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Preface

Array processing has played an important role in many diverse application
areas. Most modern radar and sonar systems rely on antenna arrays or
hydrophone arrays as an essential component of the system. Many commu-
nication systems utilize phased arrays or multiple beam antennas to achieve
their performance objectives. Seismic arrays are widely used for oil explo-
ration and detection of underground nuclear tests. Various medical diagnosis
and treatment techniques exploit arrays. Radio astronomy utilizes very large
antenna arrays to achieve resolution goals. It appears that the third genera-
tion of wireless systems will utilize adaptive array processing to achicve the
desired system capacity. We discuss various applications in Chapter 1.

My interest in optimum array processing started in 1963 when 1 was
an Assistant Professor at M.I.T. and consulting with Arthur D. Little on
a sonar project for the U.S. Navy. I derived the optimum processor for
detecting Gaussian plane-wave signals in Gaussian noise [VT66a], [VT66b].
It turned out that Bryn [Bry62] had published this result previously (see also
Vanderkulk [Van63]). My work in array processing decreased as I spent more
time in the general area of detection, estimation, and modulation theory.

In 1968, Part I of Detection, Estimation, and Modulation Theory [VT68]
was published. It turned out to be a reasonably successful book that has been
widely used by several generations of engineers. Parts II and III ([VT71a),
[VI71b]) were published in 1971 and focused on specific application areas
such as analog modulation, Gaussian signals and noise, and the radar-sonar
problem. Part II had a short life span due to the shift from analog modu-
lation to digital modulation. Part III is still widely used as a reference and
as a supplementary text. In a moment of youthful optimism, I indicated in
the Preface to Part III and in Chapter III-14 that a short monograph on
optimum array processing would be published in 1971. The bibliography
lists it as a reference, (Optimum Array Processing, Wiley, 1971), which has
been subsequently cited by several authors. Unpublished class notes [VT69]
contained much of the planned material. In a very loose sense, this text is

Xix
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the extrapolation of that monograph.

Throughout the text, there are references to Parts I and III of Detection,
Estimation, and Modulation Theory. The referenced material is available in
several other books, but I am most familiar with my own work. Wiley has
republished Parts I and III [VT01a], [VT01b] in paperback in conjunction
with the publication of this book so the material will be readily available.

A few comments on my career may help explain the thirty-year delay. In
1972, M.I.T. loaned me to the Defense Communications Agency in Washing-
ton, D.C., where I spent three years as the Chief Scientist and the Associate
Director for Technology. At the end of this tour, I decided for personal
reasons to stay in the Washington, D.C., area. I spent three years as an
Assistant Vice-President at COMSAT where my group did the advanced
planning for the INTELSAT satellites. In 1978, I became the Chief Scientist
of the United States Air Force. In 1979, Dr.Gerald Dinneen, the former
director of Lincoln Laboratories, was serving as Assistant Secretary of De-
fense for C3I. He asked me to become his Principal Deputy and I spent two
years in that position. In 1981, I joined M/A-COM Linkabit. Linkabit is the
company that Irwin Jacobs and Andrew Viterbi started in 1969 and sold to
M/A-COM in 1979. I started an Eastern operations, which grew to about
200 people in three years. After Irwin and Andy left M/A-COM and started
Qualcomm, I was responsible for the government operations in San Diego
as well as Washington, D.C. In 1988, M/A-COM sold the division. At that
point I decided to return to the academic world.

I joined George Mason University in September of 1988. One of my
priorities was to finish the book on optimum array processing. However, I
found that I needed to build up a research center in order to attract young
research-oriented faculty and doctoral students. This process took about six
years. The C3I Center of Excellence in Command, Control, Communica-
tions, and Intelligence has been very successful and has generated over $30
million in research funding during its existence. During this growth period,
[ spent some time on array processing, but a concentrated effort was not
possible.

The basic problem in writing a text on optimum array processing is that,
in the past three decades, enormous progress had been made in the array pro-
cessing area by a number of outstanding researchers. In addition, increased
computational power had resulted in many practical applications of opti-
mum algorithms. Professor Arthur Baggeroer of M.I.T. is one of the leading
contributors to array processing in the sonar area. I convinced Arthur, who
had done his doctoral thesis with me in 1969, to co-author the optimum
array processing book with me. We jointly developed a comprehensive out-
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line. After several years it became apparent that the geographical distance
and Arthur’s significant other commitments would make a joint authorship
difficult and we agreed that I would proceed by myself. Although the final
outline has about a 0.25 correlation with the original outline, Arthur’s col-
laboration in structuring the original outline and commenting on the results
have played an important role in the process.

In 1995, T took a sabbatical leave and spent the year writing the first
draft. I taught a one-year graduate course using the first draft in the 1996-
1997 academic year. A second draft was used in the 1997-1998 academic
year. A third draft was used by Professor Kristine Bell in the 1998-1999
academic year. Unlike the M.I.T. environment where I typically had 40—
50 graduate students in my detection and estimation classes, our typical
enrollment has been 8-10 students per class. However, many of these stu-
dents were actively working in the array processing area and have offered
constructive suggestions.

The book is designed to provide a comprehensive introduction to opti-
mum array processing for students and practicing engineers. It will prepare
the students to do research in the array processing area or to implement
actual array processing systems. The book should also be useful to people
doing current research in the field. We assume a background in probability
theory and random processes. We assume that the reader is familiar with
Part 1 of Detection, Estimation, and Modulation Theory [VT68], [VT01la]
and parts of Part III [VT71b], [VTOlb]. The first use of [VT68], [VT01la] is
in Chapter 5, so that a detection theory course could be taken at the same
time. We also assume some background in matrix theory and linear alge-
bra. The book emphasizes the ability to work problems, and competency in
MATLAB® is essential.

The final product has grown from a short monograph to a lengthy text.
Our experience is that, if the students have the correct background and
motivation, we can cover the book in two fifteen-week semesters.

In order to make the book more useful, Professor Kristine Bell has de-
veloped a Web site:

http://ite.gmu.edu/DetectionandEstimationTheory/

that contains material related to all four parts of the Detection, Estimation,
and Modulation Theory series.

The Optimum Array Processing portion of the site contains:

(i) MATLAB® scripts for most of the figures in the book. These scripts
enable the reader to explore different signal and interference environ-
ments and arc helpful in solving the problems. The disadvantage is
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that a student can use them without trying to solve the problem inde-
pendently. We hope that serious students will resist this temptation.

(ii) Several demos that allow the reader to see the effect of parameter
changes on beam patterns and other algorithm outputs. Some of the
demos for later chapters allow the reader to view the adaptive behavior
of the system dynamically. The development of demos is an ongoing
process.

(iii) An erratum and supplementary comments regarding the text will be
updated periodically on the Web site. Errors and comments can be
sent to either hlv@gmu.edu or kbell@gmu.edu.

(iv) Solutions, including MATLAB®scripts where appropriate, to many of
the problems and some of the exams we have used. This part is pass-
word protected and is only available to instructors. To obtain a pass-
word, send an e-mail request to either hlv@gmu.edu or kbell@gmu.edu.

In order to teach the course, we created a separate LATEX file con-
taining only the equations. By using Ghostview, viewgraphs containing the
equations can be generated. A CD-rom with the file is available to instruc-
tors who have adopted the text for a course by sending me an e-mail at
hlv@gmu.edu.

The book has relied heavily on the results of a number of researchers.
We have tried to acknowledge their contributions. The end-of-chapter bibli-
ographies contain over 2,000 references. Certainly the book would not have
been possible without this sequence of excellent research results.

A number of people have contributed in many ways and it is a pleasure to
acknowledge them. Andrew Sage, founding dean of the School of Information
Technology and Engineering at George Mason University, provided continual
encouragement in my writing efforts and extensive support in developing the
(31 Center. The current dean, Lloyd Griffiths, has also been supportive of
my work.

A number of the students taking my course have offered constructive
criticism and corrected errors in the various drafts. The following deserve
explicit recognition: Amin Jazaeri, Hung Lai, Brian Flanagan, Joseph Her-
man, John Uber, Richard Bliss, Mike Butler, Nirmal Warke, Robert Zar-
nich, Xiaolan Xu, and Zhi Tian suffered through the first draft that con-
tained what were euphemistically referred to as typos. Geoff Street, Stan
Pawlukiewicz, Newell Stacey, Norman Evans, Terry Antler, and Xiaomin
Lu encountered the second draft, which was significantly expanded. Roy
Bethel, Paul Techau, Jamie Bergin, Hao Cheng, and Xin Zhang critiqued
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the third draft. The final draft was used in my Optimum Array Processing
course during the 2000-2001 academic year. John Hiemstra, Russ Jeffers,
Simon Wood, Daniel Bray, Ben Shapo, and Michael Hunter offered useful
comments and corrections. In spite of this evolution and revision, there are
probably still errors. Please send corrections to me at hlv@gmu.edu and
they will be posted on the Web site.

Two Visiting Research Professors, Shulin Yang and Chen-yang Yang also
listened to the course and offered comments. Drs. Shulin Yang, Chen-yang
Yang, and Ms. Xin Zhang composed the book in LATEX and provided im-
portant editorial advice. Aynur Abdurazik and Muhammad Abdulla did the
final LATEX version. Their competence and patience have been extraordi-
nary. Joshua Kennedy and Xiaomin Lu drew many of the figures. Four
of my graduate research assistants, Miss Zhi Tian, Miss Xiaolan Xu, Mr.
Xiaomin Lu, and Miss Xin Zhang worked most of the examples in various
chapters. Their help has been invaluable in improving the book.

A separate acknowledgment is needed for Professor Kristine Bell. She
did her doctoral dissertation in the array processing area for Professor Yariv
Ephraim and me, and she has continued to work with me on the text for
several years. She has offered numerous insights into the material and into
new developments in many areas. She also taught the two-semester course
in 1998-1999 and developed many aspects of the material. Her development
of the Web site adds to the pedagogical value of the book.

Several colleagues agreed to review the manuscript and offer criticisms.
The group included many of the outstanding researchers in the array pro-
cessing area. Dan Fuhrmann, Norman Owsley, Mats Viberg, and Mos Kaveh
reviewed the entire book and offered numerous corrections and suggestions.
In addition, they pointed out a number of useful references that I had missed.
Petre Stoica provided excellent comments on Chapters 7-10, and two of his
students, Erik Larsson and Richard Abrhamsson, provided additional com-
ments. Louis Scharf, Ben Friedlander, Mati Wax, and John Buck provided
constructive comments on various sections of the book. Don Tufts provided
a large amount of historical material that was very useful. I appreciate
the time that all of these colleagues took from their busy schedules. Their
comments have improved the book.

Harry L. Van Trees

January 2002
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Chapter 1

Introduction

In Parts I, II, and III of Detection, Estimation, and Modulation Theory
(DEMT) [VT68], [VI0la], [VIT71la], [VI71b], [VT01b], we provide a rea-
sonably complete discussion of several areas:

(i) Detection theory

In this case, we were concerned with detecting signals in the presence
of Gaussian noise. The class of signals included known signals, signals
with unknown parameters, and signals that are sample functions from
Gaussian random processes. This problem was covered in Chapter 1-4
and Chapters III-1 through III-5.

(ii) Estimation theory

In this case, we were concerned with estimating the parameters of
signals in the presence of Gaussian noise. This problem was covered
in Chapter I-4 and Chapters I1I-6 and III-7.

(iii) Modulation theory

In this case, we were concerned with estimating a continuous waveform
(or the sampled version of it). If the signal has the waveform in it
in a linear manner, then we have a linear estimation problem and
obtain the Wiener filter or the Kalman-Bucy filter as the optimum
estimator. This problem was covered in Chapter I-6. The case of
nonlinear modulation is covered in Chapter I-6 and Volume II.

All of the results in the first three volumes consider signals and noises
that could be characterized in the time domain (or equivalently, the fre-
quency domain). In this book, we consider the case in which the signals and

1
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noises also have a spatial dependence. Therefore, we must characterize the
signals and noises as space-time processes and solve the detection and esti-
mation problems in the multidimensional space-time domain. This leads us
to space-time processors. The spatial part of the processor is an aperture
(or antenna) for the continuous space domain and an array for the dis-
crete space domain. The focus of this book is on optimum array processing
(and optimum aperture processing). The formal extension of the temporal
results to the multidimensional problem is reasonably straightforward, but
the implications of the results lead to a number of challenging questions.

In Section 1.1, we give a simple description of the array processing prob-
lem. In Section 1.2, we give a brief description of some representative ap-
plications in which arrays play a key role. In Section 1.3, we outline the
structure of the array processing literature. In Section 1.4, we outline the
organization of the book.

1.1 Array Processing

In this section, we introduce the array processing problem and discuss some
of the issues that we will encounter in the text.

A representative array consisting of six sensors is shown in Figure 1.1.
We can use this array to illustrate some of the issues. The four issues of
interest are:

(A) Array configuration

(B) Spatial and temporal characteristics of the signal

(C) Spatial and temporal characteristics of the interference
(D) Objective of the array processing

The first issue is the array configuration. The array configuration consists
of two parts. The first part is the antenna pattern of the individual elements.
For example, in a transmitting RF array this will be a function of the physical
configuration of the sensor and the current distribution on the elements. In
many cases, we first assume that the elements have an isotropic pattern
(i.e., uniform in all directions) and then incorporate the actual pattern later
in the analysis.

The second part of the array configuration is the array geometry (i.e.,
the physical location of the elements). The array geometry is one part of
the problem where we will focus our attention.
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Figure 1.1 Array processing problem.

We can divide array geometries into three categories:!

A1l Linear
A2 Planar
A3 Volumetric (3-D)

Within each category we can develop a taxonomy. In linear arrays, the
following cases are of interest:

A1.1 Uniform spacing
A1.2 Non-uniform spacing
A1.3 Random spacing

We will find that the total length of the array and the array spacing deter-
mine how the array geometry affects the problem.

In a planar array, the boundary of the array and the element geometry
are important. For example, we can have a planar array whose boundary
is circular and the element geometry could be either square or triangular as
shown in Figure 1.2.

'The indexing notation is for convenience. We will not use it in our later discussions.
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(b)

Figure 1.2 Array geometries.

The second issue is spatial and temporal structure of the signal. In the

temporal domain we will encounter the same signal structures as in DEMT
I and I1I:

BT1 Known signals

BT2 Signals with unknown parameters

BT3 Signals with known structure (e.g., QPSK)
BT4 Random signals

It is the spatial domain that is of most interest. The cases of interest here
include:

BS1 Plane-wave signals from known directions
BS2 Plane-wave signals from unknown directions
BS3 Spatially spread signals

The third issue is the spatial and temporal structure of the noise (or in-
terference). We will always include a “sensor noise” component that consists
of a white Gaussian noise component that is statistically independent from
sensor to sensor. The physical motivation for this inclusion is that noise of
this type always exists. System design may reduce the sensor noise to a level
that makes other noises dominant, but it will never be zero. From our results
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in DEMT I and III, we would anticipate that this white noise component
will ensure that we do not obtain a singular solution.

The noise coming from external sources must be characterized both tem-
porally and spatially. The temporal cases of most interest are:

CT1 Signals with unknown parameters (this includes the case where we
know the modulation of an interfering signal, but not the information
sequence)

CT2 Random signals

The spatial cases of most interest are:

CS1 One or more plane waves from known directions
CS2 One or more plane waves from unknown directions
CS3 Spatially spread interference

The fourth issue of interest is the objective of the array processing prob-
lem. Some representative objectives are:

D1 Detect the presence of a signal in the presence of noise and interference

D2 Demodulate the signal and estimate the information waveform (i.e., lis-
ten to the signal) in the presence of noise and interference

D3 A binary communication signal arrives over multiple paths, detect the
information sequence

D4 Estimate the direction-of-arrival of multiple plane-wave signals in the
presence of noise

D5 Construct temporal and spatial spectral estimate of the incoming signal
and noise field

D6 Direct the transmitted signal to a specific spatial location

We will encounter other objectives in our discussion of applications in Section
1.2 and at various places in the text and problems. The above list serves to
illustrate the wide variety of problems we will encounter.

We now consider various application areas in which arrays play an im-
portant role.
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1.2 Applications

In this section we provide a brief discussion of seven areas in which arrays
play an important role. These areas are:

(i) Radar

(ii) Radio astronomy

(iii) Sonar

(iv) Communications

(v) Direction-finding

(vi) Seismology

(vii) Medical diagnosis and treatment

Our discussion in each area is short. However, we provide a list of references
that provide more detailed discussions. We also revisit these application
areas in subsequent chapters and in the problems.

1.2.1 Radar

The radar area is the area in which antenna arrays were first used.? Skolnik
has a good discussion of the use of phased arrays in radar in Chapter 8 of
his book, Introduction to Radar Systems [Sko80], and some of our specific
examples are taken from it.

Most radar systems are active systems and the antenna array is used for
both transmission and reception of signals.

Although the concept of phased array antennas was known during World
War I [Sou62], the first usage was in World War II. Examples of United
States systems included fire control radars for Navy ships [OK72] and high
resolution navigation and bombing radars [Rid47]. Examples of British usage
included height-finding radars [Smi49]. The work at the M.L.T. Radiation
Lab is described in the Radlab Series.

Current military systems include the PAVE PAWS radar, which is used
for ballistic missile detection [Bro85}, the AEGIS phased array antenna [Bro91},
and numerous airborne systems. Non-military systems include air traffic
control radars [EJS82].

2The usage of phased arrays in communication systems evolved in the same time period.
We discuss communication applications in Section 1.2.4.
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Ground- and ship-based radars can generally use a model in which both
the signal and interference can be modeled as plane waves impinging on the
array. In some environments we encounter multipath, but the plane-wave
model is still valid.

Airborne radars looking at the ground have the additional complexity of
reflections from the ground that is referred to as clutter (clutter models were
discussed in Chapter 13 of DEMT III [VT71b], [VT01b]). Models must now
include spatially spread interference. A discussion of this type of system is
given in Ward [War94].

Other references that discuss various aspects of radar systems include
Allen [All63], Reintjes and Coate [RC52], Skolnik [Sko70], Barton [Bar65],
Berkowitz [Ber65], Di Franco and Rubin [FR68], Cook and Bernfeld [CB67],
Barton and Ward [BW69], Reed [Ree69], and Haykin ([Hay80], Chapter 4
of [Hay85] and [SH92)).

1.2.2 Radio Astronomy

Antenna arrays are widely used in the radio (or radar) astronomy area.
Books that provide good introductions to the area include Kraus [Kra66],
Evans and Hagfors [EH68|, Christiansen and Hogbom [CH69], and Keller-
man and Verschuur [KV73]. Yen in Chapter 5 of [Hay85| provides a good
introduction.

A radio astronomy system is a passive system that is used to detect
celestial objects and estimate their characteristics. These systems usually
employ arrays with very long baselines. These baselines range from tens
of kilometers to thousands of kilometers. Representative systems include
the very large array (VLA) of the National Radio Astronomy Observatory
[TCWNB80] and Cambridge telescope [Ryl73].

Typical array configurations include:

Linear arrays with unequal spacing
e Parallel linear arrays
e Circular arrays

e Arrays with three linear arms spaced at 120° with a common center

Some of the issues that must be considered in radio astronomy include the
rotation of the earth during the signal processing period, different propa-
gation characteristics through the ionosphere and troposphere at different
array elements, and synchronization over long distances. We encounter var-
ious radio astronomy examples at different points in the text.
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1.2.3 Sonar

Arrays are widely used in sonar systems. A good discussion of array process-
ing in sonar systems is given by Baggeroer in Chapter 6 of [Opp78]. Several
of our examples are taken from this reference. The journal article by Knight
et al. [KPK81] (this article contains 253 references) and Owsley’s chapter
in [Hay85] also provide good introductions. It is useful to consider active
and passive sonars separately.

An active sonar transmits acoustic energy into the water and processes re-
ceived echos. The theory of active sonars has much in common with radars.
However, a fundamental important difference between sonar and radar is
that the propagation of acoustic energy in the ocean is significantly more
complicated than the propagation of electromagnetic energy in the atmo-
sphere. These propagation characteristics have a major influence on the
design of sonar systems.

Propagation factors include spreading loss, absorption, and ducting. These
factors will vary depending on the ranges of interest, the depth of the wa-
ter, and the nature of the boundaries. Discussion of sound propagation is
given in Urick [Uri67], Albers [Alb60], Burdic [Bur91|, Horton [Hor57], and
Hassab [Has89)], as well as Section 6.2 of Baggeroer’s chapter of [Opp78].

The noise background includes ambient noise, self noise, and reverbera-
tion noise. Ambient noise is acoustic noise generated by various sources in
the ocean such as ships, industrial activity, sea life, precipitation, ice, and
explosions. Typically, it is spread in both frequency and space. Self noise
is generated by the platform. Examples include cavitation noise, flow noise,
and machinery noise. Self noise may be either frequency spread or tonal and
is normally concentrated spatially. Reverberation noise is due to reflections
of the transmitted signal and is analogous to clutter in a radar system.

Other factors such as interaction with the boundaries, spatial coherence
of the acoustic waves, and the severity of the ocean environment must also
be taken into account.

Passive sonar systems listen to incoming acoustic energy and use it to
estimate the temporal and spatial characteristics of the observed signal field.
The most important application is the detection and tracking of submarines.
Some representative configurations are shown in Figure 1.3. All of the com-
ments about propagation and noise also apply to the passive sonar case. We
analyze several passive sonar examples in the text.

Other sonar references include Wagstaff and Baggeroer [WB83], Offi-
cer [Off58], Tolstoy and Clay [TC66], Dyer [Dye70], Griffiths et al. [GSS73],
Baggeroer [Bag76], Cron and Sherman [CS62], Cox [Cox73|, and Blahut et
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Figure 1.3 Examples of several passive sonar systems: (a) submarine
mounted hydrophone arrays; (b) towed array.

al. [BMWO91]. Current research is usually reported in the Journal of the
Acoustic Society of America (JASA) and the IEEE Transactions on Signal
Processing.

1.2.4 Communications

Antenna arrays are used in many communication systems. One of the first
usages was for transatlantic shortwave communication in the 1930s [FF37].
Current usage spans the frequency bands from ELF to EHF and includes
both terrestially based and satellite communications.

The communication signals are point sources but, due to the channel
characteristics, they may arrive at the receiving array as a single plane wave,
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multiple plane waves due to multipath, or as a spatially spread signal. In ad-
dition to receiver noise, the interference may include other communications
signals or intentional jamming signals.

Several satellite systems utilize phased arrays in either the earth termi-
nal or space segment. For example, the tracking and data relay satellite
(TDRSS) uses a 30-element array at S-band. Other satellite systems use
multiple beam antennas (MBAs) to achieve similar results. For example,
the Defense Satellite Communication System (DSCS III) has a 61-beam re-
ceive MBA and 19-beam transmit MBA. Many of the low earth orbit (LEO)
satellite systems utilize phased arrays.

The second generation of wireless cellular systems utilize various types of
multiple access techniques such as TDMA, CDMA, and GSM (global system
for mobile communication). Antenna array processing can provide signifi-
cant performance in all of these systems and the planned third-generation
systems. The term “smart antennas” come into usage to describe various
types of adaptive arrays for wireless systems. Several references, [Win98],
[God97a], [God97b], [PP97] and [Rap98], discuss this application area in
detail.

1.2.5 Direction Finding

Antenna arrays are widely used to solve the direction finding (DF) problem.
The objective is to locate the source of transmitted communication or radar
signal. A common approach is to find the direction of arrival (DOA) of
the signal at two separated antenna arrays and locate the source at the
intersection of the two lines of bearing. The estimation of DOAs is the
central focus of Chapters 8 and 9, and we discuss the problem further at
that point.

1.2.6 Seismology

There are two areas of seismology in which array processing plays an impor-
tant role. The first area is the detection and location of underground nuclear
explosions. The area received significant attention in the 1960s and 1970s
and a number of results that were obtained for that area, such as Capon’s
minimum variance distortionless response (MVDR) beamformer, are used in
many other areas.

The second area is exploration seismology and is the most important
at the present time. Justice in Chapter 2 of [Hay85] has a detailed dis-
cussion of array processing in exploration seismology, and his chapter has
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322 references. Robinson and Treitel in Chapter 7 of [Opp78] also have a
good discussion. The objective of the exploration process is to construct an
image of the subsurface in which the structure and physical properties are
described. As in the sonar case, the propagation characteristics of the acous-
tic signal in an inhomogeneous elastic medium has a dominant influence on
the designs of the system.

A typical seismic experiment is shown in Figure 1.4. Acoustic energy is
transmitted into the earth by a shot and reflected energy is received by a
set of geophones arranged in linear array. Normally the earth is modeled
as a stack of homogeneous layers and the array measures reflections from
various layers. In the text we encounter various examples of seismic signal
processing.

The references in Justice [Hay85] provide further discussions of seismic
signal processing. Current research is reported in Geophysics and Geophys-
ical Prospecting.

1.2.7 Tomography

Tomography is the cross-sectional imaging of objects from transmitted or
reflected data. The object is illuminated from a number of different direc-
tions and data are collected at a receiving array. We then try to reconstruct
the cross-sectional image from the data. Kak in Chapter 6 of [Hay85] has
a good discussion of tomography. Tomography has had great success in the
medical diagnosis area.

The processing algorithms used in tomography are different from those
that we develop in the text, so we will not discuss them further. The in-
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terested reader is referred to [Hay85] and the references contained in that
chapter for further discussion.

1.2.8 Array Processing Literature

Due to the wide variety of applications of array processing, the literature is
spread across a number of different journals and conferences. In Appendix
B, we have included a representative list of sources.

1.3 Organization of the Book

The book is organized into five parts. The first part consists of Chapters 2,
3, and 4. These three chapters discuss classical array analysis and synthesis
techniques. We use the adjective “classical” because the techniques rely
primarily on deterministic models and the theory was reasonably mature by
the early 1970s. The techniques are important for two reasons:

(i) These techniques are still widely used in practical array applications.

(ii) They form the foundation for the statistical approaches that we use
later in the book.

Chapter 2 introduces the basic definitions and relationships that are used
to analyze and synthesize arrays. Our approach is to introduce the concept
for an arbitrary array geometry. We then specialize the result to a uniform
linear array and then further specialize the result to a uniform linear array
with uniform weighting.

In Chapter 3, we return to linear arrays and provide a detailed discussion
of the analysis and synthesis of linear arrays. In Chapter 4, we study the
analysis and synthesis of planar and volumetric arrays.

The second part of the book consists of Chapter 5 and studies the char-
acterization of space-time random processes. We develop second-moment
theory for arbitrary processes and a complete characterization for Gaussian
random space-time processes. We develop orthogonal expansions and review
the concept of signal subspaces and noise subspaces that we utilized for the
temporal problem in Chapter I-4 of DEMT I [VT68], [VT0la]. We intro-
duce parametric spatial models and discuss their usage in array processing
problems. The chapter provides the statistical models that will be used in
the remainder of the text.

The third part of the book consists of Chapters 6 and 7 and studies wave-
form estimation. In Chapter 6, we derive optimum beamformers under the
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assumption of known statistics and analyze their performance. We inves-
tigate the sensitivity of the optimum beamformers to perturbations in the
signal and noise model and the array description. These sensitivity results
motivate the development of constrained processors that are more robust to
model perturbations.

In Chapter 7, we consider the case in which the statistics must be de-
termined from the data. This problem leads us into adaptive beamforming.
We develop various adaptive algorithms and analyze their behavior.

The fourth part of the book consists of Chapters 8 and 9. These chapters
consider the parameter estimation problem with emphasis on estimating
the direction of arrival of incoming plane-wave signals. We first develop
maximum likelihood estimators and compute bounds on the performance of
any estimator. We then study a large variety of estimation algorithms and
compare their performance to the maximum likelihood estimators and the
bounds.

The fifth part of the book consists of Chapter 10 and contains a brief
discussion of the optimum detection problem. Chapter 10 also contains a
discussion of some of the areas that the book has not covered. There is an
appendix that summarizes some of the matrix algebra results that we use in
the text.

There are problems at the end of each chapter. As in DEMT I —
I [VT68], [VT0la], [VI71a], [VI71b], [VTO1b], it is necessary for the
reader to solve problems in order to understand the material fully. Through-
out the course and the book we emphasize the development of an ability to
work problems. The problems range from routine manipulations to signifi-
cant extensions of the material in the text. In many cases they are equivalent
to journal articles currently being published. Only by working a fair number
of them is it possible to appreciate the significance and generality of the
results. Many of the problems require the use of mathematical computation
package such as MATLAB® , Mathematica, or MAPLE. We assume that
the student is experienced with one of these packages. The solutions on the
Web site use MATLAB®

The book can be covered in a two-semester graduate course for students
with the appropriate background. Chapters 1 through 6 can be covered in
the first semester. The common themre in these chapters is that the design
is either deterministic or assumes that the necessary statistics are known.
Chapters 7 through 10 can be covered in the second semester. The common
theme in these chapters is that the algorithms obtain the necessary statistics
from the data. This results in adaptive beamformers, adaptive detectors, and
DOA estimators.
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1.4 Interactive Study

The book is designed to be used in two different modes. The first mode is
as a stand-alone text. By reading the text and doing a representative set of
homework problems, one can understand the material. The difficulty with
this mode is that we rely on a large number of examples to develop the
material. By necessity, many of the examples will choose specific parameter
values to demonstrate the point. It would be more desirable to be able to
explore a family of parameters.
The second mode uses the Web site that was discussed in the Preface:

http://ite.gmu.edu/DetectionandEstimationTheory/
The contents of the Web site is described in the Preface. We anticipate

that this second mode will be used by most serious readers and instructors.
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Chapter 2

Arrays and Spatial Filters

2.1 Introduction

We assume that we have a signal or multiple signals that are located in some
region of a space-time field. We also have noise and/or interference that is
located in some region of a space-time field. In the applications of interest
these regions have some overlap.

An array is used to filter signals in a space-time field by exploiting their
spatial characteristics. This filtering may be expressed in terms of a de-
pendence upon angle or wavenumber. Viewed in the frequency domain this
filtering is done by combining the outputs of the array sensors with complex
gains that enhance or reject signals according to their spatial dependence.
Usually, we want to spatially filter the field such that a signal from a partic-
ular angle, or set of angles, is enhanced by a constructive combination and
noise from other angles is rejected by destructive interference.

The design of arrays to achieve certain performance criteria involves
trade-offs among the array geometry, the number of sensors, signal-to-noise,
and signal-to-interference ratios, as well as a number of other factors.

There are two aspects of array design that determine their performance as
spatial filters. First, their geometry establishes basic constraints upon their
operation. Line arrays can resolve only one angular component. This leads
to a cone of uncertainty and right/left ambiguities. Circular arrays have
different patterns than crossed or planar arrays. Frequently the geometry
is established by physical constraints and the designer may have limited
freedom in specifying the array geometry.

The second aspect is the design of the complex weightings of the data at
each sensor output. The choice of these weightings determines the spatial

17
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filtering characteristics of the array for a given geometry.

In this chapter we introduce the basic definitions and relationships that
arc used to analyze and synthesize arrays. Our approach is to introduce the
concepts for an arbitrary array geometry. We then specialize the result to
a uniform linear array and then further specialize the result to a uniform
weighting. In Chapter 3, we return to linear arrays and provide a detailed
discussion of the analysis and synthesis of linear arrays. In Chapter 4, we
study the analysis and synthesis of planar and volume arrays.

This chapter is organized in the following manner. In Section 2.2, we
introduce the frequency-wavenumnber response function and beam pattern
of an array. We employ wavenumber variables with dimensions of inverse
length for a number of reasons. First, array coordinates and wavenumbers
are conjugate Fourier variables, so Fourier transform operations are much
simpler. Second, all the powerful properties of harmonic analysis as extended
to homogenous processes can be used directly and the concept of an array as
a spatial filter is most applicable. Third, angle variables specify array filter
responses over a very restricted region of wavenumber space. While it does
describe the response over the region for all real, propagating signals, that
is, those space-time processes that implicitly satisfy a wave equation when
one assigns a propagation speed and direction, there are a lot of advantages
to considering the entire wavenumber space. The so-called virtual space, or
wavenumber realm where real signals cannot propagate is very useful in the
analysis of array performance.

In Section 2.3, we specialize these results to a uniform linear array and
study the characteristics of the beam pattern. In Section 2.4, we further
specialize these results to the case of a uniformly weighted linear array. This
leads to a beam pattern that we refer to as the conventional beam pattern. It
will play a fundamental role in many of our subsequent studies. In Section
2.5, we discuss array steering and show how it affects the beam pattern
in wavenumber space and in angle space. In Section 2.6, we define three
important performance measures:

(i) Directivity
(i) Array gain

(iii) Tolerance function

These performance measures arc utilized throughout our discussion.

The discussion in the first six sections assumes that the sensors are
isotropic (i.e., their response is independent of the direction of arrival of the
signal). In Section 2.7, we introduce the concept of pattern multiplication
to accommodate non-isotropic sensors. In Section 2.8, we consider the case
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of a linear aperture and show how the performance of apertures and arrays
are related. In Section 2.9, we give a brief summary of our development.

In Table 2.1, we have summarized the structure of the chapter. The
various terms are defined at appropriate points in the chapter.!

The material in this chapter can be termed classical array theory,
and it has been discussed in a number of books and articles. References
that we have utilized include Kraus [Kra88), Balanis [Bal82], Elliott [El81],
Johnson [Joh93], Milligan [Mil85), Ziomek [Zio95], Skoluik [Sko80], Stutzman
and Thiele [ST81], and Weeks [Wee68].

The coordinate system of interest is shown in Figure 2.1. The relation-
ships between rectangular and spherical coordinates is shown in Figure 2.1.

x = rsinf cosg,
= 7 sinf sin g,
z = 7 cosb. (2.1)

The next set of figures shows various arrays and apertures placed in this
coordinate system.

Figure 2.2 shows a linear array with equally spaced elements. The polar
angle 0 is the grazing angle with respect to the positive z-axis. In some cases
the broadside angle  is a useful parameter

- T
o=15-9. (2.2)

The position of the elements is denoted by p,_,

N -1
pZn:<n_—2——>d’ TL_—‘O,I,"',N—‘]., (23)

where d is the interelement spacing.

Figure 2.3 shows a linear array with unequally spaced elements. In this
case,

pzn = Z’n’ (24)

where z, is the z-coordinate of the nth element.

"We have included a structure chart at the beginning of Chapters 2-9. Its primary
purpose is to scrve as a graphical a posteriori reference for the reader so that, after reading
the chapter, one can easily find a particular topic. A secondary purpose is to aid an
instructor in planning the coverage of the material.
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Table 2.1 Structure of Chapter 2

2.1 Introduction

. 2.2 Frequency-wavenumber 3 Unif . 2.4 Uniformly Weighted
Spatlal Response and Beam Patterns - .2.‘ % '_J_n_| ?Fp.l:‘lf‘??[[}fr?ﬁ <4 Uniformly Weighte
. A s R Linear Arrays
Filtering S N T I b
Freq-WN response ULA 3dB BW, BWjy
Beam patterns Conjugate symmetry Sidelobes, grating lobes
Array manifold vector Visible region Standard linear array
A4
.25 Array Steering_____
Conv. Beam pattern
End-fire arrays
R
Array Directivity, Directivity index
Performance Array Gain '
White noise array gain
Sensitivity, T,
| 2.7 Linear Apertures __ | 2.8 Non-isotropic
Other Element Patterns
Topics

Array manifold function

Aperture sampling Pattern multiplication

Figure 2.4 shows a continuous linear aperture along the z-axis. We would
anticipate that if d is small and

L = Nd, (2.5)

the array and aperture would have very similar performance. We demon-
strate this relationship later. We also discuss how we sample a continuous
aperture to obtain an array.

Figure 2.5 shows several examples of planar arrays that are of interest.
Figure 2.6 shows the corresponding planar aperture. We define the coor-
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Figure 2.1 Spherical coordinate system.
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N even N odd
(a) (b)

Figure 2.2 Linear array with equal spacing between elements: (a) N even;
(b) N odd.

o—eo—>» =

Figure 2.3 Linear array with unequal spacing between elements.



2.2 Frequency-wavenumber Response and Beam Patterns 23

Figure 2.4 Linear aperture.

dinate system in detail in Chapter 4 where we analyze planar arrays and
apertures.

Figure 2.7 shows some volume arrays of interest. We will discuss volume
arrays and apertures in Chapter 4.

2.2 Frequency-wavenumber Response and Beam
Patterns

In this section, we analyze the response of an array to an external signal
field. The array consists of a set of isotropic sensors located at positions py,,
as shown in Figure 2.8. The sensors spatially sample the signal field at the
locations p,, : n=0,1,---, N — 1. This yields a set of signals that we denote
by the vector f(t, p)

f(tv pO)

f(t7 Pl)

f(t,p) = (2.6)

f(t, I;N—l)

We process each sensor output by a linear, time-invariant filter with
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Figure 2.5 Planar arrays.
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z

SN S
A
L \

-

(b

Figure 2.7 (a) Cylindrical array of identical, regularly spaced, omnidirec-
tional point elements; (b) spherical array of identical, regularly spaced, om-

nidirectional point elements.
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Figure 2.8 N-Element array.

impulse response hy(7) and sum the outputs to obtain the array output
y(t). The procedure is shown in Figure 2.9. We assume that the observation
interval is long enough that it may be considered infinite. The output y(t)
can be written as a convolution integral,

N-1 ,e0
TOEDD / h(t = 7) fulT, Pn) dr- 2.7)
n=0 v~
This result can be written in vector notation as
oo
y(t) = / W (t — 7) £(r, p) dr, (2.8)
-0
where
ho(7)
hai(r
h(r) = 1(r) (2.9)
hn_1(7)

The result in (2.8) is a straightforward extension of familiar scalar results to
the vector model.
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Figure 2.9 Array with linear processing.

Alternatively, we can write (2.8) in the transform domain as

Y(w) = /oo y(t)e Iwtdt

= H_T (W)F(w), (2.10)

where -
H(w) = / h(t)e7tdt, (2.11)

and -
F(w,p) = / £(t, p)eI¥tdt. (2.12)

In most cases, we suppress the p dependence on the left side of (2.12) and
use F(w).

To illustrate a simple beamforming operation, consider the case shown in
Figure 2.10. The input is a plane wave propagating in the direction a with
temporal (radian) frequency w. The time functions at the sensors due to
this input can be written in two equivalent ways. The first way emphasizes
the time delays corresponding to the time of arrival at the various sensors.
If f(t) is the signal that would be received at the origin of the coordinate
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A /
Plane wave

p e

P,

Figure 2.10 Array with plane-wave input.

system, then

ft—10)
f(t,p) = I i g : (2.13)
flt—7n-1)
where -
o= 2 Pn (2.14)
C

and c is the velocity of propagation in the medium and a is a unit vector
that can be expressed as

—sin@ cos ¢
a=| —sinfsing |. (2.15)
—cosé

The minus sign arises because of the direction of a. Then, 7, is given by
1
Tn = —— [sinf cos¢ - py, +sinb sing - py, + cosf - p,, ]. (2.16)
c

If we define direction cosines with respect to each axis as

uy = sinfdcosa, (2.17)
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uy = sinfsing, (2.18)
u, = cosd, (2.19)

then in vector notation,
u=-—a. (2.20)

Then (2.16) can be written as

T

u
Tn = =7 [Uzpa, + UyDy, + Uzpz,] = — Cpn. (2.21)
From (2.13), the nth component of F(w) is
.w . .
Fo(w) = / eI f(t = 1)t = e F(w), (2.22)
—00
where w w
WTp = Eann = —zqun. (2.23)

For plane waves propagating in a locally homogeneous medium, we define
the wavenumber k as

w 27
k=—-a=— 2.24
AT (2:24)
where ) is the wavelength corresponding to the frequency w. Equivalently,
sin @ cos ¢
2
k=-"" sinf sin ¢ =-Zu (2.25)
A A
cosf

The wave equation constrains the magnitude of the wavenumber,?

w_27r

M=2=%

Therefore, only the direction of k varies. Comparing (2.14) and (2.24), we
observe that

(2.26)

wrn = kT pp. (2.27)
Defining
e_jkT Po
e—JkT P1
vi(k) = : : (2.28)
e_jkT PN-1

2The wave equation is developed in a number of references (e.g., [Bal82]).
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Figure 2.11 Delay-and-sum beamformer.

we can write F(w) as
F(w) = F(w)vik(k). (2.29)

The vector vi(k) incorporates all of the spatial characteristics of the array
and is referred to the array manifold vector. It plays a central role in
our discussion. The subscript k denotes that the argument is in k-space.
The subscript is to distinguish it from other variables we will use later as
arguments to the array manifold vector.

In this case, we shift the inputs from each sensor so that the signals are
aligned in time and add them. This operation is shown in Figure 2.11, where
we have included a normalization factor 1/N so the output is f(¢). In this
case,

hn(T) = %5(7 + Tn) (2.30)

and

y(t) = f(2). (2.31)

This processor is referred to as a delay-and-sum beamformer or the
conventional beamformer. In practice we add a common delay in each
channel so that the operations in Figure 2.11 are physically realizable.
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Note that we can write (2.30) compactly in a matrix form in the frequency
domain. If kg is the wavenumber of the plane-wave signal of interest, then

H' () = vl (ks), (2.32)
N
where vi (k) was defined in (2.28).

Returning to the general problem, we want to find the response of the
array to an input field f(¢,p). This can be done by the convolution and
summing operation specified, but it is more useful to determine the response
to a unit plane wave as a function of its temporal (radian) frequency w
and wavenumber k. The systems theory approach of analyzing the response
of a linear, time-invariant system in terms of the superposition of complex
exponential basis functions can be extended to space-time signals.

The basis functions are now plane waves of the form,

fa(t,pn) = explj(wt — kT pp)}, n=0,1,---,N -1, (2.33)
or '
f(t,p) = " vi(k), (2.34)

where vi(k) was defined in (2.28).
The response of the array processor of (2.8) to a plane wave is

y(t, k) = HT () vic(k) €7, (2.35)

where H(w) is the Fourier transform of h(7) in (2.9).

We emphasize the dependence of the output upon the input wavenumber
k with the notation y(t, k). The temporal dependence is a complex expo-
nential at the same frequency as the input plane wave. Equation (2.35) can
be written in the frequency domain as

Y (w, k) = HT () vic(k). (2.36)

Note that w is a single frequency corresponding to the input frequency.
The temporal spatial processing by the array is completely described by the
term on the right side of (2.36). We define this term as

T(wv k) 2 HT(w) vk(k)a (237)

which we term the frequency-wavenumber response function of the
array. It describes the complex gain of an array to an input plane wave with
wavenumber k and temporal frequency w, and has the same interpretation as
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a transfer function for a linear time-invariant system (we introduce Y(w, k)
because Y (w, k) will be used later to describe the output due to arbitrary
inputs). T(w,k) is defined over the entire k space. The second term in
(2.37), vi(k), is the array manifold vector defined in (2.28).

The frequency-wavenumber response function describes the response to
an arbitrary plane wave. In most physical applications there is a coupling
between the temporal frequency w and the spatial wavenumber k through the
wave equation governing the propagation of the plane wave. Sometimes this
can be a very simple relationship such as a plane wave in a homogeneous (and
infinite) space; in other instances it can be quite complicated, such as the
modal behavior in layered media that often occurs in underwater acoustics
and seismology.

The beam pattern for an array is defined in the context of plane
waves propagating in a locally homogeneous medium where one has the
wave equation constraint given in (2.26). This constrains the magnitude of
the wavenumber k as given in (2.26). The beam pattern is the frequency-
wavenumber response function evaluated versus the direction, or

B(w : 63 ¢) = T(w’k)lkz%\’—[ 3(9,¢)3 (2'38)

where a(f, ¢) is a unit vector with spherical coordinate angles 0, ¢. We see
that the beam pattern is the frequency-wavenumber function evaluated on
a sphere of radius 2w /.

The beam pattern of an array is a key element in determining the ar-
ray performance. In the next section, we develop the beam patterns for a
uniformly weighted linear array.

In the text, we emphasize the case in which the f(t, pn) are bandpass
signals,

f(tv pn) = \/5%6 {f(tvpn)ejWCt} 3 n= 07 Y N — 1’ (239)

where w, is the carrier frequency and f (t,pn) is the complex envelope. We
assume that the complex envelope is bandlimited to the region,

lw| < 27 B, /2, (2.40)

where
wp B — e, (2.41)

and 7B, is a constant specifying the maximum bandwidth of the complex
envelope.
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For the plane wave in (2.13), (2.39) becomes
(t, Pn) \/_Re{ t—T)ej“’C(th’")}, n=0,---,N -1, (2.42)

where 7, is given by (2.21).

We now consider the travel time across the array. We define AT, (u)
as the travel time between the n and m elements for a plane wave whose
directional cosine is u. Then,

AT e & max {ATym(u)}, (2.43)
n,m=0,- N-1u
is the maximum travel time between any two elements in the array. For a
linear array it would be the travel time between the two elements at the ends
of the array for a signal arriving along the array axis (endfire).
We assume that the origin is located at the center of gravity of the array,

N-1
Y opP=0 (2.44)
n=0

then all of the 7, in (2.13) satisfy
Tn < ATlpge, n=0,---,N-—1. (2.45)

In many cases of interest, the bandwidth of the complex envelope is small
enough that

flt—m) >~ f(t), n=0,1,---,N—1. (2.46)

In order for this approximation to be valid, we require
By - ATz < 1. (2.47)

We define bandpass signals whose complex envelopes satisfy (2.47) as nar-
rowband signals. Later we will revisit this definition in the context of
optimum processors and provide a better quantitative discussion. For the
present, we use (2.47). Then (2.42) reduces to

(t,pn) = V2Re { "j““"ej“’ct} . (2.48)

We see that, in the narrowband case, the delay is approximated by a phase
shift. Therefore the delay-and-sum beamformer can be implemented by a
set of phase shifts instead of delay lines. The resulting beamformer is shown
in Figure 2.12. This implementation is commonly referred to as a phased
array and is widely used in practice.
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Figure 2.12 Narrowband beamformer implemented using phase shifters.

