchSl]. 

The third class of sources include journal articles or reports where a 
matrix result was needed for a specific application and has wider usage. 
Representative sources in this area include Cantoni and Butler [CB76b], 
[CB76a], Makhoul [Mak81], Stoica and Nehorai [SN89], and Kuroc [Kur89]. 

When a result appears in multiple references and appears to be well- 
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known in the “community” we have not included a reference. When we have 
followed a particular reference closely, we indicate that source. 

We have included examples to relate the matrix results to the array 
processing problem in order to provide motivation. The physical models are 
explained in more detail in the text. 

In general, all vectors and matrices are assumed to be complex. Real 
matrices and vectors are treated as special cases. The labeling of the ma- 
trices; A, B, C, l l l , and vectors a, b, c, l . ., in the appendix does not have a 
physical significance unless specifically indicated. (This is in contrast to the 
text .) 

A.2 Basic Definitions and Properties 

A.2.1 Basic Definitions 

We define an N x M matrix A by defining its elements aik, i = 1,2, l l l , N, k = 
12 7 7”‘1 111. We write it in matrix form with N rows and M columns, 

A - - 
a21 a22 -9 b a2M 

. . . . . . . . . . . . 

aN1 aN2 l g aNM 

(A4 

We also use the notation [Alij for the ijth element. The vector a is an N x 1 
matrix, 

a1 

a2 
a= , . . . 

aN 

The vector in (A.2) is often referred to as a column vector. We will suppress 
the column designation. The product of an N x M matrix A and a M x L 
matrix B is an N x L matrix C whose elements are given by 

M 

Cij = x aikbkj. (A-3) 
k=l 
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The product of two matrices is defined if and only if the number of columns 
in the first matrix is equal to the number of rows in the second matrix. 
When this is true, the matrices are referred to as conformable matrices. 

The transpose of A is denoted by the superscript T, 

[ 1 AT - - 
ij 

PI ji = Uji. 
The transpose has the property 

(AB)T . = BTAT 

The Hermitian transpose is denoted by the superscript H, 

The Hermitian transpose has the property 

(AB)H . = BHA” (A-7) 

The transpose or Hermitian transpose of a vector is a 1 x N matrix, which 
is referred to as a row vector. 

If N = M, then A is a square matrix. A symmetric matrix is a 
square matrix in which 

This implies 

AT - - A . (A*@ 

aij = Uji, VW 

so the matrix is symmetric around the principal diagonal. For example, if 
N = 4, 

A - - 

A Hermitian 
complex conjugate 

matrix is a square matrix A with elements that have 

a11 a12 a13 a14 

a12 a22 a23 a24 

. 

a13 a23 a33 a34 

a14 a24 a34 a44 . 

symmetry, 

(A.10) 
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This implies 

For example, if N = 4, 

A - - 

AH - - A . 

aij = aTi. 

a11 a12 a13 a14 

a;2 a22 a23 a24 

a;s a53 a33 a34 

, a;4 a;4 as4 ( a44 

(A.11) 

(A.12) 

(A.13) 

The diagonal elements of a Hermitian matrix are real. 

The inner product of two vectors is defined as 

H a=x y; (A.14) 

when x = y, c\! corresponds to the square of the Euclidean norm of the vector 
(A.36): 

a H =x x. (A.15) 

The outer product of complex N x 1 vector x and a complex M x 1 vector 
y is a N x M matrix A, 

A = xyH. (A.16) 

When x = y, A is an N x N matrix 

A = xxH. 

The matrix A in (A.17) is Hermitian for arbitrary x. 

(A.17) 

Example A.2.1 
The correlation matrix of a complex random vector x is the expectation of the 

outer product 
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Thus, R, is a Hermitian matrix. 
If X is an N x K matrix (K > N), then - 

A=XXH, 

is a Hermitian matrix. 

. (A.18) 

(A.19) 

IfAH= -A, then A is skew Hermitian. The diagonal elements of a 
skew Hermitian matrix are imaginary. If A is real and AT = -A, then A 
is skew symmetric. 

If A = Br +jBz is a Hermitian matrix where Br and B2 are real, then: 

(i) B1 is real symmetric, 

(ii) B2 is skew symmetric, 

(iii) jB2 is Hermitian. 

If A = B1 + jB2 is skew Hermitian, then: 

(i) B1 is skew symmetric, 

(ii) B2 is symmetric, 

(iii) jB2 is skew Hermitian. 

The determinant of a square matrix A is denoted by det(A) or IAI. 
To calculate the determinant of A, we evaluate 

det(A) = xa&ik, 
k=l 

(A.20) 

c ik = (-l)i+kMik, (A.21) 
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and Mik is the determinant of the submatrix of A, which is constructed by 
deleting the ith row and kth column of A. It is called the minor of aik 
and c& is called the cofactor of A. Mii is referred to as the ith principal 
minor. 

The determinant has the following properties: 

det(AB) = det(A) det(B), (A.22) 

det(AT) = det(A), (A.23) 

det(AH) = (det(A))*, (A.24) 

det(kA) = kN det(A), k is a scalar. (A.25) 

Other properties of the determinant are given in various sections as they 
arise. 

The trace of a square matrix A is denoted by tr (A). The trace is the 
sum of the diagonal elements, 

N 

tr (A) = xaii. 
i=l 

(A.26) 

The trace has the following properties: 

tr (A+B) = tr (A) + tr (B), (A.27) 

tr (AB) = tr (BA), (A.28) 

tr (ABC) = tr (CAB) = tr (BCA). 

If x and y are N x 1 vectors and A is a square matrix, then 

(A.29) 

is a scalar and 

a! = xHAy, (A.30) 

a= tr (a) = tr (xHAy) = tr (yxHA) = tr (AyxH). 

Two useful inequalities are 

(A.31) 
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1 tr (AHB)12 - < tr (AHA) tr (BI'B), (A.32) 

and 

tr (BHAHAB)s tr (AHA) tr (BHB). (A.33) 

The rank of a matrix is the number of linearly independent columns or 
rows. The rank of a matrix has the following properties: 

and 

rank (A + B) <_ rank (A) + rank (B), (A.34) 

rank (AB) < min ( rank A, rank B) . (A.35) 

There are several norms for vectors and 
2-norm of an N x 1 vector is defined as 

matrices that are useful. The 

11 x 112 n 5 lXi12 2 = (xHx$ 
( 1 i=l 

(A.36) 

The 2-norm is also referred to as the Euclidean norm. More generally, the 
p-norm of an N x 1 vector is 

L 

II II x p n e,xi,, p7 pL 1. 
( ) i=l 

(A.37) 

The p-norm is also referred to as the Holder norm. We use the Euclidean 
norm throughout the text and for notational simplicity will drop the sub- 
script 2. Thus, 

11 x (1 6 (XHX$. (A.38) 

The fiobenius (or Euclidean) norm of an N x N matrix is defined 

as, 

11 A b= (A.39) 
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A.22 Matrix Inverses 

134r 

If A is a square N x N matrix whose rank is equal to N, then we can define 
the inverse of A, which is denoted by A-l and satisfies 

A-lA = AA-l = I, (A.40) 

where I is the identity matrix, 

I - - 

‘1 0 .‘. 0 

0 1 l ** 0 

0 . . . . . . 

,o 0 l ** 1 

(A.41) 

If the inverse does not exist (i.e., rank A) < N), then A is referred to as 
a singular matrix. 

The matrix A will be singular if and only if 

det(A) = 0. 

The inverse has the following properties: 

(A.42) 

(AT)-l = (A-$ (A.43) 

(AH)-l = (A-‘)H, (A.44) 

(AB)-1 = B-lA-l, (A.45) 

det A-’ 
( > 

= (det (A))-1 . (A.46) 

To calculate the inverse of A we use the formula, 

A1 
CT - - -- 

det(A) ’ 
(A.47) 

where C is the matrix of cofactors, 

[Cl ik = c ik = (-I)i+kMik7 (A.48) 



1348 A.2 Basic Definitions and Properties 

where Mik is the minor defined following (A.21). 
A formula for the inverse that we use frequently in the text is referred 

to as the matrix inversion lemma, 

(A+ BCD)-I= A-’ -A-~B(DA-~B+~-~)-~ DA-~, (A.49) 

where A is N x N, B is N x M, C is M x M, and D is M x N and the 
requisite inverses are assumed to exist. 

A special case of (A.49) is referred to as Woodbury’s identity. Here, 
B is an N x 1 column vector x, C is a scalar equal to unity, and D = xH. 
Then 

( > 
-1 

A+xxH =A-‘- 
A-lxxHA-l 
I+x~A-~x' (A.50) 

Several other inverse relations that follow from (A.49) are: 

( a21+VSVH > -1 1 
= 2 VHV + cr2s-y vH) ) (A.51) 

A-1 + BHC-~B 
I 
-’ = A - ABE [BABY + cl-’ BA, (A.52) 

[A-’ +B~c-~B]-'B~c-~=AB~[BAB~+c]-~, (A.53) 

- c l- [BAB"+c]-'= c-~B[A-~+B%-~B]-~B~c-~. (~.54) 

A.2.3 Quadratic Forms 

A Hermitian quadratic form Q is defined as 

Q =xHAx, (A.55) 

where A is a Hermitian matrix and x is a complex N x 1 vector. Because 
A is Hermitian, Q is a real scalar. 

A is positive definite if 
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xHAx > 0, (A.56) 

for all x # 0. 

A is positive semidefinite (or nonnegative definite) if 

xHAx > 0, - (A.57) 

for all x # 0. 
A square N x N matrix is positive definite if and only if 

A = CCH, (A.58) 

where C is N x N and has rank N or its principal minors are all positive. 
If A is positive definite, then 

- 
A1 

- - - 
( > 

Cl 
H - 

Cl . (A.59) 

The factoring in (A.58) plays an important role in many applications. In 
Section A.5, we develop techniques for finding C. 

If A is positive definite and B is an M x N matrix of rank M(M 5 N), 

then 

BABH, (A.60) 

is positive definite. 

If A is positive definite, then the diagonal elements are all positive and 
det(A) is positive. 

If A satisfies (A.58) and C is an M x N matrix with M < N, then A is 
positive semi-definite. 

A.2.4 Partitioned Matrices 

A partitioned matrix A is an N x M matrix that can be written in terms 
of submatrices. For example, 

[ 

All 

A - - 

A21 

A12 1 J 
A22 

(A.61) 
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where the dimensions of the submatrices are 

All N x Ml, (A.62) 

A21 (N-N)XMl, (A.63) 

A12 Nl x (M-Ml), (A.64) 

A22 (N-N)x(M-Ml). (A.65) 

The advantage of utilizing partitioned matrices is that they can be operated 
upon by treating the submatrices as elements. 

Four common operations are: 

(i) Multiplication 

All A12 

AB = 

A21 A22 

AllBll + A12B21 AllB12 + A12J322 
- - 7 (AW 

A21Bll + A22B21 A21&2 + A22B22 

[ 

Bll Bl2 

I321 B22 

where matrices in the indicated moducts must be conformable. 
.A 

(ii) Conjugate Transposition 

All A12 [ 1 
H 

- - 

A21 A22 

(iii) Inverse (A is N x N) 

( &I 
A-l - 

- A~A;;&I)-~ 
- 

’ AH 11 AH 21 1 . (A.67) 

AH 12 AH 22 

1 ( - A22 -A~IA;:AI~)-~A;; (Az2 - A21A;,'A12)-1 j 
(A.68) 

where A is given by (A.61) and A;: and A;: exist. 
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A special case of (A.68) occurs when AlI is (N - 1) x (N - l), Al2 is 
a (N - 1) x 1 column vector a2, A21 is 1 x (N - 1) row vector a?, and 
A22 is a scalar 

7 (A.69) 

where p = (a - ayAFfa2). The result in (A.69) is useful when a 
new matrix is created by bordering the original matrix All with an 
additional row and column. The inverse of the border matrix can be 
expressed in terms of AT: and the new row and column. 

(iv) Determinant 

det(A) = det(A22) det(A11 - A12ATiA21) 
(A.70) 

= det(A11) det(A22 - A21A$A12). 

A.2.5 Matrix products 

In this section we define several matrix products that we find useful in our 
analyses. 

Hadamard Product 

The Hadamard Droduct of two N x M dimensional matrices A and 
B is defined as1 

A 

A@B& 

Whl a12h2 ’ ’ l WdUf 

a21 b21 a22b22 l * l a2Mb2M 

. . . 

. . . . . . . . . 

, aNlbN1 aN2bN2 ‘** aNMbNM 

(A.71) 

We see that the Hadamard product is obtained by element-by-element mul- 
tiplication. 

Several properties will be useful: 

‘The Hadamard product is sometimes referred to as the Hadamard-Schur product. 
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0 i 
A@B=B@A, (A.72) 

( > ii 

(A o B) o C = A o (B o C), (A.73) 

. . . ( > 111 

(AOB)T=AT@E3T, (A.74) 

( > iv 

abT @ cdT = (a o c) (b o d)T, (A.75) 

( ,I V’ 

&,A o BEst = PI,, PI,, Eqt- (A.76) 

(The matrix Eij is defined as a matrix whose ij component is 1 and 
all other components are 0.) 

(vi) If A and B are positive semi-definite, then 

A @ B is positive semi-definite ([SN89] [Be172]). (A.77) 

(vii) If A, B and C are Hermitian positive semi-definite matrices, then 

[Re (A o B)]-1 [Re (A o C)] [Re (A o B)]-1 2 { Re [A 0 BC-‘B]}ml 

(A.78) 

where the inverses are assumed to exist ([SN89]). 

(viii) If A is a Hermitian positive definite matrix, then 

(I@A-‘) 2 @aA)-‘. (A.79) 

Kro necker product 

If A is a N x M matrix and B is a K x L matrix, the Kronecker 
product is defined to be the NK x ML matrix, 
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m a11B al2B l - WMB 

a23 a22B l l . a2MB A@W! 
I 

. . . . . . . . . . . . 
aNlB aN2B -- aNMB I 

(e.g., Chapter 12 [LT85] or [Gra81]). 
Several properties will be useful: 

(i) If B is an A4 x M matrix, then, 

IN @B = diag[B,B,-,B]. 

(ii) If A is an M x M matrix, then, 

. . . ( > 111 

( > iv 

( > V 

( > vi 

A@IN= 

allIN a&T l -  alMIN 

, aMlIN aM2IN “’ aMMIN 

) (A.80) 

(A.81) 

. (A.82) 

- 

A@(aB)=(aA)@B=a(A@B). (A.84) 

(A@B)H=AH@BH. (A.85) 

(A + B) @ C = (A 8 C) + (B 8 C). (A.86) 
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( > vii 

A@(B+C)=(A@B)+(A@C). (A.87) 

(viii) 

A 8 (B 8 C) = (A 8 B) @ C. (A.88) 

( > ix 

(A@B)(C@D)=AC@BD. (A.89) 

( > X 

(A @ B)-1 = A-’ 8 B-l. 