We will find that, in many applications, we want to adjust the gain and
phase at the output of each sensor to achieve a desirable beam pattern. This
leads to the narrowband model shown in Figure 2.13(a). The w}, are complex
weights that are implemented as a cascade of a gain and phase shifter, as
shown in Figure 2.13(b).

An alternative implementation is shown in Figure 2.13(c). In some cases,
we implement the beamformer by performing a quadrature demodulation
and applying the complex weights at baseband. We actually apply Refw;] to
one quadrature component and I'm[w}] to the other quadrature component.
The results are identical. We discuss these cases later in the text.

Defining the complex weight vector as

wh = [ wy W] o Wy ]," (2.49)
(2.35) becomes ‘

y(t, k) = wivi(k)et, (2.50)
and

T(w, k) = wvi (k). (2.51)
The definition in (2.49) is equivalent to

wil = HT (w,). (2.52)

The majority of the text focuses on the narrowband model. In Chapter
5, we show that one approach to processing broadband signals is to de-
compose them into narrower frequency bins by a discrete Fourier transform
(DFT). Within each bin, the narrowband condition is satisfied and all of our
narrowband results can be used directly.
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Figure 2.14 Linear array along z-axis.

2.3 Uniform Linear Arrays

The linear array of interest is shown in Figure 2.14. There are N elements
located on the z-axis with uniform spacing equal to d. We refer to this type
of array as a uniform linear array (ULA). We have placed the center of
the array at the origin of the coordinate system. This centering will lead to
comptitational advantages and will be used throughout the text.

The locations of the elements are

N-1
pznz(n-T>d, n=01-,N—1, (2.53)

and
Pz, = Py, = 0. (2'54)

To find the array manifold vector vi(k), we substitute (2.53) and (2.54)
into (2.28) to obtain

vic(ks) = [ (Mt )hed | i(F5t1)kad i gma (B e ]T, (2.55)

with
2

k, = Y cosf = —kgcos b, (2.56)
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where

ko & k| & 27” (2.57)

is the magnitude of the wavenumber. Note that the linear array has no
resolution capability in the ¢-direction. Using (2.49) and (2.55) in (2.51)

gives

T(w, k) = wiv(k,)

N-1 P
> wp eI (=" ko (2.58)
n=0

We will also find it useful to define

2 2
Y= —kd="Tcosl-d="u,

g - usd, (2.59)

where u, is the directional cosine with respect to the z-axis,

u; = coséb. (2.60)
Using (2.59) in (2.58) gives
CN=1 N-1 .
Typ(h) =e 775 Y Z wk ™. (2.61)
n=0

We refer to Ty (¥) as the frequency-wavenumber function in ¢-space. Both
T(w,k;) and Ty(y) are defined from —co to oo, but they only represent
propagating signals in the region where 0 < 6 < 7 (or =1 < u, < 1). This
restriction implies —Q—Z\rﬁi <y < —2—’/{#1 or —%\71 <k, < —2/\1 We refer to this as
the visible region.

We observe that, if we define

z=éY, (2.62)
N1 N-1
To(z)=2""7 > whz" (2.63)
n=0

then (2.63) can be written as

T.(z) ==z T(Z Wy 2 ") . (2.64)
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The term
N-1
Wi(z) = Z w2 " (2.65)
n=>0
is familiar as the ztransform® and

Ty() = To(2)sogw = (2777 W(2)) (2.66)

z=ed¥

is the frequency-wavenumber function in y¥-space. We exploit this relation-
ship later in the text.

Although it may appear that we have introduced extra notation by writ-
ing the frequency-wavenumber function in three different ways ((2.58), (2.61)
and (2.66)), we will find the different forms useful in different cases.

It is also useful to define the array manifold vector in 6§ and u space,

Vo (0)]n = /=TT B0 e0s0 gL N1, (2.67)
and N
Vu(w)n =305 n=0,---,N - 1. (2.68)

We can also write the beam pattern in three forms. The key difference
between the frequency-wavenumber function and the beam pattern is that
the argument in the beam pattern is restricted to correspond to a physical
angle §. Thus,

N-1
By(0) = wHvy(0) = e I(F7) R cost Z wy, ej"g;ﬁcose, 0<6<m,
n=0
(2.69)
H N1\ 2nd,, AL . 2nd
Bu(u) = wivy(u) = eI (5 T) 55 Y wpe™ Y, —1<u<1, (2.70)
n=0
N-1
By(v) = whvy(w) = e (5T S /™, —27-;1 <y < QL;i. (2.71)
n=0

We suppress the subscript on B(-) when the variable is clear.
For uniform linear arrays, we normally write the array manifold vector
in terms of ¥,

vy()], = TN, n=0,1,- N - 1, (2.72)

3The ztransform is discussed in a number of texts (e.g., Chapter 4 of [0S89]).
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and

(@) = [ W R L R (e )T ()

We see that the array manifold vector for a uniform linear array exhibits
a conjugate symmetry. For N even, if we define a N/2-dimensional vector
vy, (1) corresponding to the first N/2 elements of v, (1), then we can write

vy(Y) = : (2.74)

where J is the exchange matrix defined in (A.125). For N odd, vy, (¢)
consists of the first (V —1)/2 elements and

V() = 1 . (2.75)

This conjugate symmetry will lead to computational savings and perfor-
mance improvements in many applications. For example, if w is also conju-
gate symmetric, we can write, for NV even,

W= . (2.76)

The beam pattern in 1-space is
bl

By(y) = wvy(y)

Jvy, ()
= wil vy, () + Wi v}, (¥)
= 2Re [w{’ Vo, (w)} , (2.77)

= [wiiwfJ]

so the beam pattern is a real function. Note that if we have real symmet-
ric weightings, then (2.76) is also satisfied. A similar result follows for N
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odd. Later, we will find that many other array geometries exhibit conjugate
symmetry.

The form in (2.73) emphasizes the conjugate symmetry in vy (¢). We
can also write vy () as

N , . T
Vw(w)ze—g%w[l eIV L ey<N~1>w] . (2.78)

This form emphasizes the Vandermonde structure (A.163) of vy (v).

In Chapter 3, we develop techniques for choosing w in order to achieve a
beam pattern with desirable properties. This is the most common approach.
However, we will also develop techniques for synthesizing a desirable By, (v)
without finding w in the process. Thus, our last step is to find the w that
corresponds to a particular By (1).

We start with the relation in (2.71),

By () = wvy(4). (2.79)

We assume that By (1) is known and we want to find the w that generated
it. Since w!l is a 1 x N vector, we would anticipate that, if we know the
value of By(y) at N values of ¥, we can find w.

We sample the beam pattern at N values of ¢;,7 = 1,---, N. The ¥;
must be distinct but do not have to be spaced equally. We denote the beam
pattern at the sample points as B(1;). From (2.79),

wiv(p;) = Byy), i=1,---,N. (2.80)
We define an N x N array manifold matrix,
V()2 [ v - view) |, (281)
and a 1 x N beam pattern matrix,
B2 [ B(yy) - Bw) | (2.82)
Then, (2.80) can be written as
wiV(y) =B, (2.83)
or
V7 (¢pyw = B, (2.84)

Since V() is full rank,

w = [VH(zj))]_lBH , (2.85)
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which is the desired result. Although the v; are arbitrary, if they are too
close, the array manifold vectors will approach linear dependence and there
may be numerical problems with the inverse in (2.85). If we use uniform
spacing of 27 /N, we will derive an algorithm in Section 3.3 that is compu-
tationally more efficient.

A particular of interest is the case in which we have specified the beam
pattern with N — 1 zeros. If we assume the array is steered to broadside, we
let

P =0, (2.86)
and 19, 93, - - -, YN correspond to the zero locations. Assuming a normalized
beam pattern,

B= [1 0 - 0 ]::e{. (2.87)
Then, (2.85) reduces to
" -1
w = [V (w)] el (2.88)

We will find these algorithms to be very useful in subsequent sections.
There are two points with the results in (2.85) and (2.88) that should be
emphasized:

(i) We have assumed that By (v) was defined by (2.79). In other words,
it was generated by a complex N x 1 vector w. If we start with an
arbitrary function By(¢) and use (2.85), we will generate a pattern
that matches B(#;),7 = 1,---, N but will not necessarily match the
function By (). We discuss this issue further in Section 3.3.

(ii) We introduced this result in the context of a uniform linear array. How-
ever, the derivation is valid for an N-element array with an arbitrary
geometry.

We have developed the basic relationships between the array manifold
vector, the weight vector, and the beam pattern. In the next section, we
consider the special case of uniform weighting.

2.4 Uniformly Weighted Linear Arrays

We now restrict our attention to the uniform weighting case,

n=01,-,N-1 (2.89)

1
wnzﬁ,
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We can also write (2.89) as
w=—1, (2.90)

where 1 is the N x 1 unity vector defined in Section A.3.1.

Thus, the frequency-wavenumber function can be written in -space as®

T) = & DA
n=0
_ 1 iy RS-
- N@ nZ::Oe
1 S N=1 1_6]N¢
P | G L2 Bl
= Nea(z) [1_61‘1/)]’ (2.91)
or
: ¥
1 sin{N3
Ty(y) = N —1(——1;)—, —00 < P < 00. (2.92)
Slni'

We observe that T, (¢) is periodic with period 27 for N odd. If N is
even, the lobes at 27, 67 are negative and period is 47. The period of
| Ty (10)] is 2 for any value of N. Ty (¢) is plotted versus ¢ in Figure 2.15
for N = 11. In Figure 2.16, we plot | Yy (¢)| in dB, where

Yyp(t) = 10logyg |T(?/))|2‘ (2.93)

For arbitrary w, Ty (%) is complex, so the phase should also be plotted;
however, the symmetry of this particular array leads to a purely real quantity.
We can also write the frequency-wavenumber response in terms of &,

. d
YT(w:k,) = 1 M (2.94)
N gin (kzg>
Y(w : k,) is periodic with period 27/d.

Note that the response function depends only upon the wavenumber
component k, and is periodic with respect to k, at intervals of 2w /d. The
dependence solely upon k, is a consequence of the linear array being one-
dimensional so it can only resolve wavenumber components which have a
projection in this direction.

4 N-1 n _ 1—zV
Zn:O‘T - 1-z -
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Figure 2.17 Polar plot of Bg(6).

The beam pattern is given by

1 sin(X . 2% cosf - d)
By(6) = — —2 2 , 0<6<m. 2.95
o(6) Nsin(%-%’rcosﬂod) =v=" (2.95)
The beam pattern in u-space can be written as
in( TNd
Buu) = = SRCR7W o (2.96)

N sin(Z2u)’ -

The beam pattern is only defined over the region (—1 < u < 1), the visible
region. The beam pattern in ¢-space is

sin(N ¥ nd 2rd
Bw(w)=%#§)), —g/\—SU’S - (2.97)

The functions By(u) and By () are sometimes referred to as the array
factor. We will see the significance of this term when we look at non-
isotropic sensors.

In Figure 2.17, we show a polar plot in dB of By(8). If we plotted the
beam pattern in three dimensions, the plot in Figure 2.17 would correspond
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Figure 2.18 | Ty (¢)| for a linear array with d = A/2 and N = 10.

to a pattern cut along any value of ¢, the azimuth angle. In Figure 2.18, we
show the magnitude of the beam pattern versus different variables.

Although this is a simple example, we can use it to illustrate several
important characteristics of linear arrays. The first set of characteristics
describe the parameters of the beam pattern.

2.4.1 Beam Pattern Parameters

) 3-dB beamwidth (the half-power beamwidth, HPBW)
) Distance to first null (twice this distance is BWpy)
) Distance to first sidelobe
(iv) Height of first sidelobe
) Location of remaining nulls
) Rate of decrease of sidelobes
) Grating lobes
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Figure 2.19 Main lobe of beam pattern.

To illustrate the first two points, consider the beam pattern near the
origin as shown in Figure 2.19.

The 3-dB beamwidth is a measure of the width of the beam. It is defined
to be the point where |By,(u)|? = 0.5 or |By(u)] = 1/v/2. We can find
the half-power point in u-space by setting By (u) in (2.96) equal to 1/+/2.
Calculating this value as N increases, we find that, for N > 10, a good
approximation is obtained by solving the equation,

mNd 4 (2.98)
A
(see Problem 2.4.7). Then,
Auq A
=14 (2.99)
or A\
Aug = 0.891m. (2.100)

We refer to this interval as the half-power beamwidth (HPBW). As N
increases, the coefficient in (2.100) reduces slightly. For N > 30, 0.886\/Nd
is a better approximation.
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The HPBWs in terms of the various spaces are listed in Table 2.2.

Table 2.2 HPBWs in Various Spaces

Space Arbitrary d d=X/2
u 0.891 2 1.782%
9 2sin™! (0.4460;) | 2sin~! (0.8914)
small o~ 0.891—% radians | ~ 1,782—]1\7 radians
0 =~ 51.0555 degrees | =~ 102.11—{7 degrees
Y 0.891°7 0.8912%
ks 0.8915% 1.7825%

We define § = 7/2 — 0 as the angle measured from broadside (see Figure 2.2).

The nulls of the pattern occur when the numerator of B, (u) is zero and
the denominator is non-zero:

N
sin(”Tdu) =0, (2.101)
when Nd
Zr—)\——uzmﬂ, m=1,2---. (2.102)
Thus the nulls occur when both
u—m/\ m=1,2 (2.103)
- Nd? - b k) 3 -
and \
u;éma, m=1,2,---. (2.104)

Thus, the first null occurs at A/Nd and

A
Auy = QW’ (2.105)
We refer to Aus as the null-to-null beamwidth and denote it by BWyy.
One-half of the BWyy is the distance to the first null (0.5BWyxy). This
quantity provides a measure of the ability of the array to resolve two different
plane waves. It is referred to as the Rayleigh resolution limit. Two plane
waves are considered resolvable if the peak of the second beam pattern lies
at or outside of the null of the first beam pattern (separation > Auy/2).
Later, we look at statistical measures of an array’s resolution capability.
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Note that the linear array has no resolution capability in the azimuthal
direction (¢) because it has no extent in either the z or y directions. We
will discuss the resolution problem in detail in later sections.

The BWy in terms of the various spaces is listed in Table 2.3.

Table 2.3 BWxy in Various Spaces

Space Arbitrary d d=A/2
u 2. A 4
Nd N
i 1A 12
2 2sin”! () 2sin”! ()
small 0 ~ 22 radians | ~ 2 radians
Nd N
¥ an an
N N
% E

2.4.1.1 Location of sidelobes and the rate of decrease

The location of the maxima of the sidelobes occurs approximately when the
numerator of (2.96) is a maximum:

!
sin <%) =1. (2.106)
Thus,
N
—é‘fzi@m“)g, m=12- (2.107)
or 2 1
b=+ mN+ 7 (2.108)
and \
2m + 1
W=t (2.109)

The peak of the first sidelobe occurs at

3
=+—. 2.11
b= (2110)
Since the numerator in (2.97) is approximately one at the maximum, the
value at the maximuin is given by

3m 1
Byl+— )& ———Mn—. 2.111
”’( N) N sin(2%) (2.111)
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For large N, this can be further approximated by

G

3r 2
By (i—ﬁ> (2.112)

or —-13.5 dB. This implics that a signal 13.5 dB higher at these sidelobe loca-
tions would produce the same response as one at k, = 0. The major sidelobes
appear at k, = £(2m + 1)7/Nd and the levels diminish as 1/(2m + 1). For
cxample, the next highest sidelobes are -17.9 dB. In practice this level of
discrimination is generally not acceptable, so uniformly weighted arrays are
seldom used. The issue of sidelobe control is especially important in both
deterministic and adaptive array designs. We discuss the deterministic case
in Chapter 3 and the adaptive case in Chapter 7.

2.4.1.2 Grating lobes

In Figure 2.20, we plot | T, (u)| for various values of d/\. It illustrates the
important concept of “grating lobe,” which is a lobe of the same height as the
main lobe. Grating lobes occur when both the numerator and denominator
of {2.97) equals one. These appear at intervals,

Yoo, (2.113)
2
or
¥ =m-2m, (2.114)
or \
=m-—. 2.115
u=m 7 ( )

If the array spacing is greater than A, then the peak of the grating lobe
occurs within the region of propagating signals, that is, when |u| < 1. Here
one has an ambiguity in terms of the peak response and only a prior: infor-
mation about the direction of the signal can resolve it.

In the next section, we discuss array steering. We find that steering
causes the frequency-wavenumber function in u-space, T, (u), to shift in u-
space. This shift causes grating lobes to move into the visible region. We
find that, if the array is required to steer 0° < 6 < 180°, then we require,

d
X

IA

1
5 (2.116)

or

o
IA
| >

(2.117)
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Visible region
T

Figure 2.20 Effect of element spacing on beam pattern: (a) d = A\/4; (b)
d= )2 (c)d=A

Normally, we consider arrays where d < A\/2 and assume that steering
over the entire sphere is required. We refer to a uniform linear array with
d = A\/2 as a standard linear array.

The problem of grating lobes is identical to the problem of aliasing in
time series analysis, which occurs when we undersample the time domain
waveform.

2.5 Array Steering

The discussions in Sections 2.2, 2.3, and 2.4 have considered arrays whose
maximum response axis was at broadside, or k, = 0. In most applica-
tions we want to be able to position, or steer, the response to an arbitrary
wavenumber, or direction. There are two ways to accomplish this. The
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Figure 2.21 Array steering with delays.

direct approach is to change the location of the sensors so that the axis is
perpendicular to the desired steering direction. This is termed mechanical
steering, and this is what is being done when an antenna is physically ro-
tated such as a parabolic aperture in a radar system. Often mechanical
steering is not possible because of either the large physical dimensions of an
array when operating with long wavelength signals or the need to recalibrate
sensors when they are moved.

An alternative approach is to introduce time delays (or in the narrow-
band case, phase shifts) to steer the main response axis (MRA) of an
array. This is termed electronic steering. With the advances in very high
speed signal processors, electronic steering is being used much more exten-
sively in array processing, not only because of the restrictions of mechanical
steering but also because of its flexibility and its ability to change the re-
sponse function rapidly. In some arrays we use mechanical steering in one
direction and electronic steering in the other direction.

We first consider an arbitrary array and then specialize our results to a
uniformly weighted array.

Our simple example at the beginning of Section 2.2 illustrated the idea of
steering the array in a specific direction. The effect of steering in wavenumber
space is straightforward. Consider the processor in Figure 2.21.> The basis
function input to the steering section is

f(t,p) = e vy (k). (2.118)
We would like the output to be aligned when
k = kr, (2.119)

the “target” wavenumber. We refer to kp as the steering direction or
main response axis in k-space. We accomplish this with an N x N diagonal

5The convention in our figures is that the vector or matrix in a box pre-multiplies the
input.
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steering matrix,®

cIKTP1 0 e 0
A 0 6jk¥l)2 - 0
Ii(kr) = (2.120)
0 cee e, 0
0 o 0 eJKTPN
The resulting output is
fs(t’ p) = eth Vk(k - kT)? (2121)
and the overall frequency wavenumber response is
T(w, klkr) = T(w,k — k7). (2.122)

The array response function is simply displaced to be positioned about
k. This is one of the useful aspects of using wavenumber space in in-
terpreting array response functions. If we consider the beam patterns in
wavenumber space, we also get a simple displacement.

When we use uniform amplitude weighting, the two-step process in Fig-
ure 2.21 is unnecessary. We let

w = ]_if_vk(kT) (2.123)

and
Bu(k : k) = %vf (k) vic(K). (2.124)

We refer to B.(k : kr) as the conventional beam pattern. We will find
that this conventional beam pattern plays a fundamental role in many of the
optimum processing schemes that we will develop in the sequel.

For a linear array, the conventional beam pattern can be written as

Buelth  ¥7) = i () vy () (2.125)
in y-space and
Buo(u : ur) = %vf (ur) v (u) (2.126)

SNote that for the wideband case, we accomplish (2.120) with delays. Only in the
narrowband case can the delays be replaced with phase shifts.
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in u-space. For a uniform linear array,

1 sin(N ¥z wT)

(d} ¢T) N Sln(u‘) .
2

(2.127)
The steering direction in i-space corresponds to an interelement phase shift
of ¢p. In u-space,

1sin[’rNd(u ur)]
N sin[Z2(u. — ur)]

Thus if we look at the expressions in (2.127), or (2.128), they all corre-
spond to shifts in the pattern, but its shape is not changed. This property of
shifting without distortion is one of many advantages of working in 1-space
or u-space.

As we steer the array so that the main response axis is aimed at 8o, where
f, is the angle measured from broadside, the beam pattern shifts so that the
center peak is at ug = sin fp. This shift causes the grating lobes to move.

In Figure 2.22, we show the effect of steering on the beam pattern. In
Figure 2.22(a), we show the beam pattern for d = 21/3 and 8 = 30°. We
see that, at this steering angle, the grating lobe is at the edge of the visible
region.

In Figure 2.22(b), we show the beam pattern for d = A/2 and g = 90°.
The grating lobe is at the edge of the visible region.

In general, we require

B (u uT)

(2.128)

d 1
<

M G 2.129
A7 14| sinbmeg]’ ( )

where 6,4, is the maximum angle to which the array will be required to
steer, in order to avoid a grating lobe from moving into the visible region.
This result follows from calculating the location of the first grating lobe as
a function of d/\ with 07 = Opmae. Thus, if the array is required to steer
—90° < # < 90°, we require
d< % (2.130)

The behavior in -space and u-space is useful. However, it is important
to remember that the signals originate in a (6, ¢) space, and we need to
understand=the behavior in that space.

In 6-space (i.e., angle space),

1 sin[=¥4 (cos§ — cos HT)]

N sin[Z¢ (cos 8 — cos 6r)]

Bge(8 : 07) = (2.131)
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B)

Beam pattern (d

B)

Beam pattern (d

o], o] [

Figure 2.22 Effect of steering on the grating lobes: N =10 (a) d = 2)/3,0 =
30°; (b) d = \/2,0 = 90°.

When we plot By.(6 : 87) in 6-space, the shape of the pattern changes due
to the cos§ dependence. In Figure 2.23, we show the beam pattern for the
case r = 30° and d = A/2. Comparing this pattern with the pattern in
Figure 2.17, we see that the beamwidth of the main lobe has increased.

To investigate the behavior of the HPBW in f-space, we use (2.131) and
(2.100). The right half-power point in u-space is

A
= 0.450 —, 2.132
UR ur + Nd ( )
and the left half-power point in u-space is
A
ur, = ur — 0.450 —, (2.133)

Nd
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Figure 2.23 Beam pattern for 10-element uniform array (d = \/2) scanned
to 30° (60° from broadside).

or, in #-space (fr corresponds to uy, and 6, corresponds to ug),

A
Or = 1 — 0.450— 2.134
cosfp = cosfr N ( )
cosfp = cosfr +0 450—/\— (2.135)
L= T . Nd’ .

Thus, the half-power beamwidth in #-space is
A
=0r—-0L= cos! |c -04 —]
0y =0r— 6L COS [COS(;’T 0 50Nd +

1 A

Cos [cos Or + 0.450Nd} , (2.136)
for 0 <8 <, 6,0r > 0. Except for the case when 8 = 0 or 7 (endfire), 6,
is defined to be the half-power point closest to § = 0. As the beam is steered
from broadside (67 = 7/2) toward the positive z-axis (endfire, 67 = 0), the
beam broadens. At some point, 01, as given by (2.135) equals 0. Beyond
that point there is no half-power point on that side of the beam. Elliott
[ELI81] refers to this point as the scan limit.

The beamwidths given by (2.136) and (2.138) were plotted by Elliott [El81]

and are shown in Figure 2.24.
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3-dB beamwidth in degrees

Ndik

Figure 2.24 HPBW versus steering angle: standard linear array with uniform
weighting.

When the beam is steered in the vicinity of broadside (A7 is small) and
Nd > A, 8y will be small and we use a small angle expansion to obtain

Oy ~ 0.891% csc O (2.137)

The behavior in (2.137) is apparent from Figure 2.25. The effective array
length is reduced by cosfr.

For Nd > 5A, the result in (2.137) is in error by less than 0.2% near
broadside and by less than 4% at the scan limit.

When 01 = 0 or m, the maximum response axis is pointed along the
array axis and is referred to as an endfire array. The beam pattern for a
standard 10-element endfire array is shown in Figure 2.26. In this case,

0y = 2cos™ [1 - 0.450-]3—61} , 6p=0orm. (2.138)

We can rewrite (2.138) as

Oy A
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A
0r

Nd cos@ 7 = Effective
' length of

/ array

_ 5 >
Nd Nd
2 2

Figure 2.25 Effective array length reduced by cos Or.

180

Figure 2.26 Beam pattern of a standard 10-element linear array with uniform
amplitude weighting at endfire.
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or
sin(T) = ———. (2.140)

For Nd > A, 0y is small and (2.140) becomes

/ A
B = 21/0.890 <. (2.141)

For Nd > 5), (2.141) is in error by less than 1%.
Similarly, the first null in the pattern is at

[0 A
Ot = 4/ 2 N_d (2.142)

Thus, the resolution of a linear array at endfire varies as the reciprocal
of the square root of Nd/\ as contrasted to the linear dependence in the
broadside case.

One can decrease the beamwidth of an endfire array by using a procedure
proposed by Hansen and Woodyard [HW38]. This technique is described
in Section 6.3.4 of [Bal82] and Section 4.7 of [Kra88]. We summarize the

procedure in Problem 2.5.4.

2.6 Array Performance Measures

There are a number of performance measures by which one assesses the
capabilities of an array. Each of the various measures attempts to quantify an
important aspect of either the response of an array to the signal environment
or of the sensitivity to an array design. We have already noted both the
distance to the first nulls as a measure of the beamwidth or resolution of
the frequency wavenumber response and the cardinal sidelobe levels of a
uniformly weighted linear array. In this section we discuss three of the
commonly used array performance measures:

(i) Directivity
(ii) Array gain versus spatially white noise (Ay)

(iii) Sensitivity and the tolerance factor
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2.6.1 Directivity

A common measure of performance of an array or aperture is the directiv-
ity. We will define it for the general case and then specialize it to a linear
array.

We define the power pattern, P(6, ¢), to be the squared magnitude of
the beam pattern B{w : 8, ¢)

P9,¢) =|B(w:0,9), (2.143)

where the frequency dependence of P(6,¢) is suppressed in the notation.
Then the directivity D is defined as

D= POr, ¢1) (2.144)

& Jydo i dg sind - P(6,¢)

where (01, ¢7) is the steering direction or main response axis (MRA).

In a transmitting array or aperture, D represents the maximum radia-
tion intensity (power per unit solid angle) divided by the average radiation
intensity (averaged over the sphere).

In a receiving antenna, we find in Chapter 5 that the denominator repre-
sents the noise power at the array (or aperture) output due to isotropic noise
(noise distributed uniformly over a sphere). The numerator will represent
the power due to a signal arriving from (61, ¢r). Thus, D can be interpreted
as the array gain against isotropic noise.

If we assume that the weights are normalized so that P,(6r,¢r) = 1,
then (2.144) can be written as

T 2w -1
D={i/ do d¢sin0-P(9,¢)} . (2.145)
4m Jo 0
For a linear array
B(#,¢) = B(9), (2.146)
so (2.145) becomes
I 2 g -
D—{—Q-/O |B(9)| sm9d0} . (2.147)

This can be expressed in u-space as

D= {% /_11 IBu(u)|2du}_l. (2.148)
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In general, this expression must be evaluated numerically.
Using (2.70), the expression in (2.148) can be written in terms of the
array weights as

1 . omd Nl . omd -
D= {-2— / Z u};e]n(T)(u_uT) Z wme-jm(T)(u“uT) du} . (2149)
L m=0

where up is the steering direction in u-space. Rearranging terms and per-
forming the integration gives

-1

N—-1N-1 - ord 2d
D = Z Z ,wm,w;eJ(T)(m~n)UT sinc <__/\_._(n — m)) . (2150)

n=0 m=0
We define several matrices to obtain a compact expression. The n, m
element of the sinc matrix is
27d
[sinc|pm & sinc(%(n —m)). (2.151)

The steering matrix in u-space is (2.120)

Iy, = diag(1, &/ 50ur 7B 2ur | JBEHN-Tury, (2.152)
Then,
D = I, w![sinc]wIi . (2.153)
Normally, we include the steering in the weight vector,?
w, = wii, (2.154)
Then
D = wH|sinc]wy. (2.155)

The standard linear array is a special case of interest. If d = \/2, (2.150)
reduces to

N-1N-1 . -1
D = { Z Z Wrw e ™M T sine (7(n, — m))} . (2.156)

n=0 m=0

The sinc function equals one when m = n and zero when m # n, so (2.156)
reduces to
~1

N~-1 1
D={lent2} = wiw) 2 ={|w[?} ", (2.157)

n=0

"In most cases, the “s” subscript is dropped because we assume that w includes steering.
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where

H

Hw = (wHw)z, (2.158)

is the 2-norm of the vector w (A.36).

Thus, the directivity of a standard linear array is the reciprocal of the
magnitude squared of the weight vector. The directivity does not depend
on the steering direction. As the steering direction moves away from array
broadside, the beam broadens but the circumference in the ¢ integration
decreases.

For d # A/2, we use the expression in (2.150) and the directivity will
depend on the steering direction.

For a uniformly weighted standard linear array, w, = 1/N, so

N-1 ) 1
nZ::o Jwn|? = I (2.159)
so that
D=N. (2.160)

Uniform weighting maximizes the directivity of the standard linear array.
To show this, we constrain

N-1
> wy =1, (2.161)
n=0

which guarantees that the beam pattern equals one for ur = 0, and maximize
YNy, |2. To perform the maximization, we write

N-1 N-1
F=Y |wn[2+)\<z wn—l), (2.162)
n=0 n=0

where A is a Lagrange multiplier.® Differentiating with respect to wy, and
setting the result to zero gives

wy = =\ (2.163)
or
wn = —A*. (2.164)
Substituting (2.164) into (2.161) gives \* = —1/N, so
=2 (2.165)
Wn = 75, .

8See Appendix A (Section A.7.4) for a discussion of complex gradients and the differ-
entiation of a non-analytic function.
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which is the desired result.

In Chapter 3, we discuss non-uniform weightings. The directivity always
decreases. It is a function of the length of array measured in half wavelengths
plus a term due to the non-uniform weighting.

The directivity of a standard uniformly weighted linear array can be
related to the HPBW or the beamwidth between the first nulls. From Table

2.3, we have
4

D= :
BWVnn

(2.166)

where the BWy v is expressed in u-space. Note that (2.166) applies to a
uniformly weighted array. For other weightings (2.166) may not hold.

Frequently, we express the directivity in dB and refer to it as the direc-
tivity index,

We can write the DI as
DI = 10log;o N + 10log;(g(w)). (2.168)

The second term is a function of the weights. For any non-uniform weighting
(wp, # N71), the DI will be reduced.

2.6.2 Array Gain vs. Spatially White Noise (A,)

One of the purposes of an array is to improve the signal-to-noise ratio
(SNR) by adding signals coherently and noise incoherently. The improve-
ment is measured by the array gain. It is an important measure of array
performance that we discuss extensively in later chapters. The general def-
inition must be deferred until we introduce the spectral covariance matrix,
which describes the statistical concepts for describing the spatial properties
of the noise processes; however, we can formulate a restricted definition here.

We assume that the input at each sensor consists of a plane wave arriving
along the main response axis plus a noise process that is uncorrelated among
the sensors (spatially white noise). Thus,

zn(t) = f(t — ) + nn(t), n=0,---,N ~1 (2.169)

At each sensor, the signal spectrum-to-noise spectrum ratio at frequency w
18

SN () 2 21 E:i

(2.170)
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where the subscript “in” denotes input and the noise spectrum at each sensor
is assumed to be identical.

In order to find the output due to the signal and noise, we need an
expression for the output spectrum in terms of the beamformer weights and
the input spectral matrix. From (2.8),

W(t) = [ °:o WP (r) x(t - 7) dr. (2.171)

We assume that x(t) is zero-mean and wide-sense stationary. The correlation
function of the output y(¢) is

Ry(1) = Ely(t)y*(t — 7)]. (2.172)
The spectrum of y(t) is
Sy(w) = /_ o:o e 9T R, (1) dr. (2.173)

Using (2.171) in (2.172) and the result in (2.173) gives

Sy(w) = /OO e T dr /oo h'(a)da /OO Elx(t — a)x"(t — 7 — B)|h*(B)dp.
e - e (2.174)
This can be rewritten as

Sy(w) = /_o:o dahT (a)e I /_O; dz eIV R, (2) /_o:o dB e “Pn* (),

(2.175)
which reduces to
Sy(w) = HT (w) Sx (w)H* (w). (2.176)
Using (2.52) in (2.176) gives the desired results,
Sy(w) = w Sy (w)w, (2.177)

for the narrowband beamformer.
To calculate the output due to the signal, we impose the constraint on
w that,
whi vy (k) = 1. (2.178)

The constraint in (2.178) implies that any signal arriving along ks will pass
through the beamformer undistorted. We refer to the constraint in (2.178)
as a distortionless constraint. It is used frequently in subsequent discus-
sions.
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We can write the input signal spectrum as
Se(w) = vic(ks) Sp(w) v (k). (2.179)
Using (2.179) in (2.176), the output signal spectrum is

Sy (w) = wvi(ks) Sp(w) vil (ks) w
= Sw). (2.180)

The spectral output due to noise is
Sy (w) = wH Sy (w)w, (2.181)

where S,,(w) is the spectral matrix of the input noise process. For the special
case of spatial white noise and identical noise spectra at each sensor,

Sn(w) = Sn(w) 1, (2.182)

and Nt
Sy (@) =|| W > Sn(w) = > |wnl? Sp(w). (2.183)

Thus, -
SR, (w) = — 1) (2.184)

S0 fwnl? Sn(w)’
where the subscript “o” denotes output.

The array gain Ay reflects the improvement in SNR obtained by using
the array. It is defined to be the ratio of the SNR at the output of the array
to the SNR at an input sensor. The subscript “w” denotes the spatially
uncorrelated noise input. The noise temporal frequency spectrum is not
necessarily flat. Using (2.170) and (2.184),

_ SNR,(w) 1

— = 2.185
NRen@) ~ ST ] (2:189)

A

or
-1

N-1
Ay = (Z Iwn|2> = |wi™2. (2.186)
n=0
Three observations with respect to (2.186) are useful:

(i) The result is valid for an arbitrary array geometry, as long as

lwvi(ks))? = 1. (2.187)
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O O O o}
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e Nominal array
o Actual array

Figure 2.27 Array with position errors.

(ii) For a standard linear array (spacing d = \/2), the white noise array gain
is identical to the array directivity (2.157). After we discuss isotropic
noise fields in Chapter 5, the reason for this will be clear.

(iii) For a uniform linear array with d # \/2, D will not equal A,,. We will
find the noise spectral matrix for an isotropic noise input is given by
(2.151) so that D is the array gain A, for an isotropic noise input.

For a uniformly weighted array,
w,=—, n=0.--,N—-1 (2.188)

and Ay, = N (or 10log N in dB). A direct application of the Schwarz inequal-
ity shows that A,, < N. Therefore, if we are trying to maximize the array
gain in the presence of spatially uncorrelated noise, a uniformly weighted
array is optimum.

In Chapter 3, we will develop non-uniform weighting in order to improve
sidelobe behavior. In these cases, we will be doing a trade-off between the loss
in directivity and white noise array gain against improved sidelobe behavior.

2.6.3 Sensitivity and the Tolerance Factor

In later chapters, we analyze the sensitivity of optimum processors to gain
and phase errors and imprecise positioning of the sensors. Here we sum-
marize a typical result for the array shown in Figure 2.27. We design the
processor so that, in the absence of array perturbations,

wil  1F(w) = F(w), (2.189)

so that a signal from broadside passes through the array processing without
distortion.
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We consider the effect of filter perturbations and array location pertur-

bations.

2.6.3.1 Filter perturbations

In this case we assume that the nominal matrix filter is w™. Denoting
the ith component of w™ as w]', we can write the nominal weight as

(wp)" = gpe (2.190)
and the actual weight as
w;‘ — gie'j¢i
= gP(1+ Agy)e IOITAR), (2.191)

where the Ag; and A¢; are random variables.

2.6.3.2 Array location perturbations
In this case we assume that the nominal array locations are p' and that
pi =p; +Ap;. (2.192)

Thus, we have the three variations from the nominal model:?

9i = g7 (1 + Agy), (2.193)
¢i = &7 + Ady, (2.194)
Pi = p; + Api. (2.195)

The first two variations could result from changes in the gain and phase
of the array sensors or from imperfect gain and phase in the processor fil-
ters. The last variation is caused by imperfect knowledge of the location
of the array elements. We assume that the Ag; (¢ = 0,1,---, N — 1), the
A¢; (i =0,1,--+ N — 1), and the Apg;, Apy;, Apyi (i = 0,1,--- N — 1) are
statistically independent, zero-mean, Gaussian random variables. We ana-
lyze the behavior of the beam pattern in the presence of these variations.

The nominal beam pattern is

BW(k) = (W) v(k)

(w
= NZ T exp (j<]5n —jkTp ) . (2.196)

®This case is from Gilbert and Morgan [GMS55]
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The actual beam pattern is a random function. The expectation of its mag-
nitude squared can be written as

[BIP & E{|BK)?}

N-1N-1
= E { > giexp (g — ik i)
=0 [=0
-g1 exp (—jd’z + jksz> } (2.197)

or
N-1

o N--
LIPS Z {apa+ agogr(1+ ag)
=0 [=0
exp[ (07 + Agi — ¢ — Ady))
- exp [—jkT (P! +Api —p/ — Apz)]} . (2.198)

Now define

cir = B{(1+ Agi)(1+ Agi) expli(Adi — Ady)]} (2.199)
and
/Bil(k) =F {exp[—jkT(Api — Apl)]} A (2.200)
Using the independent Gaussian random variable assumption,
g2 ;
=147 <2 ). S (2.201)
]. + Ug, 7 = l
and
: K .
i = | o0 (o) = (= [57:)°) 2 e (o) i
1, i1
(2.202)
where )
on o =2 (2.203)

In the expression for G (k), we have assumed that the variance of each
component of Ap; is equal to o2. The term 0)\ is the scaled variance mea-
sured in wavelengths. Then,

p’

N—-1 N-1

BIRP = > Y gigtexp(jo - jof) exp [~k" (B} — pf)]
i=0 (=0
1#1
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N—

cexp |- (a3 +03)| + 3 (1+07) (91 (2.204)
1=0

,_;

Adding (g7")?* exp[— (cfgS +0%)],4=0,1,---, N — 1 in the first term and sub-
tracting the appropriate quantity from the second term gives

IBK)P? = IB(")( k)|* exp[— (0§ + 03)]

+ Z (o7 {(1+02) —exp [~(o5+ )]}, (2:205)

where aq%, 0/2\, and 03 denote the variance of the corresponding random vari-
ables.

The random variation has two effects. The first term attenuates the
beam pattern uniformly in k. This uniformity is due to our assumption that
the variations are not dependent on k. It means that the beam pattern has
a statistical bias. The expected value of the pattern along the MRA is less
than unity. The second term is more critical. Define

N-1

Toe = Z wl? =3 (gh)? (2.206)

=0

as the sensitivity function. Then the second term becomes
|Ba(k)[? = Tue {1 +a§ — exp[— (05 + 03]}, (2.207)
which for small variances reduces to,
|B2(K)2 = Te{o2 + 0} + 03} (2.208)
Note that T} is the inverse of the array gain for white noise, (see (2.185))
Toe = [Au] " =l w . (2.209)

Thus as the white noise array gain increases, the sensitivity decreases. For
an N-element array, the maximum white noise gain is N and corresponds to
uniform weighting. Thus, any array with non-uniform weighting will be more
sensitive to parameter variations than the uniformly weighted array. The
effect of the second term is to raise the expected value in the sidelobe region
uniformly. This constant value across k-space can have a major impact. In
many array designs, we would like to put a perfect null (|B(k)|? = 0) in the
direction of an interfering signal. We look at techniques for doing this in
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Section 3.7. The implication of the term in (2.208) or (2.207) is that, if any
of the variances (ag, aé, 0/2\) are non-zero, then we can not obtain a perfect
null.

The level of the floor in the expected value of the power pattern will
depend on the sensitivity function, T, and the variance of the perturbations.
The effect is to limit the depth of the nulls in the pattern.!®

As an example, suppose
0% £ (62 + 0% +03) = 0.01. (2.210)

Then, A,, must be greater than or equal to 100 in order to get —40-dB nulls
in the pattern. This requires that a uniformly weighted array must contain
at least 100 elements. An array with non-uniform weighting would require
even more elements.

Later in the text, when we design optimum arrays, we often impose a
sensitivity constraint,

Tye =|| w ||*< T, (2.211)

where T, is a design constant to make the performance more robust to per-
turbations. The constraint in (2.211) is often referred to as a white noise
gain constraint,

Av= (W '>T,n (2.212)
In many of the design problems that we consider later, we find that the
constraint in (2.211) plays an important role.
2.6.4 Summary

In this section, we have developed three important array performance mea-
sures. We observe that the norm of the weight vector w has appeared in all
three measures:

(i) For a standard linear array, the directivity is

D=|w|<N.

(ii) For any array geometry, the white noise array gain is

Aw=llw |7,

In mathematical terms, a null in the beam pattern means B(k) = 0. However, in
practice, the actual pattern has some non-zero value. The ratio of this value to the value
at B(kr) is referred to as the null depth.
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INERY

Figure 2.28 Linear aperture.

(i) For any array geometry, the sensitivity function is

Tse = AJf =[| w ”2 .

Later we will see that || w ||? will play a central role in many of our discus-
sions.

2.7 Linear Apertures

2.7.1 Frequency-wavenumber Response

Consider the linear aperture shown in Figure 2.28. We assume that it is
steered to broadside and has an aperture weighting function w;(z), where
“a” denotes “aperture.”
The frequency-wavenumber response function is given by
L/2 .
T(w, k) = / dzw}(z)e k2, (2.213)

~L/2
The exponential term, exp(—jk.z), is the array manifold function and is
analogous to the array manifold vector in an array. Observing that

wi(z) =0, |z]> (2.214)

5’
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we have

T(w, k) = [20 wi(z)e k= dz, (2.215)

which is familiar as the Fourier transform. The inverse transform is

wi(2) = o= [2 T(w, kz)el?*= dk,. (2.216)

We see that the aperture weighting function and the frequency-wavenumber
response are a Fourier transform pair in the z — k, variables. Thus all the
Fourier transform properties can be applied to the aperture problem. For a
linear aperture with uniform weighting,

Y(w,k,) = /L/2 le_jkzzdz
yRz) = —L/2L

3 L
elgks _ omigk:

25 (k. 3)
sin(é—kz)

L, <k, < (2.217)
7 Rz

orl!

L
YT(w, k) = sinc(gkz), —oo < k, < o0, (2.218)
and, since k, = —(27/\)u,

L
By(u) = sinc(”T W), —l<u<l. (2.219)
The function is plotted in Figure 2.29.
It is useful to compare the result in (2.219) with the array result in (2.96).
To find the equivalent length of aperture corresponding to an array of N

elements, we equate the arguments of the sine functions in the numerators
of (2.219) and (2.96),
— U= —1u 2.22
U T (2.220)
This equality provides the same main lobe width and null spacing. Thus,

L = Nd. (2.221)

This relationship is shown in Figure 2.30. The equivalent length aperture
extends d/2 beyond the actual array length in each direction.

"We define sincz as (sinx)/z. Some sources (e.g., MATLAB®) define sincx as
(sin(mz)) /(7).
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Figure 2.29 Beam pattern of uniformly weighted linear aperture.

One Fourier transform property of immediate use is the shifting property.
The array in (2.213) is steered to broadside. To steer to k.7, we have

T(w, kz : k‘zT) = T(w, k)z - sz). (2.222)

Substituting into (2.216) gives

1 oo -
wils ki) = o / Y(w, ks — kor)e*e dk,
— 00
1 [ :
= — / T(w, Lk)e??BkTET) g Ak)
27 J oo
= IhT oyl (2). (2.223)

Thus, as we have seen with arrays, steering the beam in wavenumber space
corresponds to a progressive phase shift in the weighting function.
In many cases, we want to start the analysis with the linear aperture and
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L >

A

Figure 2.30 Equivalent apertures and arrays.

then implement its frequency wavenumber response by using an array. This
leads us to the aperture sampling problem.

2.7.2 Aperture Sampling

Consider the continuous aperture shown in Figure 2.30. We want to replace
it with the equivalent uniformly spaced array in Figure 2.30. The element
spacing is d and we assume N is odd.

We can represent the array weighting function as a continuous aperture
weighting function using a sum of impulse functions,

wi(z) = Z wyé(z — (n — ———)d), (2.224)
n=0 2
where Nd = L. Then, using (2.215),
oo N1 N -1 .
Y(w, k;) = / S wid(z — (n— = )d)e e dz, (2.225)
s 2
Integrating, we obtain
N-1 ) Nt
T(w ko) = > wre /77 hd (2.226)
n=0

which is identical to (2.58).
If the continuous aperture weighting function is w}(z), then using a stan-
dard linear array (d = A\/2) with element weightings

wy, =wy(zy), n=0,1,---,N—1, (2.227)

will not, in general, produce an identical beam pattern. Usually, the sampled
pattern will have very similar main-lobe behavior, but its sidelobe behavior
will be different. We see examples of this behavior in Chapter 3.

If our goal is to duplicate the beam pattern of continuous aperture, we
can use smaller interelement spacing.
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2.8 Non-isotropic Element Patterns

Our discussion up to this point has assumed that each element had an
isotropic response. In many cases, each element will have a beam pattern.
In other cases, groups of sensors may be combined into a subarray with a
beam pattern. The subarrays are treated as elements in the overall array.
It is straightforward to incorporate these element beam patterns through
pattern multiplication.

We assume each element is a linear aperture and has an identical weight-
ing, denoted by w,(z). These elements are configured into a linear array at
location z,, n =0,1,---, N — 1. Note that the spacing does not have to be
uniform. The array weightings are w;,. The total weighting function is,

Zw cwi (2 = 2p). (2.228)

n=0
The resulting frequency-wavenumber function is

s N-1

T(w,k;) = / Z wk - wh(z — 2,) e 7 dz

= Z w), e Ik Z"/ wh(z1)e* M dzy.  (2.229)

The first term is familiar as the beam pattern of the array with isotropic
elements. It is now convenient to denote it as the array factor

|H>

N .
Z e IRz (2.230)
which is analogous to the expression in (2.58).
The second term is the element frequency-wavenumber function. Thus,
T(w, k;) = AF(k;)Ye(w, k;). (2.231)
In terms of beam patterns
Bu(u) = AF(u) Bye(u), (2.232)

where 5
k,=——cosf = ——u. (2.233)
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Figure 2.31 Array of colinear apertures.

Thus, the total beam pattern is the product of the array factor and the
element beam pattern. This behavior is referred to as pattern multiplication.
The derivation for three dimensions follows easily:

T(w,k) = AF(K)Ye(w, k). (2.234)

Three representative cases are shown in figures 2.31, 2.32, and 2.33.

In the first case, the element is colinear with the linear array axis, and
the resulting pattern can be represented in k,-space.

In the second case, the element is perpendicular, so that the resulting
pattern must be represented in k-space (see Problem 2.8.3).

In the third case, the array is a rectangular planar array. If we consider
the sensors in the z-direction to be elements of a linear array along the z-axis
and each column has identical weightings, then the total array factor is the
product of the two array factors,

AF(k) = AF,(k) - AF, (k). (2.235)

In addition to non-isotropic beam patterns, there are other sensor char-
acteristics that should be considered in a particular physical problem. In
some situations, there may be mutual coupling between the sensors. Several
references (e.g., Balanis [Bal82], Yeh et al. [YLU89], Friedlander and Weiss
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[FW91], and Svantesson [Sva99]). At several points in the text we will point
out the effect of mutual coupling but will not pursue it in detail.

2.9 Summary

In this chapter, we have introduced many of the key concepts that will be
used throughout the text.

In Section 2.2, we introduced the idea that the sensor array followed
by a linear processor acts as spatial-temporal filter in (w, k)-space whose
characteristics are described by a frequency-wavenumber function Y (w,k),
(2.37). In the visible region, the frequency-wavenumber function corresponds
to the beam pattern, (2.38). The shape of these functions are determined
by array geometry and the element weightings. The effect of array geometry
is described by the array manifold vector, vi(k), (2.28). For narrowband
processors, the element weightings are complex gains, (2.49).

In Section 2.3, we considered a narrowband, uniform linear array and de-
rived its array manifold vector, (2.73). We observed that the array manifold
vector was conjugate symmetric, (2.74), (2.75). This symmetry will lead to
computational simplifactions in several situations.

In Section 2.4, we considered a uniformly weighted uniform linear ar-
ray that often referred to as the conventional beamformer. The frequency-
wavenumber function was given by (2.92), and the beam pattern was given
by (2.95)-(2.97). We defined various beam pattern parameters; HPBW,
BWpyn, SLL, and grating lobes. These parameters provide a good general
description of the beam pattern.

In Section 2.5, we discussed array steering. Steering causes a translation
of the beam pattern in k,, ¢, or u-space, but causes pattern distortion in
f-space.

In Section 2.6, we introduced three important concepts: directivity, white
noise array gain, and the sensitivity function. For a given array geometry,
the directivity is maximized by a uniform weighting. In Chapter 3, we
will study different array weightings and find that the design problem is
to find a suitable trade-off between improving sidelobe behavior and the
null placement and reducing the directivity. We found that the sensitivity
function is the inverse of the white noise gain and equals the norm of the
weight vector w, (2.209).

In Section 2.7, we discussed linear apertures and found that the frequency-
wavenumber function for a uniformly weighted linear aperture was a sinc
function, (2.218), (2.219). We introduced aperture sampling in order to
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approximate the aperture behavior with a uniform array.

In Section 2.8, we considered the case in which the sensor beam patterns
are non-isotropic. We derived the pattern multiplication result.

This completes our discussion of uniformly weighted linear arrays. In
Chapter 3 we discuss different weightings to improve the sidelobe perfor-
mance of linear arrays.

2.10 Problems

The problems are divided corresponding to major sections in the chapter.

P2.3 Uniform Linear Arrays

Problem 2.3.1
Assume that N is even. Use the relationships

By(¥) = 2Re [wi' vy, (¥)] (2.236)
from (2.77) to derive the beam pattern of a uniformly weighted uniform linear array.

Problem 2.3.2
When N is odd, we can partition the array manifold vector of a uniform linear array
into three parts,

Vi (1/") }
1 . (2.237)

vy (YY) = {
J v:bl(zb)

Repeat Problem 2.3.1 for this case.

Problem 2.3.3
Show that, if w is real and symmetric, then By (%) for a uniform linear array is a real
symmetric function. Consider both N even and N odd.

Problem 2.3.4
Assume that N is even. In some applications, we want to obtain an asymmetric beam
pattern. Show that, if v (%) is conjugate symmetric and w is real asymmetric, that is,

w:[ w1 ] (2.238)

—Jwi
where w1 is real, then By (1) will be an imaginary function.

Problem 2.3.5
Repeat Problem 2.3.4 for N odd.
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P2.4 Uniformly Weighted Linear Arrays

Problem 2.4.1

(a) Construct a polar plot in dB of Bg(8) for a standard 21-element linear array with
uniform weighting for 7 (the steering direction) equal to 0°, 15°, 30°, 60°, and
90°.

(b) Find the HPBW for each of these 0r.

Problem 2.4.2
Assume N is even and

1 N
[ -% n=01, %1,
z%—{% no N N1 (2.239)

(a) Find the resulting beam pattern and plot the magnitude in dB and phase versus 1
for the case when d = A/2.

(b) Find the slope of the beam pattern at 9 = 0.

Problem 2.4.3
Consider a standard 10-element linear array with uniform weighting. Assume that the
nth sensor fails. Plot the resulting beam pattern for several values of n.

Problem 2.4.4
Assume that each of the 10 sensors in Problem 2.4.3 are equally likely to fail with
probability, Ph,(F) = %(1 — @), where « is a reliability parameter whose value is in the
range [0, 1]. Assume that, at most, one failure occurs.
{a) Calculate the expected value of the beam pattern.
(b) Plot the result for = 0 and o = 0.9.

(¢} Does the expected value of the beam pattern provide a useful indication of the array

behavior or do we have to consider the behavior on separate trials (as in Problem
2.4.3)7

Problem 2.4.5
Consider a standard 10-element linear array with uniform weighting. Assume that
two sensors fail. Plot the resulting beam pattern for several values of n; and na.

Problem 2.4.6
Consider the non-uniform 4-element linear array whose sensor separations are d, 3d,
2d where d = A\/2. The sensor outputs are weighted uniformly.

(a) Compute the beam pattern and BWnn.

(b) Compare the results in (a) with a uniform 7-element array with spacing where
d = A/2. Discuss the behavior of the main lobe and the sidelobes.

Problem 2.4.7
In order to find the exact HPBW, we must solve

|B.(u)]® = 0.5,
where B, (u) is given by (2.96).
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(a) One approach to finding an approximate expression for the HPBW is to expand
|Bu(u)|2 in a second-order Taylor series around v = 0. Use the expression for
B, (u) given in (2.126) to simplify the derivatives. Compare your result to the
result in (2.98).

(b) Use (2.96) to find the exact result as a function of N and compare the result with
(2.98).

Problem 2.4.8
The second central moment of an array weighting function is defined as

N1
YT N M,
o5 = - , N odd, (2.240)
2 N Um
m=— 5=

where the origin is at the center of gravity,

N-1
2

> muwm =0 (2.241)

_N—1
Pl

m=

The second-moment beamwidth is defined as

Aug = . (2.242)

(a) Find Auy for a uniformly weighted linear array.
(b) Compare to the HPBW.

Problem 2.4.9
Consider an 8-element linear array with d = 51/8 and uniform weighting. Plot B, (u).

Compare the resulting beam pattern to the beam pattern of a standard 10-element linear
array.

P2.5 Array Steering

Problem 2.5.1
The conventional beam pattern for an array is given by
By : 7)) = v (¥r) v(¥). (2.243)
(a) Show that By (3 : ¢7) is real if v(¢) is conjugate symmetric.

(b) Give two examples of conjugate symmetric array manifolds in addition to the uni-
form linear array.

Problem 2.5.2
Verify the result in (2.141) and plot the percentage error versus N for various A.

Problem 2.5.3
In an ordinary endfire array, the beam pattern is obtained by letting

Y= 2—;?— cosf — P, (2.244)
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where ord

Yr = i;— (2.245)
If d = A/2, there are two identical endfire lobes, as shown in Figure 2.26. One way to
reduce the back lobe is to reduce the wavelength. The visible region is 2(2nd/)) wide in
-space. The first null in the back lobe is at 2w /N in y-space. Therefore if we reduce the
visible region from the d = A/2 value of 27 by 27 /N, the back lobe should be significantly

decreased. Thus,
2m

2(2nd/X) < 2w — ~ (2.246)
or \ )
4<5(1-5). (2.247)

(a) Plot the beam pattern in u-space and #-space for N = 10. In this case, d = 0.45)
and Y1 = 0.97. Find the HPBW.

(b) Consider the case where only part of the back lobe is moved out of the visible region.
Let N .

d=5(1 - 35)- (2.248)

Plot the beam pattern in u-space and @-space for N = 10. Find the HPBW.

Problem 2.5.4 (Hansen-Woodyard)
In order to make the main beam narrower, Hansen and Woodyard [HW38] proposed
moving part of the main lobe out of the visible region by increasing the interelement phase

shift Y,
2nd = w
vr= (5 + ) (2.249)

However, the back lobe may move into the visible region unless d is decreased. To prevent
the back lobe from becoming larger than the main lobe, we require ¥ < 7. Thus,

2nd w

—)\—'+'N<7T (2.250)

or A\ 1
—-(1-=). 2.251
d<3(-) (2.251)

(a) Consider a 10-element linear array. Let d = 0.45). Plot the beam pattern in u-space
and f-space. Find the HPBW.

(b) Repeat for d = 0.3\, d = 0.35), and d = 0.4\

(¢} Show that the nulls occur at

- A
o = 2sin™' | £ - 1)] , (2.252)
(d) Show that, for long arrays,
B0~ 1] <= (2m — 1) (2.253)
=~V Nd ' '
and the first zero occurs at
901 ~ % i (2254)
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Thus the null-null beamwidth is 0.707 times the width of an ordinary endfire array.
Problem 2.5.5

(a) Consider a 10-element lincar array pointed at endfire with d = 3)\/8. The progres-
sive phase shift 17 is given by ¥ = 3n/4. Plot Bp(#).

(b) Repeat part (a) with ¥r =7 [% + %]

P2.6 Array Performance Measures

P2.6.1 Directivity

Problem 2.6.1

Consider a uniform N-element linear array with isotropic elements pointed at broad-
side with uniform weighting.

(a) Plot the directivity versus d/\ over the range 0 < d/\ < 2.0 for various N.

(b) An approximate expression for D at broadside is

D=21—V§, 0<d/r<l. (2.255)

Superimpose this expression on the plot in part (a). Plot the error between the
approximate expression and the exact value over the interval 0 < d/)\ < 1. Note
that the expression is exact for d = A/2 and that D= N.

Problem 2.6.2 (continuation)!?

(a) Calculate the directivity of the array in Problem 2.4.6.

(b) Cousider the general case pointed at broadside of a non-uniform linear array whose
element locations are located on a grid whose points are separated by d = A\/2.

Show that
N-1 -1
D= <Z lwn|2> : (2.256)
n=0
where
N-1
Z w, = 1. (2.257)
n=0

Therefore D = N when the weighting is uniform.

Problem 2.6.3
Consider a standard 11-element linear array with triangular weighting,

2y — N=1
wn:C(l—-ﬁl—]\%l‘>, n:0,1,~~~,N—1, (2258)

2Continuation means that the problem assumes that either the previous problem or a
specifically referenced problem has been read (or, in some cases, solved).
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where
N-1 -1
c= (Z wn) . (2.259)
n=0
(a) Compute the directivity when the array is steered to broadside.

(b) Generalize to an N-element array (N odd).

Problem 2.6.4
Consider a standard 5-element linear array pointed at broadside. We want to compare
the following unnormalized weightings:

() 1,1,1, 1,1
(b) 1,2,3,2,1
(c) 1,4,6,4,1
(d) 1, 1.61, 1.94, 1.61, 1
(e) 1,241, 3.14, 241, 1

Normalize the weightings. Plot the beam patterns in u-space and 6-space on separate
plots. Compute D; the HPBW in u-space and 6-space; the BWpny in u-space and #-space;
and the height of the first sidelobe in dB. Discuss your results.

Problem 2.6.5
Repeat Problem 2.6.4 for an inverse triangular weighting,

3,2,1,2,3.

Discuss your result.

Problem 2.6.6
In order to find the directivity of a uniformly weighted linear array that is pointed at
r, it is convenient to rewrite the beam pattern.

(a) Show that

N-1

1 2
By() =5 {1+2 Y cosmyp p, N odd, (2.260)
m=1
and
&
1 N-1
By(y) = i 2 z_:ocos(m - T)w , N even, (2.261)
where 2md ond 2rd
s iy 7y
P = —)\—COSO—wT— ——/\—0059— TCOSGT. (2.262)
(b) We then write
sin 1 S 2
— | = — s N —m)cosmip. 2.263
Nsin%‘ Nz 2LV mm)cosmy (2.263)

Verify this expression for N=2, 3, 4, and 5.
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(c) Show that

N-1 -1
D= {-—- - M sin mkod cos mz/;T} , (2.264)

where Y7 is the progressive phase factor. Thus,

) = kodcos8 — pr = -Q%d cosf — . (2.265)

The above result is for a set of N isotropic sources with an element spacing of d
and an interelement phase shift ¢¥r ( e.g., p.142 of [ST81]).

(d) Plot the directivity versus 87 (in degrees) for a 5-element linear array. Consider
d=0.3), 0.4), 0.5\, and 0.6).

(e) Repeat part d for N = 10.

Problem 2.6.7
Show that the directivity of an ordinary endfire array (r = 2wd/A) is approximately

D ~ 4Nd/A. (2.266)

Problem 2.6.8
Show that the directivity of an Hansen-Woodyard endfire array is approximately

D ~ 7.28 Nd/\. (2.267)

Problem 2.6.9

Consider a uniform 10-element linear array with uniform weighting pointed at endfire.
Plot the directivity for the ordinary endfire array and the Hansen-Woodyard endfire array
versus d/A for the range 0.1 < d/X < 0.6.

When D > N, we refer to the array as superdirective. This problem shows a case of
a practical superdirective array.

Problem 2.6.10
Cousider the case of linear array whose element positions along the z-axis are z,. The
element phasings are linear with distance. Denote the phase of wn as an. Then

2
an = ——A’izn cos fr. (2.268)
(a) Show that the beam pattern can be written as

Z::ol |wn|exp (j 2% 2 cos b + an))
N—-1 .
D nmo [wnl

(b) Assume the weights are normalized so that

Ba(0) = (2.269)

N-1
> lwal = 1, (2.270)
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then .
Qa ezn/ | Bo(8))? sin 0 d9. (2.271)
0
Use the result in part (a) to show that
e PO, [ 5 (o0 = 2]

and

N-—-1N-1 -1
{Zlemuw o ’—[—(i{—i)")—]} (2273)

n=0 m=0
P2.6.3 Sensitivity and the Tolerance Factor

Problem 2.6.11

Consider the special case of the perturbation model in Section 2.6.3 in which only the
locations of the array elements are perturbed. Thus, (2.192) and the subsequent model
applies. Assume that we have a standard N-element linear array along the z-axis and the
only perturbations are in the z-direction.

(a) Find the expected value of the beam pattern as a function of w} and o3.

(b) Plot the result for a 10-element array and uniform weighting for various o2.

Problem 2.6.12

Repeat Problem 2.6.11 for the case in which the only position perturbations are in the
y-direction.

In part (b), plot the expected value of the beam pattern versus u, = cosf for several
values of ¢.

Problem 2.6.13 (continuation Problem 2.6.4)
Calculate the sensitivity function for the five weightings in Problem 2.6.4.

Problem 2.6.14 {continuation)

(a) Repeat Problem 2.6.11 for the case of phase-only errors. Therefore, (2.194) applies.

(b) Compare your results with the results in Problem 2.6.11. Give an intuitive expla-
nation of the comparison.

Problem 2.6.15
Consider a standard linear array designed for frequency f.. We want to analyze the
behavior for mismatched frequency. Assume the frequency of the incoming plane wave is
f, where
f=af.. (2.274)
(a) Plot the broadside beam pattern for « =0.80, 0.90, 1.10, 1.20.

(b) Plot the directivity versus « over the range 0.5 < o < 2.0 for various scan directions:
0T = 0°, 15°, 30°, 45°.
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P2.7 Linear Apertures

Problem 2.7.1
Consider a linear aperture with . = 5X. Assume that the weighting function is
triangular.
(a) Find an expression for the beam pattern and plot it.
(b) How is the beam pattern in part (a) related to the beam pattern for uniform weight-
ing?
(c) Compare the result in part (a) to an equivalent linear array with d = A\/4 and
d=X/2.

Problem 2.7.2
The second central moment of the aperture weighting is defined as

) fL 22w(z)dz
Ow = ¢ T 75
[, w(z)dz

where the origin is at the center of gravity. The second-moment beamwidth is defined as

(2.275)

A
Aus = - (2.276)

Find Auq for a rectangular weighting.

P2.8 Non-isotropic Element Patterns

Problem 2.8.1
The beam pattern for a short dipole (L < \) aligned with the z-axis is

Bpp(0) = siud. (2.277)

(a) Find the beam pattern for the array in Figure 2.31.
(b) Plot your result for N = 10.

Problem 2.8.2
The beam pattern for a short dipole (L < A) aligned with the z-axis is

cos [(12'—) sin f cos (t)]

y/1 —sin? @ cos? ¢

Bpp(6,¢) = (2.278)

(e.g., pp.138-139 of [ST81]).

(a) Find the beam pattern for standard linear array along the z-axis with uniform
weighting.

(b) Plot the beam pattern in the zz-plane and the yz-plane.

Problem 2.8.3 [ST81]
The directivity expression for a linear array with uniform weighting and non-isotropic
elements is
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1
D= ~ (2.279)
N+ 5 Zf::i = (aq sin mkod + a2 cos mkod) cos mpr
where ao, @1, and az are given in the table for various element patterns:
Element IB.(0,9) ap a1 as
Isotropic 1 1 1 0
~ . H 2 2 2 -2
Collinear short dipoles sin“f H Tked)? had
Parallel to z-axis short dipoles 1 — sin%fcos® ¢ % 1- Un—k—lo—d—)f ;,iﬁ

(a) Calculate the directivity for a 10-element linear array pointed at broadside with
collinear short dipoles.

(b) Repeat for parallel short dipoles.

Problem 2.8.4

Consider the planar array in Figure 2.32 and assume the elements are isotropic. As-
sume that N, = 10, N, = 10, d; = A/2. Find the beam pattern By 4(8, ¢) when the array
is pointed at broadside.

Plot the beam pattern versus cos for several values of ¢.

Problem 2.8.5
Consider a uniformly spaced planar array in the zy-plane with isotropic elements.

(a) Find an expression for the beam pattern Bp 4(6,¢) when the array in pointed at
broadside.

(b) Plot the beam pattern for Ny = Ny = 10 and d,r = dy = A/2. Plot By (0, ¢) versus
cos @ for various values of ¢.

(c) Repeat part (b) for the case in which the elements are short dipoles parallel to the
z-axis.
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Chapter 3

Synthesis of Linear Arrays
and Apertures

In this chapter we develop techniques for choosing the weighting of each
sensor output in order to obtain a frequency-wavenumber response and beam
pattern with desirable properties. The weighting process is also referred to as
shading or tapering in the literature. In this chapter we restrict our attention
to linear arrays. In Chapter 4, we consider planar array configurations.

The frequency-wavenumber response Y(w, k) is the Fourier transform of
the weights w,, so there is a large body of mathematical results available.
For linear arrays with equal spacing, T(w : k) has exactly the form of the
discrete Fourier transform (DFT) so the techniques from equivalent temporal
problems such as finite impulse response (FIR) filters and spectral estimation
windows can be used directly. For planar arrays with equal spacing, the
corresponding 2-D techniques can be used. For linear arrays whose sensors
are located at arbitrary points on a line, the design problem is more difficult
because we are no longer sampling on a uniform lattice.

Although there is a mathematical duality with the time domain problem,
there are important differences between array processing and time domain
processing that shape our conclusions:

(1) The spatial dimension of the array normally has an absolute constraint
due to the structure supporting it (e.g., a radio tower, a mast on a
ship, the fuselage of an airplane, a satellite bus, a towed array). Even
if it is possible to extend the array, it will be much more expensive
than obtaining more time samples.

(ii) The cost per sensor is significant in many cases because of the sensor
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itself and associated electronics. Therefore, even if space is available,
we choose to increase the processing complexity in order to reduce the
number of sensors. There is a large incentive to optimize processing
performance.

(iii) In some cases, it is difficult to maintain amplitude and phase calibra-
tion of the sensors for a number of reasons (e.g., mutual coupling,
environmental changes) and overall array calibration due to changes
in sensor location. In Section 2.6, we saw how these changes placed a
limit on the null depth in the beam pattern. We find many other cases
in which calibration errors are the limiting factor in array performance.
In contrast, time samples are very uniform in most applications.

(iv) In the time domain, for a given signal and noise model, one can vary
the number of samples to change performance. However, in the array
problem, we have two dimensions: N, the number of sensors, and K,
the number of samples that can be varied to changed performance.

Therefore, although duality is an important factor that we will exploit,
the array processing problem must be studied in its own context.

In this chapter, we examine a number of different techniques for design
of linear, equally spaced arrays. Linear arrays are the traditional focus of
texts on classical array processing. The design of weighting for linear arrays
reveal many of the important concepts in array processing. Many of the
ideas extend to more general geometries, although the mathematics becomes
more involved (in some cases, the mathematics does not extend to higher
dimensions).

Recall from our discussion in Chapter 1 that our ultimate goal is to design
array processors that adapt their configuration to match the incoming data
and are optimized in a statistical sense. However, it is important to have
a thorough understanding of classical (or deterministic) beamformer design
for several reasons:

(i) The classical array design provides a basis for comparison for any pro-
posed adaptive design. If we derive some “optimum array processor,”
we should show its improvement over the classical array processor.

(ii) In many cases, we will find that the “optimum array processor” has one
of the beamformers that we design using deterministic techniques as a
basic building block in its implementation.

(iii) In some cases, understanding the deterministic design points out areas
where statistical techniques may be useful.
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We consider several approaches to the selection of weighting functions
for linear apertures and linear arrays:
(i) Spectral Weightings (3.1)

This approach exploits the Fourier transform relationships be-
tween the frequency-wavenumber response function and the weight-
ing function and the parallelism with windows and tapers used
in the spectral analysis of time series.

(ii) Array Polynomials and the z2-Transform (3.2)

This approach, which originated with Schelkunoff [Sch43], devel-
ops a polynomial representation of a linear array and leads to
a z-transform relationship. We can then analyze and synthesize
patterns by positioning the zeros of the array polynomial.

(iii) Pattern Sampling in Wavenumber Space (3.3)

This approach specifies the desired values of the pattern on a
grid in wavenumber space. For apertures, it utilizes the sampling
theorem. For arrays, it leads to a DF'T relationship.

(iv) Minimum Beamwidth for Specified Sidelobe Level (3.4)

This approach attempts to find an array weighting function that
minimizes the beamwidth for a given maximum sidelobe level. It
leads us to the Dolph-Chebychev and Taylor weightings, which
are widely used in practice.

(v) Least Squares Error Pattern Synthesis (3.5)

This approach specifies a desired pattern in frequency-wavenumber
space and attempts to find a weighting function to achieve it.
The approach uses the Fourier transform for apertures or the
Fourier series for arrays to obtain a minimum mean-square error
approximation to the desired pattern.

(vi) Minimax Design (3.6)

This approach utilizes a technique that was developed to design
finite impulse response (FIR) filters. It specifies a maximum
allowable variation in the height of the main lobe (e.g., 1 — dp <
By (1) < 146, and a maximum allowable height in the sidelobe
region, ds, and finds a solution to meet these criteria.



(vii) Null Steering (3.7)

This approach assumes that there are certain points in wavenum-
ber space where there are interfering signals (e.g., jammers). We
design weightings so that the frequency-wavenumber response is
zero in these directions.

(viii) Asymmetric Beams (3.8)

All of the beams discussed up to this point assume that the de-
sired target direction is known. If we are required to estimate
the target direction, then beam patterns with different charac-
teristics, specifically a significant non-zero slope in the pointing
direction, are useful. We develop this type of beam in Section
3.8 and discuss its properties.

(ix) Spatially Non-uniform Linear Arrays (3.9)

In this section, we discuss linear arrays with non-uniform ele-
ment spacing. We develop several synthesis techniques. We also
introduce the idea of minimally redundant linear arrays.

(x) Beamspace Processing (3.10)

In later chapters of the text, we find that, in many applications,
it is useful to preprocess the array data to form a set of beams
that span the space of interest and then do further processing in
these output beams. We introduce this idea in Section 3.10 and
develop it in detail in later chapters.

(xi) Broadband Arrays(3.11)

In this section, we develop linear array spacings that are useful
when the signals of interest are broadband.

The structure of the chapter is shown in Table 3.1.
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| _32Amaypoly &ztrans  _F | 3.3 Pattern Sampling _____
Back d .
ackgroun z-Transform . R .
Zero plots Discrete Fourier Trans.(DFT)
Visible region IDFT .
Property of zeros Pattern synthesis
| 3.1 Spectral Weightings ____ 34 Min BW for Specified SLL |
Weighting: Uniform Cosine-m '
Directivity vs. Hann  Hamming gfi"}’h'g:e;’y C:\’e"
Sidelobes Blackman-Harris T;ylztlr ebychev
DPSS Kaiser Villeneuve
....... 3.5 Least Squares .. 3.0 Minimax
Weightings: .
Desired beam Fourier series
Pattern Windows Park.s—McClclI.an-
Indexing Rabiner Algorithm
_____ 3.7 Null Steering _______ |38 Difference Beams _____§
Weightings:
Special beam Null constraints Asymmetric beams
Pattern MMSE synthesis with nulls Bayliss difference beams
3.9 Non-uniform arrays 310Beamspace B | 3.11 Broadband Armays
: DFT
Other topics Minimum redundancy WDET Nested arrays
Co-arrays DPSS
Beam pattern design Taylor series

Table 3.1 Structure of Chapter 3.

The techniques are drawn from the classical antenna literature and the
digital filter design literature. Representative texts in the antenna area
are Elliot [El81], Kraus [Kra88], Balanis [Bal82], Milligan [Mil85], John-
son [Joh93], Steinberg [Ste76], Ziomek [Zi095], Ma [Ma74], Mailloux [Mai94],
Weeks [Wee68|, Stutzman and Thiele [ST81], and the four volume handbook
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edited by Lo and Lee [L193a], [LL93b], [LL93c], [LL93d].

Representative texts in the digital filter area are Oppenheim and Schae-
fer [0S89], Proakis et al. [PRLN92], Rabiner and Gold [RG75], and Mi-
tra and Kaiser [MK93]. We use examples from these references and other
sources.

3.1 Spectral Weighting

There are several classes of array weightings that are equivalent to various
windows or tapers used in the spectral analysis of time series. Their design
depends explicitly upon the Fourier transform relationship for the weighting
and the frequency-wavenumber response for a linear array with a sensor
spacing less than or equal to \/2; consequently, grating lobes and spatial
aliasing become unimportant and Fourier transform theory for continuous
functions can be used directly.

The starting point is the Fourier transform pair in (2.215) and (2.216),

Y(w k) =/ w(2) €75 dz (3.1)
—00
and
* 1 o jkz
wy(z) = o /_Oo T(w, k)e’™* dk, (3.2)

where we have suppressed the z subscript on k..

As a result of this transform relationship there is a very large body of
literature for weight design, or pattern synthesis, for arrays of this construc-
tion. Some of the more important considerations are the following:

e The Fourier uncertainty principle specifies a lower limit on the prod-
uct of the mean-square aperture extent and the mean-square response
width.! Specifically, we have

JEE AR > 179, (3.3)

where Al? and Ak? are respectively the normalized mean-square widths
of the weighting and the response and are given by

L/2 ‘
= _é/Q 22w (2))? dz )
A2 = 173 ; , (3.4)
~L/2 |wa(z)l dz

!The proof of the Fourier uncertainty principle requires zero-mean position of the
weighting and of the response. The discussion refers to distributions about these means.
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A = ot k2T (w, k)2 dk/27r.
I Y (w, k)2 dk/2n
This uncertainty principle implies that a narrow, or a high-resolution,
frequency-wavenumber response (e.g., small Zﬁ) requires a large mean-
square weighting extent Al2 that is bounded by L?/4 for an array of
finite extent. Consequently, there is a fundamental trade-off between
the resolution of the response function and the extent of the aperture.

(3.5)

e Parseval’s (or Plancherel’s) theorem states

/°° |T(w,k)|2% . /_o:o lwa(2)]? dz. (3.6)

—00
This implies that high amplitude response functions such as those often
generated for null placements or for sidelobe reduction lead to large
values for the sum of the magnitude squared of the weighting. We have
scen earlier that this decreases the white noise gain, A,,, and increases
the sensitivity function, T'(w).

e The sidelobes decay asymptotically according to the order of the dis-
continuity in the aperture weighting. Uniform weighting leads to side-
lobes that decay as O(%). Smooth weighting patterns lead to fast
sidelobe decay. It is important to note that this is an asymptotic re-
sult and is not a statement about the maximum sidelobe level; there
are several very useful weightings, such as Hamming and Taylor, that
have step or derivative discontinuities. These weightings achieve low
maximum sidelobes by using these discontinuities to cancel the high
sidelobes near the main beam.

The value of this work extends beyond linear arrays. First, there are
a number of important arrays that consist of sets of linear arrays; second,
weightings for planar arrays are often pursued in terms of a product of linear
array weightings in each dimension; finally, the design principles are often
applicable to higher dimensions.

Our development in this section will focus on linear arrays. The analo-
gous results for linear apertures follow directly. In Section 3.1, the problem
of interest is to reduce the sidelobes while minimizing the increase in the
main-lobe width (and the loss in directivity).

Our approach in this section is heuristic. We will try different weight
vectors and analyze their performance. In Section 3.4, we will develop an
analytic technique. We use the uniform weighting as a reference. We derived
its beam pattern in Section 2.4 and repeat it for reference purposes.
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3.1.1.1 Uniform weighting

From (2.77), the uniform weights are

The resulting beam pattern in u-space is

1 sm(@u)

N sin(%u) |

By(u) = (3.8)

We focus our attention on a standard linear array, so (3.8) reduces to,

1 sm(N’”‘)
B = 2 3.9
ulu) = N sin(%) (3.9)
From (2.140), the directivity is
D= N. (3.10)

All of the weightings that we are going to consider in this section are real
and symmetric, so it is convenient to use the position of the nth element as
the index,

N -1

A=n-—

5 n:Oalv"'7N_1>

. N -1 N -1
n= — R 2 .

2
We first consider various weightings constructed from cosine functions.

(3.11)

3.1.1.2 Cosine weightings
We consider the case when N is odd. The cosine weighting is

T i N-1 N-1
My T s
o) cos(m ), g ==

w(n) = sin(

(3.12)

where the sin(5fy) term is a constant such that By(0) = 1. Writing the
cosine in exponential form gives

Ve R _ _
e’ N +e N]’ _N 1 N 1 (313)
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Figure 3.1 Beam pattern for uniform and cosine weighting: N=11.

N-1 N~-1
2 2

Bu(u):—sin(—ﬂ— Z IR eI Z S . (3.14)

- N-1 -

fl=— S n=

Using the form of the array manifold vector in (2.70), the beam pattern is
N
2

The first term corresponds to a conventional beam pattern steered to us; =
1/N, and the second term corresponds to a conventional beam pattern
steered to ug = —1/N. Therefore,

(N 1 (N 1
x |sin (T’T(u— N)) . sin (—QE(U-{-N))
2N | sin (%(u - %)) sin (%(u + —]1\7))
We will find this superposition of shifted conventional beams to be a common
characteristic of many of the patterns that we develop. We show the beam
pattern for an 1l-element array using the cosine weighting in Figure 3.1.
We show the conventional beam pattern as a reference. The sidelobes have

been reduced but the main lobe is wider. The parameters for the two beam
patterns are:?

By(u) = %sin( (3.15)

*The parameter Dy is the normalized directivity of the array. It is normalized with
respect to the directivity of a uniformly weighted array. For the standard linear array it
is also the normalized white noise gain.
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Figure 3.2 Beam pattern for raised cosine weighting: N=11.

Weighting | HPBW [ BWyy | First Sidelobe HT | Dy
Uniform | 0.89% 2.0% ~13.0dB 1
Cosine | 1182 | 3.0% -23.5 dB 0.816

3.1.1.3 Raised cosine

We can combine the rectangular uniform and the cosine weighting to ob-

tain some of desireable features of each weighting. The corresponding array
weighting is

w(n) = c(p) <p+(1—p)cos(7r%>>, ﬁ:—NQ_I, ,N2—1, (3.16)
where
c(p) = % c ;p) sin (2—7;\7) (3.17)

is a constant so that B,(0) = 1.
The beam patterns for the raised cosine weighting for p = 0.31,0.17, and
0 are shown in Figure 3.2. As p decreases, the height of the first sidelobe

decreases and the width of the mainlobe increases. The beam patterns have
the following parameters:
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p HPBW | BWyyn | First Sidelobe HT | Dy
031 | 1.03% | 2502 —20.0 dB 0.928
0.17 1.09ﬁ 2.70ﬁ --22.0 dB 0.886

0 1.18% 3.00% —23.5 dB 0.816

Thus, we have been able to narrow the HPBW and keep the first sidelobe
much lower than the uniform distribution.

3.1.1.4 Cosine™ weighting

We next consider a family of cosine weightings of the form cos™ (772 /N). The
array weights are

cpcos? (T2) | m =2,

wm(n) = ¢ czcos® (Z2), m=3, (3.18)

cscost (B2}, m =4,

where ¢y, ¢3, and ¢4 are normalization constants.

The weighting for m = 2 is sometimes called the Hann weighting.> Once
again, the beam pattern is computed using the exponential form of cosine
function.

The beam patterns are shown in Figure 3.3. As m increases, the sidelobes
decrease but the main lobe widens. The parameters for the beam patterns
are:

m HPBW | BWypn | First Sidelobe HT. Dy

2 1.44% 4= -31.4 dB 0.667
3 1.66E 5ﬁ —39.4 dB 0.576
4 1.85% 67%— —46.7 dB 0.514

3.1.1.5 Raised cosine-squared weighting

The raised cosine-squared family of weightings is given by

™

w(n) = cfp) {P (1 p)eos® <W) }

= 22arp+a-pes (),

N -1 N-—-1
5 ) 9 ( )

3The weighting is due to an Austrian meteorologist, von Hann. It is sometimes referred
to as the Hanning weighting. We call it the Hann weighting.

3
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Figure 3.3 Beam patterns: cosine™ weighting, N=11.

where ca(p) is the normalization constant. We consider the general case in
the problems. In the text, we consider a specific weighting known as the
Hamming weighting.

3.1.1.6 Hamming weighting

The Hamming weighting exploits the characteristics of the rectangular pat-
tern and the cosine-squared pattern to place a null at the peak of the first
sidelobe. The weighting function is

w(ﬁ)=90+glcos (-Q—ﬂ'NE), = — oy . (3.20)

The coefficients go and g1 are chosen to place a null at u = 3/N and normalize
the response at broadside to unity. The result is

2nn

w(n) = 0.54 + 0.46 cos (——) , n=-—

N-1 N -1
: 21
N < (3.21)

This corresponds to p = 0.08 in (3.19). The beam pattern is the sum of
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Figure 3.4 Beam patterns for Hann, Hamming, and Blackman-Harris weight-
ings: N=11.

three conventional beam patterns:

IZ

(i=7)) , sin (7
(=)

The Hamming weighting is shown in Figure 3.4. We also show the beam
patterns for the Hann weighting (3.18) and the Blackman-Harris weighting,
which we will derive next.

le

(u+ 7))
(vt ®)) |

(3.22)

sin (M’—‘) sin (
By(u) = 0.54 —— = +0.23
sm( 2 ) sin

TN
SR m!z
[CIE R )

The first zero occurs at u = 4/N and the height of the first non-zero
sidelobe is —39.5 dB. There is a step discontinuity in the weighting that leads
to an asymptotic falloff of the sidelobes of O(%); however, the first sidelobe is
cancelled exactly and the remaining ones are low absolutely in spite of their
relatively slow falloff. The directivity of the Hamming weighting is relatively
high. In addition, we note that the beamwidth of the Hamming window is
less than the beamwidth of the Hann weighting and its first sidelobe is lower.
This is an exception to the general trend.
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3.1.1.7 Blackman-Harris weighting

The Blackman-Harris weighting simply extends the procedure to higher or-
der harmonics to provide nulls at the peaks of the first two sidelobes. The
weighting function is

27mn Arn\ N-—-1 N-1
()—042+05COS<N)+008(:08<7m> _

N

The beam pattern is a sum of conventional beam patterns,

Bulw) 0-42% voas |2 (% (+~#)) i (7 (u+ %))
- ) sin (% (u - %)) sin (% (u + %))

Sin(% (u— %)) N s1n(N7T (u—}— %»

Rl 1) | (e R)

and is shown in Figure 3.4. The parameters for the beam patterns are:

Weighting HPBW | BWypn | First Sidelobe HT. | Dy
Hann 144% | 405 -31.4 dB 0.664
Hamming 1.31% 4 4.0% -39.5 dB 0.730
Blackman-Harris | 1.65% 7 6.0—127 —56.6 dB 0.577

The weightings up to this point have been based on various sinusoidal
functions. We now look at other types of array weightings in an attempt to
improve the beamwidth-sidelobe trade-off.

3.1.1.8 Prolate spheroidal functions ¢

The problem of interest is to develop a weighting that will maximize the
percentage of the total power that is concentrated in a given angular region.
Thus, we want to maximize the ratio,

o, 1B, $)|? sin@df dg
T Tsingdo [2dg|B(0,¢)’

(3.25)

“Discrete prolate sequences have been applied to the FIR design problem by Tufts and
Francis [TF70], Papoulis and Bertran [PB72}, and Tufts [Tuf75]. They were applied to the
aperture problem by Rhodes [Rho63]. Our discussion follows Prasad [Pra82].



104 3.1 Spectral Weighting

where €) is a region around the mainbeam. For a linear array, this can be

written as
LU 1By dy
f_ﬂ |By(y)|* dyp’

where ¢ = ZLdcos . From (2.51), we have

By (v) = w vy(y).
The numerator can be written as
Yo

ay = | wivi@) Vi) wdy

Yo
= wh [/_wovw(w)vg(w)d@o} w
= wHAw,

where v
AL 7 v viiw a.

The (m,n) element of A is

/wo eIV eI o = 2sin ((m = n)vo) = 2ypsinc((m — n)yy).

—o (m —n)
Similarly, the denominator is

™

ap = [ whvy() vy () wdy
-
= w’Bw,
where .
B= / vy (%) vif (¥) dyp = 271
-7
Thus,
_ wl Aw
T 2nrwH w

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

To maximize «, we find the eigenvalues and eigenvectors of the matrix

2rAw = Aw,

(3.34)
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and choose the eigenvector corresponding to the largest eigenvalue Amaz->
Using (3.30) in (3.34) and dropping the factor of 2, we have

N . _
Z sin ((m — n)yy) wy = T AWy, m=1,2,-,N. (3.35)
n=1

(m —n)

The weightings (or sequences) obtained by solving (3.35) are called discrete
prolate spheroidal sequences (DPSS) and the corresponding beam pat-
terns are called discrete prolate spheroidal functions. They are dis-
cussed in detail by Slepian [Sle78]. The discrete prolate spheroidal sequences
are also referred to as Slepian sequences. The sequence corresponding to
the largest eigenvalue is referred to as the first Slepian sequence. They are
the discrete analog to the continuous case discussed by Slepian, Landau, and
Pollack in a series of Bell System Technical Journal articles [SP61], [Sle64],
[Sle65], [SS65], [LP61], and [LP62]. For our present application, we do not
need most of their properties. We discuss the DPSS functions in more detail
in Chapter 5.
We now consider a simple example to illustrate the results.

Example 3.1.1°

We consider an 11-element array and solve (3.35) for various values of 1. In each
case, the optimum weight vector wg corresponds to the eigenvector corresponding to largest
eigenvalue. The results are shown in Table 3.2. We show the first six normalized weights;
the other five weights follow from symmetry. To simplify the plot we have normalized the
weights so that we = 1. The actual weights are normalized so that B,(0) = 1.

Table 3.2 Normalized Weights Corresponding to Maximum Eigenvalues

Po/m | wi w2 w3 Wy ws we

0.025 | 0.975 0.984 0.991 0.996 0.999 1.000
0.06 0.865 0912 0.950 0.978 0.994 1.000
0.10 0.678 0.785 0.875 0.943 0.986 1.000
0.20 0.274 0.466 0.665 0.839 0.958 1.000
0.40 0.043 0.168 0.391 0.670 0.907 1.000

In Figure 3.5, we show some representative discrete prolate spheroidal sequences for
g = 0.17, 0.27, and 0.47.

The corresponding beam patterns are shown in Figure 3.6. As 1o approaches zero, wo
approaches uniform weighting because we are maximizing the directivity. For ¢¥o = 0.27,
most of the energy is concentrated in the main beam with a slightly larger beamwidth and
sidelobes of —20 dB and lower. For 19 = 0.47, the sidelobes are —53 dB, but the beam is
much broader.

5The symbol A denotes the eigenvalue. We also use A for the wavelength but the
meaning should be clear from the context.
5This example is similar to the result in Prasad [Pra82].
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Figure 3.5 Discrete prolate spheroidal sequences: 1 = 0.17, 0.27, and 0.47.
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Figure 3.6 Beam patterns as a function of ¢g: DPSS weighting, N=11.
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The beam pattern parameters for the DPSS weightings are:

HPBW | BWyn | First Sidelobe | Dy
HT.
1 = 0.17 | 0.02/N | 1.407/N —15.6 dB 0.981
DPSS | ¥y = 0.27 | 2.20/N | 1.797/N —24.7 dB 0.869
o = 0.4rm | 2.86/N | 2.97n/N ~52.2 dB 0.665

3.1.1.9 Kaiser weightings

Kaiser [Kai74] proposed a relatively simple approximation to the prolate
spheroidal sequences using Bessel functions. The weighting has found wide-
spread usage in spectral analysis, FIR filter design, and other fields.

The Kaiser weights are

712 N-1 _ N-1
wn)=1Ip | B 1—[2—77] , ——g SRS,

¥ (3.36)

where Io(x) is the modified Bessel function of zero-order [AS65]. The pa-
rameter 3 specifies a beam pattern trade-off between the peak height of the
sidelobes and the beamwidth of the main lobe.

We now consider two examples to illustrate the behavior.

Example 3.1.2

Consider a standard 11-element linear array. The normalized (we = 1) weights for
8 = 3 and 6 are shown in Figure 3.7(a). The resulting beam patterns are shown in
Figure 3.7(b). For 3 = 3, the HPBW is 2.52/N, the BWxn is 1.12n/N, and the highest
sidelobe is —26 dB. For 3 = 6, the HPBW is 2.86/N, the BWny is 1.687/N, and the
highest sidelobe is —47 dB. Note that as 8 decreases, the weighting function approaches
the uniform weighting.

Example 3.1.3

In this case, we fix 3 at 3 and investigate the behavior for N = 11, 21, and 41. The
beam patterns are shown in Figure 3.8. All three cases have the same maximum sidelobe.
Changing N changes the value of © where this maximum occurs.

The beam pattern parameters for the Kaiser weightings for N = 11 are:

HPBW | BWxypn | First Sidelobe | Dy

HT.
Kaiser | =3 | 2.18/N | 1.76w/N —-23.7 dB 0.882
8=6|280/N | 2.716n/N —44.4 dB 0.683

This completes our initial discussion of array weight vectors that are
designed to allow trade-off between the beamwidth of the main lobe and the
height of sidelobes.



108

3.1 Spectral Weighting

Beam pattern (dB)

Figure 3.7 Kaiser weighting: (a) weighting for 8 = 3 and 6; (b) beam patterns

for =3 and 6: N=11.
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Figure 3.8 Beam patterns for Kaiser weighting; 3 = 3, N = 11, 21, and 41.



3.2 Array Polynomials and the z-Transform 109

Other weight vectors are described in the comprehensive paper by Har-
ris [Har78| on time-domain windows.

3.2 Array Polynomials and the z-Transform

For linear equally spaced arrays the beam pattern can be represented in
terms of an array polynomial. In 1943, Schelkunoff [Sch43] utilized this
representation to develop a theory of linear arrays. We utilize his work and
introduce the z-transform representation.

3.2.1 z-Transform

From (2.71), the bcam pattern can be written in t-space as

By(y) = e )¥ <Nf Wn, e—W) : (3.37)
n=0

Defining
z= e, (3.38)
we can write -
N-1
Bi(z) =) wpz", (3.39)
n=0

which is familiar as the z-transform. It maps the real variable ¢ into a
complex variable z with unit magnitude.