(xi) If A is A4 x M and B is N x N, then 

(A.90) 

(A@B) = (A 8 IN) (IAd 8 B) 
(A.91) 

= (1~ 8 B) (A 8 IN). 

(xii) If Al, AZ, 9 l l A, are M x M and Bl, B2, l l l BP are N x N, then 

(Al @ BI) (A2 @ &) l 9. (A, @ BP) = (A1A2. 9 l Ap) 8 (BIB2 9 l . BP). 
(A.92) 

(xiii) If A is M x M and B is N x N, then 

det (A 8 B) = (det A)M (det B)N. 

(xiv) If A is M x M and B is N x N 

(A.93) 

tr (A @ B) = ( tr A) ( tr B). 

(xv) If A is M x M and B is N x N 

(A.94) 

rank (A 8 B) = ( rank A) ( rank B) . (A.95) 
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Khatri-Rao product 

The Khatri-Rao product of an N x M matrix A and a P x M matrix 
B is defined as the NP x M matrix 

AoBn 1 - al 8 bl i a2 ~b b2 i l l . i aN 8 bN 
I ) 

L 
(A.96) 

where aj denotes the jth column of the matrix A. 
The first element is 

al 8 bl = 

’ Wlbl 
. . 
. 

. aNlb1 1 - - 
a11h1 

a11 b21 
. 
. . 

aNlbP-1,l 

aNlbP1 

The remaining elements have the same structure. 

Several properties will be useful: 

0 i 

(A @B) (COD) = ACoBD, 

(PMw~ 

( > ii 

. (A.97) 

(A.98) 

(AoB>H (COD) = AHC 0 BHD, (A.99) 

([Kur8Yl), 

. . . 
( > 111 

(AoB)H (C @D) (EOF) = (AoB)H (CEODF) = AHCE @ BHDF, 
(A.lOO) 

([Kur89]). 
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A.2.6 Matrix Inequalities 

If A and B are N x N matrices, then the inequality, 

A>B 

means that A - B is a positive definite matrix. 

Similarly, the inequality 

A>B - 

means that A - B is a non-negative definite matrix. 

A.3 Special Vectors and Matrices 

(A.lO1) 

(A.102) 

In this section we define some special vectors and matrices that we encounter 
in our analyses. 

A.3.1 Elementary Vectors and Matrices 

The zero vector ON is a N x 1 vector whose elements are all zero. The vector 
1~ is a N x 1 vector whose elements are all unity. 

The vector ej is a N x 1 vector whose jth element is unity and whose 
remaining elements are zero. The dimension of ej is inferred from its usage 
or is specified. The vector ej is referred to as an elementary vector. 

If a N x N matrix A is written as 

then 

- 
A [ 

- 
al a2 l l l aN ,  

I  

(A.103) 

AeieT = 1 0 0 e. l ai l l . 0 1 . (A.104) 
c 

If a N x N matrix B is written as 

B - - 

bT 1 
bT 2 

. . . 

1 bT N 

(A.105) 
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eie:B = 

0 
0 
. . . 

bT N 

0 

1357 

(A.106) 

The matrix Eij is a matrix whose ijth element is 1 and all other elements 
are 0. 

E T 
ij = eiej . 

The N x N matrix E@j) with i < j is defined as 

0 i 

. . E( d 2 - - 

. 
b> 

1 
0 . . . 1 

1 
. . . . . . . . . 

1 
1 . . . 0 

1 

1 . 

(A.107) 

. (A.108) 

Pre-multiplication by E @j) interchanges row i and row j. Post-multiplication 
by E@j) int erchanges column i and column j. 

The N x N matrix E@) is defined as 

1 
k 

1 

I . . . 
1 

) (A.109) 

where k is a non-zero constant. Pre-multiplication by E@) multiplies the ith 
row by k. Post-multiplication by E@) multiplies the ith column by k. 
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The N x N matrix, E@+‘j) is defined as: 

for i < j, and 

E(i+‘“j 

for i > j. 

0 i 
> - - 

. 
Cd 

1 

1 . . . k 

1 

1 

1 

1 

k . . . 1 

1 

7 (A.110) 

I (A.lll) 

Pre-multiplication by E W-Q) adds k times the jth row to the ith row. 
Post-multiplication by E @-W adds k times the jth column to the ith col- 
umn. 

An N x N matrix Pper is a permutation matrix if it can be obtained 
from the identity matrix IN by interchanges of rows or columns. 

A.3.2 The vet(A) matrix 

Consider a N x M matrix A whose jth column is aj. The vet-function of 
A is written as vet(A) and is obtained by stacking the columns to obtain 
an NM x 1 vector: 

vet(A) = 
a2 

--- 

. 

. . 

, aM 

(A.112) 
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The function wet(A) is closely related to the Kronecker product and will 
be useful when we study planar arrays. 

Several properties will be useful: 

0 i 

vet (aA + ,8B) = a vet(A) + p vet(B), 

where A and B are N x M. 

(ii) If A is M x M, B is M x N, and C is N x N, then 

vec(ABC) = (CT@ A) vet(B). 

. . . 
( > 111 

vet (AB) = (IN 8 A) vet(B). 

( > iv 

( > V 

zlec (BC) = (CT 8 1~) vet(B). 

tr [ABCD] = vecHBH (A* o C) vec[D]. 

(A.113) 

(A.114) 

(A.115) 

(A.116) 

(A.117) 

A.3.3 Diagonal Matrices 

A diagonal matrix is a square N x N matrix with ag = 0 for i # j. All 
elements of the principal diagonal are zero. Thus, A can be written as 

. 0 0 . . . arm 

. (A.118) 

We also write 
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The inverse is 

A = diag [all, ~2, l l l y ann] l 
(A.119) 

- 
A1 = diag 

C 
a&a&--,a~~ . 1 

A block diagonal matrix is a square N x N block matrix, 

(A.120) 

A - - 

0 A22 l l . 0 

. . . . . . . . . . . . 

0 0 . . . A . mm * 

7 (A.121) 

where the submatrices Aii are square and all other submatrices are zero. 
The dimensions of the Aii need not be the same. We also write 

A = block diag [All, A22, l l l , Amm] . (A.122) 

If the Aii are non-singular, then 

- 
A1 = blockdiag 

[ 
A&AT;,--, 

A I 
ih . (A.123) 

The identity matrix defined in (A.40) is a special case of diagonal matrix 
whose diagonal elements equal one: 

. . . 

. . . 

. . . 

0- 

0 

. 
. . . 

1 _ 

(A.124) 

When it is necessary for clarity, we denote the order of the identity matrix 
by a subscript (e.g., IN). 
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A.3.4 Exchange Matrix and Conjugate Symmetric Vectors 

The exchange or reflection matrix J is a square N x N matrix whose 
elements on the cross diagonal are unity and all other elements are zero. 
Thus, 

J - - 

m 0 . . . 0 1' 

0 . . . 1 0 

. . . . . . . . . . . . 

) 1 “. 0 0 . 

(A.125) 

When it is necessary for clarity we add the subscript N to denote the order 
of the exchange matrix (e.g., JN). We observe that J is symmetric, J2 = I, 
and JT = J. 

Applying J to a vector exchanges the order of the elements, 

(A.126) 

We say that a vector x is conjugate symmetric if 

x = Jx*. (A.127) 

If x is N x 1 and N is even, then we can denote the first N/2 elements as 
x1 and write 

Xl 
X= [ 1 Jx * l 

1 

If N is odd, the first (N - 1)/2 elements are denoted by x1 and 

Xl 

x= x0 ) [ 1 Jx * 
1 

(A.128) 

(A.129) 

where CEO is a real scalar. 
A vector x is conjugate asymmetric if 
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x = -Jx*. (A.130) 

When J is applied to a matrix, it reverses the rows or columns of the 
matrix. Pre-multiplying by J reverses the order of the rows, 

JNA = 

aN1 aN2 l l aNM - 

. . . . . . . . . 

a21 a22 l l l a2M 

Post-multiplying by J reverses the order of the columns, 

AJ M- 

(A.131) 

al&f l l a12 a11 

a2M g l a22 a21 
. (A.132) 

. . . . . . . . . 

aNM “’ aN2 aNl 

A.3.5 Persymmetric and Centrohermitian Matrices 

A persymmetric matrix is an N x N matrix that is symmetric about its 
cross diagonal. For N = 4, 

A - - 

This implies 

It follows that 

a11 a12 a13 a14 

a21 a22 a23 a13 

a31 a32 a22 a12 

I 

- a41 a31 a21 a11 

aij = aN-j+l,N-i+l* 

(A.133) 

(A.134) 
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AT = JAJ, (A.135) 

and 

A = JATJ. (A.136) 

A centrohermitian matrix is an N x N matrix with the property that 

aij = a~-i+l,N-j+l~ (A.137) 

A centrohermitian matrix that is also Hermitian exhibits a double symmetry. 
It is Hermitian around the principal diagonal and persymmetric around the 
cross diagonal. 

aij = aTi = aN-j+l,N-i+l = aki+l,N-j+lo (A.138) 

For N = 4, 

A - - 
a21 a22 asa Gl 

a31 a32 a22 Gl 

a41 a31 a21 a11 

For centrohermi tian-persymmetric matrices, 

A = JA*J. 

(A.139) . 

(A.140) 

If N is even, a centrohermitian-persymmetric matrix may be partitioned as 

A=[ ;z;id,J], (A.141) 

where the partitioned matrices have dimensions + x $. 
If N is odd, a centrohermitian-persymmetric matrix mav be x>artitioned 

A - - 

Bl a B2 

aH c aHJ 

JBZJ Ja JBZJ 

(A.142) 
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where B1 is a (N - 1)/2 x (N - 1)/2 matrix, Bz is a (N - 1)/2 x (N - 1)/2 
matrix, a is a (N - 1)/2 x 1 vector, and c is a real constant. 

These matrices will arise frequently in our study of linear arrays and 
their structure will lead to significant computational savings and analytic 
simplifications. 

A.3.6 Toeplitz and Hankel Matrices 

A Toeplitz matrix has the property that all of the elements along each 

diagonal are identical. Thus, 

For example, 

A - - 

aij = C&i-j. 

a0 a-1 a-2 a-3 a-4 

al a0 a-1 a-2 a-3 

a2 al a0 a-1 a-2 

a3 a2 al a0 a-1 

(A.143) 

(A.144) 

If A is square, then it is a special case of a persymmetric matrix. If A is 
also Hermitian, then it is centrohermitian. The inverse of a Toeplitz matrix 
is persymmet ric. 

A Hankel matrix has the r>ror>ertv that the elements along every cross 
diagonal are equal. Thus, 

For example, 

A - - 

aij = ai+j-N-1. 

a-3 a-2 a-1 a0 

a-2 a-1 a0 al 

a-1 a0 a1 a2 

a0 a1 a2 a3 

. a1 a2 a3 a4 

(A.145) 

(A.146) 
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Note that JA and AJ are Toeplitz matrices when A is a Hankel matrix. 

A.3.7 Circulant Matrices 

A circulant matrix is an N x N square matrix made up of N elements. 
The elements of a right-circulant matrix obey the relationshiD 

aR,ij = 

For example, 

. 
aj-i7 J 

- i > 0, - 

(A.147) 

aN-j+l, .? - i<o, - - 1 < i, j < N. 

a3 a0 a1 a2 

AR= 

a2 a3 a0 a1 

(A.148) 

F .  

a0 a1 a2 a3 

a1 a2 a3 a0 

Each row is obtained from the row above it by shifting each element right 
one column and bringing the last element on the right to the first column. 
A right-circulant matrix is a special case of a Toeplitz matrix. 

The elements of a left-circulant matrix obey the relationship 

aN+l-i-j, j+ilN+l, 

aL,ij = (A.149) 

a2N+l--i-j, j + i > N + 1, 1 < i, - j -C N. - 

For example, 

AL = 

. 
a3 a2 a1 a0 

a2 a1 a0 a3 

a1 a0 a3 a2 

a0 a3 a2 a1 

(A.150) 

Each row is obtained from the row above it by shifting each element left one 
column and bringing the last element on the left to the last column. 

A left-circulant matrix is a special case of a Hankel matrix. 
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A.3.8 Triangular Matrices 

A lower triangular square N x N matrix is defined as a matrix whose 
elements above the main diagonal are zero. Thus, we can write, 

L - - 

111 0 l * *  0 

121 122 .  ”  0 

1 nl 1 n2 l ’ l 
1 nn 

L-l is also lower triangular. The determinant is 

N 

det (L) = n iii. 
i=l 

. (A.151) 

(A.152) 

An upper triangular square N x N matrix is defined as a matrix whose 
elements below the main diagonal are zero. Thus, we can write, 

U - - 

0 u22 l ’ l U2n 

. . . . . . . . 

. . . . 

, 0 0 . . . Unn 

U-l is also upper triangular. The determinant is 

det (U) = n uii. 
i=l 

(A.153) . 

(A.154) 

Clearly, L* and LH are upper triangular and UT and UH are lower trian- 
gular . 

If A is a square Hermitian positive definite matrix, there are two factor- 
izations of interest. The first factorization is called the LDLH factorization. 
There is a unique factorization of A, 

A = LDLH, (A.155) 
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where D is a diagonal matrix with positive entries. (e.g., Golub and Van 
Loan [GVL89]). 

The Cholesky decomposition is a unique factorization, 

A = GGH, 

where G is lower triangular, 

(A.156) 

(A.157) 

The Cholesky decomposition plays a key role in many algorithms and 
analyses. 

A.3.9 Unitary and Orthogonal Matrices 

A square N x N matrix is unitary if 

- 
A1 - - AH . (A.158) 

If A is unitary, then 

AHA = A+ = AA-l = AA” = 1. (A.159) 

In order for A to be unitary, the columns must be orthonormal. Thus, 

H ai aj = 6ij. (A.160) 

A particular unitary matrix that is used in the text has columns that are 
conjugate symmetric and has a sparse structure. 

For N even, 

1 I j1 
’ = fi J -jJ ’ [ 1 (A.161) 

where the I and J matrices have dimension N/2. 
For N odd, 

1 
I 0 

. 
JI 

Q - - 
4 i 1 OT Jz OT , (A.162) 

I 0 
. - JJ 

where the I and J matrices have dimension (N - 1)/2 and 0 is a (N - 1)/2 x 1 
vector whose elements are 0. 
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- - fi R4xd [ 1 In(w) . 

The Q matrices in (A.161) and (A.162) have a useful property. If x is a 
conjugate symmetric vector, then QHx is real. For N even, 

(A.163) 

Other useful properties will be derived in Chapter 7. 