The transformation is shown in Figure 3.9. The variable ¢ is the phase
of the complex variable z. The beam pattern can be written as

(3.40)

By(4) = [~ Bi(2)]

r=ei¥

Most discussions in the classical antenna literature focus on the case of
real w,. When we discuss optimum array design from a statistical standpoint
in Chapter 6, we will usually have complex wy. In Section 3.2.2, we restrict
our attention to real weightings.” In Section 3.2.3, we discuss some properties
of the beam pattern in the vicinity of the zeros of B;(z).

"In Section 3.7, we consider a design problem that leads to complex weights.
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Unit circle

Figure 3.9 z-Transform.

3.2.2 Real Array Weights

In this section, we assume the w, are real and symmetrical.® In the text, we
analyze the case of symmetric weightings and N odd. We analyze the case
of symmetric weightings and N even in the problems.

For symmetric weightings,

wn)=w(N-1-n), 0<n<N-L (3.41)
The z-transform is

N-1
Bi(z) = Y wpz™™ (3.42)
n=0

Because of the symmetry we can define
N-1

M=—- 3.43
2 ) ( )

and write
B,(z) = z M {w(M) +w(M —1) [z + z‘l]
Fw(M =2) [+ 27 + -+ w(0) [2M +27M] } . (3.44)

8Many of the classical array weight vectors satisfy this assumption.
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Letting 2z = el¥,

B, (e"/‘/’) = eIMY Loy(M) + 2w(M ~ 1) cos
+2w(M —2)cos 2y + -+ + w(0) cos(My)}. (3.45)

Using (3.40), the beam pattern is

M-1
By(®) = w(M)+2 Y w(m)cos(M —m)i. (3.46)
m=1
We can also write (3.46) as
By(¢) = Z Qi COS MY, (3.47)
n=0
where
) w(M), n =0,
%n = { 2w(M —n), n#0,for N odd. (3.48)

We now explore the behavior of the zeros of B,(z). To find the zeros of
B,(z), we observe that

B.(z7Y) = 22M B,(2), (3.49)

because of the symmetry of the coefficients. Therefore B,(z) and B,(271)
have identical zeros. Since B,(z) has real coeflicients, the zeros occur in
complex conjugate pairs.

Thus, we can write B,(z) in factored form as®
B (z) = w(0) B1(z) By(z) B3(z), (3.50)
where

Ny 1
Bi(z) = H [1 — (ri + —) zZ+ zz] , (3.51)

r

i=1 i
contains zeros in reciprocal pairs on the real axis. If Bj(z) contains a zero at
z = +1 or z = —1, then it will appear in pairs since B;(z) is of even order.

Na

By(z) = H [1 —(2c0s6;) z + z2] (3.52)

1=1

®We drop the z subscript on the right side for simplicity.
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contains zeros occurring in complex conjugate pairs on the unit circle at

z = e+t

Bs(z) = iij{l—[2<ri+r%>cosei]z

+

— [2 (ri + i) cos Hi] 2+ z4} (3.53)

T

1

r? 4+ = + 4 cos?d;| 2*
re
1

contains zeros that occur in fours: complex conjugate pairs and reciprocal
(with respect to the unit circle) pairs.
There are a total of 2M = N — 1 zeros:

9M =2 N; + 2Nz +4N;. (3.54)

The zeros on the unit circle correspond to nulls in the beam pattern if
they are in the visible region.

For N even,
M = % -1, (3.55)
and (3.50) becomes
B,(z) = w(0)(1 + 2)B1(2) B2(2) B3(). (3.56)

The (1 + z) corresponds to a zero at z = —1 and there are 2M additional
zeros from By (z), Ba(z), and B3(z). There are always a total of IV —1 zeros.
The magnitude of B(z) is

2M
|B(2)| = [wn—1} [ Iz = 2nl - (3.57)
n=1

This magnitude can be expressed as the product of the distances from a
point z on the unit circle to the roots. Since the point (1, 0) represents the
MRA, the pattern is normalized by dividing by the product of the distances
from (1, 0) to the roots. Thus,

_lz-allz—zof -]z —2v-]

A I Tk (3.58)

1B(z)|

and

arg B(z) = Zarg(z - Zn) — Zarg(l — Zn). (3.59)
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05}

Figure 3.10 Zero plot for an 11-element array.

As z moves around the unit circle from (1, 0) in a counterclockwise direction,
¥ is moving 0 to +kd. When d = A\/2, v is moving from 0 to 7, u is moving
from 0 to 1, and 6 is moving from 90° to 0°.

Example 3.2.1
Consider a standard 11-element array with uniform weighting. From (2.101), the zeros
are located at

.3, n:1,2,...’ﬁ___.1_’ (3.60)

2
2
unzzt%, n=1, 5. (3.61)
The resulting z-plane plot is shown in Figure 3.10. Remember that the location of the first
zero determines the beamwidth of the main lobe. Thus, we can develop techniques that
constrain the first zero to be at a specified point and adjust the other zeros to obtain a

desired pattern shape. Many of the commonly used patterns are developed in this manner.

Up =+

z|s

or

In the next series of figures (Figures 3.11-3.13), we show the z-plane
plots for some of the array weightings we derived in Section 3.1. They are
grouped in the following sets:

e Figure 3.11: Cosine, cosine-squared
o Figure 3.12: Hamming, Blackman-Harris

e Figure 3.13: DPSS (0.17,0.47)
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Figure 3.11 Zero plots for cosine and cosine-squared weightings.

In Figure 3.14, we show the effect of d on the z-plane plot for various
values of d. The visible region represents the part of the circle corresponding
to physically observable values of 8. The remainder of the circle corresponds
to the virtual (or invisible) region that we have discussed previously.

For d < A/2, the visible region does not cover the entire circle. For
d = A\/2, the visible region corresponds exactly to the circle. For d > A/2,
the pattern overlaps and has grating lobes.

3.2.3 Properties of the Beam Pattern Near a Zero

In this section we discuss the behavior of the beam pattern in the vicinity

of a zero.!? Consider a linear aperture with uniform weighting. The beam
pattern is
Bu(u) = 222 (3.62)

bl

au

where o = wL/\. The pattern in the vicinity the nth zero, u,, is shown
in Figure 3.15. It appears to be linear at the zero crossing. We want to

recenter the pattern at u,. Define
Up = U — Uy, (3.63)

This discussion follows pages 105-110 of Steinberg [Ste76].
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Blackman-Harris
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Figure 3.12 Zero plots for Hammming, Blackman-Harris weightings.!!
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Figure 3.13 Zero plots for DPSS (0.17,0.47) weightings.

Note that the two inner zeros are both double zeros.
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Figure 3.14 Visible region (VR) and invisible region (IR) boundaries for

complex variable z.
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Figure 3.15 The beam pattern near a non-multiple zero.
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and assume
Up > —. (3.64)

Then,

sin a(ug + Up
Bug(uo) = Bu(uo+un) = S0 & tn)

a(ug + un)
_ sin aug €os auy, + cos aug sin aun. (3.65)
a(up + un)
Since sin au, = 0 and cos au,, = &1, we have
sin g
By, (up) = £————. 3.66
UO( 0) a(U() + un) ( )
In the region near the zero,
sin aug = aug, (3.67)
and
Up K Un, (3.68)
so that (3.66) becomes
Bug (ug) ~ 2. (3.69)
Un,

Thus the pattern is linear near the zero and the slope is inversely proportional
to the coordinate of the zero in u-space.

To investigate the behavior near multiple zeros, we use the approximate
radiation pattern of a triangularly weighted aperture

: 2
sin aug
B, = . 3.70
o(uo) = (522 (3.70)
The behavior in the neighborhood of u, is quadratic
ug 2

Similar results follow for higher order zeros. The magnitude of | By, (uo)| is
sketched in Figure 3.16.
Several comments are in order:

(i) A single zero creates a sharp null. If we are trying to null out an in-
terfering source (perhaps a jammer), the performance will be sensitive
to the exact location of the interfering source and its frequency.
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Buo (uO )|

v

Uy

Figure 3.16 Beam pattern near first and higher order zeros.

(ii) However, if we are trying to estimate the location of a source, it will
be useful to work in the vicinity of a null. We see later (in Section 3.8)
that a difference beam does exactly that.

(iii) A double zero creates a wider null and is more robust to model vari-
ations or changes in the interferer’s location. However, it utilizes 2

degrees of freedom per zero and limits the total number of nulls possi-
ble.

3.3 Pattern Sampling in Wavenumber Space

Woodward [Woo46] developed an antenna pattern synthesis technique based
on the sampling theorem. We discuss it first for the case of continuous aper-
ture and then for discrete arrays. For the discrete array case, it corresponds
to a DFT relationship.

3.3.1 Continuous Aperture

Woodward’s approach is based on the Fourier transform relationship between
the wavenumber response and the aperture weighting. Rewriting (3.1) and
(3.2) in u-space gives

1 L/2 )
= Ty(u) = / w*(z)) 73T dzy (3.72)
A ~L/2
and o 1
w*(zy) = / S Tulu) 7275 du, (3.73)
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08} -

B(u)

0.4 b

0.2 4

Figure 3.17 Pattern sampling,.

where we have suppressed w and z) = z/A is the normalized z-distance.

Since z) is limited to the range :i:%, then we can specify the aperture
illumination function by sampling the antenna pattern in wavenumber space
at intervals of!?

For example, if the desired pattern is the rectangular pattern shown in Figure
3.17, we would sample at A\/L intervals and obtain a set of samples,

By(upm), m=0,1,---,Ns—1, (3.75)

where uy;, = (mAus —1),m =0,1,---, Ny — 1, and Ny = int|2L/X] (int|z]
denotes the largest integer less than ). In Figure 3.17, L = 5, so Aus = 0.2
(see (2.214)). To reconstruct By (u), we use a sum of shifted sinc functions,

Ns—1
S L
By(u) = z_: By (tum)sinc <E)\—(u - um)) . (3.76)
m=0
In this case, we have chosen the initial sample at u = —1.0. In this example,

we could choose the initial sample to be anywhere in the interval —1.0 <

12This is identical to the Nyquist sampling criterion in the time-frequency context. If
the signal is bandlimited [-W < f < W], then the sampling interval T = 1/2W.
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u < —0.8. The resulting synthesized pattern will be different. Note that the
sampling is uniform in u-space (wavenumber space), not #-space, and that
the samples range over the entire visible u-space (-1 < u < 1). The nulls of
the sinc(u —u,,) functions occur at Aug so the coefficient of the sinc function
is the value of the desired array response corresponding to the peak of the
corresponding sinc function.

Each of the terms in (3.76) corresponds to a rectangular amplitude dis-
tribution multiplied by an exponential term to steer the beam. Thus,

Ns—l

ZB exp[ (m%)} _g <§ (3.77)

We cousider a simple example to illustrate the procedure.

Example 3.3.1
The desired Bgg(0) is uniform in the range: 60° < 8 < 120°, as shown in Figure 3.17.
Let L = 5A. Therefore the sampling interval in u-space is

A
Aug = 3 0.2, (3.78)
and there will be ten samples. The sample values are
0, m=0,1,2,
Bu(um)=< 1, m=3,---,17, (3.79)
0, m=238,9.

Note that the value at m = 10 is determined by the value at m = 0 by the periodicity.
The resulting synthesized pattern is shown in Figure 3.18.

3.3.2 Linear Arrays

The Woodward approach can also be used for linear arrays. We discuss the
approach from two viewpoints. In this section, we use a straightforward
modification of the continuous aperture case. In Section 3.3.3, we introduce
the DEFT as an intermediate step.

We first consider the case of a standard N-element linear array (d = A\/2).
To relate to the continuous aperture,

Nd=L. (3.80)

The sampling interval in u-space is 2/N. As in the aperture case, we can
choose the initial sample point. For purposes of discussion in the text, we
will assume the samples are taken symmetrically about v = 0. Other initial
sampling points can also be used. Thus,

2 N -1
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Figure 3.18 Desired and synthesized patterns using the Woodward synthesis

procedure.

Because d = A/2, the number of pattern samples in the visible region (Ju| <
1) is equal to the number of elements. We consider the case when d < A/2

in the next section.
Using (3.76), the component beam pattern can be written as

sin [%W(u - um)]

Bunlt) = Baultm) g —wyp ™= O 0N B8

and the total beam pattern is

Bu(u) = 3:,1 T [t - ) 3.83
u du um)NSin [%(u_um)] ( : )

m=0
In order to find the weight vector, we use (2.91) and (2.92) to rewrite
(3.83) as

N-1 1 V-l
B,(u) = Bay(um) - — g (b= N5 )m(u=um)
m=0 N =
N-1 N-1 N-l 1 . N2
- eﬂk—T)m( Bgu(um) —e—“’“‘—z—”“m).(m)
k=0 m=0
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The term in parentheses is w*(k). Thus,

N-1
1 : _
wh=5 > Bau(um)e 3= 550mum 20 .. N — 1, (3.85)
m=0

If By, (u) is a real symmetric beam pattern, then the weights will be real if
U, = UN-—1—m (386)
which corresponds to symmetric spacing. Two comments are necessary:

(i) The case in which
Bg(u) =0 1<u< 2
u) = — U —
¢ ’ - TN’

is an exception to (3.86) and any initial sampling point gives symmetric
weights.

(ii) In many applications, the desired beam pattern is not symmetric, so
we will have complex weights.

We also want to interpret these results in the context of the discrete
Fourier transform.
3.3.3 Discrete Fourier Transform

In Section 3.2, we represented the beam pattern as the z-transform of the
array weighting function. From (3.40),

By(w) = [ F Bi(2)] _,, (3.87)

and N
By(z) = > wpz ™, (3.88)

n=0
Bo(2)],meiv = By ()e T . (3.89)

We sample at

=TT k=01, N1 (3.90)
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This corresponds to N samples symimetric about the origin and ¢ ranges
from —7m < Y < 7.

By(yp)e T = wnzg "
n=0
N-1 N-1\2n
= wye I (k=557 ) Fn
n=0
N-1 . Nea .
= (wnejm(“zv_)) eIy (3.91)
n=0
where N1\ o
=(k-——)=, k=0,1,---,N -1 3.92
Pk ( 5 > N S FEEE (3.92)
Now define,
by, & w, et (7)., (3.93)
and o
B(k) = B (ye)e?"(557), (3.94)
Then,
B(k) = SN be Tk =01,.--,N—1, (3.95)

which is called the discrete Fourier transform.
The relation in (3.91) is a linear transformation from the N-dimensional
vector b to the N-dimensional vector B,

90

where F is an N x N matrix, whose kl element is

kl
[l = (Fn)H = (797 )7, (3.97)
where ,
Fy 2 e %, (3.98)

To obtain the inverse, we multiply B(k) by ejkmzﬁﬂ, sum on k, and divide
by N,

1 N-1 1 N-1 N-1 o
— 3" B(k) M F = ~ 2 bn (Z eﬂc(m—")‘ﬁ) : (3.99)
N k=0 k=0

n:O
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The sum in parentheses is IV, if m = n, and 0 if m # n. Thus,

b = & YN B(k) /R | (3.100)

which is the inverse discrete Fourier transform (IDFT), and
. N-1
Wn = bpe IR, (3.101)
In order to write (3.100) in vector notation, we first observe that

FA = _F~1 (3.102)

Thus,

b=yF'B. (3.103)

We observe from (3.103) that, if we know B, which is the vector of sam-
ples B(k),k =0,1,---,N —1, then we can find b and w. However, knowing
w enables us to find the complete beam pattern By (1)). Therefore the pat-
tern samples at 27/N intervals completely determine the beam pattern.

We use this result in two different ways. In the first case, we have a
beam pattern that we know was generated by a standard linear array. We
encounter this case frequently in subsequent sections so we denote it as
the IDFT Weight Vector Determination algorithm. The steps in the
algorithm are:

(i) Sample the beam pattern at

b= (k- 212 ko v

to obtain By ().
(ii) Use (3.94) to find B(k).
(iii) Find b as the IDFT of B(k) using (3.100).
(iv) Use (3.101) to find w.

In this case, the result will not depend on the initial sample point.

In the second case, we have a desired beam pattern that is not necessarily
realizable by a standard linear array. We repeat steps (i)—(iv). We then use
(2.65) to find the resulting beam pattern.

We consider two simple examples to illustrate the procedure.
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Figure 3.19 Array and aperture beam patterns using wavenumber sampling
technique, symmetric sampling: L = 5.0\, d = A/2, N = 10.

Example 3.3.2 (continuation)

The array corresponding to the aperture in the previous example contains ten elements
with spacing d = A/2. The samples are taken symmetrically about u = 0. At the
discontinuity (u=0.5) we use the value at the mid-point. The resulting pattern is shown
in Figure 3.19. We see that the aperture and the array give essentially the same beam
pattern.

Example 3.3.3 (continuation)

Consider the case when N = 11 and d = A\/2. The samples are taken symmetrically.
The result is shown in Figure 3.20. The different sample separation causes a difference in
the two beam patterns.

The discussion up to this point assumed a standard linear array so that
d = \/2. For the case when d < A\/2 a similar procedure can be utilized but
there are some important changes. To illustrate the technique, we consider
the case where

d=2Z. (3.104)

The DFT relations in (3.91) and (3.100) are still valid and we still sample
at 27w /N intervals in 1)-space. However, we need to sample over a complete
period of Yy (u), which in this case corresponds to —2 < u < 2 (recall Figure
2.20(a)). Thus, if we use a 2/N sampling interval, we use pattern samples



126 3.8 Pattern Sampling in Wavenumber Space

1.2 T T T T T = T T T
1+ b
08F -‘
jod
£
g 0.6 E
©
Q
€
T 04l 1
a
o2f E
N IE — Aperture \ -\
' - — Array \ /
oF e - b : Desired g? O R
/ O Samples ’ \
/ \ s v / \
vy vy b
02 N R . . A
-1 -08 -06 -0.4 -0.2 0 0.2 04 06 0.8 1
u

Figure 3.20 Array and aperture beam patterns using wavenumber sampling
technique, symmetric sampling: L = 5.0\,d = A/2, N = 11.

outside the visible region to determine the weight vector and to find By (¢).

Example 3.3.4 (continuation)
Consider the same desired pattern with an array where d = A\/4 and N = 20. The
result using symmetric sampling is shown in Figure 3.21.

3.3.4 Norms

In Section 2.6.4, we indicated the importance of the norm of the weight
vector, ||w||2. We want to relate the weight vector norm to the norm of the
vector of beam pattern samples. From (3.96),

BB =bf FFb. (3.105)

Using (3.102), we obtain
1
Z—V—BHB = b"b. (3.106)

Both B and b contain exponential factors that are not necessary in the norm
relationship. From (3.93),

b = diag [¢""(*F)] w. (3.107)
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Figure 3.21 Array and aperture beam patterns using wavenumber sampling
technique, symmetric samples from —2.0 < u < 2.0: L =5.0\,d = A/4,N =
20.

Thus,
bfb = whw. (3.108)

Now define
[Byl, = By(d), k=0,1,---,N—1, (3.109)

where v, is given by (3.92). Then, from (3.94),
B = diag {¢ 7*("+)} B, (3.110)

Thus,
BB = BIB, =B/B,. (3.111)

Using (3.108) and (3.111) in (3.106) gives

wiw = +BIB,, (3.112)

which is the desired result. Therefore, to find the directivity D, the white
noise array gain Ay, or the sensitivity function T, we sample the beam

pattern at the 1, given by (3.92), sum the magnitudes squared, and divide
by N.
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3.3.5 Summary

In this section, we introduced the Woodward sampling technique as a method
to approximate a desired beam pattern. For linear arrays this leads us to
the DFT and the inverse DFT. The examples focused on the approximation
technique. The other usage of the IDFT that is described in the paragraphs
following (3.103) is equally important. In this case we know that the desired
beam pattern can be generated by a standard linear array and we use the
IDFT to find the weights. We give further examples of these techniques in
subsequent sections.

The relationships between the beam pattern, the weight vector, and the
z-transform are summarized in Table 3.3.

Table 3.3 Relationships

U Bow) = e UT S wie™ | wy = & [T By()e ()l ay

z-Transform

2| Bulv) = [ B)] _ Gsn)

z=e

DFT IDFT
3 bo = wael™ (°F) (3.93) bn = & N1 B(k)e* ¥ (3.100)
Bk) = YN T bae T (3.95) wn = bpe~ " (5F)(3.101)

3.4 Minimum Beamwidth for Specified Sidelobe
Level

3.4.1 Introduction

In this section, we consider the problem of minimizing the beamwidth for a
given maximum sidelobe level.

The major focus of the section is on the Dolph-Chebychev weighting. It
results in constant sidelobes and a beamwidth that is the minimum possible
for the given sidelobe level. We first describe the classical Dolph-Chebychev
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synthesis technique and then show how it can be simplified by using the
IDFT.

In many cases, a constant sidelobe behavior is not desirable. We develop
a weighting due to Taylor that gives decreasing sidelobes.

We consider the case of linear uniformly spaced array pointed at broad-
side. The desired beam pattern is a real symmetric function, so the weights
will be real and symmetric.

In this case it is useful to index the weights in a symmetric manner. For
N odd, we define the weights as

N1, m=—(N=1)/2- (N =1)/2. (3.113)

Am = Wy No1
2

n=m-+

The assumption that B(v) is a real symmetric function results in real sym-
metric weights,

g = G, (3.114)

and we can write B(¢)) in a trigonometric form,

B@)=ao+2 E:Ti am cos(my), N odd. (3.115)

Similarly, for N even, we define

N
am=wn|”:m_l+%, m:1,2,-~-,3, (3.116)

and

N
A_m = Qm, m:1,2,~~-,3. (3.117)

Then,

B(y) = i A ej[(er%)’/’] + i am ej[(m“%)w], N even, (3.118)
N m=1

m=— b}

which can be written as

B(y) = 22,%:1 G, COS ((m - %) 1/)) , N even. (3.119)

The indexing for the cases of N odd and N even are shown in Figure 3.22.
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a ap a ag aq aj az ai

Figure 3.22 Linear broadside arrays of n isotropic sources with uniform spac-

ing: (a) N odd; (b) N even.

3.4.2 Dolph-Chebychev Arrays

The spectral weightings control sidelobes by exploiting Fourier transform
properties. However, they do not explicitly control the height of the side-
lobes. For linear, equally spaced arrays there are methods to design weights
that control sidelobes and beamwidths explicitly. The method that is dis-
cussed in this section was introduced by Dolph [Dol46], [Rib47] and is based
upon the properties of Chebychev!? polynomials. Our development follows
that in Section 4.11 of Kraus [Kra88].

Consider the linear arrays shown in Figure 3.22. First, assume that there
are an odd number of elements as shown in Figure 3.22(b), and that the main
response axis is broadside. The weights are symmetric about the origin. In
addition, we can use real weights because we want to design a real symmetric
pattern.

Because the weights are real, the beam pattern can be written as (from
(3.115))

B(y) = ag+ a1 costy+ ag cos 2y

13There are various spellings of Chebychev in the literature (e.g., Tchebyscheff).
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N -1
+--+apn-1 cos KT> w] ,  Nodd, (3.120)
2
where ord
P = —§~ cos b, (3.121)

and oy, is defined as,

_J a, n=0,
Gy = { 2an, n:l,...’y_z__l’ for N odd. (3122)

We have deleted the 9 subscript on By (). This is the Fourier series expan-
sion of the beam pattern. We can rewrite (3.120) as

N-1
=
B(i) = > oy cos (2&) , N odd. (3.123)
2 E
k=0
If N is even, the array is shown in Figure 3.22(a). Now, from (3.119),
. N -1
B(y) = aj cos (Eg) ++an cos [(T) 1/1] , (3.124)
where
N .
on = 2a,, N = 1,---,—2—, N even. (3.125)

Then, (3.124) can be written as

M oz

B(y) =

v COS K%; 1) w} , N even. (3.126)

k

1
In this section, we want to derive an amplitude distribution that will
produce a beam pattern with the minimum null-to-null beamwidth for a
specified sidelobe level. The amplitude distribution is called the Dolph-
Chebychev distribution.!
The first step is to show that B(1)) can be represented as a polynomial of
order N — 1. We represent the cos (m%) terms as a sum of cos™ (311> terms.

2
exp [jm%—] = cos (’m%) + jsin (m%)

= [cos (%) + jsin (%)]m (3.127)

Y The relationships in (3.123) and (3.126) were first given by Wolf [Wol37].

We write
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Expanding in a binomial series and taking the real part gives

. dj _ mw ”?‘(7 b= ]‘) m—Qw . 22/)
cosm 2 = COS "é‘ - 'T COS 5‘ S11t 5
m(im—-1)(m—-2)(m—=3) . ¥ . ¢
+ Al COS ESIH 5—

(3.128)

Putting sin®(1)/2) = 1 — cos?(1/2), and substituting particular values of
m,!5 (3.128) reduces to the following:

=0, cos m% =1
=1, COSTH"IQZ‘J = COS%
cosm¥ = 2cos?% — 1 . (3.129)

3

cosmy = 4cos3% — 3008%
Ccos m%i = 8cos432é — 8c05232é +1

I

333 33
I
W D O

Define
T = COos %, (3.130)
then (3.128) becomes
cosm% =1, when m =0
cosms = x, when m=1 (3.131)
cosmészz—l, when m =2

The polynomials of (3.131) are Chebychev polynomials, which may be des-
ignated in general by

Tm(x) = cos (mﬁ> . (3.132)
2/ eos(%)=2
For particular values of m, the first eight Chebychev polynomials are
T()(I) =1
Ti(z) ==z
TQ(:L‘) = 2:132 -1
A3 _

Ts3(x) = 4z° — 3z (3.133)

Ty(x) = 82* — 822 + 1

Ts(z) = 162° — 2023 + 5z

Te(x) = 3225 — 4824 + 1822 — 1
Tr(z) = 642" — 1122° + 562° — Tz |

5m will equal 2k or 2k + 1 depending on whether N is odd or even.
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We note that the degree of the polynomial in (3.133) is the same as the value
of m.

The mth-degree Chebychev polynomial is defined as

cos (mcos™1z), lz| <1,
Tn(z) =< cosh (m cosh_la:) , x> 1, (3.134)
(=1)™ cosh (mcosh™'z), =< —1.

The Chebychev polynomials are a set of functions that are orthogonal over
the interval —1 < z < 1 with respect to the weighting function w(z) =

1/vV1—z? (e.g., [AS65]),

To(x)dz =

1 1
—_— T, (z
/—1m (@)
v
/Tm(COSO)Tn(COSO)dO = CmOmn- (3.135)
0

The orthogonality constant ¢, is

m, m=0, \
(,m_{ t om0 (3.136)

The polynomials can be extended beyond the region |z| < 1 as defined in
(3.134). The Chebychev polynomials of order m = 2 through m = 4 are
shown in Figure 3.23. The following properties of Chebychev polynomials
are useful for our development.

1. For m > 2,
Tin(z) = 22T -1 (x) — Trn—2(x), (3.137)

where Ty(z) and T (x) are given in (3.133).

2. T,n(x) has m real roots in the interval |z|] < 1. The roots of the
polynomials occur when cos (m(y/2)) = 0 or when

¥

0
Y= (2p—1)=
ms = (p-1)7,

5 P= 1,---,m. (3.138)

Thus, they are evenly spaced in i-space. The roots of z, designated
Tp, are

Tp = COS [(Qp - 1)57;—1] . (3.139)
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3. T'»(z) has alternating maxima and minima in the interval —1 < z < 1
that occur at

k
mk:cos(—”-), k=12 m—1. (3.140)
m

The magnitude of every maxima and minima is unity,
[T (zE)| = 1. (3.141)

Thus, the polynomials have an equal ripple characteristic in the interval
-l<z<l.

4. All of the polynomials pass through the point (1, 1) and at z =
+1,|Tn(£1)] = 1. For z > 1,

Ton(2)] > 1. (3.142)

From (3.129), the beam pattern, B(%), for a symmetric, equally spaced
array aimed at broadside (isotropic sources) is a polynomial of degree N —1
in the variable cos(y/2).

If we set this array polynomial equal to the Chebychev polynomial of
the same degree N — 1 and equate the array coeflicients to the Chebychev
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Figure 3.24 T5(x) with coordinate axes.

polynomial coefficients, then the beam pattern of the array will correspond
to a Chebychev polynomial of degree N — 1.

Dolph [Dol46] developed a procedure to utilize the properties of the
Chebychev polynomials to develop an optimum pattern.

In the Dolph-Chebychev method the magnitude of the main lobe cor-
responds to the value of T,,(zp) where z¢p > 1 and the magnitude of the
sidelobes is unity. We define the ratio of the main-lobe maximum to the

sidelobe level as R,
main-lobe maximum
R= . 3.143
sidelobe level ( )
To illustrate this, consider the T5(z) curve in Figure 3.24. The point (zg, R)
on the Ts(x) polynomial curve corresponds to the main-lobe maximum.

From (3.134),

Tn_1(zo) = cosh ((N - l)cosh_lxo) =R, |zo|>1, (3.144)

or

T = cosh (N — costh) . lmo] > L. (3.145)

For example, if R = 20, the sidelobes will be 26 dB below the main-lobe
maximum. The value R = 31.62 would lead to —30-dB sidelobes.
The synthesis procedure consists of five steps:
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1. For an N-element array, select the Chebychev polynomial 77, (z) of the
same degree as the array polynomial. Thus,

m=N—1. (3.146)

2. Choose R and solve for xg. Since R > 1, zp > 1. However, to use
(3.130) we require |z| < 1.

3. Change the scale by defining a new abcissa w,

w=-, (3.147)
and let
W = COS (%) , (3.148)
and
T =g cos(%). (3.149)
4. The beam pattern is
! Y
B(y) = —RTN_l(xo cos(—2—)). (3.150)

The 1/R factor normalizes the beam pattern so that B(0) = 1.

5. The last step is to find the array weights to produce the beam pattern
in (3.150).

The easiest way to find the weight vector is to find the zeros of the beam
pattern and then use (2.88). The original zeros are given by (3.138),

(G _ (2p—1)m

- ’ :17"'aN_17 3151
2 (N-1)2 ( )
or in z-space,
(2p— 7
$pzcos<m s p:l’.-.,N—l. (3152)
Changing the scale into w-space gives
1 (2p — 1)7r>
= — A A =1,---,N—1. 3.15
Wp Zo COS<<N_1)2 sy P 1a ( 3)
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Using (3.148) gives the zeros in y-space,

Pp = 2cos™! (—l—cos (%H)) , p=1---,N—-1 (3.154)

Zo
We then construct a N x N array manifold matrix, V(1)), (2.81),

V)= v0) V() - V() o vne) | (3159)
and use (2.88)
w= Vi) e, (3.156)

which specifies the weight vector. We can translate from w, to a,, if desired,
but it is not necessary.6

The results in (3.151)-(3.153) complete the Dolph-Chebychev synthesis
process.

We now consider a typical example and then discuss the optimality of
the result.

Example 3.4.1"7

Consider an array of eight isotropic sources spaced at d = A/2. Design a Dolph-
Chebychev weighting with the sidelobes at —26 dB.

In this case, R = 20, so we set

Ty (x0) = 20. (3.157)
From (3.145),
2o = cosh (% cosh‘l(zo)) = 1.142. (3.158)
Then,
B(p) = =T ( E) (3.159)
)—207.’1,‘0(’1082. J. Lo

We use (3.156) to find the weights

Wo =04 = 0.0633
wi; = az = 0.1035
W2 = ag = 0.1517
W3 =ay = 0.1815

(3.160)

A plot of T7(z) and the mapping in (3.159) is shown in Figure 3.25. As 1 moves from
0 to m, B(y) moves from R through three zero crossings to 0 at ¢ = . Since the beam
pattern is symimetric, this gives us a complete description.

The movement described in Figure 3.25 is summarized in Table 3.4.

15Stegen [Ste53] developed a procedure for finding an explicit formula for the coefficients.
It corresponds to the IDFT approach in Section 3.3.3. We discuss this approach in Problem
3.4.18.

"This example is contained in [Kra88], but we use a simpler technique.
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30

20} -

Figure 3.25 Chebychev polynomial of the seventh degree.

Table 3.4 Beam Pattern Movement

¢ 0 % T

P = mcosd ! 0 | —7
x:mocos(%i 0] zo 0

We see that we have mapped the visible region in §-space (0,7) into a
region in z-space (0, zg). We have not utilized the Chebychev polynomial in
the region (—1,0). This is because we used an expression in ¢ /2 and that
the array spacing is d = \/2.

For other values of d, the mapping is shown in Table 3.5.

Table 3.5 Mapping as a Function of d
f 0
Y = 2%d cosf 24

xz.nwos(%) xocos("Td) T

T
2m
__)\_d

Zo cos(%i)

o

[=}

For some representative values of d, the ranges on the z-axis are:

i) d=2, 0.707z¢ < z < w0,
4
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Beam pattern (dB)

Figure 3.26 Beam patterns, Dolph-Chebychev weights: N = 8 (—20-, —30-,
—40-dB sidelobes).

(i) d=3, 0<z< a,
(iii) d= %, —0.707z¢ < z < =o.

The maximum d that we can use corresponds to the point where the left
end of the range is —1:

d = 205! <—i> . (3.161)

™ o

In Figure 3.26, we show the beam patterns for an 8-element standard
linear array for various sidelobe levels. As expected, the beamwidth increases
as the sidelobe level decreases. In Figure 3.27, we show a z-plane plot of the
zeros of the Dolph-Chebychev weighting for —20-dB, —30-dB, and —40-dB
sidelobes.

In his original work, Dolph [Dol46] showed the optimality of the Dolph-
Chebychev polynomials. In this case, the optimum beam pattern is defined
to be the beam pattern with the smallest null-null beamwidth for a given
sidelobe level. We discuss it in the context of T5(z) in Figure 3.24.1% Con-
sider another polynomial P(z) of degree 5 that passes through (zo, R) and

'8 This discussion follows p.170 of [Kra88]



140 3.4 Minimum Beamwidth for Specified Sidelobe Level

-20 dB sidelobes -30 dB sidelobes
~ N o’ AN
>‘0_5 s L v >\0.5vb/ RN
ﬁ / : v 6 ! \
c { ] [ 1 . !
o 09 o 09 : e
g ‘ . ‘
IS N . IR
= -05 \\ Py = _05 \b\ ey
7/ Vé
@ ~ . /:e . N ~ ‘/ X
-1 ‘\"G"'. . -1 N \e._/O’ ,,,,, :
1 05 0 05 1 1 05 0 05 1
Real Real
-40 dB sidelobes
1 4‘ »./e—.-e\\
. 7 N
L@ N
0.5} -7 v
£ 0 q‘) ) o
2 °° Y
§_0‘5. N /I
® . Lo
N : .,
-1 OO ..

Figure 3.27 Zero plots of the Dolph-Chebychev weighting: (a) —20-dB side-
lobes, (b) —30-dB sidelobes, (¢) —40-dB sidelobes.

7 (the largest root) and, for z < zj, it lies between +1 and —1. The null-
null beamwidth is determined by z. We want to try and find a P(z) whose
values lies between (1 — €) and —(1 — €) for some positive e. However, since
P(z) lies between %1 in the range [z}, 1], it must intersect T5(x) in at least
m+1 = 6 points, including (zg, R). But two polynomials of the same degree
that intersect at m+1 points must be the same polynomial, so P(z) = T5(z).
Thus, the Chebychev polynomial is optimum. Riblet [Rib47] subsequently
showed that the procedure was only optimum for d > A/2 and proposed an
improved procedure for d < A/2. The non-optimality for d < A/2 is because
of the mapping in Table 3.5. For d < A/2, the range on the z-axis is not
adequate to constrain the beam pattern everywhere in the visible region.
We describe the Riblet-Chebychev technique briefly. For d = A/2, the

two techniques give the same result.
Riblet-Chebychev weighting

In this case we use an expansion of cosy rather than cos(y/2). Assuming NV
is odd, we then match the array polynomial to a Chebychev polynomial of
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order (N —1)/2. In addition, we choose a mapping such that § moves from
0 to 7, so we use the entire range (—1, zp) of the Chebychev polynomial.

Thus, the mapping is

T =¢] CosY + co,

where 5
b= ;dcos 6,
and, from (3.134),
zo = cosh (N — 1cosh—1R> .

The required mapping is shown in Table 3.6.

Table 3.6 Mapping Requirement

6 0 vl T
¢:2i‘d cosf i—”d 0 —%\Ed
r=cicosy+co | =1 | zo -1

To find the constants, we require

(8] +Cz = Xy,

2
¢y Cos (Tﬂd) +cg = —1.

Solving for ¢; and ¢y and substituting into (3.162), we have

1

T = W {(:v0+ 1)cosy — [1 + xo cos (z;—rdﬂ}

For d = A/2, (3.167) reduces to

= %{(xo—i-l)cosm/)Jr(aco— 3.

(3.162)

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

One can show that the two approaches lead to identical arrays for d = A/2.
For d < A/2, Riblet’s approach leads to arrays with smaller beamwidth for
a given sidelobe level. We consider an example to illustrate the behavior.

Example 3.4.2

Consider a 21-element linear array. We require —30-dB sidelobes and design the array
using both the Dolph-Chebychev and Riblet-Chebychev procedures. We consider element
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Figure 3.28 Beam patterns for Dolph-Chebychev and Riblet weighting: N =
21, —30-dB sidelobes: (a) d = A/2, (b) d = M\/4.
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spacings of d = A/2 and A/4. The results are shown in Figure 3.28. We see that there is
significant difference in the main-lobe width.

Riblets’ procedure is only applicable to the case when N is odd and
N>T.

Subsequent to Dolph’s original work in 1946 [Dol46] and Riblet’s dis-
cussion in 1947 [Rib47], work has been done to simplify the synthesis pro-
cedure and derive the beamwidth and directivity characteristics of Dolph
-Chebychev arrays.

The Dolph-Chebychev weighting is used in a number of array applications
because of its constant sidelobe behavior. In many applications, we would
prefer that the sidelobes decay rather than remain constant. The motivation
for decaying sidelobes is to reduce the effect of interferers that are located at
angles that are significantly different from the MRA. In the next section, we
discuss a weighting developed by Taylor [Tay53] to achieve this behavior.

3.4.3 Taylor Distribution

In [Tay53] and [Tayb5], Taylor developed a technique that constrains the
maximum sidelobe height and gives decaying outer sidelobes. The develop-
ment is for a linear aperture. It can be applied to linear arrays by sampling
the aperture weighting or by root-matching.'® We can also solve for the
array weighting directly (see Section 3.4.4).

Taylor starts with the uniform aperture weighting that we used in Section
2.7. The resulting beam pattern was derived and plotted in Figure 2.29. We
define

L
V=S (3.169)
so that .
By(v) = Smg”) = sinc(mv). (3.170)

With this change of variables, all of the zeros of the pattern are located on
the integers,

v=41, 42, - (3.171)

Taylor approaches the synthesis problem by moving the “inner” zeros to
new locations on the unit circle in order to lower the inner sidelobes and
leaving the outer zeros in the same location as the uniform distribution in
order to maintain the |v|™! decay.

" This discussion follows Elliott [EN81].
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We first write (3.170) as an infinite product,

By(v) = ﬁ <1 - g) (3.172)
n=1

We then define a new pattern,

__sin(mv) ot (1 - %2)

Br(v) = — . (3.173)
I
The denominator removes the first 7 — 1 pairs of zeros and the numerator
replaces them with 7 — 1 new pairs of zeros located at v,, n =1,2,--- ,n—1.
Taylor showed that the new zeros should be located at
1
A2 + (TL - %)2 2
=7 , 3.174
R e 3.174)
where
cosh(rA) = R, (3.175)

and R is the same as in the Dolph-Chebychev derivation. Thus, the maxi-
mum sidelobe height is —20log(R.
To find the corresponding aperture weighting, we recall from (2.215) that
L
2

Br(v) = /: w*(z) 9 EV da. (3.176)

L
2

Since the weighting will be symmetric we can expand w*(z) in a Fourier
cosine series:

w*(z) = {2 Cm COS (27r£7rz> , (3.177)

m=0
where ¢, is a real constant. Using (3.177) in (3.176) gives,

L

7 2mmz 2mvz
Br(v) = /_£ Z_ cmcos< 7 > cos( 7 > dz. (3.178)
2 m=0
We now choose integer values of the pattern v = 0,1,2,---. Then, the

integral will be zero unless v = m. Therefore,

L Br(0) = co, (3.179)
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L
gBT(m) =cCp, m<A-1, (3.180)

and, from (3.173), Br(m) = 0 for m > n. Thus,

w*(z) = % {BT(O) +2'S" Br(m)cos (2”2”) } , (3.181)

m=1

which is the desired result.

To find the corresponding weighting for an array, we can either sample
w*(z) in (3.181) or we can match the zeros in (3.174).

To carry out the latter procedure, we define the zeros in u-space as,

-
Nd

o A2 ( 1)2 3
Up = m} : (3.182)

The weight. vector for a standard linear array is obtained by using (2.88)

with .
24 (o - 1]
A? 4 (n—%)2

l»bn:Q—ﬂ- n

~ (3.183)

We now consider a simple example to illustrate the result.

Example 3.4.3

Consider a linear aperture of length L = 10.5) and a corresponding linear array with
d = A/2 so that N = 21. We require —30-dB sidelobes and utilize # = 6. In Figure
3.29(a), we show the beam pattern for the aperture obtained from (3.173) and the beam
pattern for the array obtained by sampling w*(z) given in (3.181). In Figure 3.29(b), we
show the Dolph-Chebychev pattern from Figure 3.28(a) and the Taylor pattern.

The Taylor distribution is widely used in practice. After the desired
sidelobe level is chosen, i has to be selected. If n is too large, the aperture
weighting function will increase as z approaches L. Usually, 7 is chosen to
have the largest value that does not cause w*(2) to increase as z increases
(e.g., [Han98}).

There are several modifications to the Taylor pattern that are discussed
in the antenna literature. For example, Elliott ([Ell75], [ElI81]) has devel-
oped techniques for designing modified Taylor patterns in which sidelobe
heights can be individually specified. In Section 3.9, we develop techniques
for controlling the sidelobe heights in specified regions.

The technique of assuming a continuous aperture and then finding a
discretized weighting works well for large N. We can also solve the array
problem directly using a technique invented by Villeneuve that is described
in the next section.
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Figure 3.29 Beam pattern for Taylor weighting: N = 21,7 =6, SLL = —30

dB (a) aperture and array; (b) array with Taylor weighting and Dolph-
Chebychev weighting.
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3.4.4 Villeneuve 7 Distribution

The Chebychev distribution for an array with N = 2M + 1 elements can be
written as,

b ‘ 2M
Tom (aco cos —2—) = cB(eV) = H(z — 2Zp), (3.184)
p=1
where '
z=el¥, (3.185)
zp = eI¥r, (3.186)

and ¢ is a normalizing constant. We consider N odd in the text; the deriva-
tion for N even is similar.
The roots are given by (3.154),

s

4/ 1
p = 2c08™" (—cos [(21) - 1)4M

]) p=1,2,--,2M. (3.187)
Zo

The beam pattern can be written as
M
By () = e?M¥ 4M T sin (M> sin <M> , (3.188)
hote] 2 2

which is the Chebychev pattern for N = 2M 4 1 elements.

Villeneuve [Vil84] (e.g., [Kum92]) developed a technique for discrete ar-
rays. He combines the better features of the uniform and Chebychev weight-
ings. We start with the beam pattern for uniform weighting and replace the
first 1 — 1 roots with modified Dolph-Chebychev roots. The resulting beam
pattern is

(3.189)

The term in brackets modifies the beam pattern of the uniform weighting.
In the numerator are the modified Chebychev roots corresponding to the
first 2 — 1 interior sidelobes. In the denominator are the corresponding roots
of the uniforim weighting,

Yyn = —, n=1,2---, 71— 1. (3.190)
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Figure 3.30 Roots of the three beam patterns. The three unit circles are
shown with different radii. Only upper half-plane roots are shown.

The Chebychev roots are modified so there is not a jump at n = f. This
modification is accomplished by a progressive shift such that the nth root of
uniform weighting is unchanged.
The Chebychev zeros are given in (3.187). Each Chebychev zero is mul-
tiplied by
2mh

= 101
O N (3.191)
where ¢ is the nth Chebychev root. Therefore,
™
o= . (3.192)
Ncos™1 (x—lo cos [(2n — 1)&])
Then,
oy, =otbp, n=1---a-1 (3.193)
The remaining roots are uniform,
27 _ N-1
wunzﬁn, n= Ry, (3.194)

The resulting root patterns are shown in Figure 3.30 for N = 21. For clarity,
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we have shown three unit circles. We only show the roots in the upper half,
The remaining roots are complex conjugates. The inner six (plus their six
complex conjugates) Chebychev roots are moved outward. The amount of
movement increases until, at 7 = 6, the Villenueve root corresponds to the
uniform root. The remaining roots are the uniform roots. The shift in roots
is reasonably small, but it results in a significant pattern change. A beam
pattern for a 21-element and 41l-element array with —20-dB sidelobes are
shown in Figure 3.31. It is essentially the same as the discretized Taylor
beam pattern. For N < 11, there is some difference in the beam patterns
and the Villeneuve technique is preferable.

The weight vector is obtained by using (3.193), (3.194) and their sym-
metrical values in either(2.88) or (3.188).

Villeneuve [Vil84] also derives the results for N even and provides further
comparisons with the Taylor distribution. Hansen ([Han85], [Han92]) has
studied the properties of the distribution. [Han98] has tables with detailed
comparisons of Taylor and Villeneuve 7 beam patterns.

3.5 Least Squares Error Pattern Synthesis

In this section, we develop techniques for finding the least squares error
approximation to a desired beam pattern. The technique is valid for an
arbitrary array geometry. For notational simplicity, the 1-D case is discussed
in the text.

The desired beam pattern is Bg(v). The square error is defined as

e= [ 1Bw) - wv) P av. (3.195)

A more general error expression includes a weighting function inside the
integral. The expression in (3.195) is adequate for the present discussion.
Taking the complex gradient with respect to w'? and setting the result equal
to zero gives?!

- /:T v(¥)By(¥) + {/_7; v(l/))vH(qp)dzp} w, = 0. (3.196)
Defining
A= / )i, (3.197)

20Gee Appendix A (Section A.7.4) for a discussion of complex gradients.
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Figure 3.31 Beam pattern with Villeneuve weighting: » = 6, SLL=—-20 dB;
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(3.196) can be written as

™
wo= AL [ v()Bj() dv. (3.198)
-
The result in (3.198) is an explicit expression for the least squares approxi-
mation to Bg(y) and can be evaluated for a specific array manifold vector.
For the special case of a standard linear array, the array manifold vector
is given by (2.70) and the nk element of A is

A = [ ew - -ie- S50 v} ae

_ /” oxp [j(n — k)] dip = 26 (3.199)

-7

Using (2.70) and (3.199) in (3.198) gives

T ) N -1 .
Wno = 9 exp(j(n- “"2‘_) ¢) Bi(y) dy. (3.200)
The weight vector is w#, whose components are
. L : N -1
wio= o= [ exp {=i(n = 25 v Baw) dv. (3.201)
27 Jp 2

For the special case of a real symmetric Bg(1)), it is convenient to use the
symmetric indexing. For N odd,

17 .
Amo = %/ Bd(¢)6 ]mwdlp- (3.202)
For N even,
1 /™ :
o = 5 By()e~Im=2)b gy, (3.203)
In both cases,
0—mo = Gmo- (3.204)

The results in (3.202) and (3.203) are familiar as the Fourier series expansion
of the desired beam pattern. The resulting beam pattern is

N-1
2

By)= > amee™ (3.205)

—_ N1
m=-"3

for N odd and a similar expression for NV even.
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In some cases the desired pattern By(t) is constant from —p < ¢ < g
and zero elsewhere in ¥-space. In this case,
1 Yo ) i
= — / e—Im gy = SBMY0 -  4d, (3.206)
21 Sy

mm

and

sin((m — %)1/)0)
((m —3)%0)

We consider a simple example to illustrate the technique.

1 %o P
Um = — / G'J(m_%)w dy = N even. (3.207)
2m -0

Example 3.5.1
The desired Bg(v) is shown in Figure 3.32. It is uniform from 60° < 6 < 120° or,

since 1 = mw cos 0,
—0.57 < < 0.5m. (3.208)

The results for N = 10 and 20 are shown in Figure 3.32. We also show the beam pattern
using Woodward sampling.

We observe that the pattern has oscillatory overshoots at the disconti-
nuities. This behavior is known as Gibbs phenomenon and is familiar from
Fourier theory. We can use windows to decrease the overshoots.

To introduce the concept of windows, we write (3.205) as

o0

Ba(¥)= > amoR[m]e™, (3.209)

m=—0o

where R[m] is a discrete rectangular window. We denote its Fourier trans-
form by Br(1) and normalize it so Br(0) equals one. For N odd,

e :
Rjm] = 0, elsewhere. (3.210)

From Fourier transform properties, (3.209) corresponds to convolving Bg(v)
and Br(v) in 1-space,

By() = Ba(¥) * Br(¥), (3.211)
or
Ba(w) = 5 [ Balths) Br(w = a) i, (3212)
where ( )
N1 N
1 2 - 1 sin{ 59
Br(Y) =+ 2 eI — _ﬁ_sm_@)_. (3.213)
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pattern and synthesized patterns for linear array

of 10 and 20 elements using the Fourier series method and the Woodward

sampling technique: (a) N=10; (b) N=20.
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This amplitude of Bgr(y) was plotted in Figure 2.15. The convolution pro-
cess consists of sliding Br(y) by Bg(v). The integral will oscillate as each
sidelobe moves past the discontinuity.

We can alleviate the oscillation problem by tapering the weighting of
R[m)] so as to decrease the area of the sidelobes. This is similar to the problem
that we solved in Section 3.1 (in Section 3.1, we were concerned about the
height of the sidelobes). Thus, all of the weightings that we developed there
can be used as “windows” to truncate our Fourier series. We recall that as
we shape the weighting, the width of the main lobe increases. Thus, the cost
of using a shaped window will be a wider transition region.

We consider the same desired By() as in Example 3.5.1 and look at the
effect of different windows.

Example 3.5.2 (continuation)

The desired beam pattern Bq(t) is shown in Figure 3.32. It is uniform in u-space
from —0.5 < u < 0.5. The am, are calculated using (3.202). The synthesized Bg(y) is
given by

o

Ba@)= > amo Ru(m) ™, (3.214)

m=—00

where R, (m) is the window corresponding to one of the weightings in Section 3.1. We
consider the standard 1i-element linear array used in Example 3.5.1.

We counsider three windows from Section 3.1: Hann, Hamming, and Kaiser. For the
Hann window the beam pattern is obtained by using R.(m) from Section 3.1 and amo
from (3.202) to obtain,

N-1
- .
Buanv (@) = ¢ Z [MmSTmﬂ—)} [0.5 + 0.5cos (271'%)] el (3.215)
L
BramminG (P) = c2 Z [ﬂﬁ%iﬁﬁ] [0.54 + 0.46 cos (277%)] ™, (3.216)
Bicaiser(¥) = % sin(@5mm) | py (541~ (21"—>2 ™Y, (3.217)
xarser(V) = ¢3 2 o ) N , )
- 2

where the constant normalizes the window. For the Kaiser window, we use 3 = 3.88 to
match the Hann overshoot and 8 = 4.96 to match the Hamming overshoot.

The resulting patterns are plotted in Figure 3.33(a). In Figure 3.33(b), we show an
expanded view of the plateau of the beam pattern. The effect of the windows is to reduce
the overshoot and to widen the main lobe (which causes the transition region to widen).

If we use the Kaiser window, we must choose a suitable value of 3.
Kaiser [KK66), [Kai74] developed a procedure to design FIR filters that can



3.5 Least Squares Error Pattern Synthesis

~— Rectangular
-~ Hann
—--+ Hamming

- Kaiser 3.88
— Kaiser 4.96

Beam pattern

-1 -08 -06 ~0.4 -0.2 0 0.2 0.4 0.6 0.8 1
u
(a)
11 T T T T T T T T
— Rectangular
- — Hann
108 ~-- Hamming
Kaiser 3.88
1.06F — Kaiser 4.96 H
1.04F 4

o
R
T

Beam pattern

o

o

@
T

096

Figure 3.33 Beam patterns for various

0.4 0.5

windows: N = 11.

155



156 8.6 Minimaz Design

be applied directly to the array problem.?!

A = ths — Yy, (3.218)

and
A= -20log?, (3.219)

where § is the overshoot shown in Figure 3.34 in Section 3.6 with §, = 4.
Kaiser determined empirically that the required g is given by

0.1102(A — 8.7), A > 50,
B =< 0.5842(A —21)%* +0.07886(4 — 21), 21 < A < 50, (3.220)
0.0, A <21,

where A = 21 corresponds to a rectangular window. The number of elements
to achieve the desired A and Ay is

A—-8

= s A (3.221)

If N is fixed, the required value of § will determine the transition region
Aw)p. We used (3.220) and (3.221) to determine the 3 used in Figure 3.33(a).
Other examples are developed in the problems.

In this section, we introduced least squares error approximations to a
desired beam pattern. For standard linear arrays, this approach led to a
Fourier series representation. When the desired beam pattern has discon-
tinuities, there are overshoots that can be reduced by using the weighting
functions developed in Section 3.2 as windows. The use of windows reduced
the overshoot at the expense of widening the transition region between the
main lobe and the sidelobes.

3.6 Minimax Design

In this section we consider the problem shown in Figure 3.34. In the main-
lobe region, we would like the pattern to be unity. Thus, we use a design
constraint that B(e’¥) must lie between 1— 6, and 1+ 6, in the range [0, 1)
and between +d; and —§, in the range [¢s, w]. This problem is the spatial
filter analog to optimum minimax error design problems for FIR filters.
There are tutorial discussions of the optimum techniques in Section 7.6

of Oppenheim [OS89], Chapter 8 of Proakis [PRLN92], Chapter 3 of Rabiner

21Qur discussion follows pp. 452-455 of [0S89)
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Figure 3.34 Tolerance scheme. [Adapted from [OS89]]

and Gold [RG75], and Chapter 4 of [MK93]. These discussions are based
on the work of Parks and McClellan [PM72a], [PM72b] with subsequent
contributions (e.g., McClellan et al. [MPR73|, [MP73], [MR79], [RMP75)).
Our discussion is similar to the above presentations.

At the same time that Parks and McClellan published [PM72a] and
[PM72b], Hersey et al. [HTL72] published a paper on minimax design of
digital filters that was more general because arbitrary upper and lower con-
straining functions can be used. The results were applied to linear arrays
by Mucci et al. [MTL75]. Discussion of the history of these techniques is
contained in Rabiner et al. [RMP75] and Tufts [Tuf75] (see also Farden and
Scharf [FS74]).

We define a weighted error as
epm(¥) = Wym(¥) [Bu(e) - B(e™¥)]. (3.222)

We assume that B,(e’¥) is a real symmetric function. The functions epm (1)),
Wom (), and Bgy(e?¥) are defined only over closed sub-intervals of 0 < ¢ < 7.
For the N-odd case, they are defined over [0,4,] and [¢s,7]. We assume
N,yp, and 9, are fixed design parameters. Then, for the model in Figure
3.34,

Ba(e®) = { (1)_’ ?/fswwgswf?’, (3.223)
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Figure 3.35 (a) Possible beam pattern meeting the specifications of Figure
3.34; (b) weighted error for the approximation in (a). [Adapted from [OS89]]

and the weighting function is

% 0S¥ <,
where K = 0,/ and is a fixed parameter. The value of §, (or ds) is variable.
A possible B(e/¥) that meets the desired criteria is shown in Figure 3.35(a).
The corresponding error function is shown in Figure 3.35(b). We see that
the maximum weighted approximation error is ¢, in both bands.

The criterion of interest is the minimax (or Chebychev) criterion. We
seek a beam pattern that minimizes the maximum weighted approximation
eITor.

min (max |e,,m(¢)|) , (3.225)

{wn,n=0,1,--\N—1} \peF
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where F is closed subset of 0 < ¢ < m:

[0 <9 <] U s <9 <. (3.226)

Parks and McClellan [PM72a] formulate the problem as a polynomial

approximation problem. Recall from Section 3.4.2, that we can write??
cos(niy) = T, (cos ), (3.227)
where T, (x) is the nth order Chebychev polynomial, and therefore
L
B(e¥) = Z ci(cos)*, (3.228)
k=0

where the ¢ are constants related to the original weights w, and
L = (N —1)/2. Letting

T = cosp, (3.229)
we have A
B(eﬁ/’) = P(x) lzzcosdn (3.230)
where
L
P(z) = Z cx zF. (3.231)
k=0

There are several useful theorems [Che66] available to solve the approx-
imation problem.?? Parks and McClellan utilized the following theorem.

3.6.1 Alternation Theorem

Alternation Theorem? Let F, denote the closed subset consisting of

the disjoint union of closed subsets of the real axis z. P(z) denotes an
Lth-order polynomial

P(z) = i cp Tt (3.232)

Also, Dy(x) denotes a given desired function of x that is continuous on Fy;

Wpm(x) is a positive function, continuous on Fj, and epn(z) denotes the
weighted error

epm(2) = Wym (2) [Dp(z) — P(x)]. (3.233)

2ZNote that we are using a polynomial in cos instead of cos P/2.

2B0ther discussions of the approximation problem are contained in Rice [Ric64], Taylor
[Tay69], and Taylor and Winter [TW70].

*4This version of the alternation theorem follows [0S89] but is due to [PM72a)].
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Figure 3.36 Typical example of a beam pattern approximation that is optimal
according to the alternation theorem for L = 7. [Adapted from [OS89]]

The maximum error ||E|| is defined as

1Bl = max lepm(2)] - (3.234)

A necessary and sufficient condition that P(x) is the unique Lth-order poly-
nomial that minimizes ||E|| is that epm(z) exhibit at least (L + 2) alterna-
tions, that is, there must exist at least (L + 2) values z; in F}, such that
T] < Ty < -+ < 2r42 and such that epn(xi) = —epm(ziz1) = || E| for
i=1,2,---,(L+2).

We now apply the alternation theorem to the array design. We let
z = cosv and plot the polynomial versus ¢. A function that satisfies the
Alternation Theorem for L = 7 is shown in Figure 3.36. We see that there
are nine alternations of the error, occurring at 91,9, -, % and 7.

There are other possible functions that satisfy the Alternation Theorem
(e.g., p- 472 of [OS89)]).

3.6.2 Parks-McClellan-Rabiner Algorithm

From the alternation theorem, the optimum pattern B,(e/¥) will satisfy the
following set of equations,

Wom(3) [Ba(e) = Bo(e™)] = (=1)"*16, i=1,2,---,L+2, (3.235)
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where § is the optimum error and B,(e’¥) is given by (3.228).
These equations lead to an iterative algorithm called the Remez Multiple
Exchange Algorithm for finding the B,(e7¥).

Step 1: Select an initial set of ¢;,7 = 1,2,---, L+2. ¢, and 9, are included
in the set.

Step 2: The set of equations (3.235) could be solved for ¢, and §. How-
ever, Parks and McClellan found a more efficient approach using a
polynomial approximation.

(a) For a given set of ¢, 0 is given by

2L+2 b By (eju)k)

ZL+2 M 9 (3236)
k=1 Wpm (k)
where

L+2 1

br. = 3.23

1 =

i1k
and

z; = cos ;. (3.238)

(b) Since B,(e¥) is an Lth-order trigonmetric polynomial,
we can interpolate it through L+1 of the known L 42 values.
Parks and McClellan used a Lagrange interpolation formula
to obtain

B,(e’") = P(cos ) = ;1” = (3.239)
AN
where x = cosy and x, = cos Py,
_ (_1)k+15
fi = By (/%) — -, 3.240
and .
di = f] L b (3.241)
T — Ty T —Tr42

1=1
ik
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Figure 3.37 Nlustration of the Parks-McClellan algorithm for equiripple ap-
proximation. [Adapted from [OS89)]

where we use 1,2, -+, 9¥r+1 to find the polynomial, the
value at ¢749 will be correct because B,(e/?¥) in (3.239) sat-
isfles (3.235). A typical result is shown in Figure 3.37 after
the first iteration.

Step 3: The original set ¥, s, - -+, 911 is exchanged for a completely new
set i, h, -, ¥y, (¥p and ¥, are still included). The new ¥; are
defined by the (L +2) largest peaks of the plotted curve. There are at
most L—1 local minima and maxima in the open intervals (0 < ¢ < 1)
and (ys < ¥ < ). If there are L — 1, then the remaining point can be
either 0 or m; one chooses the largest error point for the next iteration.

Step 4: The iteration is continued in this manner until the change in ¢

between iterations falls below some small pre-selected amount. The
result is B,(e’¥).

Notice that the array weightings were not computed as part of the design
process. The calculation of the weightings is straightforward using the IDFT
developed in Section 3.3.

We consider an example to illustrate the technique.
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Example 3.6.1

Consider a standard 11-element linear array. The desired beam pattern is shown in Fig-
ure 3.17. In Figure 3.38, we show the resulting beam patterns using the Parks-McClellan,
Woodward, and Fourier algorithms. We see that the Parks-McClellan algorithm gives
uniform ripples with a slight increase in the transition region.

3.6.3 Summary

In this section, we have given a brief discussion of the Parks-McClellan (PM)
algorithm for minimax optimization. The references at the beginning of the
section give more comprehensive discussions and should be utilized if the
algorithm is going to be used in practice. Lewis et al. [LMT76] developed
a technique that mixes least squares and minimax techniques that may be
useful in some applications.

In sections 3.1 through 3.6, we developed three major topics:

(i) Synthesis of single MRA arrays
(i) Synthesis of desired beam patterns

(iii) Relationships between beam patterns, weight vectors, and zeros of the
array polynomial

In the single MRA problem, we assume that the signal of interest is a
plane wave arriving from a specific direction (expressed in either angle space
or wavenumber space). We want to design a beam pattern with good direc-
tivity (corresponding to a narrow main lobe) and low sidelobes. Our design
procedures trades-off main-lobe width and sidelobe level. In Section 3.1, we
used a cosine building block and developed several useful weight vectors.
The Hamming weighting provided a good compromise between main-lobe
expansion and sidelobe height. We then considered the case in which there
was a region of interest around the main lobe. The DPSS and Kaiser weight-
ings were effective for this application. In Section 3.4, we developed Dolph-
Chebychev and Riblet-Chebychev weightings to provide uniform-height side-
lobes and a main lobe whose width was the minimum possible for the given
sidelobe height. We also developed Taylor and Villenueve weightings that
had decreasing sidelobes. This collection of weightings is the most widely
used for the deterministic synthesis of uniform linear arrays.

In Sections 3.3, 3.5, and 3.6, we studied the problem of synthesizing
a desired beam pattern. We developed three approaches; the Woodward
sampling approach, the least squares error approach, and the minimax algo-
rithm. Each approach has advantages and disadvantages, and the appropri-
ate technique will depend on the specific desired beam pattern. We revisit
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the synthesis problem in Sections 3.7 and 3.9.3. In Section 3.7, we general-
ize the least squares error solution to include linear constraints. In Section
3.9.3, we solve the minimax problem for arbitrary arrays.

In the course of the discussion we introduced various tools, such as the
array polynomial and its zeros, the DFT, and the IDFT. All of these tools
are used in many subsequent discussions.

All of the discussion up to this point did not assume any detailed knowl-
edge of the interference environment. Using a beam pattern with constant
sidelobe levels tacitly assumes that the interference is equally likely to arrive
anywhere in the sidelobe region. In the next section we consider a model in
which we have some knowledge of the location of the interference.

3.7 Null Steering

In our discussion of array design, we have seen the importance of pattern
nulls. In many applications, we want to guarantee that the pattern will
have a null in a given direction. In radar or communications applications,
a jamming signal may be located at a specific wavenumber and we want to
eliminate its effect.

3.7.1 Null Constraints

For an arbitrary array, to put a null at a given wavenumber k;, we require

B(ky) = w v (k;) =0, (3.242)
where
e_jk?]‘ P
e_jkg1 P2
vi(ky) = ‘ . (3.243)

For a uniformly spaced linear array with N odd, this reduces to
N
0= Y whe™y. (3.244)
N-1
n=—ta

Symmetric indexing is more convenient for this problem. We denote these
weights as wp,n = _ﬂ2:l7...7&2—_1_

We can then choose the w; to synthesize a desired pattern subject to
the constraint in (3.244). We now consider several ways to implement null

constraints.
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3.7.2 Least Squares Error Pattern Synthesis with Nulls

In this section we consider the problem of finding the best least squares error
approximation to a desired pattern subject to a set of null constraints.?> We
develop the solution for an arbitrary array geometry and then consider some
examples of linear arrays.

We assume that there is some desired beam pattern that can be synthe-
sized by a discrete array.

By(k) = wl vy (k). (3.245)

We approximate it by a second pattern that has a set of constraints
imposed on it. This pattern is denoted by

B(k) = wl vy (k). (3.246)

We minimize the squared error between the desired pattern By(k) and
the constrained pattern,

e = // |Ba(k) — BK)|? dk. (3.247)

Substituting (3.245) and (3.246) into (3.247) and performing the inte-
gration gives,

e=llwa—wl?. (3.248)

The restriction that By(k) be synthesizable by a discrete array is for
convenience. If the actual desired pattern is not synthesizable in this form,
we let Bg(k) be the least squares error approximation to it. For a linear
equally spaced array, By(k) would be obtained by the Fourier series approach
of Section 3.4.

We consider constraints on the beam pattern and its derivatives at var-
ious values of k. Normally we would include a constraint on the array re-
sponse along the MRA. If the array is pointed at kr, then the constraint

whvi(kp) =1 (3.249)

is referred to as a distortionless constraint. Any plane-wave signal arriving
along k7 will pass through the array processing undistorted. We use this

*5This general formulation appeared in the adaptive array context in Applebaum [ACT6].
The specific approach used here was done by Steyskal [Ste82] for linear arrays. The
generalization to arbitrary arrays is straightforward. This problem is a special case of the
problem of finding a weighted least squares error approximation to a desired beam pattern
subject to a set of constraints (not necessarily zero). A solution to this problem is given
in Mucci et al. [MTL76].
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constraint extensively starting in Chapter 6. In this section, we focus on
null constraints. If we only consider null constraints in the sidelobe region,
we can omit (3.249) and get a slightly simpler derivation.

The first type of constraint is a null constraint. From (3.246)

wivi(k;) =0, i=1,2,---,Mp. (3.250)

We refer to this as a zero-order constraint (or zero-order null) and define an
N x My constraint matrix, Cy

Co = [vk(kl)  vic(k) |- vk(kMo)} . (3.251)

The second type of constraint is the first derivative of the beam pattern
with respect to k. For a linear array, this corresponds to

d

d A
ki, = W [% Vk(k)]k o w d (k)

k=k;

where € is a subset of the My locations where we want the derivative to
equal zero and contains M) points.?6

We assume that some of the nulls have derivatives set to zero while others
do not. Thus, for a linear array, we define an N x M; constraint matrix, Cy:

C = [dl(kl) P di(ka) i dl(kM1)} : (3.253)

If we have a 2-D array, there will be a derivative with respect to two com-
ponents of the wavenumber so C; will be 2M;-dimensional.
The nth type of constraint is the nth derivative of the beam pattern with
respect to k. For a linear array, this corresponds to
d’n

%B(k)

d’n
k.

)] B

. i€Q, (3.254)

H
k=k, = W [
k=k;

where the set Q,, is a subset of Q,,_; and contains M, points. For n = 2,

Cz = [da(ky) | da(ke) | -+ | da(Kn,)] . (3.255)

For a 2-D array, Cs will be 3M>-dimensional. In practice, constraints beyond
C; are seldom used.

26 A derivative with respect to a scalar wavenumber k is indicated. In many cases, a
derivative with respect to ¥ or u will be used.
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Then, the total C matrix is an N x M, matrix,
C:[cogclgcg], (3.256)

where M, is the total number of constraints and M, < N. We assume that
the columns of C are linearly independent. The solution to the optimization
problem requires the inversion of C*C. If the columns of C are linearly
independent, then CHC will not be singular. If the M, are not selected
carefully, there is no guarantee that the columns will be independent. In
some cases, the columns may be independent, but several columns may be
highly correlated, which will cause C*C to have a poor condition number.
One approach to alleviate this problem is to use a singular value decomposi-
tion on the right-hand side of (3.256) and retain only the dominant singular
value terms to form C. This guarantees that C¥C is not singular.?”

Before solving the optimization problem, we develop the explicit form
of the constraint matrices for a standard linear array with N elements (N
odd).

The array manifold vector is

e‘j("T_l)”u
vu(u) = V() |pepy = : . (3.257)
eJ(N—z"l)wu
Thus,
N-1
2
By(u)= Y wpel"™ =wtv,(u), (3.258)
. N-1
ne—N=1
and
N-1
Jdn 2 L
— B — * q jmnu
e Bu(u) > i ) e
m=-"5=
= wd,(u), (3.259)

where d,,(u) is a N X 1 matrix whose mth element is
d,(u)],, = (jmn)" eJ™™, (3.260)

Note that v, (u) and the even-numbered derivatives are conjugate symmetric
and the odd-numbered derivatives are conjugate asymmetric.
We now solve the optimization problem.

*’N. Owsley (private communication).
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Optimization

We want to optimize the squared weighting error subject to the constraint
that
w?C =0, (3.261)

where C is the constraint matrix in (3.256). We require the columns of C
to be linearly independent. Using Lagrange multipliers we want to minimize
G, where?®

G = [w{,{ — WH] (wg—w]+wl CA+ A CHw, (3.262)

where X is a M x 1 Lagrange multiplier vector. Taking the gradient with
respect to w gives

~wil+wH 4 A CcH =, (3.263)
or

wh =wi =" ch, (3.264)

[}

We solve for the Lagrange multiplier vector by using the constraint,
wi C=o0. (3.265)

Thus,
wiic-Aiclc=o. (3.266)

The matrix CC is not singular due to the assumption of linearly indepen-
dent columns. Then, we can write

Mowliclcha]”. (3.267)

Although the inverse of [CH C] exists, the condition number of the matrix
may be poor if the columns of C approach dependency (e.g., null directions
too close to each other).

The optimum weighting is

wh = whl <1N ~-C [CH C]”l CH) . (3.268)

The matrix

Pc=C [c"c] ¢ (3.269)

#83ee Appendix A (Section A.7.4) for a discussion of complex gradients.
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is the projection matrix onto the constraint subspace. Thus wf is the com-
ponent of wé’ in the subspace orthogonal to the constraint subspace. Thus
(3.268) can be written as

wil = wil P§, (3.270)
and
wi =wll —wil = wi Pe. (3.271)

The orthogonal behavior of w! is familiar from other optimization problems.
A second interpretation of (3.270) is also of interest. We can write (3.268)
as

wH = wh <w{jC (e c]_l) cH
= wi —acCH, (3.272)

where a is a 1 x M weighting vector. Thus, the optimum weight vector
consists of the desired weight vector minus a weighted sum of the constraint
vectors. The resulting beam pattern is

By(u) = [wf —aCH] v(u)

= Bg(u)—aCH v(u). (3.273)

For the zero-order constraints (i.e., null-only), the second term in (3.273)
is a sum of conventional beam patterns steered at the wavenumber of the
interferer. Thus,

Mo
By(u) = Bg(u) — Z am Be (U — um) (3.274)

m=1
Note that, since By(ux) =0 and B, (v — ug) = 1,

Mo
Ba(ug) = Y am Be(ug — um), k=1,---, M. (3.275)
m=1

For the linear array,

sin [NW(“_—QU"‘—Z}

Bt = tm) = — s (3.276)
Sin [WT]
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Similarly, for an nth-order derivative constraint, the cancellation beam pat-
terns are derivatives of the conventional beam pattern,

dr sin [Nw(i:;—m—l]

B(n) YR —_ .
c (U, Um) dum sin [ﬂ_(u—;m):l

(3.277)

Thus the beam pattern of the optimum processor is just the desired beam
pattern Bg(u) minus a weighted sum of conventional beam patterns and
derivatives of conventional beam patterns centered at the null locations.

We observe that the same result holds for arbitrary arrays. For example,
for zero-order nulls, from (3.251),

Co = [ Vie(k) | vie(ka) |-+ | vie(kagg) ] (3.278)
and (3.246) and (3.272) becomes
Bo(k) = wyl vi(k)
= Byk) — aCl vi(k)

My
= Bd<k) - Z am Bc(k - km)a (3'279)
m=1

where a,, is the mt" element of the 1 x My matrix,
-1
a=wg Co [C Co| . (3.280)

Note that the discussion in (3.270)-(3.280) is useful in interpreting the
result. We use (3.268) to find wli.
The resulting pattern error is

50 = Wf We, (3281)

where w, was defined in (3.271). Using (3.271) in (3.281) and recalling that
P.P. = P., we obtain

-1
eo=wi C [CHC| Cf wy = wiPewa. (3.282)

We now consider several examples to illustrate the application of these

results.
Example 3.7.1%

We consider a 21-element linear array spaced at A/2. The desired pattern corresponds
to uniform weighting (wn = 1/N). We put a zero-order, first-order, and second-order null
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(a) Uniform (b) Zero—order null
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(c) First—order null (d) Second-order null

Beam pattern (dB)

Figure 3.39 (a) Initial sinc-pattern; (b) pattern with a null of zero order

imposed at u = 0.22; (¢) with null of first order; (d) with null of second
order.

at u = 0.22. The only important aspect of this location is that it is outside the main lobe.
The results are shown in Figure 3.39.

Example 3.7.2 (continuation)

We consider the same array as in the preceding example. We now place three zero-
order nulls at u; = 0.21,u2 = 0.22, and us = 0.23. Note that the nulls in the conventional
pattern are spaced at 2/21 = 0.095 so that the constraint vectors are not orthogonal.

The resulting pattern is shown in Figure 3.40. We have reduced the highest sidelobe
in the sector 0.18 < u < 0.26 to —63 dB.

Example 3.7.3

In this example, we consider a 41-element linear array spaced at A/2. In these first
two cases, the desired pattern is a Chebychev pattern with —40-dB sidelobes.

*¥This sequence of examples (3.7.1-3.7.3) is due to Steyskal [Ste82].
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Beam pattern (dB)

Figure 3.40 Sinc-pattern with three nulls equispaced over the sector
(0.18,0.26).

In case 1, we place four zero-order nulls at 0.22,0.24,0.26, and 0.28. The resulting
pattern is shown in Figure 3.41.

In case 2, we place eight zero-order nulls spaced at Au = 0.02 in the sector (0.22,0.36).
The result is shown in Figure 3.42.

We revisit the problem of constrained optimization several times in the
text. In Chapter 6, we derive similar results for different constraints. In
Chapter 7, we study adaptive arrays to achieve constrained optimization.

3.8 Asymmetric Beams

In many array applications, we want to measure the direction of arrival of an
incoming plane wave. One method for doing this is to utilize an asymmetric
beam that has a slope at the steering angle that can be used in a closed loop
system to point the steering angle in the direction of the plane wave. This
technique is the basis of many monopulse radars (e.g., [Sko80]). The beam
pattern design problem consists of finding the maximum (or acceptable)
slope of the beam pattern at the origin subject to a suitable constraint on
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Figure 3.41 Initial 40-dB Chebychev pattern with four nulls equispaced over
the sector (0.22,0.28).

Beam pattern {dB

Figure 3.42 Initial 40-dB Chebychev pattern with eight nulls equispaced over
the sector (0.22,0.36).
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the sidelobes. We define an asymmetric3® array weighting as one in which

) mw(n), nz—&—;l,--~,~1,1,~-,¥: N odd, ,
w(—n) = { 0, n—0: N odd, (3.283)
and
N N
w(—n) = —w(n), n= 5 R T BRI ol N even, (3.284)

where we have used a symmetric indexing and assume that the weights are
real.

In this section, we look at several examples of difference beams. The
beam pattern is

g1
Ba(¢) = Z Wy DY, (3.285)

for N even. Using (3.284) in (3.285) gives

o N
2 2
Bo(w) = Y Wl M= Z(_wm)e_j(m~%)¢

m=1 m=1
N
s L 3.286)
— 9 . WA .
3 umsin(m - ) (

wn = % n> 1. (3.287)
Then (3.286) becomes
2 5 I
e 73 my _ €12 S —jm
Bu(v) = N mz::le W Z::1 : (3.288)

The beam pattern in (3.288) is the difference between two shifted conven-
tional beams so we refer to it as a difference beam. The corresponding beam
with a plus sign is referred to a sum beam. For uniform weighting, the sum

3%The dictionary definition of asymmetric is “non-symmetric.” Qur definition is in
(3.283) and (3.284).



176 3.8 Asymmetric Beams
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Beam pattern

Figure 3.43 Beam pattern versus ¢: Difference beam with uniform weighting,
N = 10.

beam is the familiar conventional beam pattern. The expression in (3.288)
can be written as

2 (N
2jsin® (7Y
Ba(¢) = —ﬁ——— <3Q ) : (3.289)
i (2)
for N even. Proceeding in a similar manner, we obtain
(N4l [ N=1
24 8in ( =F= ) sin ( ==
Bu($) = =2 (Bt)sin ), (3.290)

N sin (%)

for N odd.
The beam pattern of the difference beam is a purely imaginary function.
We write

Ba(¥) = j Bar(¥), (3.291)

and plot B,r(¢) in Figure 3.43 for a standard linear array with N = 10. The
corresponding sum beam pattern is also plotted.
Several observations are useful:

(a) The sum and difference beams are orthogonal (this follows from the
Fourier transform relationship).
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(b) The difference beam is a weighted sum of two shifted conventional beams
(see (3.288)).

(c) The first zero of the difference beam is at

e, N odd,
P = (3.292)
%, N even.

(d) The first sidelobe of the difference beam is 10 dB below the main lobe.
(e) The slope at the origin is

dB,; () _ N
iy~ T (3.293)

The usage of difference beams for angle estimation (and tracking) is
common. They are implemented in monopulse radars and phased array
radars (e.g., [Sko80], [Sko90], [Bro88], [Bar89]).

Many useful difference beam patterns can be constructed as linear com-
binations of shifted conventional beam patterns. We can also use linear
combinations of shifted beams designed using the techniques developed in
sections 3.1 and 3.5.

In the sum beam case we discussed design procedures due to Dolph and
Taylor that allowed us to control the sidelobe behavior while maintaining the
beamwidth of the main lobe. Zolotarev, a student of Chebychev, developed
a class of odd polynomials that give an equal-ripple approximation over a
given interval 3! McNamara [McN93] used these polynomials to produce
difference patterns with constant sidelobes. A discrete #i difference pattern
analogous to the discrete 7 Villenueve sum pattern was also developed by
McNamara {McN94]. The Taylor distribution for sum beams was developed
for a continuous aperture. Analogous procedures have been developed for
difference beams by Bayliss [Bay68], in which he controls the sidelobe height.
Discussions of his technique are available in Elliott [El81] and Mailloux
[Mai94]. The reader is referred to these references.

Other properties of difference beams and their applications are discussed
in the problems and at various points in the text.

317This discussion follows Hansen [Han98].
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3.9 Spatially Non-uniform Linear Arrays

3.9.1 Introduction

The discussion of arrays up to this point has focused on linear arrays with
uniform spacing. In many applications, the arrays are linear but have non-
uniform spacing.

One application in which we encounter non-uniform arrays is the thinned
or sparse array problem. In this case, we start with an N-element uniform
linear array or linear aperture of length L that has a desired weighting and
associated beam pattern. We then construct a linear array with fewer ele-
ments that retains the desirable features of the beam pattern. In some cases,
we allow the elements to be in any location on the line. In other cases, we
restrict their positions to a uniform grid. The motivation is to reduce the
cost and complexity of the array by having fewer sensors. There are a large
number of references in this area (e.g., [LL59], [KPT60], [San60], [Unz60],
[Maf62], [Ish62], [Wil62], [Sko69], [IC65], [Har61], [Lo63], and [Ste76]).

A second application is the case in which the array locations are random
along a segment of the axis (or, more generally, in an area in a plane or
a volume in three dimensions). In this case, there are two categories. In
the first category, the nominal locations are deterministic but the actual
locations vary in a random manner. This is a generalization of our discussion
of sensitivity and tolerance factors in Section 2.3.3. An example of this
model is the dropping of sonobouys in the ocean to locate submarines. It
also includes such problems as random removal or failure of elements. There
is a large amount of literature in this area (e.g., [All61], [MC63], [Ruz52] and
[GM55)).

In the second category there are arrays in which the elements are placed
at random over some segment of the axis according to some probability
density as part of the design procedure. This is known as statistical density
tapering. There is a large amount of literature in this area (e.g., [Lo64al,
[Lo64b)], [Lo68], [PL69], [AL69], [Ste72] and [Ste76]).

There are a number of other references that discuss various issues con-
cerning non-uniform arrays. We will limit our discussion to two topics that
we will use later in the text.

In Section 3.9.2, we discuss a class of non-uniform linear arrays called
minimum redundancy arrays. The reason for the name will be clear when
we discuss these arrays.

In Section 3.9.3, we assume that the element locations are given and
derive an algorithm for designing a desired beam pattern. In essence, this
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Figure 3.44 “Ideal” MRLA.

algorithm generalizes the minimax algorithms of Section 3.6 to the arbitrary
array case.

3.9.2 Minimum Redundancy Arrays

In this section, we consider a class of non-uniformly spaced linear arrays
referred to as minimum redundancy linear arrays (MRLA). We restrict our
attention to the case in which the arrays are constructed on an underlying
grid structure with grid spacing d.

MRLAs are designed so that the number of sensor pairs that have the
same spatial correlation lag is made as small as possible. An example of
an “ideal” MRLA is shown in Figure 3.44. This is a 4-element array whose
aperture length is equivalent to a 7-element standard linear array.

We see that this configuration allows us to estimate

E[a(t, id)" (¢, jd)] & R, (i — 5)d) (3:29)
for at least one (i — 7) combination from 0 to 6. For example,

SENSOR LOCATIONS LAG
0-1 d
4-6 2d
1-4 3d
0-4 4d
1-6 5d
0-6 6d

For the moment, we will assume that our estimate of R;((i — j)d) is
correct.3? If we denote the sensor outputs of the 7-element standard linear
array by the 7 x 1 vector x(t), then the correlation matrix is a 7 X 7 matrix,

R, =F [x(t)xH (t)] , (3.295)

320ur discussion at this point is heuristic because we have not developed the appropriate
statistical model. We revisit the issue in Chapter 5.
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c(y)

i e e e e e e
Figure 3.45 Co-array for the array in Figure 3.44.

whose elements are all of the form
R ((i—7)d), i=0,-+,6;7=0,---,6. (3.296)

Thus, the 4-element array allows us to measure all of the elements in the
correlation matrix of a 7-element standard array. We find that many of our
optimum processing algorithms are based on Ry. Thus, there is a possibility
that the 4-element MRLA might have similar performance to a 7-element
standard linear array.

We explore the statistical significance of this conjecture in Chapters 5
and 7. In our present discussion, we consider the beam pattern behavior.

We denote the aperture length as N, and it is measured in terms of
number of grid intervals. For example, in Figure 3.44, N, = 6 and N = 4.

In order to compute the number of times each spatial correlation lag is
contained in an array, we assume the elements are uniformly weighted and
compute the correlation of w with itself.

c(y) & Z Wy Wy, - (3.297)

[m—n|=y

The resulting function is called the co-array (e.g., [Hau68|, [Kre71], or
[Bag76]) and is a symmetric function. The co-array for the array in Figure
3.44 is shown in Figure 3.45.

In Chapter 5, we argue that, from the standpoint of efficient spatial
sampling, we would like the co-array to equal one except at the origin. If we
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could find an array with this property then

N, = M (3.298)
2

This is the number of different off-diagonal elements in the N x N correlation
matrix Rx. Unfortunately, such arrays (sometimes called perfect arrays) do
not exist for N > 4. For larger arrays, we consider two options. In the first
option, we construct the array so that c(y) is either zero or one except at
the origin. These are called non-redundant arrays and a representative set
is shown in Table 3.7.33

Table 3.7 Non-redundant Arrays

[ N] Sensor Separation | D |
2 -1 1
3 -1-2- 1
4 1-3-2 1
5 -1-3-5-2 1.10
6 -1-3-6-2-5- 1.13
7 -1-3-6-8-5-2 1.19
8 -1.3-5-6-7-10-2. 1.21
9 1-4.7.-13-2-8-6-3- 1.22
16}-1-5-4-13-3-8-7-12-2. | 1.22

The corresponding co-arrays for N > 4 have “gaps” or “holes” in their
values. The number D is the ratio of the aperture length N, to aperture
length of a hypothetical perfect array (N(N — 1)/2). We look at the signif-
icance of these “gaps” later.

In this second option, we construct arrays that have no gaps and have
the largest possible aperture. These are referred to as minimum redundancy
arrays. We choose the sensor positions to make N, as large as possible
without having any gaps. We can write NV, as

_N(N-1)

N, 5

— Np + Ny, (3.299)
where Npg is the number of redundancies and Ny is the number of holes.
We require Ny = 0 in a minimum redundant array.

There has been a significant amount of research on element spacing to
achieve as low a redundancy as possible. For N < 17, minimum redun-

33From [JD93].
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dancy arrays have been found through exhaustive search routines. These
configurations are shown in Table 3.8.3

Table 3.8 Minimum Redundancy Linear Arrays

N Nr N, %—; N—(zNT:—Q Array(s)

30 3 30 1.0 12

4 0 6  2.67 1.0 132

5 1 9 278 1.11 1332 & 3411

6 2 13 277 1.15 13162 & 15322 & 11443

7 4 17 288 1.24 136232 & 114443 & 111554
116423 & 173222

8 5 23 2.78 1.22 1366232 & 1194332

9 7 29 279 1.24 1363232 & 12377441 & 11(12)43332

0 9 36 278 1.25 1237%441

11 12 43 28] 1.28 1237°441

12 16 50 288 1.32 12375441 8 111(20)54*33

1320 58 291 1.34 111(24)54°33 & 11671(10)%3423
143499995122

14 23 68 288 1.34 11671(10)*3423 & 11355(11)°66611

15 26 79 285 1.33 11355(11)*66611

1630 90 2.84 1.33 11355(11)%66611

17 35 101 2.86 1.35 11355(11)%66611

Notation n™ means m repetitions of the spacing n.

Several authors have developed techniques for generating low redundancy
arrays. Pearson et al. [PPLI0] develop an eflicient constructive procedure
for near-optimal placement of sensors. Ruf [Ruf93] uses simulated annealing
to obtain low redundancy arrays and gives results for N < 30 (N, < 287).
Linebarger et al. [LST93] provide algorithms for constructing sparse arrays
and develop bounds. Linebarger [Lin92] presents a fast method for comput-
ing co-arrays. (See also Abramovich et al. [AGGS98], [ASG99a], [ASG99b].)

We consider two examples to illustrate the behavior of the beam patterns.

Example 3.9.1

Consider the MRLA in Figure 3.44 with d = A/2. The beam pattern for uniform
weighting is shown in Figure 3.46. The HPBW is 0.666 and the BWnor is 1.385 in
1p-space. Note that the beam pattern does not have a perfect null so we use BW notch-
notch. This compares to 1.429 and 3.1416, respectively, for a standard 4-element array
and to 0.801 and 1.795, respectively, for a standard 7-element linear array. Thus, in terms
of main-lobe characteristics, the MRLA offers improvement over the standard 4-element
array.

3This table was taken from Linebarger et al. [LST93], but the result is due to a sequence
of earlier papers.
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_.. Conventional, Na=7

Beam pattern (dB)

Figure 3.46 Beam pattern for 4-element MRLA with uniform weighting.

The problem with the MRLA is that the sidelobes are significantly higher than the
uniform array.

Example 3.9.2 (continuation)

Consider the two 5-element minimum redundancy arrays from Table 3.8. In these
cases, N, = 9. The beam patterns are shown in Figure 3.47. For the case 1 (1,3,3,2),
the HPBW is 0.464 and the BWxgr is 0.98. For the case 2 (3,4,1,1), the HPBW is 0.473
and the BWnor is 0.94. This compares to 0.559 and 1.25, respectively, for a standard
10-element linear array.

Just as in the uniform linear case, we can improve the sidelobe behavior
by using a non-uniform weighting.

We revisit minimum redundancy arrays at several points in the text and
see how their performance compares to standard arrays.

3.9.3 Beam Pattern Design Algorithm

In this section, we derive an algorithm that provides a simple iterative tech-
nique for designing desired beam patterns for arbitrary arrays.3®> The algo-
rithm is due to Bell et al. [BVGO00] and is based on the techniques developed
previously by Olen and Compton [OC90] and Zhou and Ingram [ZI198], [Z199].
Earlier work using this type of algorithm is contained in Sureau and Keeping
[SK82] and Dufort [Duf89]. An alternative approach that uses least squares
constraints on sidelobe levels is given in Er [Er92]. Tseng and Griffiths
[TG92] also developed an alternative approach to designing beam patterns.

35This section is due to Professor Kristine Bell (private communication).
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The objective is to find weights that maximize the directivity of the
array subject to a set of constraints on the beam pattern, which limit the
sidelobe levels. We develop the algorithm in the context of linear arrays of
isotropic elements, although it applies to arrays of arbitrary geometry, and
with non-isotropic elements.

We assume a linear array of isotropic elements on the z-axis with N x 1
array response vector v(u). When the pattern response at the main response
axis or pointing direction is equal to one, the directivity is given by (2.148),

D = {%/—11|B(u)|2du}
Ty

-1

_ {WHAW}‘1 , (3.300)
where L
A= L Vv (W (3.301)
The entries in A are:
ALy = s (5 o= pul ) (3.302)

where p,, is the position of the nth element.

Let vr = v(ur) be the array response vector for the steering direction.
The basic problem is to maximize the directivity (or equivalently minimize
the inverse of the directivity), subject to the unity response constraint at
the main response axis, that is,

1

min wAw s.t. wlvyp = 1.

(3.303)

The solution is .

w=A"lvr (VA Ivr) (3.304)
In the special case of a uniform linear array, A = I, and the maximum
directivity weight vector is the uniform weight vector steered to the desired
direction, w = %VT. For both uniformly and non-uniformly spaced arrays,
we wish to obtain lower sidelobes by sacrificing some directivity. This can
be done by partitioning u-space into r sectors, 1,...,¢, and defining a

desired (although not necessarily realizable) beam pattern in each sector,
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Figure 3.48 Desired three-sector beam pattern.

then limiting deviations between the synthesized and desired beam pattern.
A typical desired beam pattern defined in three sectors is shown in Figure
3.48, in which the main beam sector has a beam pattern with some desired
main beam shape, and the sidelobe sectors are ideally zero. We assume there
is a weight vector wg; that generates the desired beam pattern in the ith
sector. Let By (u) = w(ﬁ-v(u) be the corresponding beam pattern. The
square error between the beam pattern generated by the synthesized weight
vector w and the desired beam pattern over the region €1; is given by

-

& = /Q |B(u) — Bai(uw)|* du
= /Qi ‘va(u) - w;ﬁl{iv(fu,)‘2 du

= (w—wa)Qi(w — ways), (3.305)

where

Q= /in(u)v(u)Hdu. (3.306)
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Let €; be the region (u; — Aj,u; + A;). The entries in Q; are:

m oA
[Qil = /X PP 24, sine (———W/\ -~ |pm — pnl) - (3.307)

Now we can maximize directivity subject to constraints on the pattern
error as follows:

min wHAw st whlvp =1 (3.308)
st. (w— wd,i)HQi(w —wg;) <L i=1...7

We define
F= wiAw+ X wive —1) + N (vEw 1) (3.309)

+ ) Xi(w = wa ) T Qi(w — way).

i=1

Differentiating with respect to w!! and setting the result equal to zero gives

Aw 4 2vE + > Xi[Qi(w — wg;)] = 0. (3.310)
i=1
Defining
Ag=A+) AQ, (3.311)
=1

and ,
wg = Z AiQiwy s, (3.312)

i=1

we can write (3.310) as
w = —XAg'vr + A we. (3.313)

Solving for Ag and substituting the result into 3.313 gives:
~1
w = Aél v <V¥A51VT>
-1
+ [Aél — AC'QIVT <V¥A51VT) V]I!Aélji wg. (3.314)

We can obtain tight sidelobe control by defining a set of small sectors in
the sidelobe region, as shown in Figure 3.49, and setting the desired beam
pattern to zero in these regions. The desired weight vector in each sector
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Figure 3.49 Sidelobe sectors.

is just the all-zero vector. In the limit of infinitesimally small sectors, the
pattern error constraints become constraints on the magnitude squared of
the beam pattern at every point in the sidelobe region. The allowed deviation
can be set to the maximum allowable sidclobe level, and the sidelobe levels
can be controlled directly. By choosing wider but relatively small sectors, we
can still control sidelobe levels fairly accurately. Furthermore, if we choose
to constrain pattern “error” only in the sidelobe region and not in the main
beam, the desired weight vector in each constrained sector will be zero, and
the second term in (3.314) drops out, so the weight vector becomes

-1
w=Ag've (viiAglve) (3.315)

In this expression, a weighted sum of loading matrices Q;,7 =1...r are
added to A. The loading factors balance the maximum directivity pattern
with the desired low sidelobe level pattern. There is generally a set of opti-
mum loading levels A;,7 = 1...r that satisfy the constraints; however, there
is no closed-form solution for the loading levels, even when » = 1. It can
be shown that the mean-square pattern error decreases with increasing A;,
but at the expense of decreased directivity. An iterative procedure can be
used to adjust the loading levels to achieve the sidelobe level constraints. At
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each iteration, the pattern errors are computed and checked against the con-
straints. If a constraint is exceeded, the loading for that sector is increased,
and the weights are updated.