An important consequence of the unitary property arises when we do a 
unitary transformation of a vector whose correlation matrix is the identity 
matrix, 

y = AHx. (A.164) 

The correlation matrix of y is 

E [YYH] = AHE xxH A = AHIA = AHA = A-lA =: 1. 1 1 (A.165) 

Thus, the correlation matrix of the output y is also an identity matrix. 

A square N x N matrix is orthogonal if 

- 
A1 - - AT . (A.166) 

In order for A to be orthogonal 

T ai aj = 6ij. (A.167) 

A.3.10 Vandermonde Matrices 

A Vandermonde matrix is an N x M matrix in which the elements in the 
jth column can be expressed as powers of a parameter cj. Thus, 

aij 
i-l 

=cj7 __ lG<N, l<j<M . - - (A-168) 

The matrix has the structure, 
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A - - 

1 1 

Cl c2 

2 
Cl 

2 
c2 

. . . . 

. . 

N-l 
. Cl 

N-l 
c2 

. . . 

. . . 

. . . 

. . . 

(A.169) 

One can show that the determinant of a square N x N Vandermonde 
matrix is given by 

detA = r]: (C]C - ci) . (A.170) 
l+ck<N - 

A.3.H Projection Matrices 

A matrix that will play a central role in many of our analyses is the projection 
matrix P. An idempotent matrix P satisfies the relation 

P2 - - P . (A.171) 

Another name for an idempotent matrix is a projection matrix. We re- 
strict our discussion to projection matrices that are Hermitian, 

PH - - P . (A.172) 

To motivate the construction of P, we first consider the projection of a 
vector b onto a vector a. We first construct a unit vector in the direction of 

a, 
a H -1 -1 

u(-J = 
H -- 

I I a 2 
- a a 

[ I 
a=aa a 

[ I 
. 

Then, the projection of b onto a is 

a [u:b] = a [aHa]-l aHb. 

If we define the N x N matrix 

P,*a aHa [ 1 
-1 

- aH, 

(A.173) 

(A.174) 

(A.175) 
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Then we can write the projection 
referred to as a projection matrix. 

Now consider the complex N 

of b onto a as P,b. The matrix P, is 

x M matrix, V, and assume that the 
columns are linearly independent. Then, the projection of a complex N x 1 
vector b onto the M-dimensional subspace defined by the columns of V is, 

h = Pvb, 

where PV is an N x N-dimensional matrix defined by 

(A.176) 

Pv = v VHV -lvH. [ 1 (A.177) 

We can also define a projection matrix that projects b onto a subspace 
orthogonal to the subspace defined by the columns of V, 

P+JI-Pv. - (A.178) 

All of the vectors in this subspace are orthogonal to V. 

Note that, if the columns of V are orthonormal (i.e., it is a unitary 
matrix) , then 

Pv = uuH, (A.179) 

and 

PL V =I-UUH. (A.180) 

In many of our applications, we will find it useful to divide our N- 
dimensional “signal subspace,” which contains both signal and’noise, and 
an N - M-dimensional “noise subspace,” which contains only noise. Recall 
that we used this subspace technique in Chapter 2 of [VT68], [VTOla] when 
we solved the temporal detection problem. 

A.3.12 Generalized Inverse 

In this section we define a generalized inverse2 for the M x N matrix A. 

20~r discussion follows Section 12.8 in [LT85]. 
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A.3.12.1 Moore-Penrose pseudo-inverse 

Assume that A is an A4 x N matrix. There exists a unique N x M matrix 
B for which 

ABA = A, (A.181) 

BAB = B, (A.182) 

(AB)H = AB, (A.183) 

and 
(BA)H = BA. 

This matrix B is denoted by A+, and 

(A.184) 

A+ = AH(AAH)-1 M CN, _ (A.185) 
At - A-1 - M - - N (A.186) 

A+ = (AHA)-lAH M >N: _ (A.187) 

The matrix A+ is referred to as the Moore-Penrose pseudo-inverse or the 
Moore-Penrose inverse in the literature ([Moo201 and [Pen55]). It is encoun- 
tered in the solution of linear equations. 

A.3.12.2 Application to the solution of Ax = b. 

Consider the linear equation, Ax = b, where A is an M x N matrix, x is 
an N x 1 vector, and b is an M x 1 vector. 

If M < N, there are multiple solutions. The solution, 

x0 = A+b, (A.188) 

is one of the solutions, 
Ax o = AA+b = b. (A.189) 

It is the solution with the smallest Euclidean norm. 
If M = N and A is non-singular, x0 is the unique solution and A+ = A-l. 
If M > N, there are, in general, no solutions to the equation. We define 

an approximate solution of the overdetermined equation Ax = b to be a 
vector x0 given by 

X0 = argmin [(Ax - b/, 
X 

(A.190) 

where the norm is the Euclidean vector norm and the minimization is over 
all N x 1 vectors. The solution to (A.190) is 

x0= . A+b (A.191) 
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A.4 Eigensystems 

In Chapters 2 and 3 of DEMT I [VT68], [VTOla] and Chapter 2 of DEMT 
III [VT71], [VTOlb], we saw the advantages of an eigenfunction decompo- 
sition for solving detection and estimation problems. We will find similar 
advantages in the array processing area. 

In Sect ion A.4.1, we develop the concept of eigenvectors and eigenvalues 
and discuss properties. In Section A.4.2, we consider several matrices whose 
eigenvectors have special properties. 

A.4 1 Eigendecomposition 

Consider a square Hermitian N x N matrix A (symmetric if A is real). The 
eigenvectors of A are denoted by +. They satisfies the equation, 

A@ = Xqb. (A.192) 

Thus when @ is operated on by A the output is 4 multiplied by a scalar X. 
The scalar X is called the eigenvalue of A. The relation in (A.192) can also 
be written as 

[XI - A] 4 = 0. (A.193) 

In order to have a solution for the homogeneous equation in (A.193), we 
must have 

det [XI - A] = 0. (A.194) 

This is an Nth order polynomial in X, which is called the characteristic 
polynomial, 

f (A) L det [XI - A] . (A.195) 

The N roots of f (X) are the eigenvalues of A: 

N N 

f (A) = j-J (Ai - X) = x f/Jk. 

i=l k=O 

There is an eigenvector (there may be 
X. The eigenvectors associated with 
dependent. For the distinct eigenvalu 
orthonormal vectors. For eigenvalues 
orthonormal eigenvectors. 

more than one) associated 
unequal eigenvalues are li 

.es, we choose the eigenvec 
of multiplicity M, we can 

(A.196) 

with each 
nearly in- 
tors to be 
construct 
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The eigenvalues of a Hermitian matrix are all real. We order the eigen- 
values in decreasing size, 

x max = Al > x2 > x3 > .  l l > XN = A 

-  -  -  -  min l 
(A.197) 

The eigenvectors associated with larger eigenvalues are referred to as prin- 
cipal eigenvectors. 

Several properties follow: 

(i) The highest coefficient in (A.196) is 

fN = (-1)Y 

(ii) The lowest coefficient in (A.196) is 

(A.198) 

fo = det (A) = n xi. 
i=l 

(iii) The sum of eigenvalues equals tr (A), 

N 

tr (A) = C Xi. (A.200) 

(A.199) 

i=l 

(iv) If p is a scalar, then the eigenvalues of PA are PXi; i = 1, . . l , N. 

(v) The eigenvalues of the matrix Am for m, a positive integer, are 
x m 

i l 

(vi) If A is non-singular, then the eigenvalues of A-’ are AT1 and the 
eigenvectors are the eigenvectors of A. 

(vii) If IX,, (A)1 < 1, then 

(I + A)-1 = I - A + A2 - A3 + 9.. . (A.201) 

(viii) The identity matrix I has N eigenvalues equal to unity and any 
set of N orthonormal vectors can be used as eigenvectors. 

(ix) The eigenvalues of A + a21 are Xi + g2 and the eigenvectors are 
the eigenvectors of A. 
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(x) If we define the N x N matrix 

(A.202) 

where the &, i = 1,2, l l . , N are the orthonormal eigenvectors and the 
N x N diagonal matrix, 

A = diag [A~,x~,***JN], (A.203) 

then we can write A as 

A = UAAUE, (A.204) 

(xi) If A is non-singular, we can write 

- 
A1 = U&PUA. (A.205) 

(xii) We can also expand A as, 

A = x Xi&@. (A.206) 
i=l 

(xiii) If A is non-singular, 

A-’ = 5 +@f. (A.207) . i=l z 

(xiv) If A is positive definite, then all eigenvalues are positive. 

(xv) If A is positive semi-definite, the number of positive eigenvalues 
equals rank (A) and the remaining eigenvalues are zero. 

(xvi) If the N x N matrix A consists of a weighted sum of D outer 
products, 

D 

A = C ~~ViVH, (A.208) 
i=l 

then rank (A) = D and the first D eigenvectors are linear combina- 
tions of the vi and the eigenvalues are denoted by Xi. There are N - D 
eigenvalues equal to zero and the corresponding eigenvectors can be 
chosen to be any orthonormal set that are also orthogonal to the vi, 
i = 1, l l l )  D. 
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(xvii) If A is an N x N matrix that can be written as 

(A.209) 

then the eigenvectors in (xvi) are still valid and 

xi+& i = l;-,D, 
Xi(A) = (A.210) 

o2 W, 
i= D+l;-,N. 

In this case, we often divide the N-dimensional space into two orthog- 
onal subspaces, a signal subspace and a noise subspace. Then, 

H H A = U,&Us + UN&VU~, (A.211) 

where US is a N x D matrix of eigenvectors, 

(A.212) 

and AS is a diagonal matrix, 

As = diag Xr +o&~~+o$,*~* ,x,+0;] l 
(A.213) 

The matrix UN is a N x (N - D) matrix of orthonormal vectors, 

where 

and 

UN= ; 
@D+l 1 +D+2 : l * ’ j N 9 + 1 (A.214) 

+H@j=O, i=D+l,***,N, j=l,e**,D, (A.215) 

AN = ~~I(N-D). (A.216) 
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(xviii) In many cases of interest, A is a correlation matrix, Rx, 

R X- E H 
xx 7 1 (A.217) 

where x is a zero-mean random vector. Then we can expand 

x = 5x&, (A.218) 
i=l 

where the & are the eigenvectors of Rx, and 

xi = XH& = qifx. (A.219) 

The xi are uncorrelated, 

E [xixj] = Xi&. (A.220) 

(xix) If x is a Gaussian random vector, then the xi are statistically 
independent zero-mean Gaussian random variables with variance Xi. 

A.4.2 Special Matrices 

In this section, we discuss several matrices whose eigendecompositions have 
special properties. The sections discuss: 

(i) Separable kernels, 

(ii) Centrohermitian matrices, 

(iii) Circulant matrices, 

(iv) Toeplitz matrices, 

(v) Kronecker products. 



& =Vci, i = 1,2,-•,K, (A.223) 

where ci is a K x 1 vector. 
(A.223) in (A.222) gives Using 

Equation 

xvci = VSVHVc+ (A.224) 

(A.224) can be written as 

v { [&I - svHv] Ci} = 0. (A.225) 

In order for (A.225) to be satisfied, we require 

[ 
xi1 - SVHV 

I 
ci = 0. (A.226) 

Thus, the ci are the eigenvectors of the K x K matrix SVHV. 
This is a homogeneous equation that has a solution for K values of 

xi, i = 1,2, ’ l l ) K. In order for (A.226) to have a solution, 

det 
[ 
XI - SVHV 

I 
= 0, (A.227) 

3The use of the separable kernel descriptor follows from our separable kernel discussions 
in Chapter 3 of [VT68], [VT01 a and Chapters 3 and 4 of [VT71], [VTOlb]. ] 
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A.4.2.1 Separable kernels 

We use the term separable kernel to describe matrices of the form3 

A = VSVH, (A.221) 

where V is a N x K matrix whose columns are the array manifold vector v 
and S is a K x K Hermitian matrix. This corresponds to the model for K 
correlated signals impinging on a N-element array. We assume K < N. This 
matrix structure allows us to reduce the eigenanalysis to a K-dimensional 
problem instead of a N-dimensional problem. 

The eigenequat ion is 

Alp = VSVH@ (A.222) 

Since the rank of A is K, there will be K non-zero eigenvalues and corre- 
sponding eigenvectors. The vectors vi, i = 1,2, l . . , K define a K-dimensional 
subspace. The 4 vectors are the orthogonal basis for that K-dimensional 
subspace. Therefore, each & can be obtained from V by a linear transfor- 
mation. 
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which will have K solutions: Xi, i = 1,2, l l l , K. 
For each Ai we can find the corresponding ci, which determines the cor- 

responding &, i = 1,2,. . l , K. 
In many cases of interest, K << N, so that we have achieved a significant 

reduction in the complexity of the problem. 

Example A.4.1 

Consider a single case in which K = 2 and S is diagonal matrix a:I. Then, 

1 qv2 

VHSV = No,2 
N [ 1 . (A.228) 

92 1 

The determinant of (A.228) is a quadratic equation in X, 

where 

and 

where p12 4 9. Then, 

or 

X2 - bX + c = 0, (A.229) 

b = 2Na,2, (A.230) 

C = N2g,4 [l - Ip12i2] 7 (A.231) 

~=Nc+/<]; (A.232) 

h(2) = No: [l k IP12II l 
(A.233) 

Then cl and c2 are obtained by substituting Xr and X2 from (A.233) into (A.226) 
to obtain, 

IL Cl = 
J2N [l + IP1211 

[ e-ji&121 ] ) 
(A.234) 

(A.235) 

) and (A.235) into where @(&) denotes the phase of &. Substituting (A.234 
(A. 223) gives, 
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4 

v1 + e-jw312q 

1= 
[ 

j/-w1 + IPlZl) 

(A.236) 

and 

- e 
# 

[ vl -bw12),,] 

2= 
j/q1 - p120 ’ 

(A.237) 

Plots of the Xi and ci are shown in Chapter 5 for typical array geometries. 

A.4.2.2 Centrohermitian matrices 

Centrohermitian-persymmetric matrices have the property that their eigen- 
vectors are either conjugate symmetric or conjugate asymmetric [CB76b], 
[CB76a] (see, e.g., [Mar87], [Mak81] for further discussion).4 

If the dimension N of the matrix C is even, then it has $ conjugate 

symmetric orthogonal eigenvectors & (i = 1, l . l , q) of the form 

1 Yi 
@i = z/z Jyi ’ [ 1 (A.238) 

where the yi are the orthonormal eigenvectors of the matrix B1 +BzJ, where 
B1 and Bz are the submatrices defined in (A.141). Thus, 

[BI + &J] yi = &yi. (A-239) 

It also has $ conjugate asymmetri 

of the form 

orthonormal eigenvectors & ( 
i = 1, . . . , T 

> 

4 
1 - 

i- 
62 

where the zi are the eigenvectors of the matrix B1 - B2J. Thus, 

zi 
Jz 1 7 - i (A.240) 

[B1 - B2J] zi = &zi. (A.241) 

Note that we have reduced the dimension of the eigendecomposition prob- 
lem by factor of 2. 