One way to achieve fast convergence is to let the loading increment at
the pth iteration, 51@), be a fraction of the of the current loading value, that
is, 61(;0) = a)\ﬁp ). This requires that the initial loading level be non-zero.
One possibility is to initialize all of the loading levels to some small value,
such as, /\EO) = Xo,% = 1...r. If the initial loading is small enough, the
initial weight vector is essentially the maximum directivity weight vector.
The update procedure is:

if wP-DEQwP~Y > [,

then 6P =Pl (3.316)
else 55’)):
NN O O} (3.317)
T
A((g) _ Ag;—l)_{_zél@)qi_ (3.318)
i=1
—~1 -1 —-1
) — (Ag’)) vT{v¥ (Ag’)) vT} . (3.319)

The iteration is repeated until a convergence criterion is satisfied.

It is usually necessary to adjust the sectors included in the sidelobe region
at each iteration. As the sidelobes are pushed down, the main beam widens,
and some sectors previously in the sidelobe region fall in the main beam.
The constraints on these sectors must then be dropped.

Example 3.9.3

Consider a standard 10-element linear array. The desired look direction is ur = 0 and
the desired sidelobe level is —30 dB. Initially, 80 sidelobe regions are defined as sectors of
width 2A; = 0.02 in the regions 0 < u < —0.2 and 0.2 < v < 1. The constraint levels
are all set to the sidelobe level times the width of each sector L; = 2 x 1072, The initial
loading level is set to Ao = 1, and a = 0.3. In Figure 3.50, we show the beam pattern and
sidelobe region evolution. The final beam pattern is obtained after 14 iterations. The final
beam pattern is essentially the same as the Dolph Chebychev pattern in Section 3.4.2.

Example 3.9.4
In this example, 10 elements were located along the z-axis. The elements were spaced
at a distance of A\/2 with a random perturbation between £A/4. Specifically,
N -1 A 1\ A
Pn = {— = di— =)=, .
p ( - +n>2+( 2)2 (3.320)

where d; is a uniform random variable [0,1]. The desired look direction is broadside. An
equal-ripple beam pattern was designed with —25 dB sidelobes.
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Figure 3.50 Beam pattern evolution for 10-element uniform linear array and
~30-dB sidelobes. (a) First iteration; (b) fifth iteration; (c) 10th iteration;
(d) 14th iteration.

Table 3.9 Element Locations Used for the Isotropic Linear Random Array
Element No. Relative Position
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—-1.6501)
—1.1696 A
—0.7138)
—0.1705)
0.2901 A
0.7105\
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2.2585X

o

W0~ O Ut WK —




Beam Pattern Design Algorithm 191

-10.

-20

o /\(\
1 -08 -06 -04 -02 0 02 04 06 08

u u

Beam pattern (dB)
Beam pattern (dB)

IS
8

8

(a) (b)

Beam pattern (dB}
: & .

Figure 3.51 Beam pattern evolution for 10-element non-uniform linear ar-

ray and —25-dB sidelobes. (a) First iteration; (b) fifth iteration; (c) 10th
iteration.

The element locations for a particular trial are shown in Table 3.9. The beam pattern
evolution is shown in Figure 3.51. Figure 3.51(a) is the initial pattern, Figure 3.51(b) is
the fifth iteration, and Figure 3.51(c) is the tenth iteration.

The extension to non-uniform sidelobe control follows easily. We can also
force nulls at specific locations. Both of our examples in this section con-
sidered linear arrays, but the technique also applies to arbitrary array ge-
ometries and non-isotropic sensors. In Chapter 7, we develop an adaptive
version of the algorithm.
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3.10 Beamspace Processing

All of the processing that we have discussed up to this point can be referred
to as “element-space processing.” We weight (or filter in the wideband case)
the signals arriving at each of the elements and sum the results to obtain an
output signal.

In many cases, the number of elements, N, is very large and we find it
useful to create a set of beams as a preliminary step to further processing.
We then process the resulting beams. This procedure is referred to as beam-
space processing and we will encounter it at various points in the text.

In this section, we consider three types of beamspace processing.

3.10.1 Full-dimension Beamspace

In this case we process the outputs of an N-element standard linear array
to produce /N orthogonal beams. The center beam is a conventional beam
pointed at broadside (u = 0). We denote the weight vector as

1
H T
=—17. .32
w'(0) Nl (3.321)
We form beams on either side of the center beam whose main response axes
(MRAs) are shifted by 2/N in u-space.
For N even,

N N
L om= L o (3.322)

There are N beams. The beam corresponding to m = N/2 is an endfire
beam (it could also have been indexed as m = —N/2). In Figure 3.52(a),
we show the beams in u-space. In Figure 3.52(b), we show the main lobe of
the beams in 8-space.

For N odd,

p sin |28 (u — 2] N-1 N-1

2 N
N sin[g(u-21)] 2

(3.323)

In this case, there is no endfire beam. In Figure 3.53, we show the beams in
u-space and the main lobes in 8-space for N = 11.



Reduced-dimension Beamspace 193

The MRA for the mth beam occurs at 2m/N. All of the other beams have
nulls at that point. This occurs because the weight vectors are orthogonal

wH(m)w(l) = —6m. (3.324)
The corresponding beams are also orthogonal:

B (w) = wH (m)v(u), (3.325)
and

[ BB = wm) ([ v w)de) wi)

wH(m)Iw(l) = —]1\75,”,. (3.326)

The result in (3.324) implies that a signal arriving along the MRA of a

particular beam will have no output in any other beam. However, a signal

that is not along the MRA will appear in the sidelobes of the other beams.
We form an N x N matrix, B whose mth row is w” (m). Then

xps = B x. (3.327)

This operation is shown in Figure 3.54.

The matrix, BfZ, is commonly referred to as Butler matrix [BL61] and is
an invertible matrix. From (3.95), we observe that B} is the DFT matrix.
Thus,

x = [B ] xys, (3.328)

so we have not lost any information by the transformation. In the statis-
tical literature, (3.327) is referred to as the DFT beamformer. Often this
transformation makes the implementation of the resulting processing easier.
In later chapters, we will develop beamspace adaptive arrays {[AC76] and
beamspace direction-of-arrival estimators.

In most applications, we work with a reduced-dimension beamspace. We
discuss this approach in the next section.

3.10.2 Reduced-dimension Beamspace

Consider the application shown in Figure 3.55. All of the signals of interest
are contained in a region ¥g. We can significantly reduce our subsequent
processing if we form a set of beams that span the space.
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In practice, we normally are scanning the beams over some region in u-
space. We form a beam fan consisting of Ny, beams and move the MRA of
the center beam through u-space in 2/N increments. In Figure 3.56, we show
several representative positions in u-space for a 7-beam fan and a 32-element
standard linear array.

In most applications, we would like to use as few beams as possible with-
out degrading the performance of the system. Later in the text we introduce
appropriate statistical measures to quantify the degradation. In construct-
ing the reduced-dimension beamspace we will consider different beamforming
matrices in order to maximize performance. Several techniques are logical:

(i) The conventional beamformer (or DFT) set as shown in Figure 3.56 is
appropriate.

(ii) In order to reduce out-of-sector interference, we can use low sidelobe
beams such as Dolph-Chebychev or Taylor as the component beams.
We would normally space the centers of the beams at equal intervals
in 1p-space. The columns in the beamspace matrix are not orthogonal.
In many applications, we need orthogonal columns. If we denote the
original beamspace matrix as By, where the subscript “no” denotes
that the columns are not orthogonal, then if we define the beamspace
matrix as,

By, = By, [BILBy| °, (3.329)

(M1

the columns will be orthogonal. The transformation in (3.329) will
increase the sidelobe level of the component beams by several dB.

(iii) Another choice of component beams that have lower sidelobes than
conventional beams are the weightings from Section 3.1 that gener-
ated beam patterns corresponding to weighted sums of shifted sinc
functions. Specifically:

(a) cos™(nn/N) (3.18)
(b) cos®(nn/N)  (3.18)
(¢) Hamming (3.21)
(d) Blackman-Harris  (3.23)
These weightings have the property that the out-of-sector zeros of each

beam in the beam fan are the same. This property will be useful when
we study parameter estimation in Chapters 8 and 9.
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(iv) The first M discrete prolate spheroidal sequences developed in Sec-
tion 3.1 ((3.25)-(3.35)) are logical candidates because of their power
maximization characteristic.

(v) We can develop a set of component beams by using the array manifold
vector v(¢) and its derivatives with respect to ¢, v(3), v(¢) evaluated
at 1., the location of the center of the beam fan.

Other choices appear in later discussions. The best choice depends on
the environment and the specific objective of our array processor.

The final step is to process Xps, the output of the beamspace matrix to
produce the array output y. We show the processing in Figure 3.54.

We define the beamspace array manifold vector as

vis(1) = B vy (¥). (3.330)

If we use a 7 x 32 beamspace matrix whose rows correspond to shifted con-
ventional beams, and the center beam is steered to v, then

1 . N-1 27
H — = [o=i(n—52) (be—(m—4)3F) - 0.--- N —~
[bbs,m]n \/N [e 2 N ] , N 0, 7N 17
m = 1,---,7, (3.331)
and o
[V"//(w)]n = e](n—T)wv n= Ov Tt N —1. (3332)
Using (3.331) and (3.332) in (3.330) and, letting ¢, = 0, gives

sin! %(1[)+32W")? T ~

sin(1(132) Be (v +3%)

_ sin(%’-(d;—im—@%’)) - : -
Vbs(¢) - \/N Sln(%(’(ﬂ'—(m——‘l)zﬁ)) - \/N Bc (7/} - (m - 4)2 )

sin %(w—B%—})! B, (¢ — 3%)

sin(%(w—S%‘))

(3.333)
Note that the beamspace array manifold vector is real. This result allows us
to use real computation in many of our subsequent algorithms.
We process the output of the beamspace matrix, xps, with a 1 x Ny,
matrix, wg, to obtain a scalar output, y. The resulting beam pattern is

By (%) = wiivas(4)). (3.334)
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In Chapters 6 through 9, we develop optimum beamspace processors for
various applications and show the advantages of operating in a reduced-

dimension beamspace.

3.10.3 Multiple Beam Antennas

In this case, the physical implementation of the antenna provides a set of
multiple beams that span the wavenumber region of interest. Important ex-
amples of this case are the transmit and receive antennas on various military
satellites (e.g., Mayhan [May76] or Ricardi [Ric76]). In those cases, we start
the problem in beamspace.

3.10.4 Summary

We have introduced beamspace processing in this section. It is widely used
in practical applications. One advantage is that the complexity of the sub-
sequent processing is reduced significantly. By choosing a suitable beam fan
we can usually minimize any loss in performance. We investigate those issues
in later sections.

3.11 Broadband Arrays

In many applications, the array is required to process signals over a broad
frequency band. One approach is to utilize an array with uniform spacing,

d= ﬁ, (3.335)
2

where )\, is the wavelength of the highest frequency. We then use frequency-
dependent weightings to process the beams. The difficulty with this ap-
proach is that the required number of sensors may be prohibitive. The
spacing in (3.335) is required to avoid grating lobes. If we require that the
width of the main lobe be constant across the frequency band of interest,

then the total length must be proportional to the ;. From (2.109),

Al
BWpyy =« N wspace, (3.336)

where « is a constant dependent on the shading. Using (3.335) in (3.336)

gives
2¢ Al
N = — .
(BWNN> A (3.337)
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Figure 3.57 Nested arrays.

so the required number of elements is proportional to the band ratio. In
this section, we discuss two techniques that utilize arrays with non-uniform
element spacing.

The first technique uses a compound array consisting of a nested set of
subarrays, each of which is designed for single frequency. The most common
type of nested array is shown in Figure 3.57. The bottom subarray has N
elements spaced at d; = A,/2, where )\, is the wavelength at the highest
frequency. In the figure, N = 11. The next subarray has N elements spaced
at da = Ay, which corresponds to half-wavelength spacing at f,/2. The
third subarray has N elements spaced at d3 = 2\, which corresponds to
half-wavelength spacing at f,/4. The fourth subarray has N element spaced
at dg = 4\, which corresponds to half-wavelength spacing at f,/8.

The total number of elements is

N+l
Np=N+3 (—%) . N odd, (3.338)

and

N
Np=N+3%, N even. (3.339)
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We process the highest octave, f,/2 < f < f,, with the first subarray, the
next octave, f,/2 < f < f,/4 with the next subarray, and so forth.

We divide the output of each subarray into K frequency bins and use
narrowband processing (complex weights) to create a beam in the frequency
bin.38 We consider two different weight techniques.

If we use conventional weighting, then the beam patterns are similar to
those in Figure 2.20 for various d/\ values ranging from d = A\/2 to d = A/4.
In Figure 3.58, we show the beam patterns for K=8, where the frequency
bins are centered at

% + 1
fk=fz[1+ 12: ] k=0,---7. (3.340)
s d 1/ 2m+1
m +
E‘Z<l+ ] ) m=0,---7. (3.341)

As we would expect, the beam narrows as the frequency increases. As we
move from f; to f,, the BWxy goes from 8/N in u-space to 4/N in u-space.
This approach can be extended to any of the weightings developed earlier in
the chapter. In all cases, the main-lobe width will decrease as we go up in
frequency. Note that the beam patterns are repetitive in each octave because
of the choice of the subarray.

A different technique is used if we want a constant beam pattern over
each octave. The technique is described in Chou [Cho95] (see also [GE93]
and [Tuc57]). We first define a desired beam pattern at f; for a uniform
linear array whose spacing is

Au

] .342
d=7F, (3.342)
and
A= 2. (3.343)
For example, if we use uniform weighting,
sin ( TV, ;
Bu(u) = ~ (i) _ L sin(mlVu) (3.344)

N sin (K_fliu) N sinmu

The beam pattern is shown in Figure 3.59 over the interval -2 < u < 2,
Because d = \;/4, we need to consider the beam pattern over twice the

36 An important issue is the technique for combining the outputs of the different fre-
quency bins to synthesize the output signal. This is discussed in Section 6.13.
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visible region. For each of the frequencies in (3.340), we sample the beam
pattern at

c N -1 N-1
= Nd i fkn’ - 2 —*2—, N Odd, (3345)

1<k<K.

Un

We perform an IDFT on the samples to obtain the weightings for that
frequency bin fi. We then take the DFT to find the beam pattern for fre-

quency bin fi. In Figure 3.60, we show the samples and resulting weightings
for

fo= fi(1+1/16), (3.346)
and

fr= fi(1+15/16). (3.347)

We recall from Example 3.3.4 that we need samples outside the visible region
to specify the weight vector when d < A/2. In Figure 3.61, we show the
resulting beam pattern over four octaves from 500 to 8000. The main lobe
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is essentially constant over the interval and there is only a slight variation in
the sidelobes. The technique can be extended to other desired beam patterns
by changing (3.344).

A possible disadvantage of the nested approach is that only a limited set
of band ratios; 2, 4, 8, - - - are achievable.

An alternate approach that allows more flexibility in broadband array
design is described in Doles and Benedict [DB88]. They use the asymptotic
theory of unequally spaced arrays that was developed by Ishimaro (e.g., Ishi-
maru (Ish62], Ishimaru and Chen [IC65], and Chow [Cho65]). The resulting
arrays have exponential spacing. The reader is referred to these references
for discussions of the technique.

3.12 Summary

This completes our discussion of analysis and synthesis of the weight vectors
for linear arrays. We have developed an extensive set of tools to carry out
the process.

The majority of the chapter was devoted to two problems. In the first
problem, we wanted to generate a pattern that had a narrow main lobe and
low sidelobes. Sections 3.1 and 3.4 developed techniques for designing a
weight vector that provided a suitable compromise between these conflicting
objectives. The Dolph-Chebychev and Taylor weightings are widely used
in classical array design and play an important role in the optimum array
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Figure 3.61 Beam patterns for broadband array: N=11, K =8, 500 < f <
8000, constant main lobe.

processing problem.

In the second problem, there is a desired beam pattern. In Sections 3.3,
3.5, 3.6, 3.7, and 3.9.3, techniques were developed to approximate the desired
beam pattern. These techniques can be divided into three categories:

(i) Sampling techniques (Section 3.3)

For uniform linear arrays, this approach resulted in DFT and
IDFT relations. The general sampling approach applies to arbi-
trary array geometries.

(ii) Minimax techniques (Sections 3.6 and 3.9.3)

These techniques impose hard constraints on the allowable de-
viation of the synthesized beam pattern from the desired beam
pattern. They utilize an iterative technique to obtain the weight
vector. The technique in Section 3.9.3 extends the hard con-
straint criterion of Sections 3.4 and 3.6 to arbitrary array ge-
ometries.

(iii) Least squares techniques (Sections 3.5 and 3.7)
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Least squares techniques (generally with some type of constraints)
are widely used in array design. The techniques are applicable
to arbitrary array geometries. The least squares criterion leads
to a quadratic minimization problem. In Sections 3.5 and 3.7,
an analytic solution is available. The quadratic minimization ap-
proach applies to arbitrary arrays and is encountered frequently
in subsequent discussions.

The remainder of the chapter discussed four other topics: difference
beams, non-uniform linear arrays, beamspace processing, and broadband
arrays.

Section 3.8 discussed the synthesis of difference beams with low sidelobes;
these beams are widely used in applications where we want to estimate the
angle of arrival of a plane-wave signal from a target and aim the array at
the target. Section 3.9 discussed linear arrays with non-uniform spacing.
The concept of a minimum redundancy linear array was introduced. Syn-
thesis techniques for linear arrays with non-uniform spacing were developed.
Section 3.10 developed the basic ideas of beamspace processing. Various
beamspace applications will be discussed in subsequent chapters. Section
3.11 introduced some of the techniques for broadband array design. This
topic is revisited in subsequent chapters.

Many of these techniques can be extended to planar arrays. Chapter 4
discusses planar arrays.

3.13 Problems

P3.1 Spectral Weighting

Problem 3.1.1
Consider a linear aperture of length L:

222 L L
=] - - ——=< < —=. .
w(z) =1 (L) 55753 (3.348)
Find the beam pattern, the HPBW, and height of the first sidelobe.

Problem 3.1.2
Consider a linear aperture of length L:

w(z) = (1 - (%)2> , —% <z< % (3.349)

Find the beam pattern, the HPBW, and height of the first sidelobe.
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Problem 3.1.3
Consider a linear aperture of length L:

1
2z\%)\? L L
—(1-(%2 ZcLcZz .
w(z) (1 (L)> , m5Szs3 (3.350)
Find the beam pattern, the HPBW, and height of the first sidelobe.

Problem 3.1.4
Consider a standard linear array with 9 elements.
(a) Compute the DPSS weighting for ¥ = 0.17,0.2r, 0.3, 0.47.
(b) Plot the resulting beam patterns.
(¢) Compute the HPBW, BWyxx, and the height of highest sidelobe.

Problem 3.1.5
Show that the beam pattern for the Kaiser weighting is proportional to

oyl ()

: , (3.351)
2y
(%) -
where 93 is the approximate beamwidth of the main lobe.
Problem 3.1.6
The Lanczos weighting for a standard linear array is defined as
. 2 L
sin [mf—’;)g}
wi(n) ={ ———= % | L>0, (3.352)

(N-1)2

where the indexing is symmetric.
Plot the array weighting and corresponding beam pattern for several values of L.

Problem 3.1.7
Compute Auy (see Problem 2.4.8) for:
(a) Hann weighting
(b) Hamming weighting
(c) Blackman-Harris weighting
and compare to the HPBW.
Problem 3.1.8
Compute Auy for:
(a) Gaussian weighting
(b) DPSS weighting
(c) Kaiser weighting
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and compare to the HPBW.

Problem 3.1.9
Counsider an 11-element standard linear array with symmetric weighting

wo = 0.5, (3.353)
Wy = w_pn =1.0+05n-1), n=1,2,---,5. (3.354)

(a) Plot By(v).
(b) Where might this beam pattern be useful?

Problem 3.1.10
Consider an 11-element standard linear array with symmetric weighting,

wp =10, n=0,1,2,3, (3.355)
wn =06, n=4, (3.356)
wn =02, n=5 (3.357)

Compute and plot By ().

Problem 3.1.11
The Riesz (Bochner, Parzen) window [Har78] is defined as

L 0§|nl§-—]2\£. (3.358)

(a) Find and plot the beam pattern for N = 10.

(b) Compute the HPBW, BWyu, the height of the first sidelobe, the rate of sidelobe
decrease, and the directivity.

Problem 3.1.12
The Riemann window is [Har78]
sin [% 27r]
[F2r]

and corresponds to the main lobe of a sinc function. Repeat Problem 3.1.11.

oz

wn = . 0<in|< 2, (3.359)

Problem 3.1.13

The de la Vallé-Poussin (Jackson, Parzen) window is a piecewise cubic curve obtained
by self-convolving two triangles of half-extent or four rectangles of one-fourth extent. It is

defined as )
10-6[5] [1o- 4],
Wp =

0
3 (3.360)
2[1.0—,'%/'2] , N < L

Repeat Problem 3.1.11.

Problem 3.1.14
The Tukey window [Har78], {Tuk67] is a cosine lobe of width (a/2)N convolved with
a rectangle window of width (1.0 — a/2)N. The window evolves from the rectangle to the
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Hann window as the parameter o varies from unity to zero. The Tukey window is defined
as

1.0, 0< |n < al,
- N .
wn 0.5 [1.0+cos (WH)] , a¥ <in< . (3.361)
)7

(a) Plot w, and the corresponding beam pattern for o = 0.25,0.50,0.75.

(b) Compute the HPBW, BWyn, the height of the first sidelobe, the rate of sidelobe
decrease, and the directivity.

Problem 3.1.15

The Bohman window [Har78], [Boh60] is obtained by the convolution of two half-
duration cosine lobes; thus its transform is the square of the cosine lobe transform. The
window is defined as

_ n| In| 1. nf N
Wy = [1.0 - m} cos l}r——} + —sin [71'———} , 0<|n| < 5 (3.362)

Repeat Problem 3.1.11.

Problem 3.1.16
The Poisson window [Har78], [Bar64] is a two-sided exponential defined by

Wy, = exp <~a]l]L/|2> , 0<n| < 1]2\—[ (3.363)
Repeat Problem 3.1.11 for « = 2.0,3.0, and 4.0.

Problem 3.1.17
The Hann-Poisson window is constructed as the product of the Hann and the Poisson
windows. The family is defined by

wn = 0.5 [1.0 + cos (71'—1\—;—;—5>j| exp <-a%> , 0<|n| < % (3.364)

Repeat Problem 3.1.11 for o = 0.5,1.0, and 2.0.

Problem 3.1.18
The Cauchy (Abel, Poisson) window [Har78], [Akh56] is a family of windows param-
eterized by a and is defined as

wp = ———5, 0<n|<
10+ (o)

Repeat Problem 3.1.11 for a = 3.0,4.0, and 5.0.

1 N
5 (3.365)

Problem 3.1.19
The Hamming, Hann, and Blackman windows are constructed from shifted conven-
tional patterns. More generally, we can write
& 2 N -1 N
wn =3 amcos (TV’im(|n| - _2‘—)) o<l (3.366)

m=0
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and
N/2

m 2 27
By(v) = 2(—1) am [To (- 37m) + Y (b4 5m)]. (3.367)
The Blackman window in the text uses ag = 0.42, a1 = 0.50, a2 = 0.08.

The “exact Blackman” window uses coefficients that place a zero exactly at ¥ =
3.5(27/N) and ¢ = 4.5(2x /N ). The coefficients are:

7938
= 9% .y, 3.368
G0 = Jeess = 0.42650971, (3.368)

9240
=22 ., 3.369
a1 = s = 0.49656062, (3.369)

1430
=239 . : 370
az = Jae = 0.07684867 (3.370)

(a) Repeat Problem 3.1.11 for these coefficients.

(b) Compare to the Blackman window in the text and observe how a small change in
wy, gives a significant change in the sidelobes.

Problem 3.1.20

Harris [Har76], [Har78] developed 4-term windows to achieve minimum sidelobe levels.
The weighting is defined

2m 2m 2n
W = Qg — A1 COS (Wm) + az cos <W2m) — a3 Ccos (Nfim) , m=01,2,---,N—1.

(3.371)
Four exarmples are listed in the following table:

3-Term 3-Term 4-Term 4-Term
(=67 dB) (—61dB) (—92dB) (-74 dB)
ap 0.42323 0.44959 0.35875 0.40217
ay 0.49755 0.49364 0.48829 0.49703
az 0.07922 0.05677 0.14128 0.09392
as — — 0.01168 0.00183

Problem 3.1.21: Gaussian weightings

The Fourier uncertainty principle suggests that the optimum weighting for an infinitely
long aperture has a Gaussian form. More precisely, for a given root-mean-square aperture
extent, the weighting that generates the narrowest root-mean-square wavenumber response
has a Gaussian function form. Moreover, the Gaussian weighting leads to a Gaussian array
response that implies no sidelobes. The limiting factor for any implementation is the finite
aperture extent that mitigates the consequences of the Fourier uncertainty principle, since
the weighting must be terminated with a step discontinuity, however small it may be. The

Gaussian weighting is a family of weightings parameterized by its width relative to the
aperture length L. It is given by

clo) ~L1(=2)? L
. T € 2oL, |Z| <3,
uMd—{Q >§ (3.372)
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where ¢(o) is a normalization constant such that response on the main response axis is
unity (or equivalently, the area under the weighting is unity). The constant is given by

(o) = [2\/%7(1 —Q (%)] - (3.373)

where Q(z) is the complementary error function for the Gaussian probability density.?’
The array weightings are

N -1 N-1

wn(n) = wN(z)IZZ,_I\.I, nE——g— (3.374)
(a) Plot the beam pattern for a standard 11-element linear array for o = 0.25, 0.177,
and 0.125.
(b) Compute the HPBW, BWnn, and first sidelobe height for the three values of o in
part (a).

(a) Discuss your results.

Problem 3.1.22: Binomial®®
Consider a standard N-element linear array steered to broadside. We want to synthe-

size a pattern whose zeros are all at z = —1. Thus,
Bz) = (z1)"
= N4 dan 41, (3.375)
where (N~ 1)
— 1!
Qp = —— 3.376
" (N —-1-n) ( )
is the binomial coefficient.
The resulting coefficients are given by Pascal’s triangle.
N =1 1
N=2 1 1
N=3 1 2 1
N=4 1 3 3 1
N=35 1 4 6 4 1
N=6 1 5 10 10 5 1
N=7 1 6 15 20 15 6 1
N=38 1 7 21 35 35 21 7 1
N=9 1 8 28 56 70 56 28 8 1
N =10 1 9 36 84 126 126 84 36 9 1
(3.377)

{a) Plot the beam pattern for N = 10. Compute the HPBW and the tolerance factor.
(b) Discuss the behavior for large N.

P3.2 Array Polynomials and the z-Transform

Problem 3.2.1 [Balg2]
A 3-element array is placed along the z-axis. Assuming the spacing between the
elements is d = A/4 and the relative amplitude excitation is equal to a1 = 1,a2 = 2,a3 = 1:

L2
Q(x) = \/—15—; fxoo e~ T dx, which was defined as erfc.(z) in [DEMT I}, [VT68],

[VTO01a).
38The binomial distribution was originally suggested by Stone [Sto]. He proposed that
the amplitudes be proportional to the coefficients of a binomial series of the form of (3.375).
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(a) Find the nulls of the beam pattern where the interelement phase shift ¥ (2.127)
is 0, #/2, and 37/2.

(b) Plot the beam patterns.

Problem 3.2.2
Design a linear array of isotropic elements placed along the z-axis such that the zeros
of the array factor occur at 6 = 0°,60°, and 120°. Assume that the elements are spaced
d = \/4 apart and that the interelement phase shift between them is 0°.
(a) Find the required number of elements.
(b) Determine their excitation coefficients.
(c) Write the array factor.

(d) Plot the array factor pattern.

Problem 3.2.3
Consider a linear array along the z-axis. Assume that d = A\/2. The nulls in the array

factor are specified to be 0°,60°, and 120°.
(a) Find the minimum number of array elements.
(b) Specify the array weighting.
(c) Find and plot the array factor.

Problem 3.2.4
Consider a standard 21-element linear array. Plot the zeros in the z-plane for the

following array weighting functions:

(a) Triangular

) Cosine

} Raised cosine
(d) Cosine?

) Cosine®

)

Cosine?

Problem 3.2.5
Consider a standard 21-element linear array. Plot the zeros in the z-plane for the
following array weighting functions:
(a) Raised cosine-squared
(b) Hamming

(¢) Blackman-Harris

Problem 3.2.6
Consider a standard 15-element linear array. Plot the zeros in the z-plane for the
following array weighting functions:
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Figure 3.62 Four-tower broadcast array pattern requirements. [Adapted
from [Krag88]]

(a) DPSS (¢ = 0.157,0.257, and 0.57)
(b) Kaiser (8 = 2 and 8)

Problem 3.2.7 [Bal82]
The z-plane array factor of an array of isotropic elements placed along the z-axis is
given by
AF = z(z* - 1). (3.378)

Determine the

(a) Number of elements of the array. Indicate any elements with zero weighting (null
elements).

(b) Position of each element (including that of null elements) along the z-axis.
(c) Magnitude and phase (in degree) of each element.

(d) Angles where the pattern will equal zero when the total array length (including null
elements) is 2.

Problem 3.2.8 [Kra8§]

Four-tower BC array. A broadcasting station requires the horizontal plane pattern
indicated in Figure 3.62. The maximum field intensity is to be radiated northeast with as
little decrease as possible in field intensity in the 90° sector between north and east. No
nulls are permitted in this sector. Nulls may occur in any direction in the complementary
270° sector. However, it is required that nulls must be present for the directions of due west
and due southwest, in order to prevent interference with other stations in these directions.

Design a four-vertical-tower array to fulfill these requirements. The currents are to
be equal in magnitude in all towers, but the phase may be adjusted to any relationship.
There is also no restriction on the spacing or geometrical arrangements of the towers. Plot
the beam pattern.
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]

Figure 3.63 Cosecant pattern.

P3.3 Pattern Sampling in Wavenumber Space

The cosecant beam pattern is encountered in a number of applications. The next four
problems, which are taken from [Bal82], use the Woodward procedure to synthesize these
patterns.

Problem 3.3.1 [Balg2]

In target-search, grounding-mapping radars, and in airport beacons it is desirable to
have the echo power received from a target, of constant cross section, to be independent
of its range R.

Generally, the far-zone field radiated by an antenna is given by

|E(R,8,¢)| = Co'—i(%—@, (3.379)

where Cj is a constant. According to the geometry of Figure 3.63,

h
R=——=hecsch. (3.380)
sin @
For a constant value of ¢, the radiated field expression reduces to

F0,¢ = 0

|E(R,0,¢ = ¢o)| = Co| ( q; o)l _ Cy |f§2)|. (3.381)

A coustant value of field strength can be maintained provided the radar is flying at a
constant altitude h and the far-field antenna pattern is equal to

f(0) = Cacsc(8).

This is referred to as a cosecant pattern, and it is used to compensate for the range
variations. For very narrow beam antennas, the total pattern is approximately equal to
the space or array factor. Design a line source, using the Woodward method, whose array
factor is given by

) 0.342csc(6), 20° <6 < 60°,
AF(0) = { 0, elsewhere.

Plot the synthesized pattern for L = 20\, and compare it with the desired pattern.

(3.382)

Problem 3.3.2 [Bal82]
Repeat the design of Problem 3.3.1 for a linear array of N = 21 elements with a
spacing of d = \/2 between them.
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Problem 3.3.3 [Bal82]

For some radar search applications, it is more desirable to have an antenna that has
a square beam for 0 < § < 0o, a cosecant pattern for 8y < 6 < 0., and is zero elsewhere.
Design a line source, using the Woodward method with an array factor of

1, 15° < 9 <20°,
AF(0) = 0.342¢csc(6), 20° <6 < 60°, (3.383)
0, elsewhere.

Plot the synthesized pattern for L = 20\, and compare it with the desired pattern.

Problem 3.3.4 [Bal32]
Repeat the design of Problem 3.3.3 using the Woodward method, for a standard linear
array of 41 elements.

Problem 3.3.5
Repeat the design problem in Problem 3.3.1 using the Woodward method.

Problem 3.3.6
Repeat the design problem in Problem 3.3.2 using the Woodward method.

Problem 3.3.7
Design a standard linear array with N = 21 when the desired array factor is

AF4(6) = sin®0, 20° <60 <60°. (3.384)

Use the Woodward procedure.

P3.4 Minimum Beamwidth for Specified Sidelobe Level

Problem 3.4.1
Show that the Dolph-Chebychev procedure and the Riblet-Chebychev procedure lead
to the same beam pattern for d = A/2.

Problem 3.4.2
Consider a standard 10-element linear array pointed at broadside.

(a) Find the Dolph-Chebychev weightings for sidelobes of —20 dB, —30 dB, and —40
dB.

(b) Plot the resulting beam pattern and compute the HPBW, BWxny, and the direc-
tivity.
(c) Plot the roots in the z-plane.

Problem 3.4.3
Repeat Problem 3.4.2 for a 20-element linear array with d = A\/4. Repeat parts (a)-
(b).
(c) Find the Riblet-Chebychev weighting for the same sidelobe requirements and com-
pare the BWnn.

Problem 3.4.4
Compute the HPBW of the Chebychev array in Problem 3.4.2 when it is scanned to
0 = 60°.
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Problem 3.4.5
Consider a standard 7-element linear array pointed at broadside.

(a) Find the Dolph-Chebychev weightings for sidelobe of —20 dB, —30 dB, and —40
dB.

(b) Plot the resulting beam pattern and compute the HPBW, BWyn, and the direc-
tivity.

Problem 3.4.6
[Kra88] Calculate the Dolph-Chebychev distribution of a six-source broadside standard
linear array for R = 5,7, and 10.

Problem 3.4.7
Consider a standard 5-element linear array. The array is aimed at broadside.
(a) Find the Dolph-Chebychev weightings for —20 dB sidelobes.
(b) Plot the resulting beam pattern.
(¢) Find the HPBW and BWyy.

Problem 3.4.8
Consider an 8-element linear array with d = 3\/4. The array is aimed at broadside.
(a) Find the Dolph-Chebychev weightings for —40 dB sidelobes.
(b) Plot the resulting beam pattern.
(c) Find the HPBW and BWyy.

Problem 3.4.9
Consider a standard linear array with N = 15.
(a) Repeat Problem 3.4.2.
(b) Repeat part (a) for Taylor weighting with n = 6.

Problem 3.4.10
Consider the model in Example 3.4.2. Find and plot the aperture weighting function
and the corresponding beam pattern.

Problem 3.4.11 (continuation)

(a) Plot the beam pattern for the corresponding linear array withd = A\/4 and N = 17.
(b) Plot the beam pattern for the corresponding linear array with d = A/2 and N = 9.

Problem 3.4.12 (continuation)

Instead of finding the weighting of the discrete array by sampling the continuous
weighting, find a discrete weighting so that the nulls of the two patterns are matched (e.g.,
[EN81]).

Problem 3.4.13
Consider a 41-element standard linear array. Design a beam pattern using a Villeneuve
7 weighting with a maximum —30-dB sidelobe.
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(a) Plot the beam pattern for n = 6.
(b} How does the pattern change as a function of 27

(¢) Find the array weights for the pattern in part (a).
Problem 3.4.14
Repeat Problem 3.4.13 for —35-dB maximum sidelobes.
Problem 3.4.15

(a) Calculate the directivity of a standard N-element linear array pointed at broadside
using a Dolph-Chebychev weighting.

(b) Plot the directivity index DIp versus N for sidelobe levels of —15, -20, —30, —40,
and —60 dB. Let N vary from 10 to 1000.

Problem 3.4.16
Repeat Problem 3.4.15 for a Villeneuve 72 weighting with 7 = 6.

Problem 3.4.17

Derive a simple expression for the BWx n of a SLA using Dolph-Chebychev weighting.
Plot BWxy versus SLL in dB for N = 10.

Problem 3.4.18

In order to find the Chebychev weights, Stegen [Ste53] used the following technique.
The array coefficients are represented by an inverse DFT,

1 i2Z nm
an =5 Z pme’ N (3.385)
for N odd. The p,, correspond to equally spaced samples of the beam pattern in ¢-space.
If the pattern corresponds to a Chebychev polynomial, then
Pm = Tv—1(z0 cos l”Nl) . (3.386)

Using (3.386) in (3.385) gives an expression for the coefficients,

No1
an, = -RI_N R+2 22_:1 TN-1 (wocos TNE) . (cos %rmn) ,
n = 0,1,...,1\7—2_—1, (3.387)
for N odd. Similarly,
Iy
an = —R2—N + %THZITN_l (mo cos %75) . (cos ]—7:/—(2n— l)m) ,
n =01, % (3.388)
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for N even.
Use this approach to find the weights in Example 3.4.1.

P3.5 Least Squares Error Pattern Synthesis

Problem 3.5.1
The desired Bp(0) is uniform on —n/4 < 6 < 37/4. Use the Fourier transform method
to find the aperture weighting function for a linear aperture of length L = 5A and L = 10,
(a) Plot the resulting beam pattern.
(b) Calculate the resulting maximum sidelobe.
(c) Calculate BWn.

(d) Calculate the peak overshoot in the main-lobe region.

Problem 3.5.2
Repeat Problem 3.5.1 for a standard linear array with N = 11 and N = 21.

Problem 3.5.3
Assume that B4(6) is uniform on —30° < 8 < 60°. Repeat Problem 3.5.1.

Problem 3.5.4
Assume that Ba(#) is uniform on 30° < 8 < 60°. Repeat Problem 3.5.2.

Problem 3.5.5
The desired beam pattern is uniform on —n/v/2 < ¢ < /2 and zero elsewhere.
(a) Find the Fourier coefficients for N = 11 and N = 21,

(b) Use a Hann window. Plot the resulting beam pattern. Compare §, the main-lobe
overshoot, and Ay, the transition distance.

(c) Repeat part (b) using a Hamming window.

(d) Assume N = 21. Use a Kaiser window. Find 3 to match the overshoot in part (b).
Plot the resulting beam pattern. What is Ay?

(e) Repeat part (d) and match the overshoot in part (c).

Problem 3.5.6
Consider the model in Example 3.5.2.

(a) Use a DPSS window with 1o = m/6. Plot the resulting beam pattern and compare
to Figure 3.33(a).

(b) What is the effect of varying 1o on the window?

P3.6 Minimax Design

Problem 3.6.1
Consider the model in Example 3.6.1 (N = 11) with 6,/0, = 10. Assume J, is chosen
to match the Hamming window in Example 3.5.2.
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(a) Use the Parks-McClellan-Rabiner algorithun to design the optimum weighting and
plot the resulting beam pattern.

(b) What Ay = v, — 5. Compare this result with A found in Example 3.6.1.

Problem 3.6.2
Utilize the techniques in Section 3.6.2 to repeat Problem 3.6.1 for the case when
N =10.

Problem 3.6.3
Consider a standard linear array. Assume 20log,,d, = —53 dB and 6,/8; = 10.
Assume the Parks-McClellan-Rabiner algorithm is used to design the array weighting.
Plot Ay as a function of NV, the number of array elements.

P3.7 Null Steering

Problem 3.7.1

Consider a standard 41-element linear array with a Chebychev pattern (—40 dB side-
lobe). In Example 3.7.3, we placed four nulls at u = 0.22,0.24,0.26, and 0.28. An alter-
native strategy is to place a first- and second-order null at © = 0.235 and 0.265. Find the
resulting beam pattern and compare to Example 3.73.

Problem 3.7.2
Consider a standard 21-element linear array. We require a null at ¢o. Bg(y) corre-
sponds to uniform weighting.

(a) Find the least squares approximation to Bg(1) subject to this null constraint.
(b) Plot the beam pattern for ¢ = 3n/N, ¥o = 2n/N, 9o = 7/N, and ¢o = 0.57/N.

Discuss your results.

Problem 3.7.3
Consider a linear array that consists of two segments: (i) an 1l-element standard

linear array centered at z = 0; and (ii} two 5-element standard linear arrays centered at
z = +7.5\.

(a) Assume that the 21 elements are weighted uniformly. Plot the beam pattern and
discuss the grating structure.

(b) We denote the beam pattern in part (a) as Ba(¥). We require a null at ¢ = 0.57/N.
Find the least squares approximation to By()) subject to the null constraint.

P3.8 Asymmetric Beams

Problem 3.8.1
Assume N is even. Let the wp,n =1,2,---, N/2 correspond to Hamming weighting,
and

Wep = —wWh. (3.389)

(a) Find and plot the resulting beam pattern.
(b) Find the slope at the origin and the height of the first sidelobe.
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Problem 3.8.2
We can divide an asymnmetric (N even) array polynomial into two components:

B(z) = Bi(z) Ba(z2), (3.390)
where .
Bu(z) = _22 , (3.391)
and N
Ba(z) =) ba(n)2"", (3.392)
and thus i
Bi(¢) = sin(%). (3.393)

(a) Use this approach to find the beam pattern for uniform weighting.

(b) Use this approach to design an asymmetric Hann beam pattern.

Problem 3.8.3 (continuation)
Assume N = 10. Then Ba(z) is an eighth-order polynomial.

(a) Choose the coeflicients to achieve a Dolph-Chebychev weighting with —40 dB side-
lobes.

(b) Plot the resulting beam pattern.

(c) Calculate the slope at the origin.

Problem 3.8.4 (continuation)
Assume that the beam pattern in Problem 3.8.3 is By(1). Find the least squares
approximation to Bg4(v) with a zero-order null constraint at o = 57/N.

P3.9 Spatially Non-uniform Linear Arrays

Problem 3.9.1
Consider a 4-element non-uniform linear array whose element spacings are d, 3d, 2d.

(a) Plot the beam pattern for uniform weighting.

(b) Uniform weighting corresponds to w; = wz = ws = wr = 1/4 and w3 = wy = we =
0 in a standard linear array. Plot the autocorrelation of w with itself.

Problem 3.9.2
Consider a 5-element non-uniform linear array whose element spacings are d, 3d, 5d, 2d.
Repeat Problem 3.9.1.

Problem 3.9.3 (continuation)
Consider the array in Problem 3.9.2. Use the algorithm in Section 3.9.3 to design a
beam pattern with —20 dB sidelobes.
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Problem 3.9.4

(a) Consider a standard linear array with 21 elements. Use the technique in Section
3.9.3 to design a beam pattern that maximizes the directivity subject to a —35-dB
constraint of the sidelobe. Describe your algorithm.

(b) Comparc the resulting BWxn with that of a 21-element SLA using Dolph-Chebychev
weighting.

P3.10 Beamspace Processing

Problem 3.10.1

Consider a 32-element standard linear array and a 7 x 32 beamspace matrix whose
rows use conventional weighting. We want to implement the null steering techniques in
beamspace. Assume

Ba(¥) = vi5(0)vss (). (3.394)
We want to place a null at 1; while minimizing the least squares error between the desired
beam pattern and the beam pattern containing the null.

(a) Let 45 = 3/32. Find w{l and plot the resulting beam pattern.
(b} Repeat part (a) for ¢y = 7/32 and ; = 13/32.
(c) Let
Ba() = vis (1) Vos (¥)- (3.395)

Repeat part (a) for ¥r = 1/32 and ¢, = 5/32.

Problem 3.10.2

In many applications, we require
B, By = L (3.396)

If we use a Taylor weighting, the rows of the beamspace matrix are not orthonormal. We
denote this matrix as Bf,'o. We pass the output of B,’fo through an Npgs X Nps matrix Hy,.
We denote the cascade of the two processors as

B{, = H, B, (3.397)

(a) Show that if
H,, = B}, Bno] /%, (3.398)

then B satisfies the orthonormality condition. Is H, unique?

(b) Consider the 7 x 32 beamspace matrix whose rows have Taylor weighting. Verify
the above result numerically.

(c) Plot the beam patterns for the orthogonal beams. Discuss the sidelobe behavior.

Problem 3.10.3
Consider an 32-element standard linear array and a Nys x N beamspace processor
where rows are orthonormal conventional beams.

We want to generate a beam pattern corresponding to the cos
ing in (3.18).

Nus _element-space weight-
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(a) Consider the case when Ny, is even. Assume the beam sector is centered at us = 0.
Find the required beam steering directions and beamspace weights for Ny, = 2,4,
and 6. Plot the resulting beam patterns and calculate the HPBW, BWny, Dy, and
the height of the first sidelobe.

(b) Repeat part (a) for Nps = 3, 5, and 7.

Problem 3.10.4 (continuation Problem 3.10.3)
Repeat Problem 3.10.3 for the case in which the desired beam pattern corresponds to
the Hamming beam pattern in (3.21). In this case, Nys = 3.

Problem 3.10.5 (continuation Problem 3.10.3)
Repeat Problem 3.10.3 for the case in which the desired beam pattern corresponds to
the Blackman-Harris beam pattern in (3.23). In this case, Nys = 5.

Problem 3.10.6 (continuation Problem 3.10.5)
Extend the results of Problem 3.10.5 to the case when Ny, = 7.

Problem 8.10.7 (continuation, Example 3.10.3)
Consider a standard 32-element linear array and the 6 x 32 beamspace processor in
Example 3.10.3. We use an asymmetric beamspace weighting,

[Wbs]m = _[Wbs]M—m, m = 1, 2, 3. (3399)

(a) Plot the beam pattern for real constant weights. Plot both Bys(u) on a linear scale
and |Bps(u)| in dB.

(b) Consider various other weightings that trade-off slope at the origin versus sidelobe
behavior.

P3.11 Broadband Arrays

Problem 3.11.1

Consider the compound array with nested subarrays shown in Figure 3.57. Each
subarray has N = 11 elements. In some applications, we want to place a null at a specific
point in u-space over the entire octave. Assume that we use K = 8 frequency bins.

The desired beam pattern corresponds to conventional weighting in each bin (Figure
2.20). Design a beamformer that provides a least squares approximation to the desired
beam pattern (e.g., Section 3.7) with a null at v = 0.30 in each bin.

Problem 3.11.2

Consider the compound array with nested subarrays shown in Figure 3.57. Assume
that we use K = 8 frequency bins.

Design a beamformer using the Riblet-Chebychev algorithm in each frequency bin.
Plot the resulting beam pattern in each bin.
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Chapter 4

Planar Arrays and Apertures

In this chapter we discuss analysis and synthesis techniques for planar arrays.
A planar array is an array whose elements all lie in the xy-plane.

In the array case, we consider three types of element geometries, as shown
in figures 4.1, 4.2, and 4.3. We find that both the element topology and the
boundaries are important. In the aperture case, we consider two cases, as
shown in Figure 4.4.

Many of the ideas that we developed for linear arrays and apertures
carry over to the planar case. In other cases, extensions are necessary. As in
the linear array case, our development is a combination of classical antenna
theory and finite impulse response filter theory. Classical antenna refer-
ences that discuss planar arrays include [EN81], [Bal82], [Mai94], [MaT74],
[Ste81], and [Zi095]. Two-dimensional FIR filter references include [RG75)
and [DM84].

In Section 4.1, we consider array geometries utilizing a rectangular element
grid. We extend the techniques in Chapter 3 to the analysis and synthesis
of rectangular arrays.

In Section 4.2, we develop analysis and synthesis procedures for circular
arrays and ring apertures. We show that the Bessel function decomposition
replaces the Fourier series decomposition for linear arrays.

In Section 4.3, we develop analysis and synthesis procedures for circular
apertures. These apertures correspond to the limiting case for filled circular
arrays. The circular aperture also occurs in parabolic reflector antennas.

In Section 4.4, we consider arrays using a hexagonal (also called trian-
gular) element grid. Sampling theory indicates that a hexagonal grid is the
most efficient grid and hexagonal grids are widely used in various applica-
tions. Hexagonal grid arrays are closely related to rectangular grid arrays.

231
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Y
A
» X
Rectangular grid,
rectangular boundary
(a)

Planar Arrays and Apertures

Rectangular grid,
circular boundary

(b)

Figure 4.1 (a) Rectangular grid, rectangular boundary; (b) rectangular grid,

circular boundary.

Circular array

(a)

Concentric
Circular array

(b)

Figure 4.2 (a) Circular array; (b) concentric circular array.
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Figure 4.3 Hexagonal arrays; circular boundary.

Our development utilizes the circular aperture results in Section 4.3 which,
in turn, uses the circular array results in Section 4.2. This path is the reason
the two sections are separated.

In Section 4.5, we discuss nonplanar arrays briefly. In Section 4.6, we

briefly summarize our results. The structure of Chapter 4 is shown in Table
4.1.

4.1 Rectangular Arrays

Our discussion of rectangular arrays parallels the development of synthesis
techniques for linear arrays in Chapter 3.

4.1.1 Uniform Rectangular Arrays

The geometry for a planar array with a uniform rectangular grid and rectan-
gular boundary is shown in Figure 4.5. We refer to these arrays as uniform
rectangular arrays (URAs). Utilizing the relations in Chapter 3 we can

write the beam pattern as the 2-D Fourier transform of the weighting func-
tion
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(a) Rectangular (b) Circular

\ 4
=

(c) Ring aperture

Figure 4.4 Apertures: (a) rectangular; (b) circular; (c) ring.
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Table 4.1 Structure of Chapter 4.

Rectangular grid
URA, SRA
Scparable weighting
2-D Z-Transform
Circular symmetry
2-D BFT
Chebychev

4.4 Hexagonal

Triangular grid

UHA

SHA

H-R Transformations
Beamspace processing

4.2 Circular Amrays

Phase mode exicitation

Ring apetture Separable weig_hting
Circular arrays Taylor synthesis
Sampling

Difference beams

4.5 Nonplanar Arrays

235

Cylindrical
Spherical
N Mt N-1M-1
B(¢u,y) = eI et B Z wy,, e MWetmiy) (4.1)
n=0 m=0
where
2 .
Wy = —/\—dz sin 6 cos ¢, (4.2)
2m
Py = Tdy sin  sin ¢. (4.3)

We can also express (4.2) and (4.3) in terms of the directional cosines,

Uz = sin 6 cos ¢, (4.4)
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p(r6.¢)

Figure 4.5 Planar array geometry.

Uy = sinésin ¢. (4.5)

up &\ Jui 4+ ul < 1. (4.6)

In terms of v, 1y, the visible region is

J () (4) <2 )

For the case in which

The visible region is

dy = dy = f\—, (4.8)
2
(4.2) and (4.3) reduce to
Py = TUy (4.9)
and
Py = TUy. (4.10)

We refer to uniform rectangular arrays that satisfy (4.8) as standard
rectangular arrays (SRAs). We normally work in (¢4, 1) space or (uz, uy)
space because of the Fourier transform relationship. However, it is important
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0,1)

. 4(0, 0.866)

0.,‘650"7’)*.,___7 (0.707, 0.707)
0,05

Figure 4.6 Mapping between (0, ¢) space and (u,, uy) space.

to remember the mapping into (6, ¢) space. This is shown in Figure 4.6 for
the d = \/2 case. The pairwise mapping (ug, uy) < (6, ¢) is unique.

As in the linear array case, we must consider the grating lobe structure.
To do this, we rewrite (4.1) as

N1 M1 M-1N-1
. — —Jj( = Tuz + =7 _
Bluz,uy) = e 5 7 ) > 2 Wam
m=0 n=0
'ej[nkodxuz-f-mkodyuy]. (411)

First, consider the case when the array is steered to broadside. Expand-
ing (4.11) and recalling that ko 2 |k| = 27/), we see that grating lobes will
occur at

Uy :pia p=12--, (412)
dq

Uy =g g=1,2,---. (4.13)
y

This periodicity is shown in the (ug,uy) plane in Figure 4.7.
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A A AA
(——>—) (0,—) (—>—)
C.ix dy dy . d, dy

A/l

(____7_\___ O) Visible ( 7\’ O)

d, ’ region d . i

° ) *—>»

TR

A | A A
- - 0,— —— = =
( 4 dy) ( dy) (dx d),)

. ® °

(®  Main lobe

e Grating lobe

Figure 4.7 Planar array—grating lobe grid (rectangular lattice-rectangular
grid).

Now assume the array is steered to (6p, ¢g).! Then,

Uz = sin fy cos ¢g (4.14)
and
typ = sin fp sin ¢o. (4.15)
Also, /
U0~ tan ¢ (4.16)
Uz
and

Vuze + uio = sinfp. (4.17)

The location of the main beam in (., uy) space is given by (4.14) and (4.15)
and is shown in Figure 4.8. The grating lobes shift along exactly the same
vector as shown in Figure 4.8. We can now determine the values of d, and
dy required to avoid grating lobes in the visible region. We illustrate the
process with a simple example.

IThe subscript “0” denotes the steering direction.
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Figure 4.8 Planar array—scanned.

Example 4.1.1
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Consider a rectangular grid array with uniform spacing d, and d,. We are required
to scan from 0° < 0 < 60° and over all valucs of ¢. Some possible locations of the grating
lobes are shown in Figure 4.9. In the figure, we have chosen d; and dy so that the grating
lobe is on the border of the visible region in the worst case.

Thus,

A A

= — = 1.866,

de  dy

and we require,

and

< b
~ 1.866

A
<
dy < 1.866°

If we are required to scan 0° < 8 < 90°, then we require

and

dz

AN
o] >

B | >

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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Figure 4.9 Possible locations of the grating lobes.

We will refer to a rectangular array with

dy=dy, =% (4.23)

as a standard uniform rectangular array.
For the special case in which we have separable weightings

Whm = Wy, Win, (4.24)
the beam pattern is the product of the two individual array factors,
B(be, vy) = Ba(va) - By(¢y). (4.25)
[f the weighting is uniform in both directions, then

1 sin (%?/)1)} [i sin <—A2/_[wy>} ' (4.26)

B(d}x, l/)y) =

There are several ways to plot beam patterns for the 2-D case. We
illustrate them for this case. In subsequent cases, we use the plot that is
most appropriate for the particular problem. We use M = N = 10 in the
plots.
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Figure 4.10 Magnitude of beam pattern of standard rectangular array: N =
M = 10, uniform weighting, linear vertical scale.

(i) In Figure 4.10, we show the amplitude of the beam pattern versus u, and
uy with a linear vertical scale. In Figure 4.11, we show the amplitude
of the beam pattern versus u; and uy on a logarithmic scale. Both of
these give a good overall view of the pattern but are not convenient
for examining the details of the main lobe and sidelobe behavior.

(ii) In Figure 4.12, we show polar plots of the amplitude of the beam pattern
versus 0 for various values of ¢. These plots are vertical cuts through
the 3-D beam pattern. Note that the right side of the polar plot
corresponds to the indicated value of ¢. The left side corresponds to
¢+ 180°. In Figure 4.13, we plot the amplitude on a logarithmic scale
versus u, = siné for various values of ¢. These plots are referred to as
pattern cuts and are generally the most useful for a detailed pattern
analysis.

(iii) In Figure 4.14, we show a contour plot of the amplitude in dB versus
u, and uy,. This plot gives a good view of the pattern symmetries and
is particularly useful when plotted in color.
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Figure 4.11 Magnitude of beam pattern of standard rectangular array: N =
M = 10, uniform weighting, vertical scale is 20 log | By (u)l.

4.1.1.1 Beamwidth

T'he half-power beamwidth for a pattern array is a contour in (ug, uy) space
or (6, ¢) space where the magnitude-squared of the beam pattern is 0.5. For
general weights, this contour must be evaluated analytically.

In some cases, the weights are chosen so that when the array is steered
to broadside, the 3-dB contour can be approximated by a circle if M = N

and an ellipse if M # N. In these cases, an approximate expression for the
axes of the half-power ellipse can be used.

The beamshape versus scan angle is shown in Figure 4.15. As the MRA

of the beam moves away from 6 = 0, the circular contour becomes elliptical
and the beamwidth in the #-direction increases.

Two planes are chosen to characterize the beamwidth. The first is the
elevation plane corresponding to ¢ = ¢y and the second is a plane perpen-
dicular to it. The half-power beamwidths in the two planes are designated

by 0y and ¥y. For a large array steered near broadside, 8y is given ap-
proximately by
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180

Figure 4.12 Polar plot of beam pattern cut of standard rectangular array:
N = M = 10, uniform weighting; (a) ¢ = 0° or 90°; (b) ¢ = 45°.



244

4.1 Rectangular Arrays

(dB)

Beam pattern

|
I}

<
T

Beam pattern (dB)
Y

0
u
r

{

b

)

02

0.4

0.6 08 1

Figure 4.13 Beam pattern cut of standard rectangular array: N = M = 10,
uniform weighting, plotted versus u,; (a) ¢ = 0° or 90°; (b) ¢ = 45°.
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Figure 4.14 Contour plot of magnitude of beam pattern for standard rect-
angular array: N = M = 10, uniform weighting.

Figure 4.15 Beam shape versus scan angle.
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0y — J ! , (4.27)

cos26y {9;02 cos?egy + 0;02 sin%¢y
where
(1) B0 is the HPBW of a broadside linear array with N elements;

(ii) Oy0 is the HPBW of a broadside linear array with M elements (e.g.,
Elliot [El64] or Problem 4.1.1).

The HPBW values are obtained from our previous linear array beamwidth
results in Chapter 3.
For a square array with equal separable weightings,

9}[ = ex() sec 90 = Hyo secC 90, (4.28)

which is identical to our result in Chapter 2.
The HPBW in the perpendicular plane is given by

1
Uy = 4.29
" \/9;02 sin?gg + 9;02 cos?¢g (4.29)

(c.g., Elliot [Ell64] or Problem 4.1.2). Note that it does not depend on ;.
For a square array with equal separable weightings

Uy =0z0="0y. (4.30)
The beam solid angle €24 is the product of the HPBWs,
Qa=0yTy, (4.31)
which can be expressed as

GxO 93/0 SeC 90

Q= 92 o . (4.32)
sin®¢g + > COSQQSO] [Sin2¢o + 75 cos? gy
z0 y0

The expression in (4.32) is useful. However, in most examples we plot the
actual half-power contour of the beam pattern in the u;, u, plane or examine
it for various pattern cuts.
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4.1.1.2 Directivity of a planar array
The directivity of an array is given by (2.144) as

| B(6o, ¢o)|?
27 [T |B(6, ¢)|? sin 6df dop’

(4.33)

where (6, ¢o) is the MRA. We desire an expression for the directivity that is
valid for any planar array in the zy-plane. The directivity does not depend
on the choice of the coordinate system, so the result is valid for any planar
array.

For an N-element planar array in the xy-plane, we denote the position
of the nth element by (pg,,py,). Note that the array can have arbitrary
configuration in the zy-plane and that we are indexing the elements with a
single index n. Note that N is the total number of elements and would equal
NM for the array in Figure 4.5.

The beam pattern can be written as,

Z Wy, €Xp ( (Pa,, sinf cos ¢ + py, sinfsin qb)) (4.34)
n=0

The denominator in (4.33) can be written as

2m o7
DEN 2 %/ /\B(G,¢)|Qsin€d9d¢
™

2n 7rN 1N-1
e 47r/ / Z w w,nle] )\ SIn O((Paxy, —Pzym ) COS @+ (Pyn —Dym ) Sin @]
n=0 m=0
-sin 0d0d, (4.35)
which reduces to
Py 1 27 1
DEN = Z Zw wm/ —sinéd - dé?/
n=0 m=0
2
i (j ~ sin0 (Aps,,, cos ¢+ Apy,, sin ¢>> dg, (4.36)
where
Apznm épzn — Pz (437)
and

Apynm é pyn - pym' (438)
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Now define

1
prm = ((BP2an)’ + (APy,)")* = [BPwnl, (4.39)
and A
pynm
nm = arct — ). 4.40
Pnm = arctan <Apznm> ( )
Then
Apxn'm = pnm CcOos ¢nm, (441)
and
Apynm = Pnm sin ¢nm (442)

Using (4.41) and (4.42) in the inner integral in (4.36) gives

27
/ 1 exp ( 27 — Pnm Sin 6 (cos ¢ cos Ppm + sin P sin gbnm)) do
0o 2m A

= /027r -2}7? exp ( 2}\ Prm sin 6 (cos (¢ — ¢nm))> d¢

= Jy <2—/\7r—p”m sin 9) , (4.43)

where Jo(+) is a Bessel function of order zero. Substituting (4.43) into (4.36)
gives

MZ
MZ

DEN = WpWy, / ~sinf - Jy < Prm SN 0) dao
— 2 A
n=0 m=0
N-1N-1 2
= Z Wp W, SINC (—pnm> . (4.44)
A
n=0 m=0
Defining a matrix B with elements
. 27
B], = sinc (Tpnm> , (4.45)

the directivity can be written as

H 2

_|wowv
D = bwiivol? (4.46)

where

Vg = V((QQ, ¢0), (4.47)
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is the array manifold vector steered at (6o, ¢o).
If we normalize the weights so that B(8y, ¢o) = 1, then (4.46) reduces to

D= [wHBw] - (4.48)

Note that B does not reduce to an identify matrix for a standard rect-
angular array.
For large rectangular grid planar arrays Elliot [Ell64] has shown that

Dy = m cos by Dy Dy. (4.49)

The reader is referred to that reference for a discussion of this result. We
will use the result in {(4.46) to calculate the directivity.

In the linear array we developed a number of techniques for synthesizing
desireable beam patterns. In the next several sections, we look at the exten-
sion of these techniques to planar arrays and the introduction of modified
techniques where appropriate. Before doing that development, it is useful
to consider the array manifold vector in more detail.

4.1.2 Array Manifold Vector

The array manifold vector was defined for an arbitrary array in (2.28). For
rectangular planar arrays it is convenient to define an array manifold matrix
as an intermediate step.

We define

e.jmwy
Vi (V) = : ) (4.50)
o3 (N =1)gpgtmafy)

as the array manifold vector corresponding to the mth line of sensors in the
y-direction. The vector 9 is

_ | Y
P = { 6 ] : (4.51)
Then,

V@) = | vo) il vara(®) | (4.52)

is an N x M array manifold matrix. Then, we can define a vector that is
obtained by stacking the vectors to obtain an NM x 1 vector (see (A.106)),

vo(¢)
vec [Vd)(w)} = : ) . (4.53)
V-1
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It is easy to verify that vec [vw(w)} is conjugate symmetric.
The expression in 4.53 can also be written as a Kroneker product (A.79):

vec [Vw(w)] =v(Y)@v(Y). (4.54)

We can describe the weight vector using this notation. The weight vector
down the mth line is

[ Wo,m 1
Wm = Wn,m ; (4.55)
L WN-1,m |
and the weight matrix is
W=[w o Wy o wM_l], (4.56)
and
Cw ]
vec|W]= 1| wp . (4.57)
[ WM-1 |
Then,
B(9) = B(tha, y) = vec' [W] vec [V, (w)] - (4.58)

If vec [W] is conjugate symmetric (or real and symmetric), then B(y) will
be real.

For a conventional delay-and-sum beamformer,
vee!! [W] = vec!! [sz(tps)] , (4.59)
and

Be(t) = vee [V (ah,)] vee [V ()] (4.60)

is real.

We will find the vec(:) notation useful in a number of cases later in the
text.
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4.1.3 Separable Spectral Weightings

In Section 3.1, we introduced various spectral weightings to obtain desirable
sidelobe patterns and acceptable main-lobe beamwidths.
A straightforward approach is to use the linear array spectral weighting
along each axis:
Wim = Wn Wy (4.61)

Since the weighting is separable, the beam pattern will be a product of the
two linear array beam patterns. Then,

B(%, wy) = B(%) B(lpy) (4'62)

In many cases, this will lead to satisfactory patterns. The problem is that it
is not clear how the two-dimensional pattern will behave when ¢ # 0 or 7/2.
For example, we saw in Figure 4.13 that the sidelobe structure for ¢ = 7 /4
was significantly different than that for ¢ = 0 or m/2.

We consider an example to illustrate the behavior.

Example 4.1.2: Hamming window
We assume that M = N = 11 and use the Hamming weighting from (3.21):

o [ 2nlnd
wN(n):{ 0.54 + 0.46 cos (2321} | |n| < 5, (4.63)

0, elsewhere.

The resulting pattern is shown in Figure 4.16. In Figure 4.17, we show pattern cuts at
¢ = 0° (or 90°) and ¢ = 45°. We see that the main lobe is wider for ¢ = 0° (or 90°). The
sidelobes are lower for ¢ = 45° than for ¢ = 0° (or 90°).

This behavior is typical for separable weightings. In order to obtain beam
patterns whose pattern cuts are similar for all ¢, non-separable weightings
are required.

4.1.4 2-D z-Transforms

Just as in the 1-D case, we can write the z-transform of the weighting matrix
as

N-1M-1
B,(z1,22) = Z Z Wom 2] “ 25 (4.64)
n=0 m=0
We define
zp = eV (4.65)
and

2y = eIy, (4.66)
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Figure 4.17 Beam pattern cuts: separable Hamming weighting.
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The beam pattern can be written as

N—-1

N1 _M-1
By ) = |21 7 % * Bi(a1,2) L)

z1 —eivx ,22 :ej¢y

4.1.5 Least Squares Synthesis

In this section, we apply the least squares results in Section 3.5 to planar
arrays. The square error can be written as

27
= i /0 / |Ba(0, ¢) — Z wilv, (6, ¢)|*sin0 d6 dp (4.68)

Differentiating with respect to wi/ and setting the result equal to O
gives,?

2w o
Wino = 1= [ [ v(6,6)B3(0,6) sin0 d do,
R o Jo
m=0,---,M—-1, (4.69)
where
1 2w I i
A, — _/ / Vi (0, $)vE (6, ¢) sin 6 d6 do,
dr Jo Jo
m=0,---,M -1 (4.70)
is an N x N matrix. From (4.50), we observe that

Vi (Y, l/)y)Vﬁ(%, %) = Vm(0> ¢)Vg(6> ¢) (4-71)

is not a function of m so the subscript can be removed from the left side of
(4.70). Evaluating (4.70) gives:

[A],,; = sinc[(n — )] = mdy (4.72)

for a standard rectangular grid. Thus,

1 2r pm
Wmo = —= / / vim(0,$)Bj(0, ¢) sin 0 df d¢. (4.73)
ar? Jo Jo

We consider two examples to illustrate typical behavior.

Example 4.1.3
The desired beam pattern is shown in Figure 4.18.

2This approach is the same as Section 3.5.
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v

Figure 4.18 Ideal rectangular wavenumber beam pattern.

. 1, *%S%S%;*%Sd} Sd)b,
B’l/) (wzﬂ/}y) - { 0’ elsewhere. Y (474)

The limits of the integrand are completely inside the visible region so that we can use
rectangular coordinates. The nth component of W, o is

i [ [ oo - 5o

2) ]} doa v,

n=0,--,N—1,
m=0, -, M~1 (4.75)

Integrating gives

3 sin ((n — 252) 4, sin ((m — M2 W)
T y——

S, M =1 (4.76)

which is a separable weighting. The weight is real, so [Wm o}, = [wfn,o]

The resulting beam pattern for N = M = 11 is a product of the uniform beam
pattern in Figure 3.32 with a uniform beam pattern of identical shape (with ¥, # ¥5). As
expected, we have an overshoot because of the Gibbs phenomenon.

Just as in the 1-D case, we can alleviate the overshoot problem by using
one of the windows discussed in Section 3.1. For example, if we use the
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%
Null
‘L X Sidelobe

Figure 4.19 Ring-type sidelobe structure of ¢-symmetric pattern.

Kaiser window from Example 3.4.3, the resulting pattern will be a product
of the beam pattern in Figure 3.33 with itself when 1, = 9.

In a large number of applications, we would like the beam pattern to be
uniform in ¢. This corresponds to circular symmetry in (¢, ¥, ) space. This

By ($e,9y) = By, (\J¥3 +v3). (4.77)

The argument of the function on the right side corresponds to the radial

wavenuber,
Pr = \JVI+ P2 (4.78)

Beam patterns satisfying (4.77) will have a ring sidelobe structure, as
shown in Figure 4.19, and will lead to a non-separable weighting function.

implies,

Example 4.1.4%

The simplest case corresponds to a desired beam pattern that is constant over a circular
region, as shown in Figure 4.20.

In this case, it is useful to use symmetric indexing. Then, for N odd,

N-1 M-1
2 2
Bll’ (e, ) = Z Z o ej(nw:c+mw.y), (4.79)
= N2—1 m=— M2—1

3This example is on p. 446 of [RG75].
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v

Figure 4.20 Desired beam pattern: circular symmetry.

and, for N even,

M
2
S (et (4.80)

NIZ

B(/) (wz»wy) = Z
"n o

O”i:

m= —
m #

The weight is denoted by a},,, when symmetric indexing is used.

Since the beam pattern has circular symmetry, the weighting function will have circular

symimetry.
a*(n,m) = a; (\/n2 + m2> ) (4.81)

A simple way to find a*(n,m) is to first find a”(n,0) and then replace n by vn? +m?2:

1 ¥R . wz—w,
“(n,0 e
a (n» ) 471'2 /_ 1[) / _wz

1 ¥r
= 1= / v [2/0% = 03] due. (4.82)
¥R

Letting,
1/)1 - de Sin ‘pa (483)

@ = tan™" <$—z> . (4.84)

where
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Figure 4.21 One quadrant of a rectangular array: d, = dy, = 0.9A.

Then
dipe = PR cosdp, (4.85)
and
M _ 1 .% 2 2 v npnsin
a"(n,0) = o) /_zL W (cos’p) €VETTP dy
2
YrJ1 (Yr1)
- s 4.86
2mn ’ (4.86)

where J1(-) is the first-order Bessel function. In (4.86), n is treated as a continuous

variable. Then
YrJ1 (Yr V2 + m?)
2mv/n? + m '

Now consider a square array with N elements in each direction. One
quadrant of a square array with N = 20 is shown in Figurc 4.21. We
consider two ways of truncating a*(n,m) in (4.86).

The first choice is to let

N a*(vn?+m?), 0<Vn2+m? <10,
a”(n,m) = (4.88)
0, elsewhere.

The eflect of (4.88) is to give the square array a circular boundary as
shown in Figure 4.21. All of the elements outside of the circular boundary
have zero weights.

a*(n,m) = (4.87)
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Beam pattern (d

Figure 4.22 Beam pattern cut: standard rectangular grid array with circular
boundary: N = M = 10,9 g = 047, vn* + m? < 10, ¢ = 0°,30°, and 45°.

The second choice is to let

o*(n,m) = a*(vn?+m?2), 0<]n|<10,0<|m| <10, (4.89)
SN0, elsewhere. '

In this case, all of the elements have non-zero weights. To illustrate the
effect of the two boundaries, we consider the case in which 9% = (0.47)2.
Then,

0.47J; (O.47r VnZ ¥ m2)
a*(n,m) = . (4.90)

2rvn2 + m?

Beam pattern cuts at ¢ = 0,30°, and 45° are shown in Figure 4.22 for case 1

and in Figure 4.23 for case 2. We see that using non-zero weights for all of the
elements provides better sidelobe behavior. It gives a closer approximation
to circular symmetry for the sidelobes but slightly less main-lobe symmetry.

The cuts show the same Gibbs phenomenon as in the one-dimensional
case. This leads us to the topic of circularly symmetric windows and circu-
larly symmetric weightings.
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Figure 4.23 Beam pattern cut: standard rectangular grid array with square
boundary: N = M = 10,9z = 0.41,n < 10,m < 10, ¢ = 0°,30°, and 45°.

4.1.6 Circularly Symmetric Weighting and Windows

In Section 3.1, we developed a set of spectral weightings and then in Section
3.5 discussed their application as windows. We can extend these ideas into
two dimensions in a straightforward manner.

We want the beam pattern associated with the weighting (or window) to
approximate a circularly symmetric function. Huang [Hua81] showed that
weightings (windows) of the form

Wy, = W1 (\/ ne + mQ) , (4.91)

where w;(:) is a continuous one-dimensional weighting (window), provide
good results. Thus all of the weightings in Section 3.1 can be used for the
2-D case. As a simple example, we consider the example in Section 4.1.4.

Example 4.1.5 (continuation)

Assume that we use a Kaiser window

T

14

WK nm =

, 0<n<10,0<m<10, 4.92
1o(3) (4.92)
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Figure 4.24 Beam pattern cut: standard rectangular grid array with square
boundary: N = M = 10,vyr = 0.47, Kaiser window, ¢ = 0°,30°, and 45°.

where § = 5.0 and Iy is the modified Bessel function of zero-order. The constant 14
comes from /200, corresponding to the corner element of the array. We apply the Kaiser
window to a*(n, m) in (4.87). Figure 4.24 shows several beam pattern cuts. All three cuts
are identical. Figure 4.25 shows a plot of the beam pattern versus ug and uy. We see that
we have obtained a good approximation to circular symmetry over a significant part of the
Yn, P2 space.

Other weightings and windows are analyzed in the problems. In Section
4.3, we analyze circular apertures and develop some desirable beam patterns.
We will revisit rectangular grid arrays at that point and sec how well they
can approximate these beam patterns.

4.1.7 Wavenumber Sampling and 2-D DFT

In Section 3.3.3, we saw that Woodward’s approach to finding the weighting
function for a linear array corresponded to a DFT relation. These ideas
are readily extendible to two dimensions. The problem has been studied
extensively in the FIR context and is referred to as the frequency sampling

problem (e.g., Rabiner and Gold [RG75]).
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Figure 4.25 Magnitude of beam pattern versus u, and uy: standard rectan-
gular grid array with square boundary, Kaiser window.

The z-transform of the array weighting function is

N—-1M-1

B,(z,22) = Z Z w(n,m)zy " 25 ™. (4.93)

n=0 m=0

The beam pattern is

By (e, ) = e TCT 050 By )], ey (494)
and
Ba(21, 22)],y cotve smertn = Byt y)e T T 0t 00 (a.95)
We sample at
=-S5 F k0, N1, (4.96)
and
== ) —0 M -1, (4.97)

This corresponds to samples that are symmetric about the origin. Then,

B;:/) (djlkl y ’d)yk2 )e_j(N_;lwIkl +%wyk2)
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N—1M-1
= w(n, m)z; "tz "
n=0 m=0
N-1M-1 , .
= w(n, m)e J[(kl~y’§d)%"+(k2”"Mz_l)i_1m]
n=0 m=0
N-1M-1 Nt Mt
= (w(n, 7n)ej["r(—N_)+m”('M—)]> eI (kiR +ham 7] ,(4.98)
n=0 m=0
where N—1\ 2
— T
Lr/)a:/cl = <k)1——2——> N, kl—(),l, N-—l, (4 99)
M -1\ 27
= - — ok 0,1 M-1 4.100
(P (kz 5 )M’ 2=0,1,---, ( )
Now define e
b(n,m) —w(n,m)ej{"”( )t (M )], (4.101)
and
j M-1 k1:0717' 7N—17
Blkike) = By (o typa)e /T 0okt 55 a) 0 = 0,1, M — 1.
(4.102)
Then,
N-1M-1
J(kln +k2m ) kl :Ovla"'aN'_la
kl’kZ) z::"mZ:Obnme ’ kQZO,l,"',M—l,
(4.103)
which is the 2-D DFT. The IDFT is
N—1M-1 )
b(n,m) = jg: S Blky, ky)ed (kin 5 thamiz) (4.104)
NM =0 ky=0

To find the weighting function, we:

(i) Sample the desired beam pattern to obtain

(047 % (o ) %)

k1=0,--\N—=1,ky=0,---, M—1

(ii) Use (4.102) to find B(ky, ko)



Wavenumber Sampling and 2-D DFT 203

Yy

A
[ ] L ] * L ] L] L] L ] L ] L] L]
L] [ ] L] [ ] L ] L] L] L ] [ ] *
L] [ ] L] L ] L ] L] L ] L] [ ] *

VR
L] [ ] L ] L ] L] [ ] [ ] L ]
L] - * L] * L ] L ] *
» Yy

L] [ ] ® L ] * L] L ] L]
L ] [ ] L ] [ ] L ] L ] * *
* L] L] L ] [ ] L ] [ ] L ] L ] *
L] » ® [ ] . L] L ] L ] L] ®
[ ] L ] L] L] L ] L] L ] L] L] L ]

Figure 4.26 Sampling grid in wavenumber space.

(iii) Use (4.104) to find b(n,m)
(iv) Use (4.101) to find w(n,m)
(v) Use (4.1) to find Bg(y1,2)

If the desired beam pattern was synthesizable by a standard planar array,
then By(i1, 1) will equal Bg(t1,2). In this case, the choice of the initial
sampling point is unimportant.

For other desired beam patterns, the choice of the initial sampling point
will affect the accuracy of By(i1,12) and it may be useful to investigate
several options (recall the discussion in Section 3.3.3).

We consider a simple example to demonstrate the technique.

Example 4.1.6
Consider the 11 x 11 sampling grid in ¢¥-space shown in Figure 4.26. The samples are
at ((k1 — %) ZW", (lc2 — @) —%), 0<ki<N-~-1,0<k; <M-—1. The desired beam
pattern is constant over a circle of radius
2

Y=< V5. (4.105)

We set

B;p(krl —5,ky—5) = , 8 samples on edge, (4.106)

1, 13 interior samples,
1
2
0, all remaining samples.
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We carry out the five steps listed after (4.104) to find By(,y). In Figure 4.27(a),
we show the beam pattern. In Figure 4.27(b), we show several beam pattern cuts.

4.1.8 Transformations from One Dimension to Two Dimen-
sions

In this section, we consider a different approach to the specification of the
2-D beam pattern. In Sections 4.1.5 and 4.1.7, we specified the 2-D beam
pattern and then found a weighting function. In this section, we start with
a desirable 1-D pattern and transform it into two dimensions. We then
find the weighting function. The approach is due to Baklanov [Bak66] and
Tseng and Cheng [T'C68] and develops a transformation for the Chebychev
pattern, although the technique is applicable to any pattern. We develop
this technique in Section 4.1.8.1 and also consider alternative approaches.
In Section 4.1.8.2, we discuss some modifications to the technique.

4.1.8.1 Chebychev patterns for planar arrays*

In this section we consider the planar array shown in Figure 4.5. There are
N? identical elements. The interelement spacing is d, in the z-direction and
dy in the y-direction, so that the array is not necessarily square.

We assume that the weights are real and symmetrical about the x and y
axes and the elements are cophasal in the direction of scan (6, ¢o).

The beam pattern is

Be(0,¢) = B'(p (Y2, wy)
N N
4 Z Z Ump COS {(Qm — 1)%5] cos [(271 — 1)%}

m=1n=1

I}

(4.107)

for an even number of elements in each row and column, and

Bo(ea(b) = B’(’[)(wl'awy)
N+1N+1

= D > emeénamn cos [(gm _ 1)%}

m=1 n=1

- cos [(271 —1 )%} (4.108)

“Our discussion follows Tseng and Cheng [TC68].
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for an odd number of elements in ecach row and column. In (4.108) €, =
Im=16n=2,m# l;e, = 1,n = 1;¢,, = 2,n # 1. The variables ¢, and
P, are

e = @ (sin 6 cos ) (4.109)

and
2nd,

by = (sinf sin¢) . (4.110)

The separable approach is to generate B’l/’ (¥z,1y) as a product of two
Chebychev polynomials of order NV — 1. The resulting pattern is only opti-
mum when ¢, = 0 or ¢, = 0.

To get a Chebychev pattern in any cross section, we must use a single

Chebychev polynomial.> For N cven,

TN (:L‘o €os "1—’;- Cos %-‘i)
R )
where R = Tn_1(zp). The function ij (Yg,1y) has a maximum value of
Ty-1(zo) at vz = 1y = 0 and has sidelobes of value —20log R dB in any
cross section. The value zy is determined in the same manner as in the 1-D
case. For example, if N = M = 10, and we require —20-dB sidelobes, we
solve T'v _1(xq) = 10. This gives zy = 1.0558.
In order to find the corresponding weights, we find B(k1, k2) from (4.102),

B(k1, ks) = eI (MF ok + 5 iy )y ( zgcos <w—;’”-> cos (—djya’?)) R

ki =0,1,--+,N —1,
ky=0,1,- .M —1. (4.112)

By, (Yo, 1y) = (4.111)

where ¢, and ¥y, are given by (4.99) and (4.100). We use the four steps
following (4.104) to find w(n, m).
We illustrate the procedure with a simple example.

Example 4.1.7
Consider a 10 x 10 array with d; = A/2 and dy = A/2. The steering direction is
broadside (§p = 0°) and we desire —20-dB ring sidelobes. Then,

TN_l(:L‘o) = Tg(l‘o) = 10, (4.113)
and
zo = 1.0558. (4.114)

The weightings can be obtained by taking the IDI'T of (4.112) using (4.104) and (4.102).
The results are shown in Table 4.2.

5This result is due to Baklanov [Bak66).
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Table 4.2  Weightings Obtained from (4.112):
w?nnym:6,"',l(), n = ()’710

Wmn 6 7 8 9 10
6 0.7725 0.5686 0.7961 0.0294 1.0000
7 0.5686 0.9461 0.1186 0.6176 0.6667
8 0.7961 0.1186 0.4859 0.7773 0.2857
9 0.0294 0.6176 0.7773 0.3866 0.0714
10 1.0000 0.6667 0.2857 0.0714 0.0079

The 2-D Dolph-Chebychev pattern is shown in Figure 4.28(a). Several pattern cuts are
shown in Figure 4.28(b). We see that they exhibit the desired Dolph-Chebychev behavior.
Similar results are available when N is odd.

4.1.8.2 Modified transformations

The transformation in Section 4.1.8.1 used a cos(mi/2) term as a starting
point because of the Chebychev beam pattern.

In many other cases when the 1-D beam pattern is real and symmetric
we can write it as,

N—1

By () = 22: am cos(ma)), N odd, (4.115)

m=0

where, from Figure 3.22 and Table 3.2,

_ ap,

From our discussion in Section 3.5, we can write

P4

-1

By(6) = 3 dmlcos )™, (4.117)

1]

M‘

=
Ii
s

where G, and q,, are related by the Chebychev polynomials (3.133). We
create a 2-D beam pattern by using the transformation

COS ) = COS Yy COS Py, (4.118)

This transformation is a special case of transformation due to McClellan [McC82]

and is a generalization of the transformation used by Baklanov [Bak66] and
Tseng and Cheng [TC68].
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Figure 4.28 Four ¢-cuts of the beam pattern of a standard rectangular grid
array with rectangular boundary; N = M = 10; Tseng-Cheng distribution,
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The resulting 2-D beam pattern is

N-1

B'd} (1/)1, 1/}1/) = Z G (COS Yy COS I/Jy)m . (4'119)

m=0

Example 4.1.8

Consider an 1l-element rectangular array with d, = dy, = A/4. We use a Riblet
weighting with —20-dB sidelobes (e.g., (3.162)-(3.168) and Figure 3.28) and the transfor-
mation in (4.117)-(4.119). The resulting beam pattern is shown in Figure 4.29(a). Several
pattern cuts are shown in Figure 4.29(b). We see that the transformation provides the
desired 2-D beam pattern.

These two transformations, (4.111) and (4.119), provide an effective pro-
cedure for generating desirable 2-D beam patterns. We have demonstrated
them for the Dolph-Chebychev and Riblet-Chebychev patterns, but the gen-
eral technique is applicable to a large class of 1-D patterns.

4.1.9 Null Steering

Our basic discussion on null constraints in Section 3.7 was valid for arbitrary
array geometries. We then considered several examples using linear arrays.
We now consider the application to planar arrays. For notational simplicity,
we will only consider pattern nulls and not derivative nulls. The derivative
null case follows in a straightforward manner (see Problem 4.1.22).

As in (4.50), we can write the array manifold vector for the mth column
of the array in Figure 4.30 as

V() = eI (TF vet M uy) [ Iy piWetmiy L i(N=1)petmiy) }T.
(4.120)
We then create an NM x 1 array manifold vector, as in (4.54),
L Yo(#)_]
vec [Vw(zp)] = ; , (4.121)
| vm-1(¥) |

where v, (9) is the array manifold for the mth column, as shown in Figure
4.30 for M odd. The vector v is

| Ve
= [ by } , (4.122)
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Figure 4.30 Array manifold for rectangular array.

and ¢, and ¢, are given in (4.2) and (4.3).

The null constraint matrix is (from (3.251)),

Co = [ vec[ V()] i vee [V (wa)] -+ Fvee [Vp(a,)] |, (4123)

and has dimensions NM x My where My is the number of null constraints.

We assume that the desired weighting is given by an NM x 1 weight
vector wy. Then (3.268) applies directly,

-1
wil = wh - [wff Co [Clf Co Cgf] . (4.124)
We use (4.124) to compute the weight vector. The resulting beam pattern

is,

Bo(4) = Ba(w) — a Cfl vee [V ()] - (4.125)
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Using (4.123) in (4.125) gives,

By(¥) = By(¢p) —a . (4.126)

Just as in the 1-D case,

: _ 1 H
Bt : ) = smvee’ [V ()] vee [V ()] (4.127)
is the beam pattern of a uniformly weighted array steered to ¥ = 4,,,. Thus,
My
Bo(¥) = Ba() = > amNMBe(t : 1p,,). (4.128)
m=1

The results in (4.126)-(4.128) are useful to understand the behavior, but
(4.124) is used to compute wil.
We consider a simple example to illustrate the result.

Example 4.1.9

Consider a standard 10x 10 array with Dolph-Chebychev weighting (~20-dB sidelobes)
aimed at broadside. The spacing between elements is dz = %,dm = %. We put a null at
0 = —30° and ¢ = —60°.

Then

Co = vec {vd}(wm)] , (4.129)

with e = —0.257 and ¥my = —0.4337. The resulting beam pattern is shown in Figure
1.3L

4.1.10 Related Topics

In this section we have developed the major results for rectangular arrays.
There are several topics of interest that have been omitted:

(i) Beamspace processing: the techniques in Section 3.10 can be extended
to rectangular arrays in a straightforward manner.

(ii) The beam pattern design algorithms in Section 3.9.3 can be extended
to rectangular arrays.
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274 4.2 Circular Arrays

»
. -

Plane

/‘V&VC
C]

-
v

R ™\ Continuous

/ ring aperture
®

b pR.9)
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(iii) Rectangular apertures: the techniques utilized for linear apertures can
be extended to rectangular apertures.

(iv) Difference beams can be developed for rectangular arrays. In Section
4.3.4, we discuss difference patterns for circular apertures. These tech-
niques coupled with the techniques in Section 3.8 can be applied to
rectangular arrays.

(v) Arrays of apertures: the techniques of Section 2.8 can be extended to
rectangular arrays.

Most of these topics are developed in the problems.

4.2 Circular Arrays

The geometry for the circular array and ring aperture problem is shown in
Figure 4.32. The model in Figure 4.32 is for a continuous circular (or ring)
aperture. For an N-element array with equal spacing between elements we

sample the ring around the circumference. We begin our discussion with the
continuous ring aperture.
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4.2.1 Continuous Circular Arrays (Ring Apertures)

In this section we consider continuous circular arrays. These are also referred
to as ring apertures and are shown in Figure 4.4(c)® and Figure 4.32.
The first step is to find v(k) as defined in (2.28). The wavenumber is

. sin @ cos ¢
k = - sinf sing |, (4.130)

cos )

for a planc wave arriving from [0, ¢]. The position vector is

Cos ¢
Py, = R | sing; |, (4.131)
0
for an element at [R, ¢1]. Thus,
T 27 ) . .
kipy = - R sin § [cos ¢ cos ¢y + sin¢ sin ¢y]

2

= ——)\71 R sin0 [cos (¢ — ¢1)]. (4.132)

The frequency wavenumber response is
2 om .
T(w . k) — / w(d)l) Cjo R Sln()[COs(¢—~¢)1)] Rd¢1 (4133)
0

Writing (4.133) as a beam pattern

2n o
B(wa) /0 w(¢1)e]%\-RsmO[cos(qS—(pl)] Rdg,
2m
_ / w(y )eTRoRsinbleos(@=00)] pgs, (4.134)
0

where ko = |k| = 2r/A. Since any weighting function will be periodic in ¢,
we expand the aperture weighting function in a Fourier series.

o0
w(@) = Y wd™?, (4.135)
m=—0o0
where
, 1 21 —jme
wm:—/ w(¢) e 7" dg. (4.136)
27 Jo

®[Ma74] has a complete discussion of circular geometries. [Bag76] has this example.
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Each term is called a phase mode excitation of the aperture.
Then, (4.134) can be written as

> 2r )
B(6,¢) = Z w;”R/O ej[kORSIHOCOS(¢_¢1)+m¢1]d¢1
mMi=—00
= 2R Z m] " Jm kO-RSIHG)e]m(Zj (4137)
m=—00

where J,,,(x) is the Bessel function of the first kind of order m.
It is convenient to normalize the weights so that when wy = 1, B(0, ¢)
will equal 1.
I 1 .
Wy, = ﬁw’rn
We denote the component of the beam pattern due to the mth term as

m(67¢):

(4.138)

Bun(0,¢) = wmj™Jm (koRsin §) /™. (4.139)

We see that each phase mode excitation term gives rise to a spatial harmonic
in the beam pattern. This correspondence means that we can take a desired
beam pattern in the ¢-dimension, decompose it into its Fourier components,
and separately excite each of the Fourier components with a phase mode
term. The weighting must take into account the appropriate Bessel function
term. The observation was made by Davies [Dav65], [R*83] and can be used
to develop effective pattern synthesis techniques.

First, consider the case of uniform weighting,

0o = 1 (4.140)

and
m =0, m#0. (4.141)

The pattern is uniform in ¢ and the main response axis is perpendicular to
the plane of the aperture.

B(g, (b) = J() (kORsin 9) = J()(?/}R), (4.142)

where 5
VR = —;RsinG = 21 Rysinb), (4.143)

and R) is the radius measured in wavelengths.
For a ring aperture, Jo(-) plays the same role as sinc(-) did for linear
aperture. The two functions are shown in Figure 4.33. The first zero of
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-~ — Jylvg)
N I sinc(\vR)

0.5+ N

Figure 4.33 Comparison of Jo(vg) and sinc (¢Ygr).