If N is odd, then C will have 9 conjugate symmetric orthonormal 

eigenvectors q$ (i = 1,2,... , v) of the form 

4The results in this section are due to [CB76a], [CB76b]. 
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1 Yi 4 i= -J2 [ 1 w i 1 (A.242) 

JY i 

where the vector yi and the real scalar pi are the orthonormal eigenvectors 
of the matrix. 

&f&J -J=za 
J2 aH C ][gY]=#$ (A.243) 

where a and c are defined in (A.142). C will also have p conjugate 
asymmetric orthonormal eigenvectors of the form, 

1 zi 4 i= 2/2 [ 1 0 7 (A.244) 
- Jz i 

where the zi are the orthonormal eigenvectors of the matrix B1 - BzJ, 

(B1 - B2J) zi = &z~. (A.245) 

A.4.2.3 Toeplitz matrices 

Toeplitz matrices are a special case of centrohermitian matrices so their 
eigendecomposition has the same properties. Makhoul [Mak81] analyzed 
their eigendecomposition and found that their additional structure did not 
lead to any additional properties that will be useful in our analyses. 

The reader is referred to [Mak8l]or [Mar871 for further discussion. 

A.4.2.4 Kronecker products 

Any important motivation for using Kronecker products is the relationship 
between the eigenvalues of A and B and the eigenvalues of A @ B. The fol- 
lowing result is from Chapter 12 of [LT85], which they attribute to Stephanos 
[SteOO]. A good discussion of Kronecker products and their application is 
given in Graham [Gra81]. 

Let X1,*=* , xn/r be the eigenvalues of the IU x iV matrix A. Let ~1, l 9 l , /-QV 
be the eigenvalues of the N x N matrix B. 

Then the eigenvalues of A@B are the MN numbers, XTps, 1” = 1, . . . , M, s = 
1 . . . 7 N 1 - 
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A consequence of this result is that, if A and B are positive definite, 
then A @ B is positive definite. 

The eigenvalues of (IN @ A) + (B @ 1~) are the MN numbers, 

X,+ps, r=l,~~*,M,s=l,**-,N. (A.246) 

The above matrix is called the Kronecker sum of A and B. 

A.5 Singular Value Decomposition 

A significant number of applications in the text deal with the spatial spectral 
matrix of the received waveform at the sensors, S, . 

If we assume that we are dealing with a single frequency as a result of a 
DFT operation on the incoming vector, then 

Sx(wo) = E {JQJcpH(~*)} 7 (A.247) 

where X(wJ is an N x 1 vector corresponding to DFT of the incoming signal. 
In practice, the output of each sensor is sampled, sectioned, and win- 

dowed. The DFT of each section is evaluated and a vector X&J across 
the array is formed for each section. Assuming K sections are used, we form 

h 
s X- 

c x [w,, k] xH b0) ICI ’ 

k=l 

(A.248) 

and use this as an estimate of the spatial spectral matrix Sx(wo). For sim- 
plicity in the notation, we have suppressed the w. dependence in 8, and will 
use X(/C) to denote the !&h sample. We restrict our attention to a ULA with . 
interelement sr>acing d. We can write 9, in exx>anded form as 

h 
s X- 

where 

. . . . . . 

a,,(o, N - 1) &(l, N - 1) 

. . . 

. . . 

. . . 

. . . 

&x(N - LO> 

&m(N - 171) 

i,,(N - 1, N - 1) 

(A.249) 
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8, has several properties that we will use in the text. 
The spatial spectral matrix is Hermitian, 

$J - 8 
x - x* 

This follows directly from (A.249). 

The spatial spectral matrix is non-negative definite, 

for any N x 1 vector y. This follows directly from (A.248), 

(A.250) 

(A.251) 

(A.252) 

yHiixy = (A.253) 

If (A.252) is satisfied with an inequality sign, then G, is non-singular and 
its inverse SC1 exists. 

The eigenvalues of gx are real and nonnegative. The spectral matrix 
9, is, in general, not Toeplitz because, as can be seen from (A.249), the 
elements on the main diagonal (and other diagonals) have different values. 

We can write the samole sDectra1 matrix as the oroduct of two rectan- 
gular matrices, 

h 
s xzz- ; [ x(1) i x(2) i l ’ l i X(K) ]  

I  I  I  

We now define the data matrix 3, 

A 

xH (1) 
xH (2) 

. 

. 
XH(K) 

1 

X - - & [ x(1) i x(2) i l l l i X(K) j )  

I  

. (A.254) 

(A.255) 
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X 
1 - - 

a 

and 

’ X()(l) i X()(2) i i I I I X0(K) 
I I I I I I 

Xl(l) i X1(2) i i I I  I  

I  I  I  

I  I  I  

.  ,  8 I  

.  I  I  I  
.  .  .  .  I  J I  

I  I  I  

I  I  I  

I  I  I  

-&~-l(l) f  &IT-,(~) f * ! X,-,(K) I 

h 
s x = XXH. 

If we use FB averaging, we have an N x 2K data matrix 

X fb 
- - 

Writing (A.258) out gives an N x 2K data matrix 

1 
Z,b = Jz 

and 

7 (A.256) 

(A.257) 

(A.258) 

X0(1) X()(2) a-’ X0(K) ; X;; 1(1) - X;;rwl(2) l .a X; ,(K) - - 
I 

Xl (1) X1(2) “. Xl(K) 1 X;&) X;&) a. - X;; 2(K) - I 
I  

9 

.  .  .  .  .  .  

.  .  .  .  .  .  

.  .  .  I  .  .  .  
I  

X~-l(l) X,-1(2) n-0 X,-,(K) i X,*(l) x;(2) l **  
x;(K) -  

h 
s - -H 

x jb = xfbxfbg 7 (A.260) 

We now discuss how we find the eigenvectors and eigenvalues of S, and 
S x fb directly from the data matrix. ) 

Given the data matrix X, we want to show that there are two unitary 
matrices, U and V, such that, c 0 uHXHv = [ 1 7 (A.261) 

0 0 . 
where C is a diagonal matrix, 

c = diag (~~,Q--,ow), (A.262) 
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and the O’S are ordered in a decreasing manner. 
The result in (A.261) is called the singular value decomposition the- 

orem. The matrix UN is K x K. The matrix V is N x N. The subscript 
W is the rank of the matrix X 

W = rank iiC < min[K, N]. 
( > 

(A.263) 

For K > N, the system in (A.260) is overdetermined. For I( < N, the sys- 

tem is underdetermined. The overdetermined case is of most interest is our 
applications. (We need more snapshots (K) than the number of sensors (N) 
to get a stable estimate of S,.) We derive the overdetermined case in the text 
and refer the reader to Haykin (p. 520 of [Hay96]) for the underdetermined 

case. 
We form the N x N matrix, XX? The matrix X%” is Hermitian 

and non-negative definite, so its eigenvalues are real and non-negative. We 
denote the eigenvalues as Al, X2, l l l , &J where 

x1 > x2 > .  l ’ > AJ/jY > 0 
-  -  -  7 

(A.264) 

and 

XW+l = Aj/v+z = l -  l = AN = 0. (A.265) 

The X’s and O’S are related by 

1 
ai- iy x2 i = 1,2, l .., N. (A.266) 

We denote the orthonormal eigenvectors of the matrix XP by vk, k = 
12 . l . , N, and the N x N unitary matrix whose columns are the eigenvectors 
of &gH by V. Then c2 0 vH?;;SHv = [ 1 . (A.267) 

0 0 

We partition V as, 

v= [VlVZ], (A.268) 

where VI is an N x W matrix,5 

51n most of our applications, there is a wh .ite noise component present, so that W = N 
and the V2 is not present. The modification for that case is straightforward. 
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Vl = [V1,V2,“‘,VW] 7 

We observe that 

v2 = [VW+1,VW+2,“‘,wi!] l 

vfw:! = 0. 

From (A.267), we have for VI, 

and therefore, 

For V2, 

rlvHXXHvlW - I 1 
- . 

V,HXXHV2 = 0, 

and therefore, 

XHV2 = 0. 

We next define a K x W matrix, U1, 

Ul = %Hv$r? 

Then, from (A.273), 

uyu1 = I. 

This implies the columns of Ul are orthogonal. 
Finally, we define a K x K - vs/ matrix U2 so that 

is a unitary matrix. 
This implies that 

u = [Ul u2] 7 

ufw 2 = 0. 

With these definitions we can write 

(A.269) 

(A.270) 

(A.271) 

(A.272) 

(A.273) 

(A.274) 

(A.275) 

(A.276) 

(A.277) 

(A.278) 

(A.279) 
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uHXHv 1 [ UH uff 2 1 1 XH [v1,v2] 

[ 

c - - 
0 

(A.280) 

which is the relation in (A.261). 

We refer to elements of C as the singular values of XH. The columns of 
the unitary matrix V are the right singular vectors of XH, and the columns 
of the unitary matrix U are the left singular vectors of RH. 

The right singular vectors are the eigenvectors of the matrix XXH that 
corresponds to the sample covariance matrix, 9, (see (A.257)). The non-zero 
eigenvalues of the sample covariance matrix are 

[fqii = [E21ii, i = 1, l *. ) T/t: (A.281) 

Our primary usage of SVD will be in the context-of the eigenvalues and 
eigenvectors of the sample correlation matrix. 

There are important computation reasons for working directly with the 
data matrix R rather than the sample covariance matrix. The dynamic 
range required to deal with %XH is doubled. Thus, for a specified numerical 
accuracy, the required word length is doubled. 

There are several efficient computational schemes for computing the 
SVD. Various algorithms are discussed in detail in Sections 11.7-11.12 of 
[Hay911 and Chapters 11 and 12 of [Hay96]. All of the various computa- 
tional programs, such as LINPACK, EISPACK, and MATLAB, have SVD 
algorithms included. SVD is widely used in a number of signal processing 
applications, and there is extensive literature. We utilize it when we study 
adaptive beamforming and parameter estimation. 
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A.6 QR Decomposition 

A.6.1 Introduction 

The techniques developed in this section are motivated by the least squares 
estimation problem. The least squares equation has the form 

~*(K>%se(K> = +:d* (Eo, (A.282) 

where 
K 

a(K) = c X(k)~~~~XH(k), 
k=l 

(A-283) 

is an exponentially weighted sample correlation matrix and 

K 

&*(K) = ‘Ti? X(k)~~&-%*(k), 
k=l 

(A-284) 

is an exponentially weighted sample cross-correlation matrix. 
We define a K x N exponentially weighted data matrix, 

A,(K) = PW 

) XT(l) -w-------- 

XT (2) ---------- 

. . . ---------- 

(A-285) 

XT(K) 

p(K) = diag [ ,uV, 
K-2 

I-t 2 , l *-, 
l I 

. (A-286) 

Then, 

and 

&d*(K) = A;(K) $7 (A-288) 

where 

d I-L =/J(K) [ D(l), l --7 D(K) IT- (A-289) 

Then, (A-282) can be written as 

A;(K) A,(K) w* = A,Hd,,. (A-290) 
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One approach to solving (A.282) is to factor @ using a Cholesky de- 
composition. Then, we can solve (A.282) using back-substitution (e.g., 
[GVL89]). 

A problem that one encounters with this approach is the requirement for 
high numerical precision. In this section, we discuss techniques that utilize 
the data matrix rather than the sample covariance matrix. 

All of these techniques are classical and are discussed in a number of 
references and textbooks. Books that discuss solutions to least squares es- 
timation problems include Lawson and Hanson [LH74], Wilkinson [Wi165], 
Stewart [Ste73], and Golub and Van Loan [GVL89]. Books that include 
discussion of these techniques as background to adaptive filtering or adap- 
tive beamforming include Haykin ([Hay96], [HaySl]), Haykin and Steinkardt 
[HS92], and Proakis et al. [PRLN92]. Our discussion is similar to Section 
5.3 of [PRLN92]. 

In Section A.6.2, we discuss the QR decomposition and its application 
to the solution of (A.282). In Sections A.6.3 and A.6.4, we develop two 
techniques for accomplishing the QR decomposition: the Givens rotation 
and the Householder transformation. A third technique, the modified Gram- 
Schmidt algorithm, is discussed in [PRLN92] and will not be included. 

All of our discussion in this section assumes K is fixed. In Chapter 7, 
we discussed recursive techniques that are the basis of our a,daptive beam- 
forming algorithm. 

A.6.2 QR Decomposition 

In this section, we show how to solve (A.282) in an efficient manner using 
the data matrix A,. By avoiding the computation of a, we can significantly 
improve our numerical accuracy. The key is the decomposition of the K x N 
matrix A, into a K x N matrix that is partitioned into a N x N upper 
triangular matrix R and a (K - N) x N null matrix. There exists a K x K 
unitary matrix Q such that 

where R has the form 

R - - 

QA 
R 

CL= 0 
[- 

Cl 

0 

. . . 

0 

7-22 

. . . 

0 

1 9 
T”1N 

+2N 

. . . 

FNN 

(A.291) 

(A.292) 
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where we have suppressed the K dependence, and 0 is a (K - N) x N matrix 
with zero elements. 

Note that 
9=A,HA,=A,HQHQA,=iiHii, (A.293) 

so that R is the Cholesky factor of the weighted sample covariance matrix. 
The decomposition has several other properties that we will utilize? 

(i) Each row of the triangular matrix R is unique up to a complex scale 
factor with unit magnitude. Hence if Rr and Rz are two different 
R-factors in a QR decomposition of the A,, we can always find a 
complex-valued diagonal matrix ,8 whose complex-valued diagonal el- 
ements have unit magnitude, so that Rr = ,ORz. 

(ii) For any matrix A, there exists a unique R whose diagonal elements are 
all real and nonnegative. 

(iii) If K > N, the unitary matrix Q in a QR decompositions of A, is not 
unique for the same R- factor. 

(iv) Since the condition 
that the condition 
X w  

number of the unitary matrix Q is unity, it follows 
number of R is equal to the condition number of 

To solve (A.293), we substitute (A.291) into (A.293) and obtain 

Now partition d, as 

Qd P 
P= [ 1 v ’ 

(A.294) 

(A.295) 

where p is an N x 1 vector. 
Using (A.295) in (A.294), we obtain 

(A.296) 

or 
Rw * - - . P (A.297) 

It is now straightforward to solve (A.297) because R is upper triangular. 
Two observations are important: 

‘The list of properties is taken directly from p. 291 of [PRLN92]. 
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(i) We do not need an explicit expression for Q. 

(ii) The condition number of R is the square root of the condition number 
of @, so our numerical accuracy has improved. 

A.6.3 Givens Rotation 

The Givens rotation is a method for implementing the QR decomposition 
by a sequence of plane rotations. The technique is due to Givens [Giv58]. 

To introduce the technique, we first consider a 2 x 1 complex vector v, 

r 1 

V= 

The Givens matrix G is a 2 x 2 unitary matrix, 

(A.298 

G 
c* s - - i I -s* c l 

We select the elements of G such that 

Gv=[ $;;-;;2]~[$]=v’. 

The zero term in (A.300) requires, 

s*q = cv2, 

(A.299) 

(A.300) 

(A.301) 

and the unitary condition requires 

ICI2 + IsI = 1. (A.302) 

Therefore, 
‘ul 

C= 

hl 2 + Iv4 
2’ (A.303) 

and 

S= 
9 

JlVl I2 + 1v212 ’ 

(A.304) 

v; = {lv$ + lv212* (A.305) 

Thus, v’ has the same length as v, but has only one non-zero component. 
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In a similar manner, if we have a row vector u, 

u = u1 u2 . 
L 1 

We can write 
uGH = [ u’l 0 1, 

(A.306) 

(A.307) 

where G is given by (A.303) and (A.304), with ~1 and 212 replaced by ul and 
~2. This result follows directly from (A.300) by letting u = vH. 

The operation described by (A.299) is called a plane rotation because, if 
v1 and 212 are real, 

C = cos cp, (A.308) 

and 
S = sin+, (A.309) 

where 4 is the angle that v is rotated. The adjective “plane” denotes that 
v stays in the same plane. 

Now consider a K x 1 complex vector v, 

I 
T 

urn, “.j vn, l ‘, VK . (A.310) 

We operate on v with a Givens rotation G and leave all of the elements of 
v unchanged except for vm and vn. This requires a K x K unitary matrix 
of the form, 

0 

Cmm Smn 

I 

Snm Cnn 

I 

. (A.311) 

G(m, n) is an identity matrix except for four elements. The two c ele- 
ments are on the diagonal, 

C = CLrn = Cnn = 
urn 

j&ml2 + IVrJ2’ 
(A.312) 
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and the two s elements are off the diagonal, with 

s = Smn = Vit 

JIZlm12 + 1%12 ’ 
(A.313) 

and 
* * 

Snm=S,,=-s l (A.314) 

Then, 

G(m,n)v = Vl, l -*7 ,/Ivm12+ Ivn12, l ., 0, l ., VK T- (A-315) 
I 

We have made the nth element zero and rotated it into the mth element. 
We now demonstrate how to apply a sequence of Givens rotations to 

accomplish a QR decomposition of A,. 

Example A.6.1 
Consider the case when N = 2 and K = 3. Then the exponentially weighted data 

matrix can be written as all al2 

A, = [ 1 a21 a22 . (A.316) 
a31 a32 

We utilize three successive Givens rotations to obtain the desired QR decomposition. We 
eliminate a31 first. From (A.311), 

where we have chosen to rotate a31 into all. Then 

all 
Cl=-, 

Tl 
(A.318) 

(A.319) 

7-l fi la11~2 + la31i2. (A.320) 

Then, 

n 

GIA, = a21 (A.321) 
0 

Note that only the first and third rows were affected by G1. 
The next step is to eliminate a21, 

(A.322) 
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where 
r1 

c2=7, 
m 

dil 
s2=,, 

m 

(A.323 

(A.324 

and 

A I  .  - .  .  . -  

Cl ” &I2 + la;,lze (A.325) 

r’ll c&L + s2a22 

0 -sS& + c2a22 

0 42 

] sG2GlAp= [ ‘f iii]. (A-326) 

The notation is chosen because the first row will not be affected by the next step so that 
r”rr and Fr2 are the elements in I%. 

The last step is to eliminate a i2. We do this without disturbing the first row. 

G3=[ H 4; ii], (A.327) 

and 

Then, 

42 
c3=,, 

r22 

k&2>* 
s3 = - 

r”22 ’ 

(A.328) 

(A.329) 

Cl f12 

G3G2GlAp = [ 1 0 722 ) (A.331) 
0 0 

which is the desired result. 
Note that 711 and 722 are real (see (A.325) and (A.330)). In each step, it is straight- 

forward to locate the c and s parameters. The -s* parameter is in the same position as 
the element that we are eliminating and the c* parameter is in the same position as the 
element we are rotating into. We should also observe that the elimination order is not 
unique (see Problem A.6.1), but R is. The Q matrix is 

Q = G&LGl, (A.332) 

but is not explicitly used in the algorithm. 

The extension of the above example to an arbitrary K x N (K 2 N) 
data matrix is straightforward. We apply K - 1 successive Givens rotations 
to eliminate all of the elements in the first column except for the elements 
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in the first row. We then apply K - 2 Givens rotations, without disturbing 
the first row, to eliminate the bottom K - 2 elements in the second column. 
We process each successive column in a similar manner. This requires, 

NG = (K - l)(K - 2)~.•(K - N) = E(N - N(N2- ‘), (A.333) 

rotations. We use the same sequence of rotations on d, to obtain p. 

A.6.4 Householder Transformation 

The Givens rotation technique obtains a triangular R by eliminating one 
element with each rotation. The Householder transformation eliminates all 
except one element in a column in each step. The transformation is due 
to Householder ([Hou58], [Hou64]). A tutorial paper by Steinhardt [Ste88] 
gives an excellent discussion of the transformation and its application to 
signal processing. 

The Householder transformation can be written as 

2UUH -1 H=I--- 
II II U2 

UH, (A.334) 

where u is an N x 1 vector whose norm is ]]u]]. We can also write it as 

H = I - 2P,, (A.335) 

where 

P =u u H 
-1 

U [ 1 u UH 7 (A.336) 

is the projection matrix onto the u subspace. 
If we pre-multiply the N x 1 complex vector v by H, we have 

Hv=(I-2P,)v=v-2P,v. (A.337) 

From (A.334), we observe that H is a Hermitian unitary matrix, 

- H1 - - HH - - H 7 (A.338) 

so that the transformation preserves length 

IIHVII = llvll l 

(A.339) 

Now consider the N x 1 complex vector v, 

I 

T 
vi, .‘.) 

VN l 

(A.340) 
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We use H to eliminate all of the elements except vi. We define 

vi 
I& = -, 

I I vi 

and 

II II V2 
H 

=v v. 

We use (A.334) with 
u = v + VhIIvIIei, 

where 

eT- 
T 

i - 
[  

0 7 -0, 0 1, 0 l -  Ol ) 
has one as the ith element and zero elsewhere. 

Using (A.341)-( A.344)) we find 

II II U2 
= uHu = 2llvll (Ilvll + IVil> l 

Then, we observe that 

uHv = (vH + v&ll+~) v = llvl12 + IviIl~~Il~ 

Therefore, 

Hv I 
2UUH - - 

( 1 
-- 

II II U2 
V 

- - v-u 

- - -vin \lv\lei, 

which is the desired result. 

1395 

(A.341) 

(A.342) 

(A.343) 

(A.344) 

(A.345) 

(A.346) 

(A.347) 

The procedure for using the Householder transformation to do a QR 
decomposition is analogous to the Givens rotation technique. We illustrate 
it with a similar model to the model in Example A.6.1. 

Example A.6.2 
Consider the case when K = 4 and N = 2. In view of our results in Example A.6.1, 

we define an K x (N + 1) augmented data matrix 

A aug = A [ A, d, ] all a12 & 
A a21 a22 & - - I, 1 a31 a32 & 

a41 a42 & 

A - - 
[ al Ia2; p . ed 1 (A.348) 
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The first step is to use a Householder transformation to eliminate ~21, ~~31, and ~41: 

HI 
2Llluf =I--- 
ll”d12 ’ 

(A.349) 

where 
a11 

w = al + ----++l. 
Ia11 I 

(A.350) 

Then, 

(A.351) 

In the next step we want to eliminate aha and a&% without disturbing the first row. 
We define 

C-1 a2 = [ 0 42 42 42 ’ 1 (A.352) 

Then, 

H2 
2u2& =I--- 
lb2 II2 ’ 

(A.353) 

where 

u2 = a;-) + f&[la~-)lle2. (A.354) 

Applying Hz to (A.351) gives 
0 

--llalll 1 
bill 

&HIAaug = 
0 ; 

0 i 

0 1 . (A.355) 

The last step is to eliminate d&‘. Define 

a$-’ = [ 0 0 d; d; ] . (A.356) 

Then 

where 

Then 

H3 
2u3u3H =I-- 
ll”3112 ’ 

(A.357) 

u3 = ai-) + $j ((a:-) lle3. (A.358) 
3 

[ m n2 d”l 

H3Hd%Auug 0 r22 22 = ' 
0 0 e3 

1 (A.359) 

0 0 0 

The top two rows give the required QR decomposition. 
not necessarily real or positive. As a final step we Note that the diagonal elements are 

multiply each row by a complex number with unity magnitude. The resulting k matrix is 
identical to the one obtained by the Givens rotation. We denote this diagonal matrix as 

p=diag[ th P2r “‘y PN 1. (A.360) 
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The extension to arbitrary K and N, (K > N), is straightforward. - 

Q = HN+lHNHN-l l l l H1. (A.361) 

A.7 Derivative Operations 

In many of our array processing applications we encounter a non-negative 
cost function that we want to maximize (or minimize) with respect to a 
vector or matrix. To accomplish this optimization we need to find a vector 
or matrix derivative. 

Another application of derivatives that we will encounter is the calcula- 
tion of the CRB. We recall from Chapter 2 of DEMT I [VT68], [VTOla] that 
the CRB is a fundamental tool in the parameter estimation. 

In Section A.7.1, we develop the derivative of a scalar with respect to a 
vector. 7 In Section A.7.2, we develop the derivative of a scalar with respect 
to a matrix. In Section A.7.3, we develop derivatives with respect to a 
parameter. In Section A.7.4, we extend these results to complex vectors. 

A.7.1 Derivative of Scalar with Respect to Vector 

First consider a scalar u(0) that is a function of the M x 1 real vector 
Darameter 8. The derivative of a with respect to 8 is an M x 1 vector 

d 
de> - - de 

Similarly, if we consider a 1 x N row vector, 

aT(e) = 
al(e) i a@) i l .  

I  

the gradient is a M x N matrix, 

(A.362) 

, 
I 
I ad@ ] 7 (A.363) a 

7The results in Sections A.7.1 and A.7.2 appear in many places. An early engineering 
reference is [AS65]. Scharf [SchSl] has a concise summary in his appendix to Chapter 6. 
Most of the results are derived in Graham [GraN]. 
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d T - -a - 
de 

- - 

Similarly, 

a,lce, ,,, ?%..p 
de1 1 

. . . 

. . . 

. . . 

&A@ ,.. c@!l 
* deM M 

m  
d d 1 

T -a= ---a 
de [ 1 ae 7 

(A.364) 

(A.365) 

(A.366) 

is a N x M matrix where each row is the gradient of the scalar ai with 
respect to 8. 

Some cases that we will encounter are: 

Products 

0 i 

( > ii 

‘#=I 
de . 

d 
abTe 

d - - %eTb = b. 

(A.367) 

(A.368) 

. . . ( > 111 

gaT(e)b(e) = (gaT(B)> b(e) + ($bT(e)) a(e). (A.369) 

Quadratic Forms 

In the next set of equations, Q is not a function of 8 

( > iv 
a T 
g Qe = 2Q& (A.370) 
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( > V 

d 
-m*Qm=2 
a9 

(A.371) 

( > vi 

d 
- exp de -i@Q-‘8) = - exp { -ieTQ-ls> Q-l& (A.372) 

( > vii 

$ In (eTQe) = 2 (eTQe)-l Qe. (A.373) 

A.7.2 Derivative of Scalar with Respect to Matrix 

Consider a scalar function of a M x N matrix X, which denotes by a(X). 
The derivative of a(X) with resx>ect to X is the M x N matrix, 

d 
4x> - - 

dX 

aa(x> aa(x> . . . g 
hl ax12 

ww . . 
dzzl . 

aa(x> . . . au(X) 
s ~Gvl dxMN 

. (A.374) 

Each column is the vector derivative of the scalar a(X) with respect to a 
column of X: 

&J(x) = (  &a(x) i l .  l i &x(X) )  l 

(A.375) 

x1 l wg XN .  

> 

(A.376) 

Xii 

x2i 
xi = I 1 . . (A.377) 

. . 

J7Mi 

One application where we will utilize matrix gradients is in the computation 
of the CRB. 

Typical functions are: 



1400 
A. 7 Derivative Operations 

1 . 
d 

do tr X = I. (A-378) 

In (2)-(5)) A and B are not functions of X. 

2 . 

3 . 

4 . 

5 . 

6 . 

7 . 

8 . 

9 . 

10 . 

11 . 

a 
z tr [AX] = & tr [AXT] = (& tr [AXT])T 

d 
do tr [AXT] = d 

7 tr 
dX 

d 
do tr [AXB] = & tr AX*B [ I 

AX] = A. 

= ATBT . 

& tr [AX%] = &tr [AXB] = BA. 

d 
do tr [AX-‘] = & tr [X-‘A] = (-X-lAX_‘)T 

d 
do tr Xn = n X”-l ( > 

T 
. 

d 
do tr [exp X] = expX. (A.385) 

a 
zdetX=detX(X-‘)T. 

d 
&ndetX = (X-‘>T. 

d 
ax det Xn = n (det X>” (X-l)T. 

- - AT 

(A’379) . 

(A.380) 

(A.381) 

(A.382) 

(A.383) 

(A.384) 

(A.386) 

(A.387) 

(A.388) 
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12. Kronecker products: 

a(x@z) ax - - 
dY ayBZ 

+ (1s @3 qlxr) (g@x) (ItmJlx,),(A.389) 

where U is the permutation matrix and the dimensions of X, Y, and 
Z are p x q, s x t, and r x 1, respectively. 

A.7.3 Derivatives with Respect to Parameter 

If X is a function of a real narameter. we can use the chain rule to obtain 

1 . 

d In detX 

de i 
= tr 

11 ax 1 

dX 
= tr X-lW . 

[ I i 

dtr [X-lA] = tr 

de i 

= tr -X-lAX- 

r 
- - I 

3 . 
dX -1 dX - - --m-m. - 
de 

X1 de X1 . 
i i 

4 . 
d2 -1 dX -1 dX 

deiX q+x 

5. The derivative of the projection matrix is, 

d d _L H 1 HH 
z PL V = -aB-pv = -PVViV - PVViV 

2 ( 
. 

2 
> 

(A.390) 

(A.391) 

(A.392) 

(A.393) 

(A.394) 
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A.7.4 Complex Gradients 

In many applications we have a real-valued function of a complex vector z 
and want to find either the minimum or the maximum. One approach is to 
write 

Z= X+jY (A.395) 

and take derivatives with respect to x and y. However, the resulting expres- 
sions are cumbersome. For the functions of interest in array applications, we 
can work directly with the vector z and obtain simpler expressions. How- 
ever, we must be careful with the differentiation. Brandwood [Bra831 has 
developed a suitable approach, which we summarize.’ 

First consider the case when x is a complex scalar and the function of 
interest is 

f (4 = f(x7 Y>* (A.396) 

Define a function g(z, z*) that is analytic with respect to x and x* indepen- 
dent ly, and 

9(? x*> = f (2, Y>* (A.397) 

Brandwood proves that the partial of g(x, x*) with respect to x (treating 
x* as a constant in g) gives the result, 

Similarly, 

a9+, x*> 1 W(?Y) 
dz* I z*=x-jy = - 

2 ( dX 

+ j W(x7 Y> 

dY > 
. 

(A.398) 

(A.399) 

Brandwood then shows that a necessary and sufficient condition for f(x) to 
have a stationary point is either 

where x* is treated as a constant in the partial derivative, or 

89(Z) x*> - - 
dx* 

0 
7 

where x is treated as a constant in the partial derivative. 

(A.400) 

(A.401) 

*Our discussion follows [Bra83]. 
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For the case when z is a vector, we define the complex gradient operator 
as 

V 
[ 

d a d T 
z= Z’ zp ‘.‘) dxrv ’ 1 (A.402) 

where 

d A d . d -A P 
ax, - ax, 

J 
dY 

7 n= l,***,N. (A.403) 
n 

Similarly, 

where 

vzH = 
d a a 

az*) &*, l -7 
1 2 aZ;, 7 1 (A.404) 

(A.405) 

Let f (4 = f (7 Y> = 9( z, zH) where g(z, zH) is a real-valued function of 
z and zH, which is analytic with respect to z and zH independently. Then, 
either 

vzg(z, zH) = 0, (A.406) 

where zH is treated as a constant, or 

VzH+,zH) = 0, (A.407) 

where z is treated as a constant, are necessary and sufficient to determine a 
stationary point of f(z). We will normally use (A.407) in our applications. 

We consider two applications that are encountered in the text. The first 
application is to minimize wHRw subject to the constraint wHc = a. Here 
R is an N x N Hermitian matrix and w  is an N x 1 complex vector. 

We define a real cost function, 

g(w,wH) = wHRw + 2Re 
[ 
X(wHc - a) 1 (A.408) 

= wHRw + X(WHC - a) + X*(wHc - a*), (A.409) 

where X is a Lagrange multiplier. Taking the gradient with respect to wH 
and setting the result equal to zero gives 

vwHg(W, wH) = Rw, + xc = 0, (A.410) 

where the subscript denotes optimum. Then 

w* = --AR-k. (A.411) 
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The constraint equation is used to find X, 

H c w,= -XcHRB1c = a*, (A.412) 

Using (A.413) in (A.411 

x = -(cf’Rm’c)-la*. 

ives 

(A.413) 

a*R% 
w, = 

cHR-lc’ 
(A.414) 

As a second example, we maximize the same function, wnRw, subject 
to the constraint 

H w w=a, (A.415) 

where a is real. 
The cost function is 

S(w,wH) = wHRw + X(wHw - a), (A.416) 

where X is a real Lagrange multiplier. Then, 

V+g(w,wH) = Rw, + Xw, = 0, (A.417) 

or 
Rw, = -Xw,. (A.418) 

The result in (A.418) is familiar as the eigenvector equation (A.188). Thus, 
w, is the eigenvector of R corresponding to the largest eigenvalue. 

We use the complex gradient in a number of derivations in the text. 
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Appendix B 

Array Processing Literature 

Due to the wide variety of applications of array processing, the literature is 
spread across a number of different journals and conferences. In this section, 
we list some of the journals and books where array processing research is 
reported. In Section B.l, we list the relevant journals. In Section B.2, we list 
some books dealing with array processing. In Section B.3, we list some books 
that treat time-domain problems, which are similar to the array processing 
problems, for uniform linear arrays. 

B. 1 Journals 

The following journals discuss current research in array processing from var- 
ious viewpoints. 
A. Institute of Electrical and Electronic Engineers 

We have listed transactions that contain articles on array processing. 
The order is a rough indication of the number of articles published. The 
first three entries are the primary sources. 

(i) Signal Processing 

(ii) Antennas and Propagation 

(iii) Aerospace and Electronic Systems 

( > iv Ocean Engineering 

(v) Information Theory 

(vi) Circuits and Systems 
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(vii) Vehicular Technology 

(viii) Communications 

(ix) Geoscience Electronics 

(x) Automatic Control 

(xi) Systems, Man, and Cybernetics 

The Proceeding of the IEEE also has special issues dealing with Antennas 
(e.g., [MM92]). 
B. IEE (British) 
C. Journal of the Acoustical Society of America (JASA) 
D. Geophysics 
E. Geophysical Prospecting 
F. Signal Processing (European) 

B.2 Books 

Two representative lists of books that deal with various aspects of array 
processing can be constructed. The first group emphasizes a deterministic 
approach and develops what we will refer to a “classical array theory”. This 
group includes: 

(i) J. D. Kraus, Antennas [Kra88] 

(ii) C. A. Balanis, Antenna Theory Analysis and Design [Ba182] 

(iii) R. S. Elliott, Antenna Theory and Design [El1811 

(iv) T. A. Milligan, Modern Antenna Design [Mi185] 

(v) Y. T. Lo and S. W. Lee, Antenna Handbook: 1. Fundamentals and Mathematical 
Techniques [LL93a]; 2. Antenna Theory [LL93b]; 3. Applications [LL93c]; 4. Related 
Topics [LL93d] 

(vi) W. L Stutzman and G. A. Thiele, Antenna Theory and Design [ST811 

(vii) B. D. Steinberg, Principles of Aperture and Array System Design [Ste 7 

(viii) R. J. Mailloux, Phased Array Antenna Handbook [Mai94] 

(ix) W. L. Weeks, Antenna Engineering [Wee681 

(x) K. Fujimoto and J. R. James, Mobile Antenna Systems Handbook [FJ94 :I 
(xi) H. Mott, Antennas for Radar and Communications [Mot921 

(xii) R. C. Hansen, Microwave Scanning Antennas [Han851 

(xiii) R. C. Hansen, Phased Array Antennas [Han981 

61 

The second group emphasizes a statistical approach to “optimum array 
processing”. This list includes: 
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(i) P. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays [MM801 

(ii) J. E. Hudson, Adaptive Array Principles [Hud81] 

(iii) S. Haykin (Ed.), Adaptive Signal Processing [Hay851 

(iv) D. E. Dudgeon and R. M. Mesereau, Multidimensional Signal Processing [DM84] 

(v) E. Brookner, Practical Phased Array Antenna Systems [BroSl] 

(vi) S. Haykin (Ed.), Ad vances in Spectrum Analysis and Array Processing, Vol. I [HaySla] 
Vol. II [HaySlb], Vol. III [Hay951 

(vii) D. H. Johnson and D. E. Dudgeon, Array Signal Processing, Concepts and Tech- 
niques [ JD93] 

(viii) R. T. Compton, Jr., Aduptive Antennas, Concepts and Performance [Corn881 

(ix) S. U. Pillai, Array Signal Processing [Pi1891 

(x) B. D. Steinberg, Principles of Aperture and Array System Design [Ste76] 

(xi) S. Haykin and A. Steinhardt, Adaptive Radar Detection and Estimation [HS92] 

(xii) T. J. Shepherd S. Haykin, and J. Litva (Eds.), Radar Array Processing [SH92] 

(xiii) P. Stoica and R. Moses, Introduction to Spectral Analysis [SM97] 

(xiv) L. J. Ziomek, Fundamentals of Acoustic Field Theory and Space-Time Signal Pro- 
cessing [Zio95] 

(xv) J. C. Hassab, Underwater Signal and Data Processing [Has891 

(xvi) R. J. Mailloux, Phased Array Antenna Handbook [Mai94] 

(xvii) N. Kalouptsidis and S. Theodoridis (Eds.), Adaptive System Identification and 
Signal Processing Algorithms [KT93] 

(xviii) F. A. Grunbaum, M. Bernfeld, and R. E. Blahut (Eds.), Radar and Sonar, Part 
I [GBBSl] 

(xix) F. A. Grunbaum, M. Bernfeld, and R. E. Blahut(Eds.), Radar and Sonar, Part 
II [GBB92] 

(xx) S. Haykin (Ed.), T p o its in Applied Physics, Vol. 34: Nonlinear Methods of Spectral 
Analysis [Hay831 

(xxi) J. C. Liberti, Jr. and T. S. Rappaport, Smart Antennas for Wireless Communica- 
tions: IS-95 and Third Generation CDMA Applications [LR99] 

(xxii) R. Klemm, Space-time Adaptive Processing [Kle98] 

(xxiii) T. S. Rappaport (Ed.), S mart Antennas: Adaptive Arrays, Algorithms, and Wire- 
less Position Location [Rap981 

(xxiv) S. Y. Kung, H. J. Whitehouse, and T. Kailath (Eds.), VLSI and Modern Signal 
Processing [KWK85] 

B.3 Duality 

In Chapter 2, we find that array processing for a uniformly spaced linear 
array with elements spaced at X/2 is identical to frequency-domain process- 
ing using a FIR filter. Therefore, a significant number of results carry over 
directly to the array processing area. 
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Representative books that contain results that are useful in array pro- 
cessing include: 

(i) S. M. Kay, Modern Spectral Estimation, Theory and Application [Kay881 

(ii) S. L. Marple, Jr., Digital Spectral Analysis with Applications [Mar871 

(iii) A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing [OS891 

(iv) S. Haykin, Adaptive Filter Theory, [Hay961 

(v) B Porat, Digital Processing of Random Signals [Por94] 

(vi) J. G. Proakis et al., Advanced Digital Signal Processing [PRLN92] 

(vii) D. G. Childers, Modern Spectrum Analysis [Chi78] 

(viii) S. B. Kesler (Ed.), M d o ern Spectrum Analysis, vol. II [Kes86] 

(ix) B. Widrow and S. D. Stearns, Adaptive Signal Processing [WS85] 

(x) L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series 
Analysis [SchSl] 

(xi) M. Bellanger, Digital Processing of Signals, [Be1841 

(xii) G. C. Carter (Ed.), C h o erence and Time Delay Estimation [Car931 

(xiii) A. V. Oppenheim (Ed.), Applications of Digital Signal Processing [Opp78] 

(xiv) S. U. Pillai and T. I. Shim, Spectrum Estimation and System Identification [PS93] 

(xv) Multidimensional Signal Processing Comrnittee (Eds.), Selected Papers in Multidi- 
mensional Digital Signal Processing [MSP86] 

(xvi) L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Process- 
ing [RG75] 

(xvii) M. B. Priestley, Spectral Analysis and Time Series, Vols. 1 and 2 [Pri81] 

(xviii) S. T. Alexander, Adaptive Signal Processing [Alex861 

(xix) J. R. Treichler, C. R. Johnson, Jr., and M. G. Larimore, Theory and Design of 
Adaptive Filters [TJL87] 

(xx) J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, 
and Control [Men951 
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Appendix C 

Notation 

In this section we discuss the conventions, abbreviations, mathematical sym- 
bols, and symbols used in the book. 

C.l Conventions 

The following conventions have been used: 

1. Boldface roman denotes a vector or matrix. 

2. The symbol 1 l ( means the magnitude of the scalar contained within. 

3. The symbol (( l I( denotes the Euclidean norm of the vector or matrix 
contained within. 

4. Multiple integrals are frequently written as, 

1 w  (4 J dtg(t, 7) n / f(r) { 1 dtdt7 r)} dr7 

that is, an integral is inside all integrals to its left unless a multiplica- 
tion is specifically indicated by parentheses. 

5. E[*] denotes the statistical expectation of the quantity in the bracket. 

6. The probability density of x is denoted by &) and the probability 
distribution by Pz( 0). The probability of an event, A, is denoted by 
Pr[A]. The probability density of x, given that the random variable a 
has a value A, is denoted by p+(XIA). 
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7. A vertical line in an expression means “such that” or “given that”; 
that is, Pr[Alz < X] is the probability that event A occurs given that - 
the random variable x is less than or equal to the value of X. 

We list acronyms used in the text. 

C.2 Acronyms 

AAR 
ACCR 
AIC 
AM 
AMF 
AML 
AP 
AR 
ARMA 
ASNR 

BWNN 

BS 

CCRB 
CFAR 
CM 
CML 
CMT 
CRB 

DEMT 
DFT 
DISPARE 
DL 
DMI 
DMR 
DOA 
DOF 
DPSS 
DSPE 

adaptive angular response 
asymptotic conditional CRB 
Akaike Information Criterion 
alternating maximization 
adaptive matched filter 
asymptotic ML estimator 
alternating projection 
auto-regressive (model) 
auto-regressive moving average (model) 
array signal-to-noise ratio 

null-null bandwidth 
beamspace 

conditional CRB 
constant false alarm rate 
constant modulus 
conditional ML estimator 
covariance matrix taper 
Cramer-Rao bound 

Detection, Estimation, and Modulation Theory 
discrete Fourier transform 
distributed signal parameter estimator 
diagonal loading 
direct matrix inversion 
dominant-mode rejection (beamformer) 
direction of arrival 
degrees of freedom 
discrete prolate spheroidal sequence 
distributed signal parameter estimation 
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EV 
EM 
ES 
ESPRIT 

FB 
FBSS 
FCA 
FIM 
FIR 
FO 

GL 
GLRT 
GSC 

HPBW 
HCRB 
HSST 

ICASSP 

IDFT 
IMODE 
INR 
IQML 
IQML-QC 
IR 

JASA 

LCMP 

LCMV 

LEO 
LMS 
LNR 

eigenvalue 
expect at ion m aximization 
eigenspace 
estimation of signal parameter 
via rotational invariance technique 

forward-backward (averaging) 
forward-backward spatial smoothing 
filled circular array 
Fisher information matrix 
finite impulse response 
forward-only (averaging) 

grating lobe 
generalized LRT 
generalized sidelobe canceller 

half-power bandwidth 
hybrid CRB 
Householder subspace transformation 

International Conference on Acoustic, 
Speech, and Signal Processing 
inverse discrete Fourier transform 
iterative MODE 
interference-to-noise ratio 
iterative quadratic maximum likelihood 
IQML with quadratic constraint 
invisible region 

Journal Acoustic Society of America 

linear constrained minimum 
power (beamformer) 
linear constrained minimum 
variance (beamformer) 
low-earth orbit 
least mean square 
loading-to-noise ratio 
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LP 
LRT 
LS 
LS-ESPRIT 

ML 
MA 
MAP 
MBA 
MDL 
MMSE 
MODE 
MPDR 
MPQR 
MRA 
MRLA 
MUSIC 
MVDR 
MVQR 

PM 

QC 
QP 
QRD 

RMSE 
RLS 

SALP 
SCMV 
SH 
SHA 
SINR 
SLA 
SLL 
SMI 
SNR 
SRA 
STAP 

linear prediction 
likelihood ratio test 
least squares 
least squares ESPRIT 

maximum likelihood 
moving average (model) 
maximum a posteriori probability 
multiple beam antenna 
minimum description length 

minimum power quiescent response 
(i) minimum redundancy array (ii) maximum response axis 
minimum redundancy linear array 
multiple signal characterization 
minimum variance distortionless response 
minimum variance quiescent response 

Parks-McClellan 

quadratic constraint 
quiescent pat tern 
QR decomposition 

root mean-square error 
recursive least square 

subaperture linear prediction 
soft constraint minimum variance 
sequential hypothesis 
standard hexagonal array 
signal-to-interference and noise ratio 
standard linear array (d = X/2) 
sidelobe level 
sample matrix inversion 
signal-to-noise ratio 
standard rectangular array (d, = d, = X/2) 
space-time adaptive processing 
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ss 
SVD 

TAM 
TDL 
TDRSS 
TLS 
TLS-ESPRIT 
TNA 

UCA 
UHA 
ULA 
UML 
URA 

VR 

WES 
WSF 

(i) spatial smoothing (ii) stead 
singular value decomposition 

.y state 

Toeplitz approximation method 
tapped delay line 
Tracking and Data Relay Satellite System 
total least squares 
total least squares ESPRIT 
thermal noise algorithm 

uniform circular array 
uniform hexagonal array 
uniform linear array 
unconditional ML estimator 
uniform rectangular array 

visible region 

weighted eigenspace 
weighted subspace fitting 

C.3 Mathematical Symbols 

aH, AH 
aT, AT 

- 
A1 

II II a 
A * 

PI ij 
PI ( 1 kr 
PI ( > ICC 
Cl 
II All F 
CN[m, A 

@ 
n 

det A, IA 

conjugate transpose (A.6) 
transpose (A.4) 
inverse (A.40) 
Euclidean norm of a (A.36) 
conjugate of A 
ij element of A (A.l) 

lath row of A 

lath column of A 
Khatri-Rao product (A.96) 
Frobenius (Euclidean) norm of A (A.39) 
probability density of complex Gaussian 
(normal) vector 
Kronecker product (A.80) 
defined as 
determinant of A (A.20) 
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dim[A] 
- - 

0 . 

log 
In 

( > n’ . 
V e 
oc 

o(N) 
O(N) 
orth[A] 

R4~ 
Im{+ 
rank (A) 

tr (A) 
vet(A) 
x 
t + T- 
A+B+AuB 
1 .i.m. 

J-z& dx 

diag[al) a2, l l l 7 arv] 

Sd a x 

number of free parameters in A 
equal to first order 
Hadamard product (A.71) 
logarithm: base 10 
logarithm: base e 
n factorial 
partial derivative matrix operator 
proportional to 
negligible as N --+ oo 
proportional to N as N --+ 00 
columns of A are orthonormalized 
real part 
imaginary part 
rank of A (A.34) 
trace of A (A.26) 
stacked vector (A.112) 
estimate of x 
t approaches T from below 
A or B or both 
limit in the mean 
an integral over the same dimension as 
the vector 
diagonal matrix with elements al, ~2, l l l , UN 
integral over the set 0 
matrix with all zero elements 
unity vector: [l 1 l l l llT 

binomial coefficient 
( 
= k*) - . . 

C.4 Symbols 

We list symbols that are used in the text. The equation number indicates 
where the symbol was defined. If the symbol was defined in the text, a 
nearby equation number is listed. Symbols that are obvious modifications 
of other symbols are not included. 

a 

A(K) 

signal direction vector (2.15) 
data matrix ( A(K) = ax*) (7.271) 
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A C 

A is0 
A mpdr 

A mvdr 

4-m 

AL 

A lcmp 

A lcmv 

A 0 

AR 

A W 

AFk(k) 

AF+W 
AFz,(u) 

AR(P) 
ARMA(P7 4) 

a! 

a(K) 

B 

Bd@l 
BbS 

Bbsbl 

bH bs m 

B Id 
bsx 

BH 
bSY 

Bdu (u) 

B f 
B no 

B mvdr w4 

Bd+) 

&e(u) 

+x7 uy) 

B(4 4) 

conventional array gain (6.32) 
array gain: isotropic noise (2.144) 
array gain: MPDR beamformer (6.73) 
array gain: MVDR beamformer (6.28) 
exponentially weighted data matrix (7.269) 
left circulant matrix (A.150) 
array gain: LCMP beamformer (6.390) 
array gain: LCMV beamformer (6.389) 
optimum array gain (6.28) 
right circulant matrix (A.148) 
array gain for spatially white 
noise input (2.185) 
array factor in k-space (2.234) 
array factor in q-space (2.234) 
array factor in u-space (2.234) 
autoregressive process of order p (5.311) 
autoregressive moving average process of 
order (p, q) (5.303) 
step size in LMS algorithm (7.405) 
step size in LMS algorithm (7.405) 

(i) blocking matrix (6.361) 
(ii) matrix in polynomial parameterization (8.490) 
(iii) beam pattern matrix (2.82) 
(iv) output of DFT (3.96) 
asymmetric beam pattern (3.285) 
beamspace matrix (3.327) 
beamspace blocking matrix (6.530) 
weight vector for m/th beamspace beam (6.499) 
x-component of beamspace matrix, planar array (9.372) 
y-component of beamspace matrix, planar array (9.374) 

desired beam pattern in u-space 
ratio of signal bandwidth to center frequency (5.288) 
non-orthogonal beamspace matrix (3.329) 
beam pattern of MVDR beamformer (6.93) 
beam pattern using rectangular window (3.213) 
element beam pattern (2.232) 
beam pattern in ux, uy-space (4.11) 
beam pattern in (0, +)-space (2.38) 
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B(w : 6 4) 
BV (4 
B(@x7 +y> 
B&) 
&(a, 22) 

B,(k : kT) 

Bd (@> 

B eig,i 

B@) (k) 

BPM 

B&t!9 

B s 
BT b> 
BTAY (u) 

BB (8) 

Bu k-4 

Bq&’ 1 +T) 

&c(e 1 BT) 

&c(u 1 UT) 

BWNN 

C 

C 

cpCR(@) 

cER(e) 

co, Cl, c2 

cCR@) 
cHCR(hd 
kX(@) 

%X&t!') 
c-h w 
CCR,bs@) 
cCR(8) 
CK 

C X 

C x,fb 
C x,Re 

Glu 

CWES 

1421 

beam pattern in (0, $)-space (2.38) 
beam pattern in v-space (3.170) 
2-D beam pattern in qx,& space (4.11) 
beam pattern polynomial in x-plane (3.42) 
2-D z-transform (4.93) 
conventional beam pattern in k-space (2.124) 
desired beam pattern (3.82) 
ith eigenbeam (7.126) 
nominal beam pattern (2.196) 
phase mode excitation beamformer 
beam pattern in q-space (2.71) 
bandwidth of signal (Hz) (2.40) 
beam pattern using Taylor weighting (3.173) 
Taylor beam pattern: circular aperture (4.220) 
beam pattern in e-space (2.69) 
beam pattern in u-space (2.70) 
conventional beam pattern in @space (2.125) 
conventional beam pattern in e-space (2.131) 
conventional beam pattern in u-space (2.126) 
bandwidth: null-to-null (2.105) 

velocity of propagation (2.14) 
constraint matrix N x MC (3.256) 
approximate Cramer-Rao bound on Q (8.110) 
Bayesian Cramer-Rao bound (= JjY$) (8.53) 
constraint matrices using derivatives (3.251),(3.253),(3.255) 
Cramer-Rao bound on @ (8.94) , 
hybrid Cramer-Rao bound (8.676) 
conditional Cramer-Rao bound on + (8.235) 
asymptotic conditional Cramer-Rao bound on Q (8.236) 
beamspace Cramer-Rao bound on + (8.273) 
beamspace Cramer-Rao bound on ‘1c, (8.616) 
Cramer-Rao bound matrix (8.25) 
scaled spectral matrix (7.3) 
sample spectral matrix (7.10) 
forward--backward averaged sample spectral n 
real sample spectral matrix (9.56) 
error covariance matrix using 
MUSIC algorithm (9.246) 
error covariance matrix, weighted eigenspace 

atrix (7.40) 

9.263) 
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CBA&J 

CO 

X 2 

d 

D 

D 

6 P 
6 s 
A si 
Ak 2 

Al 2 

AP i 

. .  
7 

APzi 7 AP,i 7 

AP zi 

w i 

A4 n 

w i 

Ari 
AT 
AT ij 

AT max 

Au 1 

Au 2 

Au S 

AZ i 

DI 

C.4 Symbols 

error covariance matrix, beamspace MUSIC (9.300) 
constraint matrix, zero-order nulls (3.251) 
complex chi-squared random variable (7.16) 

distance between sensors, uniformly spaced array (2.3) 
(i) directivity of an array or aperture (2.144), 
(ii) number of source signals (also d) (6.143) 
(i) diagonal matrix of ej@, terms (6.616) 
(ii) matrix of derivative vectors (8.97) 
nth derivative of v(u) with respect to u (3.260) 
difference beam pattern in (8,$) space (4.236) 
distance along circumference (4.157) 
MUSIC polynomial 
complementary difference beams (4.240) 
complementary difference beams (4.243) 

aN]N x N diagonal matrix whose 
elements are al, 9 l . , aN (A.119) 
filter’s upper peak of ripple (3.222) 
filter’s lower peak of ripple (3.222) 
amplitude perturbation (2.193) 
normalized mean-square width of response (3.3) 

normalized mean-square width of weighting (3.3) 
perturbation of sensor position (2.195) 

perturbation of sensor position (z, y, 
and z components) (2.195) 
perturbation of sensor phase (2.194) 
phase error, nth sensor (2.194) 
error in $J direction in estimate 
of ith root (9.199) 
radial error in estimate of ith root (9.199) 
segment of observation interval (5.1) 
travel time between i and j elements (2.43) 
maximum travel time across array (2.43) 
HPB W (half-power beamwidth) (2.100) 
SW,, (null-null beamwidth) (2.105) 
sampling interval in u-space (3.74) 
error in estimate of ith root (9.199) 
directivity index (2.167) 
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d S 

en 

E ij 

ePm (TV 

EFFMU 

Fmap (6 P> 
f(t7 Pn) 
fc, (t> 
F,(r : k) 
F am1 

F cm1 

FWSF 

FMODE 

F(w7 P> 

f(t) 

si 
rdk) 

H 

Ho, Hl 

h( > 7 

H(Y) 
Ho(w) 
H W 

HG 

Hk 

displacement between subarrays in 
ESPRIT algorithm (9.101) 

vector with 1 in nth position 
and zero elsewhere (A.104) 
matrix with 1 in ij element and zero elsewhere (A.107) 
error function in Parks-McClellan algorithm (3.222) 
efficiency of MUSIC algorithm (9.251) 
noise level across band (8.373) 
noise level at mwg (8.373) 

N x N matrix in discrete Fourier transform (3.97) 
Fourier transform of f(t,p) (2.12) 
cost function in e-space (8.389) 
kth frequency-domain snapshot of complex 
source-signal vector (8.200) 
MAP cost function (8.690) 
signal input to array at time t (2.6) 
real part of f(t) 
temporal correlation-spatial wavenumber spectrum (5.92) 
AML cost function (8.390) 
CML cost function (8.391) 
WSF cost function (8.392) 
MODE cost function (8.392) 
Fourier transform of signal at p (2.12) 
complex envelope (5.71) 

value of constraints (6.279) 
gain vector (7.157) 
amplitude of complex weight wi (2.190) 
generalization of Gamma function (7.13) 

matrix in CRB, DHP$D (8.101) 
hypotheses 0 and 1 (10.1) 
impulse response of vector filter (2.9) 
transformation in EM algorithms (8.454) 
MMSE weight vector (6.42) 
whitening matrix (6.517) 
Gaussian approximation to Hessian (8.426) 
Hessian matrix at kth iteration (8.401) 
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IO cx> modified Bessel function of zero order (3.36) 

J 

JB 

JD 

JP 
J ?w 

J s 
J S 

J( ’ - ms 
S 

J(b) 

(i) exchange matrix (A.125) 
(ii) Fisher information matrix (8.26) 
Bayesian version of Fisher information matrix (8.49) 
data information matrix (8.50) 
prior information matrix (8.51) 
sub-matrix of Fisher information matrix 

for @ parameter (8.89) 
selection matrix (9.103) 
identity matrix component of J, (9.103) 

weighted diagonal matrix in ESPRIT 
selection matrix (9.132) 
cost function for IQML (8.496) and MODE (8.532) 

k wavenumber (2.24) 
K number of snapshots (5.1) 

kT steering direction in k-space (2.119) 

k0 magnitude of wavenumber (2.57) 
k radial component of wavenumber (5.131) 
i&l $2 : p1 ,pz)space-time covariance function (5.85) 

Kx(t1, t2 :Pn> 

Kx(r : PA) 

Kx (8) 
k z 

L 

wJ7 F) 

space-time covariance function; 
wide-sense stationary process (5.86) 
space-time covariance function ; 
homogeneous process (5.88) 
space-time covariance function; homogeneous, 
wide-sense stationary process (5.90) 
covariance matrix of x (as a function of 0) (8.8) 
x-component of wavenumber k (2.56) 

(i) length of linear aperture (2.5) 
(ii) number of subarrays in linear 
spatial smoothing (6.614) 
lower triangular matrix (A.151) 
likelihood function (8.10) 
likelihood function (as a function of d, 
the number of signals) (7.502) 
likelihood function (conditional model) (8.336) 
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Lb+% Sf > 

Lb&‘, F) 

x 

x 
x( > W 

x i 

Xl 

x U 

x max 

x min 
A 
x i 

x fb 

&e 

M 
M 

M 

mS 

mx 0 
P 
P(K) 

N 
n 

likelihood function (stochastic model) (8.277) 
likelihood function in beamspace 
(conditional model) (8.627) 
(i) wavelength (2.24), 
(ii) Lagrange multiplier (2.163) 
Lagrange multiplier vector (3.262) 
Lagrange multiplier as a function of frequency 
ith eigenvalue of matrix (A.196), (5.208) 
wavelength of lowest frequency (3.335) 
wavelength of highest frequency (3.335) 
maximum eigenvalue (5.2 13) 
maximum eigenvalue (5.2 13) 
estimate of ith eigenvalue (7.21) 

estimated eigenvalue with FB averaged 
sample spectral matrix (9.60) 

estimated eigenvalue with real sample 
spectral matrix (9.63) 
diagonal matrix of signal subspace eigenvalues (5.238) 
diagonal matrix of noise eigenvalues (5.239) 
diagonal matrix of estimated signal 
subspace eigenvalues (8.361) 
diagonal matrix of estimated noise eigenvalues (8.361) 
real estimated signal subspace eigenvalue matrix (9.64) 

real estimated noise subspace eigenvalue matrix (9.64) 

matrix representing data (8.362) 
(i) number of sensors in linear subarray 
(spatial smoothing) (6.614) 
(ii) number of sensors in y-direction: 
rectangular planar array (4.11) 
(iii) number of frequency bins (5.7) 
misadjustment in LMS beamformer (7.452) 
parameter in weighted ESPRIT (9.132) 
mean of x (as a function of 0) (8.8) 
exponential weight (7.138) 
diagonal exponential weighting matrix (7.270) 

number of elements in the array (2.5) 
index of elements (2.3) 
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NR 

WC 

OA 

PM 

P&l 
PO 
p(w, 44 
P(4 4) 
G&) 
PD 

PA 
pdo 

PF 

PI0 

Pn 
Pn 

P no 

PV 
PL V 
Pz(w : k) 

& (‘+> 

hV(‘+) 

%fd+) h 
P mvdr w> 

PT(4 

symmetric index (3.11) 
(i) number of holes (3.299) 
(ii) number of elements in standard hexagonal array (4.256) 
number of redundancies (3.299) 

frequency separation (5.6) 
radian frequency (2.10) 
center frequency (rad/sec) (2.39) 
beam solid angle (4.31) 

penalty function (7.503) 
position of elements on z-axis (2.3) 
inverse of WI(K) (7.154) 
beam power pattern in frequency-angle space (6.306) 
beam power pattern with w  suppressed (6.306) 
output spectrum in z-domain, ARMA models (5.302) 
probability of detection (7.511) 
position difference (2.192) 
desired output power (6.593) 
probability of false alarm (7.511) 
interference output power (6.597) 
position of nth sensor (1-D) (2.53) 
position of nth element (3-D) (2.6); 
in rectangular coordinates, pn = [iozn, p,n 9 pznIT 
noise output power (6.598) 
projection matrix with respect to V (A.177) 
orthogonal projection matrix (A.178) 
frequency-wavenumber spectrum (5.93) 
beamscan spectrum (9.2) 
weighted beamscan spectrum (9.5) 
beamscan spectrum with FB averaging (9.9) 

MVDR spectrum (9.13) 
probability of error 
angle measured counterclockwise from positive z-axis (2.17) 
diagonal matrix of phase terms in ESPRIT (9.107) 
phase of complex weight wi (2.190) 
ith eigenvector of matrix (A.192), (A.l96), (5.205) 
exponentially weighted sample spectral matrix (7.138) 
exponentially weighted sample spectral matrix in 
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generalized sidelobe canceller (7.196) 
estimate of ith eigenvector (7.21) 

estimate of real eigenvector (9.59) 
estimate of real eigenvector using FB averaging (9.60) 

exponentially weighted sample spectral matrix 
using FB averaging (7.246) 
real exponentially weighted sample spectral matrix (7.256) 
half-power point beamwidth (4.29) 
asymptotic ML estimate of $J (8.310), (8.315) 
conditional ML estimate (8.346) 

CML estimate in beamspace (8.630) 
design parameter in Parks-McClellan algorithm (3.223) 
design parameter in Parks-McClellan algorithm (3.223) 
z-component of $J (4.2) 
y-component of + (4.3) 

MODE estimate of $J (8.367)-(8.370) 
matrix in beamspace unitary LS-ESPRIT (9.324) 
matrix in beamspace unitary TLS-ESPRIT (9.325) 
matrix in LS-ESPRIT (9.120) 

matrix in TLS-ESPRIT (9.122) 
matrix in unitary LS-ESPRIT (9.163) 

matrix in unitary TLS-ESPRIT (9.165) 

(i) specific unitary matrix (A.161), (A.162), (7.58), (7.59), 
(7.248), (7.249) 
(ii) matrix in quadratic form (6.337) 
MUSIC null spectrum (9.43) 

MVDR null spectrum (9.14) 

MVDR null spectrum with FB averaging 
unitary matrix with dimension N x N (9.137) 

matrix in IQML algorithm (8.508) 
matrix in IMODE algorithm (8.536) 
null polynomial (9.20) 

root MUSIC polynomial (9.48) 
root MUSIC polynomial with FB averaging (9.52) 

unitary root MUSIC polynomial (9.65) 
Min-Norm null spectrum (9.95) 
weighted eigenspace null spectrum (9.258) 
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R 

R[ 1 m 

Re(K) 
l;to 
RE 
Rf 

R X 

R n 

C.4 Symbols 

bearnspace MUSIC null spectra (9.295) 

ratio of main-lobe height to sidelobe height (3.143) 
discrete rectangular window (3.210) 
weight error correlation matrix (7.438) 
upper triangular matrix in QRD (7.282) 
correlation matrix of errors (8.52) 
source-signal correlation matrix (8.68) 
input correlation matrix (8.68) 
noise correlation matrix (8.68) 

R&w : Irnl) co-array of linear array (5.187) 

Rw(w : P> 

3 
R 2 
RA Y 

P 
PC > W 

PI S 

s,(w : 4 4) 

SH dx 

Sf 

Sf (w> 
S X,fb 
S 

Sn( > nW 

s,(w) 

%I, b-4 

Sx(w : PA) 
s,(wrl> 
S x,L h 
S x,fb 

h 
S X 

S x,bs 

S (-1 
t 

S 0 
i&B 

SSSFB 

aperture autocorrelation function (5.184) 
correlation vector for AR process (5.318) 
correlation matrix for AR process (5.316) 
augmented correlation matrix for AR process (5.320) 
perturbation vector (6.240) 
normalized spectral matrix (6.27) 
spatial correlation coefficient (6.80) 

spectral density on sphere (5.127) 
cross-spectral matrix between D and X (6.41) 
source-signal spectral matrix (5.67)) (5.222) 
input signal frequency spectrum at each sensor (2.170) 
forward-backward spatial spectral matrix (7.45) 
noise spectral matrix (6.37) 
input noise frequency spectrum at each sensor (2.170) 
spectral matrix of vector process (5.174) 
array output signal spectrum (2.180) 
temporal frequency-spatial correlation function (5.91) 
spatial spectral matrix at frequency wm (5.175) 
spectral matrix augmented with diagonal loading (7.115) 

estimated spatial spectral matrix using 
forward-backward averaging (7.45) 
estimated spatial spectral matrix(7.9) 
beamspace spatial spectral matrix(6.509) 

forward spatial spectral matrix of ith subarray (6.617) 

backward spatial spectral matrix of ith subarray (6.618) 
forward-backward spatially smoothed 
spectral matrix (6.622) 
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sss 
S x,ml 

%,ml 

sss 
SFBSS 

c 
o2 W 

T 

t4MF 

t e 

T 0 

7% 
e - 
e 
OH 

@H 

8 map h 
e ml 

e W 

e U 

01 

02 

OR, eL 

Tn(x) 

T se 

U 
U 

UN 

GN 

uR,uL 

URS 

us, us 

CS 

ux,uy,“z 

spatially smoothed spectral matrix (6.628) 
AML estimate of x (8.299) 

AML estimate of f (8.296) 
sample spectral matrix using spatial smoothing (9.288) 

sample spectral matrix using forward-backward 
spatial smoothing (9.289) 
normalized signal spectral matrix (8.103) 
spectral height; white noise (5.191) 

transformation matrix (5.232) 
test statistic: adaptive matched filter (10.21) 
test statistic (10.5) 
quadratic constraint (2.211) 
delay at nth sensor relative to a sensor at the origin (2.14 
angle measured from positive z-axis (2.2) 
complement of 8, 8 = g - e (2.2) 
half-power beamwidth in e-space, 1-D (2.136) 
half-power point beamwidth, 2-D (4.27) 
MAP estimate of 8 (8.22) 
ML estimate of 8 (8.15) 
wanted parameter (8.39) 
unwanted parameter (8.39) 
nonrandom parameter (8.58) 
random parameter (8.58) 
right and left half-power point in e-space (2.134) (2.135) 
nth degree Chebychev polynomial (3.133) 
sensitivity function (2.206) 

direction cosine vector, u = [uZ, uy, u,lT (2.20) 
(i) upper triangular matrix (A.153); 
(ii) left singular vector (A.261); 
(iii) N x N matrix of eigenvectors (6.439) 
matrix of noise subspace eigenvectors (5.234) 
estimate of UN (8.361) 
right and left half-power points in u-space (2.132) (2.133) 
real signal subspace matrix (9.158) 
matrix of signal subspace eigenvectors (5.231) 

estimate of US (8.361) 
direction cosines with respect to x, y, 

> 
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U Q 

up, e”“‘) 

UT 
Udm 

Obs,S 

fJbs,N 

fJmsLs,s 

UP 

fJS,Re 

&,Re 

U Sl h 
U sl 

U s2 h 
U s2 

VW, k) 

v4 

L (4 k) 

V 

vbs (ti> 

VecH (%I uy> 

dk) 
v(lc) ($4 
VP? P> 
Vt 

and x axes (2.17)(2.18)(2.19) 
N x N matrix of eigenvectors (6.339) 

function in EM algorithm (8.456) 
radial directional cosine (4.6) 
dominant mode subspace (6.487) 
estimated beamspace signal subspace (9.295) 
estimated beamspace noise subspace (9.295) 
estimated signal subspace using FB 
spatial smoothing (9.291) 
estimated noise subspace using FB 
spatial smoothing (9.291) 
weight matrix in MUSIC analysis (9.216) 

real estimated signal subspace (9.64) 
real estimated noise subspace (9.64) 
first subarray signal subspace (9.109) 
estimated first subarray signal subspace (9.117) 
second subarray signal subspace (9.110) 

estimated second subarray signal subspace (9.118) 
frequency-wavenumber response function (2.37) 
frequency-wavenumber response function 
in x-plane (2.63) 
frequency-wavenumber response function 
in Q-space (2.61) 
frequency-wavenumber response function 
of sensor element (2.234) 
frequency-wavenumber response function in u-space (3.72) 

right singular vector (A.261) 
array manifold vector in beamspace (6.502) 
array manifold vector for standard 
hexagonal array (4.257) 
array manifold vector: k-space (2.28) 
kth derivative of array manifold vector (7.514) 
perturbed array manifold vector (8.73) 
Moore-Penrose pseudo-inverse of V 
(A.185)-(A.187), (8.326) 
array manifold vector: q-space (1-D) (2.72) 
array manifold matrix (planar array) (4.52) 

real array manifold matrix (9.152), (9.340) 
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vbs 

VI 

W 
W 

WN (K, %c) 

w-4 

WOW 
wx4 
Wa 

W a0 

wd 

w&7 
W,n 

WC 
Wn 

wn(w). 

WO 

we 

wbs 

cdq 
H 

wlf=nv 

“lgn” 

Wdm 

W;vdr 

WH mvdr 

real array manifold vector (9.140) 
array manifold vector: u-space (1-D) (2.68) 
array manifold vector: o-space (1-D) (2.,67) 
array manifold vector for reference subarray (9.290) 
array manifold matrix; M-element subarray 
array manifold matrix, linear array (8.67) 

array manifold matrix, linear array 
($J suppressed) (5.221) 
beamspace array manifold matrix, 
linear array (@ suppressed) (6.515) 
beamspace array manifold matrix of interference, 
linear array ($J suppressed) (6.104) 

weight matrix, planar array (4.56) 
complex weight vector (2.49) 
complex Wishart density (7.11) 
(i) weight vector in frequency domain (6.6) 
(ii) D x N matrix processor (6.144) 
optimum vector in frequency domain (6.12) 
aperture weighting function (2.214) 
adaptive weight vector in sidelobe canceller (6.373) 
asymptotically optimal weighting (8.368) 
desired weight vector (3.262) 
desired quiescent weight vector (6.409) 
nominal weight (2.190) 
complex weighting of sensor output (2.49) 
nominal weight vector (2.190) 
nominal matrix filter 
optimum weight vector (3.264) 
error weight vector (3.271) 
weight vector in beamspace (3.334) 
normalized desired quiescent weight vector (6.409) 
LCMV weight vector (6.357) 
LCMP weight vector (6.358) 
weight vector, dominant-mode beamformer (7.522) 
minimum variance distortionless 
response weight vector (6.23) 
minimum variance distortionless 
response weight vector (6.74) 
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H 
Wmpdr 

H 
Wmpdr,dl 

WH m dr,es 
2 

Wlcmp,es 

WpmW) 

w4 

wRb-9 

wbs 
h 

WH mvdr,smi 

h 
WH mpdr,smi 

%e (K) 

%-1, (K) 

+lms (K) 
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minimum power distortionless 
response weight vector (6.71) 
minimum power distortionless response weight vector 
with diagonal loading (6.270) 
MPDR weight vector in eigenspace (6.449) 
LCMP weight vector in eigenspace (6.464) 
weighting function in Parks-McClellan-Rabiner 
algorithm (3.224) 
quiescent weight vector (6.360) 
radial weighting function: circular aperture (4.192) 
beamspace weight vector 
weight vector for SMI implementation of 

MVDR beamformer (7.83) 
weight vector for SMI implementation of 
MPDR beamformer (7.85) 
least squares error weight vector (7.149) 
weight vector in RLS algorithm (7.431) 
weight vector in LMS algorithm (7.432) 

X(k) (also X,> frequency-domain snapshot vector (7.2) 
X 
X fb 
XAT (urn) 

XC wm, k> 

f5ms(K) 

YW 
y(w) 

N x K data matrix (7.4) 
N x 2K forward-backward data matrix (7.48) 
finite interval Fourier transform (5.4) 
kth frequency-domain snapshot at frequency wm 
mean-square error: LMS 
beamformer at Kth iteration (7.448) 
weighted summation of squared errors (7.148) 
steady state excess mean-square error (LMS) (7.451) 
excess mean-square error (LMS) (7.449) 
weighted summation of squared errors (7.132) 
weighted summation of squared outputs (7.133) 
MMSE (7.324) 
MSE (6.39) 
MMSE as a function of w  (6.48) 
transient MSE using steepest descent (7.368) 

array output (2.7) 
Fourier transform of array output (2.10) 



C.$ Symbols 1433 

xk 

Zn 

RI 

kth zero (3.58), (3.59) 
coordinate of nth element on x-axis (2.4) 
normalized distance on x-axis: = z/X (3.72) 
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