Jo(¢R) is at g = 2.4. The first sidelobe level (SLL) occurs at ¢ = 3.8 and
its height is —7.9 dB. These values can be compared to a linear aperture.
The function sinc(tr) has its first zero at ¥g = 7 and its first sidelobe
occurs at ¥Yr = 4.7 with a height of —13.6 dB.

From (4.143),

0 = sin~! (%) , (4.144)
and the first null is at
2.
Onyrr = sin™! <27r;) . (4.145)

As expected, the beamwidth decreases as the radius increases.
The visible region corresponds to

0 <Jsinf| <1, (4.146)

or
0 <yYr <27R,. (4.147)

In order to generate a beam pattern with ¢-dependence we need to utilize
phase modes with m # 0. In many applications, we are primarily interested
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in the beam pattern in the zy-plane. We find that we can synthesize sat-
isfactory patterns for a specific 6y, but the sidelobe behavior is poor for
6 £ 0.

To illustrate a simple case of pattern synthesis, assume that 20 +1 phase
modes are weighted in the following manner:

1

_— M <m< M, 4.14
jm]m(Qﬂ'R,\), =M= ( 8>

Wy =

We first examine the pattern in the zy-plane (6 = 90° and sin = 1). This
weighting causes all of the modes to contribute equally to the beam pattern

M
Bm(90°%,¢) = > wnj"JIm (2nRy) /™
m=-M
M .
=y gme o nMe (4.149)
anlV' sin ¢

The resulting pattern is the conventional sin M ¢/ sin ¢ pattern in ¢-space.
Note that the pattern extends over 360° and the argument is ¢. This is
in contrast to the ULA, which extends over 180° and the argument is ¢ =
mcosf (for an array along the z-axis).

The amplitude and elevation dependence of each phase mode is governed
by the corresponding Bessel function.

For the weighting in (4.148), the pattern for other values of 6 is

M Jm (2n Ry sin 6)
Bl.o)= > Ty

m=-—M

eIme, (4.150)

Using the relation,
Jom(z) = (=1)"In(z), (4.151)

we can write (4.150) as

, M :
2
Jo (27 Ry sin 0) - Z 2Jm (2rRysinf)

B(0,¢) = o (2rEy) T (2R cos me. (4.152)

m=1

For small {6}, the beam pattern is still acceptable, but it degenerates rapidly
as § increases.

To determine how many modes can be excited for a ring aperture of
radius R, we examine the behavior of the Bessel functions in the visible
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Figure 4.34 Jo(¢r) through J7(¢¥r) versus ¥g; Yr = 2rRysind: Ry = 1.

region. The first seven Bessel functions are plotted versus x = 27 Ry sinf in
Figure 4.34 for the case when

Ry =1. (4.153)

In this case the visible region is 0 < = < 27. We see that the first six Bessel
functions have a non-zero value in the visible region, and that J; has a slight
non-zero value toward the upper end of the region.
In general, the amplitude is small when the order m exceeds the argu-
ment. Thus,
M >~ 27 Ry (4.154)

is a useful limit. We can use 2M + 1 phase modes.
In order to have each mode available, we need to choose R so that

In(27Ry) # 0. (4.155)

One can show (e.g., p. 307 of [R*83]) that if the diameter, 2R, is an integral
number of half-wavelengths, then (4.155) is satisfied.

We see that by using the phase mode excitation technique, for any given
elevation angle #, we can synthesize a desired pattern in ¢ corresponding to
a (2M +1)-element linear array. Thus all of the design techniques in Chapter
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y

A
4
K i
N-1
N-2

Figure 4.35 Geometry for circular array.

p—

3 can be applied to the ring aperture. In Section 4.2.3, we discuss methods
for immplementing phase mode excitation beam patterns.

In practice, we normally use a circular array rather than a continuous
aperture. We analyze its behavior in the next section.

4.2.2 Circular Arrays

The geometry of interest for the discrete circular array is shown in Figure
4.35. For isotropic elements, the array weighting will correspond to sampling
the continuous aperture weighting. If we assume the aperture weighting
generated M spatial harmonics, then a sampling theorem argument indicates
that we need (2M 4 1) elements to reproduce these spatial harmonics. Using
(4.154), this condition implies

2
N>2 (—7?) +1, (4.156)

which implies the spacing on the arc is

deir < 2. (4.157)

DO >
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To find the beam pattern, we use a sampling function. We assume that

the highest spatial frequency that affects the beam pattern is,

M =2nR,.

(4.158)

Then, the minimum sampling frequency is 4w Ry and the sampling interval

around the circle is

2 A

oT=3%mR T R

The sampling function is

oo
Se(¢) = ) 8(¢—ngr).
n=—oo
We can use the expression,
S 8(p—ngr)=— > 7N
oo e
and rewrite that sampling function as

Seld) = 30

q=—00
o0 o0
= 14 Z eINap Z e~ INao
q=1 g=1
Then, the weighting for the mth-order phase mode is,

win(9) = wine ™ Sy().
Using (4.162) in (4.163) gives

oo

(o)
Wi () = W™ + w3 NG gy N mINam),

g=1 q=1

The corresponding beam pattern for the mth mode is,
Bn(0,¢) = wmj™Jm(2nR) sin8)ed™®

+ Z Wi ~9J,(2m Ry sin §)e 9%
g=1

o0
+ Z Wy " T (27 R sin 0)e?"?,
h=1

(4.159)

(4.160)

(4.161)

(4.162)

(4.163)

(4.164)

(4.165)
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where g = (Ng —m) and h = (Ng +m).

The first term is the desired beam pattern corresponding to the ring
aperture and the remaining terms are residual distortion modes due to sam-
pling. The first distortion mode has a Bessel function of order (N —m). It
will have negligible amplitude in the visible region if

N—-—m> @ (4.166)
However,
2rR
m< M < iA- (4.167)
Thus, (4.166) implies that the distortion modes will be negligible if
4
N> WTR > oM. (4.168)
The condition in (4.168) is satisfied if
A
deir < - (4.169)

We can make the distortion modes as small as desired by increasing N.
In Table 4.3,” we show the maximum residual contribution as a function of

(N — M) for Ry = L.

Table 4.3 Maximum Residual Contribution as a Function of N

N 13 14 15 16 17 18 19

JIn-m(kor) || 0.158 | 0.073 | 0.029 | 0.010 | 0.003 | 8.8e-4 | 2.3e-4

We see that for N > 15, the residual contribution would be approximately
0.01 (dgr = 0.42). We will focus our attention in the text on arrays that
satisfy (4.168) and (4.169).

The total pattern is

BO.d) = S Bulf,4), (4.170)

m=—00
where By, (6, ¢) is given by (4.165). When the main response axis of the

array is steered, it is convenient to define a new set of variables.® The beam
pattern is

"From [MZ94].
8This is a reasonably standard derivation (e.g., [Ma74], p.192).
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Beam pattern (dB}
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Figure 4.36 Beam patterns for a uniform circular array steered to broadside:

(a) ¢ =0 and m; (b) ¢ = 7/2 and 37/2.

N—-1

B(8,¢) = Y wnexp[jkoRsin6 cos (¢ — ¢n) + jBal, (4.171)

n=0

where (3, is the phase factor with respect to the origin. To align the MRA
along (6o, ¢o),
Bn = —koRsinfy cos (¢pg — ¢n) - (4.172)

We now define a new set of variables,

p=HR{ {(sin& cos ¢ — sinfy cos dp)? +

[ L

+ (sin 6 sin ¢ — sin p sin qbo)?]

} , (4.173)

and

sin 6 cos ¢ — sinfy cos
cosE = ¢ 0 €OS @

0=

[(sin f cos ¢ — sinby cos ¢>0)2 + (sin 6 sin ¢ — sin g sin ¢0)2}
(4.174)
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We can rewrite (4.171) as

N
B(0,¢) = Z wn, €xp [Jkop cos (€ — ¢n)]. (4.175)

n=1

If we assume uniform excitation and equally spaced elements, then

wn = % (4.176)

and )
on = %n (4.177)
B(8,¢) = }: jNe=ImNE 7 v (kop), (4.178)

m=—00

where mN is the product of the index m and the number of elements V.
The termn corresponding to m = 0, Jo(kp) is the principal term and the other
terms are the residuals. This expression has the same form as (4.165) and
our previous discussion concerning residuals carries over. The behavior of
the pattern can be examined by plotting (4.178).

The beam pattern of a uniform circular array with 27 Ry = 10 for the
o = 0 case is plotted in Figure 4.36 for ¢ = 0 and ¢ = 7 and several values
of N. In this case, (4.178) reduces to

Yo eI g (koRsin) . (4.179)

m=—o0

The main-lobe behavior is adequately described by the Jy term. The effect
of finite N appears in the sidelobe structure.

In Figure 4.37, we show the beam pattern for a 20-element array with
2Ry = 27R/X = 10 (deir = A/2). In Figure 4.38 we show the vertical
patterns along the planes ¢ = 0° (the left side of the plot in ¢ = 180°). As
N is increased for a fixed 2r R/, the beam pattern approaches the beam
pattern of the ring aperture.

4.2.3 Phase Mode Excitation Beamformers

Davies [R*83], [Dav65] showed how to excite the phase modes using a Butler
beamforming matrix. Qur approach is similar to his original work. In order
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Figure 4.37 Beam pattern for a uniform circular array of 20 elements

(2rR/\ = 10).

180

Figure 4.38 Beam patterns as a function of 4 for a uniform circular array of
20 elements (2rR/\ = 10) with uniform weighting: ¢ = 0° (and ¢ = 180°).
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to generate the mth phase mode from the incoming signal, we multiply by
the N x 1 weight vector,

WHZJ__{I dmF oL L gmEO-Y | (4.180)

m \/N

We can generate a (2M + 1)-dimensional beamspace with the matrix B,
where

BgM = CjB{{a (4.181)
Blz{W_M e W oo WM], (4182)

and
C; &diag {77,571 1,51, M} (4.183)

The matrix B{' generates the phase modes and the diagonal matrix C; scales
the output. The scaling in C; is motivated by (4.139). Then the beamspace
array manifold vector is given by the (2M + 1) x 1 vector

ves(0,¢) = By v(0, ). (4.184)

Using (4.139), we can write (4.184) as

vis(l, @) = J(27 Ry sin0)v(¢), (4.185)

where the azimuthal dependence is completely contained in v(¢):
. ) . . T
v(d)) — |: e“]MGJ) P e"‘]q5 1 e]¢ e eJM¢ :| , (4186)

which has the same form as a uniform linear array. The elevation dependence
is contained in J(-),

j(m) & diag {Jp(z), -, Ji(x), Jo(z), i (z), -, Jpr(x) } .
(4.187)

We observe that vpg(6, ¢) is conjugate symmetric and that the columns of
Bpas are orthonormal.

We can now operate on vgs(8,¢) to achieve a desired beam pattern.
Defining,

ng:[wiM cewh e Wy }T, (4.188)

the output y(k) is
y(k) = wpyBEuyx(k), (4.189)
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x(k) Xpy (k) y{k)

Figure 4.39 Phase mode excitation beamformer.

and the beamn pattern is
B(6,¢) = wh J(2n Ry sin 6)v(e). (4.190)

The beamspace processor is shown in Figure 4.39.
We illustrate the design procedure with an example.

Example 4.2.1

Consider a 25-element uniform circular array with radius 2R = 10A. Using (4.154),
we see that we can excite 21 phase modes.

We design the beam pattern for the case when 8 = 90°. The desired pattern corre-
sponds to the Villeneuve pattern in Figure 3.31(a) in ¢-space instead of u-space.

To achieve the desired pattern, we use

[ H ]m" [W%L]m

— - lm 4.191
Wpa jme(‘Zﬂ'Rx)’ ( )

where wyy, was derived in Section 3.5.4. The resulting beam pattern is plotted versus ¢
for 8 = 90° in Figure 4.40. The pattern exhibits the desired behavior for § = 90°, but
deteriorates rapidly as # moves away from 90° (these patterns are not shown). To achieve
satisfactory behavior we need to introduce vertical directivity in the sensor elements. We
do this in the next example.

Example 4.2.2 (continuation)

Consider a 25-element uniform circular array with radius 27 R = 10A. Each element is
a linear aperture that is parallel to the z-axis (perpendicular to the zy-plane) with length
L = 10\. We use the same phase mode weighting in (4.191). In Figure 4.41, the resulting

beam pattern is plotted versus ¢ for § = 0.5137x radians. (This corresponds to the first
sidelobe of the element pattern.) The resulting pattern is well-behaved.

The argument of the Bessel function restricts both the elevation beam
pattern and the array bandwidth.? This limitation is due to cancellation
effects between elements at opposite sides of the circle. Therefore, most
circular arrays use elements with an element beam pattern whose main re-
sponse axis is in the radial direction. Synthesis of desirable array beam
patterns is more difficult because the pattern is not a product of the ele-
ment pattern and the array factor. Discussions of this topic are contained

in Mailloux [Mai94], Davies [Dav87], and Rahim and Davies [RD82]. The

9This discussion follows Chapter 4 of Mailloux [Mai94].
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Figure 4.40 Beam pattern versus ¢: Villenueve phase excitation, 8 = 90°.
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Figure 4.41 Beam pattern versus ¢ for various : Villenueve phase excitation,
6 =0.514n.
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\ 4
=

Figure 4.42 Circular aperture.

synthesis techniques that were developed in Section 3.9.3 are applicable to
this problem and have been applied to it by Sureau and Keeping [SK82] and
Bell et al. [BVT99].

In many applications, the main response axis is scanned in azimuth and
only the elements in a 90° sector centered on the MRA are utilized. The
techniques in Section 3.9.3 are useful in this case also.

Other references that discuss various aspects of circular arrays include
Hansen [Han98], which contains a history of the various advances, and the

book by Ma [MaT74].

4.3 Circular Apertures

In this section we consider the characteristics of circular apertures lying
in the zy-plane, as shown in Figure 4.42. These apertures are important
in many applications (perhaps the most common being the aperture of a
parabolic antenna). In addition, they provide the limiting case for several
array configurations such as the concentric circular array shown in Figure
4.2(b) and the hexagon array shown in Figure 4.3.
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4.3.1 Separable Weightings

We assuine that the weighting function is separable in polar coordinates,

w(r, Pa) = wR<T) w¢<¢a)- (4.192)

We will find that a number of useful beam patterns can be synthesized with
separable weightings. The beam pattern for a broadside beam (6y = 0) is
given by

R por
B(6,¢) = / / T, Bq) €xp ]77” sinf cos (¢ — ¢g)| rdrdg,. (4.193)

Letting k, denote the radial component of the wavenumber,

k= 2™ gino, (4.194)
A
and defining ,
a:¢—¢a+g, (4.195)
we can write
sin « = sin <¢ — ¢g + g) = cos (¢ — ¢q) . (4.196)

Using (4.194)-(4.196), the becam pattern can be written as

o R
B(6, ¢) :/0 d¢a/0 w(r, dq) exp (jkr sina)rdr. (4.197)

We can write the exponential term in (4.197) as a Fourier series,

exp (jk, sin ) Z In(kr) e]”a (4.198)
n=—o
where ) .
Julke) = = / exp [£] (k sinz — nz)] dz. (4.199)

Using (4.192), (4.195), and (4.198) in (4.197), we have'?
i ) 2m .
B(Q,qf)) - z Jn elne [/ w¢(¢a) e~ Inda dﬁba:l
0

2
<—”—71 sin 9) rdr, (4.200)

'OWe use exp (j%"—) = j" and J_n(z) = (—1)"Ja(z).
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which is the desired result. We now consider some simple cases. Assume
wy(dg) = 7P (4.201)

This is equivalent to a sinusoidal variation in ¢. Substituting (4.201) into
the first integral in (4.200) gives,

2r
/ eI m=m)de g = 278, (4.202)
0
so (4.200) becomes
B g m gme [T 2rr _
(0,¢) =2mj"e ; wr(r) Jm —A—sm9 rdr. (4.203)

For the special case in which m = 0, the weighting in the ¢-direction is
uniform and

R 2mr
B(6,¢) = B(6) = 2r / wr(r) Jo (T sin 9) T dr. (4.204)
0
If we substitute!! oR
UR = - sin g, (4.205)
r
== 4.206
p R ) ( )
and - "
go(p) = — wr (—p> : (4.207)
T s
then (4.204) can be written as,
BO) = [ poole) Jo(urp) dp. (4.208)

The reason for this choice of variables is to obtain an integral with [0, 7]
limits.

The final simplification is to assume that wg(r) is constant (wgr(r) = ¢)
from 0 to R. In this case, we can use (4.204) without the change of variables.
Then (4.204) becomes

R
B(0) = 27c / Jo (2% sin 9) rdr. (4.209)

0

"'Note that ug is not the radial component in (15,1 ) space. It contains a factor of R
so the visible region is 0 < ug < 2R/A. This notation is used to be consistent with the
antenna literature.
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Figure 4.43 Beam pattern of a circular aperture lying in the zy-plane with
R/X = 10 and uniform weighting; the horizontal axis is ug = ¥r/7 and the
visible region is 0 < u < 2R/\.

Using
R R
/ 2 Jo(aw)dz = — i (aR), (4.210)
0
we obtain
Jl Budis sin 6
B(6) = cR ( - ) (4.211)
)
One can show that
B(0) = crR?, (4.212)

so the normalized pattern is

Jh <——2’I\R sin 9) Ji(mug)
B(#) =2 =2 . 4.21
(©) ———27;1{ sin 6 TUR ( 3)

The visible region is 0 < ¢¥p < 27R/A. In Figure 4.43 we plot the
normalized beam pattern versus ug.
The first null of Ji(7ug) is at

up = 1.22, (4.214)
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or

g = sin™* <1.22 5%) . (4.215)

The height of the first sidelobe is —17.6 dB.
One can show that the HPBW is

A A
AP = 2sin”! <0.257ﬁ):0.514§rad

A
= 29.2§degrees. (4.216)

This compares to the HPBW for a square aperture of the same area

2sin ! <0.250%) ~ O.SO%rad

Nbgq

H

A
28.65Edegrees. (4.217)

Thus, the circular aperture has a slightly larger 3-dB beamwidth, but the
sidelobes are significantly lower (—17.6 dB vs. —13.4 dB).

In order to improve the sidelobe characteristics, a nonuniform radial
weighting is used. A family of weightings that is used in practice (e.g.,
[Bal82], [Jas61] ) is

(2" =
'UJR(T'):{ |:]' (R)} ’ 037’§R,n——0,1,2,3, ) (4218)

0, elsewhere.

For n = 0, we have the uniform distribution that we just analyzed. The
characteristics for n = 0,1, and 2 are shown in Table 4.4. As n increases,
the HPBW increases and the height of the first sidelobe decreases.
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Table 4.4 Characteristics of Circular Apertures with Circular
Symmetric Weightings!?

Radial Taper
Radial Weighting Uniform Radial Taper Squared
r\2 0 211 2 2
wl(r) =@ @] | -@7
Beam
pattern 2 JlJi" 8!1@;&2 48 Js(¥r)
Half-power
beamwidth 292 364 421
X 5y T
(degrees)
R> A
BWyn
(degrees) 599 934 116.3
A Y Y
R> A
First
sidelobe -17.6 —24.6 —30.6
(dB)
Directivity | 0.5(22)* | 0.375 (28)? | 0.28 (%£)°

4.3.2 Taylor Synthesis for Circular Apertures

Taylor [Tay60] also developed a synthesis procedure for circular apertures

that is a modification of the procedure developed for line sources in Sec-

tion 3.5.3. He starts with the pattern for a uniformly illuminated circular

aperture Jy(mu)/(mu) and removes a set of zeros from it and adds new zeros.
The roots of Jy(wu) are the values of u,, such that

Ji(mum) =0, m=1,2,--. (4.219)

The Taylor pattern is obtained by removing first (7 — 1) root pairs and
replacing them with (7 — 1) new root pairs

a~1 (¢ _ w?
Bray(u) = Jlgu) H:_:{ Ei - z;—)) (4.220)
m= Uz,

2Table follows [Jas61], [Bal82], and [Mai94].
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(dB)

Beam pattern

-35

Figure 4.44 Taylor pattern for a circular aperture, 7 = 6, —20 dB SLL;
R =25\,

Taylor showed that the location of the new roots should be

2
A%+ (n—1
2=l —(—j)g (4.221)
A2+ (7~ )
where |
A = = cosh™!(Ry), (4.222)
s

or, in other words, —20log;, cosh(mA) is the desired SLL.

A representative Taylor pattern is shown in Figure 4.44 for 7 = 6 and
—20-dB sidelobes. The radius R equals 5 so, from (4.205), the visible region
is IURI < 10.

To find the aperture weighting go(p) that will produce this pattern we
write go(p) as a series

0) = 3" B Jo(ump), (4.223)

m=0

where the u,, are roots of Ji(wu) and the B,, are the coefficients in the
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series. Then the pattern is

Bray(u) = Z Bm/0 p Jo(ump) Jo(up) dp
m=0
_ i B {Umle ump)Jo(up) -upJo(ump)Jl(up)} "
N m w2 — 2
=0 m 0
(4.224)

We denote the kth zero of the uniform distribution by ug. Now Bray (uk) is
determined by a single term in the series,

Bray (ux) = Bk/o p JE (uxp) dp

2
= B | [ + )]

0

?
= Bk 7 ‘]O (ukﬂ') . (4.225)
Thus,
2 Bray(ux)
By = — ———-. 4.226
TR JE (ugm) ( )
Since Bray (ug) = 0 for k > 71, the sum in (4.224) is finite and
2 ™ Bray Bray (um)
=3 Z T Jo(ump), (4.227)
m=0 0

where Bray (um) is obtained from (4.220). The zero locations of Ji(umm)
are shown in Table 4.5.

Table 4.5  Zero Locations w, for Ji(mum,)'
Um m Um | M U m Ui
1.2196699 6.2439216 | 11 11.2466228 | 16 16.2476619
2.2331306 7.2447598 | 12 12.2468985 | 17 17.2477974

4.2410629 9.2458927 | 14 14.2473337 | 19  19.2480262
5.2439216 | 1 10.2462933 | 15 15.2475086 | 20 20.2481237

v W =3

6
7
3.2383155 | 8  8.2453948 | 13 13.2471325 | 18 18.2479181
9
0

3From [E1I81].
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Figure 4.45 Weight function: Taylor weighting and radial taper squared
weighting.

Tables of the roots of circular Taylor patterns and the corresponding
aperture distributions are given in Hansen [Han59], [Han60]. Hansen[Han60]
also compares the characteristics of Taylor weightings and the second-order
weighting from Table 4.4. In Figure 4.45, we show the Taylor weighting
function for the 30-dB sidelobe case and the second-order weighting from
Table 4.3. The beam patterns for the two weightings are shown in Figure
4.46. The main-lobe beamwidth is larger using the radial taper squared, but
the sidelobes decay more quickly. In Table 4.6 (from [Han60]), we show the
comparative beamwidths for the Taylor weighting and the (1 — (r/R)?)V
weighting. We see that for similar first sidelobe levels there is a significant
decrease in the beamwidth obtained by using the Taylor weighting. However
the remaining sidelobes decrease more rapidly with the radial taper.

Table 4.6  Comparative Beamwidths
Taylor (1-(r/R)*Y

Sidelobe | | Beamwidth || Sidelobe | N | Beamwidth
Level, dB Level, dB

25 4 1.13A/2R 24.6 1 1.27A/2R

30 41 1.20A/2R 30.6 2 1.47M/2R

35 5 1.25)\/2R 36.0 3 1.65M/2R

40 5| 1.31\/2R 40.9 4 | 1.810/2R
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Figure 4.46 Beam patterns for Taylor weighting and radial taper squared
weighting.

4.3.3 Sampling the Continuous Distribution

In many applications we approximate the circular aperture by a discrete
array. In this section,' we discuss the effect that sampling the continuous
aperture function has on the beam pattern.

We first consider a rectangular array with a circular boundary. One
quadrant of a 20 x 20 array is shown in Figure 4.47. We want to approximate
the Taylor pattern in Figure 4.44.

For the nmth element, the distance from the origin is

= [ D] [ %ﬂé L a2

where symmetric indexing is used. Then,

dnm
nm — T 4.229
p I ( )
and
Wnm = 0(Prm)- (4.230)

M This section follows Elliott [El81], pp. 225-230.
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R
\ 4
m

Figure 4.47 One quadrant of a rectangular grid array with circular boundary:
dy = dy = 0.5\, R = 5\

The beam pattern can be written as

B(8,¢) =4 io: i Wy, COS [(Qn — 1)7%] cos [(2m — 1)7’%] , (4.231)

n=1m=1 2 2
where
Py = wSsinf cos ¢, (4.232)
Yy = wsinf sin ¢. (4.233)

In Figure 4.48, we show four cuts of the pattern for ¢ = 0°,15°, 30°,45°, We
see that there is reasonable agreement with the continuous pattern in Figure
4.44,

In Section 4.4, we discuss hexagonal grids and their ability to generate
various circular patterns.

4.3.4 Difference Beams

In Section 3.8, we explored the usage of difference patterns in linear arrays.
They play a similar role in circular apertures (and arrays). In this section,
we develop a general structure for difference beams.!®

®Qur discussion follows Section 6.11 of [ElI81].
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Figure 4.48 Beam pattern cuts: rectangular grid array with circular bound-
ary; N =20, SLL = —20 dB, 72 = 6, R = 5), weights obtained by sampling
continuous Taylor distribution.

In order to find the beam pattern we write w(r, ¢) as

oo

w(r,¢) = Z wp (r) P, (4.234)

n=—oo

Then, from our discussion in Section 4.3.1 (specifically (4.192)-(4.202)), we
can write the beam pattern as

0 R
B0, ¢)=2m Y (j)"e? / wn(r) Ju(ky sin 6) v dr. (4.235)
n=--00 0

In Section 4.3.1 we focused on the case in which only wy was non-zero.

In order to construct a difference beam we look at the special case in
which only the n = +1 weights are non-zero. We denote this difference
beam as D(6, ¢). Letting n = 41 in (4.235) gives

‘R _
D(6,¢) = 27rj/ [ & wi(r) Ji(ky sin )
JO

—e % w_y(r) J_1(k, sin 9)] rdr.  (4.236)
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Since J_i(z) = —J1(z), if we set w_1(r) = wy(r), then (4.234) becomes
w(r, @) = 2w (r) cos @, (4.237)

and (4.236) becomes

R
D(0,¢) =4rjcos¢ / wi(r) Ji(k,sin @) rdr. (4.238)
0
We see that the resulting pattern is of the form
Do (6, ¢) = 4mj cosd Dg(0), (4.239)

where Dy(8) is the integral in (4.238). Now consider a cut of the pattern
through any plane containing the z-axis. Then,

Dy (6, ¢) = 4mj cos ¢ Dy(6), (4.240)

and
Do(8,¢ + m) = —4mj cos ¢ Dy(0), (4.241)

which give a difference pattern in the various planes containing the z-axis.
The function Dg(0) is weighted with cos ¢ so the maximum slope is in the
xz-plane and the function is zero in the yz-plane.
To develop a useful difference pattern for the yz-plane, we set w_,(r) =
—w1(r). Then,
w(r, ¢) = 2jw;(r) sin ¢, (4.242)

Dp(6,¢) = —4r sin ¢ Dyg(6). (4.243)

This difference pattern provides maximum slope in the yz-plane. Thus, we
utilize a beamspace consisting of a sum beam and two difference beams
Dq(0,¢) and Dg(6,$). The shape of the difference patterns is determined
by Dg(f). We now focus on how the aperture weighting function affects
Dy(6).
Defining
r

2
u = ~XR— sinf, p= X (4.244)

we can write Dg(6) as,

Do) = (£) [ o) nwp) e (4.245)
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In order to perform the integration, we expand wi(p) in an orthogonal ex-
pansion of Bessel functions,

[eo]
= > Am J1(ump), (4.246)
m=0
where the u,, are eigenvalues that we will define shortly. Using (4.246) in

(4.245) gives

2 00
Do(u) = ( ) > An J1 ump) J1(up) pdp

m=0 0
_ P, [umpdi(up) Jo(ump) — upJo(up) Ji (tmp)
- m w2 — U2
m=0 0
(4.247)
Since vJo(v) = Ji(v) + vJi(v), where the prime denotes differentiation,
(4.247) can be rewritten as
R\? & U} (wrp) Ji (up) — upJ(up) Ji (ump)]|"
D(}(U) = (”‘) Z Am [ = 1( = u2)_u2 ' ) :|
0
_ 4 T J1 (FUm ) J1(mu) — mudy(ru) Jy (7rum)
= Z m oy
=0
(4.248)

To get Dy(u,) equal to zero for n # m, we require either Ji(muy,) = 0 or
J{(mum) = 0. The first choice requires wi(w) = 0, which is undesirable, so
we use the second option. The u,, are the zeros of J'(nu), so

J (mum) = 0; (4.249)
then (4.248) becomes
R\? & muJi(mu
Dy(u) = (-) S Ay Jy () T (4.250)
) = uZ —u

The zeros of J|(z) are tabulated (e.g., p. 252 of [Ell81]). The first 10 zeros
are shown in Table 4.7.
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Figure 4.49 Aperture distribution for generic difference pattern: v = 0.586p.

Table 4.7  Bessel Function Zeros, J{(mum) =0

m U m Um

0 0.5860670 5 5.7345205
1 1.6970509 6 6.7368281
2 27171939 7 7.7385356
3 3.7261370 8  8.7398505
4 47312271 9 9.7408945

We now consider the simple case in which there is a single term corre-
sponding to m = 0. In this case,

R>2 ApJ1(0.5867) [ Tudi(Tu) } ' (4.251)

DG(U) <71' (0586)2 1— (0_5286)2

The aperture weighting J1(0.586p) is shown in Figure 4.49 and the beam

pattern is shown in Figure 4.50. We see that the first sidelobe is at about

—14 dB. We would like to preserve an adequate slope at the origin and
decrease the height of the sidelobes.

This problem is analogous to the linear array problem that led to a

Bayliss difference pattern. Bayliss [Bay68] also derived the difference pattern
for a circular aperture.
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Figure 4.50 Beam pattern for generic aperture distribution: ug = 2Rsing/\.

The reader should consult the above reference for a discussion of Bayliss
difference patterns for circular apertures.

A sum beam and two difference beams are often used to estimate (6, ¢) of
a signal (or target). In later chapters, we use these beams to do beamspace
processing.

4.3.5 Summary

In Sections 4.3.1 and 4.3.2 we developed techniques for synthesizing beam
patterns for circular apertures. Our emphasis was on patterns in which
the weighting in the ¢-direction was uniform. However, the relationships
in (4.200)-(4.203) can be extended to include non-uniform weightings. We
found that uniform weighting leads to a Ji(¢¥'r)/¢¥r beam pattern. We devel-
oped a family of radial taper weightings and Taylor weightings that resulted
in lower sidelobes.

In Section 4.3.3, we discussed sampling the continuous distribution using
a rectangular grid. Although the performance was satisfactory, we will find
that the hexagonal grid in Section 4.4 provides a better approach. In Section
4.3.4, we developed techniques for synthesizing difference beams.
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Figure 4.51 Configuration of a typical hexagonal array.

4.4 Hexagonal Arrays

4.4.1 Introduction

In this section, we discuss arrays whose elements are located on a hexagonal
(or equilateral triangular) grid, as shown in Figure 4.51. The horizontal
interelement spacing is d, and the vertical spacing between rows is

dy = ~"dg. (4.252)

The motivation for using hexagonal-grid arrays can be approached from
three viewpoints. The first viewpoint emphasizes that the array is sampling
a spatial field. Peterson and Middleton [PM62] showed that hexagonal sam-
pling is the optimum sampling strategy for signals that are bandlimited over
a circular region of the Fourier plane. In the array case, this corresponds to
the visible region,

w?+ul <1 (4.253)

We revisit this viewpoint in Chapter 5.
The second viewpoint emphasizes the grating lobe viewpoint. Sharp
[Sha61] shows that if the main beam is required to scan inside a cone whose
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Figure 4.52 Nineteen-element hexagonal arrays.

axis is normal to the array, then the number of elements can be reduced by
13.4%.

A third viewpoint emphasizes the circular symmetry of many desired
beam patterns. To illustrate this point, consider the 19-element hexagonal
array in Figure 4.52. The hexagonal grid causes the elements to be arranged
in concentric circles. From the discussion in Section 4.1, we would anticipate
that the hexagonal array would be an efficient arrangement.

Our discussion will focus on triangular-grid arrays that have six equal
sides with

dy = 3, (4.254)

and

V3

dy = "\ (4.255)

We refer to these as standard hexagonal arrays (SHA). The total number
of elements will be 7, 19, 37, 61, - - -,

Ng—1
2
Ny =1+ ) 6n, (4.256)
n=1

where N is the number of elements in the horizontal row through the origin,



Beam Pattern Design 307

and N, is odd in order to get a symmetric array. Standard hexagonal arrays
with Ny = 7 and 19 are shown in Figure 4.53.

This configuration is useful whenever the desired beam pattern is cir-
cularly symmetric. An application that uses a similar configuration is a
geostationary military satellite operating at 8 Gllz that uses a 19-beam
multiple beam antenna for reception and 61-beam multiple beam antenna
for transmission.

Our discussion of hexagonal arrays is reasonably short because many of
the rectangular-grid techniques can be applied directly to hexagonal arrays
by using an appropriate coordinate system.

In Section 4.4.2, we discuss several beam pattern design techniques that
are representative of possible approaches.

In Section 4.4.3, we discuss a hexagonal-grid to rectangular-grid trans-
formation that will be useful for several applications.

In Section 4.4.4, we summarize our results.

4.4.2 Beam Pattern Design

In this section we discuss techniques for beam pattern design for standard
hexagonal arrays. To illustrate the notation, consider the standard 19-
element hexagonal array shown in Figure 4.53(b). Each horizontal row of
sensors is indexed with the variable n, which ranges fromn = 0 ton = N, —1,
where N, is the number of elements in the row. The rows are indexed by
the variable m, which ranges from —(N; —1)/2 to (N — 1)/2. ‘We see that
N, = N —|ml|.
We define a 19-element array manifold vector as,

vecy (Ug, Uy) = [ vIiovT v ovT Vv ]T, (4.257)
where
vg = eV [ emimus ] eI ]T, (4.258)
vy = ejﬂ@uy [e_j”%l e ITF eIm ej”S_;z‘]T, (4.259)
v = [e"ﬂ"“z e Imle ] eJTUs ejzwuf]T, (4.260)
Vo= eI T [e—jﬂs—‘;l eI QT eﬂ%‘r, (4.261)
V_g = e T3 [e_j””x 1 ej’”‘f]T. (4.262)

We see that vecy (uz,uy) is conjugate symmetric.
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For a standard hexagonal array with N, elements along the z-axis, the
nmth term in the array manifold vector is

' B , \/3 Ny —|m|—1
[veck (ug, uy)]nm =exp{ 7 m—g—uy + Ny — 5 Uy

(4.263)
The beam pattern is

'rn:ﬂz;'_l

S . V3 Ny —|m| ~1
Bu(ug, uy) = Z Wy, €XP {ﬁr [m—?uy + ke

Ng—1
R
m= p)

Nz—|m|-1
> exp{jmnug}. (4.264)
n==0
For uniform weighting,
1
Wpm = Ny’ (4.265)
and
Ng
Bu( ) = 2 e ' m\/§u Nz_|m|—1u
WENy e TPV 2
m=—
Nz—|m|-1
Z exp {jmnuz}.  (4.266)
n=0

We first consider a design approach in which we construct the desired
weighting for the circular aperture using the techniques in Section 4.3. We
then sample the aperture weighting on a hexagonal grid to find the element
weightings.

To match the hexagonal array to the continuous aperture, we observe
that, if R is the radius of the continuous aperture and 2R/\ is an integer,

then

R= %/\. (4.267)

In our examples, we use N, = 11, which corresponds to a standard hexagonal
array with 91 elements.

Example 4.4.1 '
Consider a SHA with 91 elements with uniform weighting. Then By (uz,uy) is given
by (4.266), with N; = 11 and Ny = 91.



310 4.4 Hezxagonal Arrays

0~
~10 o
AT
& -20 'l'u'\
=
gV P Nt sy s U ‘
Q ¥ o 2% J T
= -40 J o 'Q‘ " [ /I N i 'N\\\
I' Hes i i
RV i ’jf/{//z~:: i "‘\\‘4 m i i
MM e
g y m Y, \ \\ \»'
D » I / 20 \u Al /II b
8 o0 ! \\ { \\”ﬂ ‘q,“ .;,'..“. \\\\‘t\ b ‘,
sl *“UWwawﬁm
-804 , l ’ ‘ \\\'« | {
1 1 T

M

0.5

Figure 4.54 Beam pattern of a standard 91-element hexagonal array with

uniform weighting.

The beam pattern is shown in Figure 4.54. A contour plot in Figure 4.55 shows the

6-fold symmetry inside the visible region. Beam pattern cuts at ¢ = 0°, 10°, 20°, and 30°
1

are shown in Figure 4.56. The horizontal axis is u, = (ufc + uz) 2. These pattern cuts can

be compared to the beam pattern of the circular aperture in Figure 4.43. The main lobe

and the first sidelobe are almost identical, but the other sidelobes vary from those of the

aperture.
In order to reduce the sidelobes we can use a radial taper from Table 4.4.

Example 4.4.2
Consider a standard 91-element hexagonal array. We start with the radial taper in
column 2 of Table 4.4.

2
wr(r)=1- (%) , 0<r <R, (4.268)

where

R =275\ (4.269)
We choose the hexagonal array weights using

(0= 2pi=t) )"+ (mofln)”

Wom =1 = (4.270)

The hexagonal array beam pattern is shown in Figure 4.57 with pattern cuts in Figure
4.58.
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Figure 4.55 Contour plot of a standard 91-element hexagonal array with
uniform weighting.
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Figure 4.56 Beam pattern cuts of a standard 91-element hexagonal array
with uniform weighting: (a)¢ = 0°; (b) ¢ = 10°; (c) ¢ = 20°; (d) ¢ = 30°.
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Figure 4.57 Beam pattern of a standard 91-element hexagonal array: radial
taper, R = 2.75\.
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Figure 4.58 Cuts through beam pattern of a standard 91-element hexagonal
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Figure 4.59 Beamn pattern of a standard 91-element hexagonal array with
radial taper squared weighting: R = 2.75A.

The corresponding beam patterns for the weighting in column three of Table 4.4 are
shown in Figures 4.59 and 4.60.

As expected, the sidelobe levels are much lower and the main lobe is wider for both
radial tapers in comparison to the uniform weightings.

In Example 4.4.2, we have assumed that the desired radial weighting function is known.
An alternative approach is to assume that the desired beam pattern is known and use
(3.156) to find the weight vector.

If we desire a Dolph-Chebychev beam pattern in each cross section, we use (4.111) :

Tn-1(xo cos 3”2— cos %1)

Bﬂl(wlﬁwy) = R 5

(4.271)

to generate the desired beam pattern. We sample the resulting beam pattern at Ny points
and use (3.156) to find wym.

If we desire a Taylor beam pattern, we use (4.220) and (4.221) to generate the desired
beam pattern. We sample the resulting beam pattern at Ny points and use (3.156) to
find wnm.

In both cases, it is important to choose a sampling grid that gives a well-conditioned
VH(1). Several examples are developed in the problems. A Dolph-Chebychev example is
done in Problem 4.4.5. The results indicatc that the resulting beam pattern is sensitive to
the sampling grid and the choice of Ny.
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Figure 4.60 Cuts through beam pattern for a standard 91-element hexagonal
array with radial taper squared weighting: R = 2.75\; (a) ¢ = 0° (b)
¢ = 10°; (c) ¢ = 20° (d) ¢ = 30°.

4.4.3 Hexagonal Grid to Rectangular Grid Transformation

Most of the Fourier transform relationships that we used for beam pattern
design and analysis can be utilized with hexagonal arrays by defining a suit-
able hexagonal Fourier transform or hexagonal DFT. An excellent discussion
of hexagonal signal processing is contained in Mersereau [Mer79)

We use an approach due to Lo and Lee [LL83] that is similar and adequate
for our purposes. The basic idea is to map the hexagonal array into an
equivalent rectangular grid array and formulate the processing using the
equivalent array.

In Figure 4.61(b), we show a 19-element standard hexagonal array. In
Figure 4.61(a) we show a 19-element array on a standard rectangular grid
(d = X/2). To obtain the rectangular grid array, we have rotated and
stretched the hexagonal grid array.

We write the beam pattern of the rectangular grid array in v-space,
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Figure 4.61 Hexagonal-rectangular transformation.

Nz—-1
2 . , Ny —|m|—1 m
By(vg,vy) = Z Wy, €XP {]71’ [mvy — x—|2—’————vz - gvm]}
m— Nm2—1
Ng—|m|-1
Z exp jrnu,, (4.272)
n=0
where ‘
Uy = sin 6, cos ¢y, (4.273)
and
vy = sin 0y sin ¢y, (4.274)

and the subscript “r” denotes rectangular.
Comparing the expressions in (4.272) and (4.264), we obtain the relation
between u-space and v-space,

Vg = Ug (4.275)
and J3
U 3
vy = 7“"‘ + 5y, (4.276)
or

0
/3 } u (4.277)
7
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and

V3 V3

We can take any hexagonal array and map it into an equivalent rectangu-
lar-grid array. The motivation for this transformation is that we will find
several array processing algorithms that work well on rectangular arrays. We

u:[ Y }v. (4.278)

implement these algorithms on the rectangular grid array and then transform
the results from v-space to u-space.

4.4.4 Summary

In this section, we have studied arrays whose elements are located on a
hexagonal (or equilateral-triangular) grid. The grid provides an efficient
spatial sampling strategy and is widely used in practice.

In Section 4.4.2, we considered standard hexagonal arrays and assumed
that we had synthesized the desired beam pattern using a continuous cir-
cular aperture. We then sampled the continuous aperture weighting on a
hexagonal grid to obtain the array beam pattern.

In Section 4.4.3, we introduced a hexagonal-grid to rectangular-grid trans-
formation that will enable us to use techniques developed for rectangular
grids to solve hexagonal-grid problems. We find this transformation to be
useful in several optimal array processing algorithms.

A number of other hexagonal-grid array issues are developed in the prob-
lems.

4.5 Nonplanar Arrays

In many applications of interest the physical location of the sensors must con-
form to the shape of the curved surface that they are mounted on. Examples
include arrays mounted on submarines, aircraft, or missiles. These arrays
are referred to as conformal arrays, and their properties are discussed in
numerous references.

References that discuss various aspects of conformal arrays include Bor-
giotti [Bor87], Hansen [Han81], Mailloux [Mai84], Antonucci and Franchi
[AF85], Hansen [Han98|, and Kummer et al. [KSV73].

A complete discussion of the issues associated with the various conformal
array geometries would take us too far afield, so we will restrict our attention
to two commonly used geometries: cylindrical and spherical. We discuss
cylindrical arrays in Section 4.5.1 and spherical arrays in Section 4.5.2.
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Figure 4.62 Cylindrical array geometry and the cylindrical coordinate sys-
tem.

4.5.1 Cylindrical Arrays

The cylindrical array geometry and the cylindrical coordinate system are
shown in Figure 4.62.

The element beam pattern are assumed to be isotropic. The beam pat-
tern is given by

N-1

2 M
B, ¢)= > 3 wine?¥P Nodd, (4.279)
N—-1 m==]

n=——g5—

2

where N is the number of circular arrays and M is the number of elements
in each circular array. The center of the circular arrays is the z-axis and the
array is symmetric in the z-direction about the origin.

We can use the discrete version of (4.134) to write

—1

3 M
B(@, qb) — Z Z w e]k:o Rsin @ cos(¢p—¢1)+2zn Cosf)] (4.280)
N

n=_>N=1m=1
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This can be written as

N-1

2 M
B((), (15) — Z 6jkozn cos { Z w:lme]kroRsmOcos(qS—qbl)} ) (4281)
/,L:_¥ m=1

The term in the braces is just the beam pattern of the nth circular array.
Thus,

N-—-1
2

B(H, ¢) = Z ejkozn COS&BciT‘,n(e’ ¢), (4282)

— N—1
n=-5

which is analogous to the beam pattern of a linear array with
W’ = Boirn (6, 9)- (4.283)

If wy,, in (4.280) is separable,

Wy, = Wi, (4.284)
then (4.281) reduces to
=
B9,¢) = Y wheltomesip, (0,¢)
N-1
nE=- e
= Blin(ga ¢) Bcir(ga ¢), (4285)

which is the pattern multiplication result from Chapter 2 (2.235).
We consider an example to illustrate a typical pattern.

Example 4.5.1

We consider a cylindrical array consisting of 11 circular arrays with radius 2rR = 10).
We assume that M = 25 so that we can utilize 21 phase modes.

We want to create a beam with a narrow beamwidth pointed at 6 = 0, ¢ = 0. We
use Dolph-Chebychev weighting in the z-direction and the Villenueve uniform phase mode
excitation from Example 4.2.1 for each circular array.

The resulting beam pattern is shown in Figure 4.63. We see that it has acceptable
sidelobe behavior.

In many, if not most, applications the elements will have a non-isotropic
beam pattern. As in the ring array case, the main response axis of the
element pattern will point in a radial direction. Synthesis of a desirable

beam pattern is more complicated, but the techniques in Section 3.9.3 are
applicable.
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In many applications, the main response axis is scanned in azimuth and
only the elements in a section around the MRA are utilized at a particular
time. The techniques in Section 3.9.3 are also applicable to this problem.

References that discuss various aspects of cylindrical and cylindrical sec-
tor arrays include Hansen {Han98], James [Jam47], Lee and Lo [LL65], Har-
rington and Lepage [HL52], Hessel [Hes70], Munger and Gladman [MG70],
Sheleg {She75], Borgiotti and Balzano [BB72], and Knudsen [Knu59].

4.5.2 Spherical Arrays

Arrays with elements on a spherical surface are used for various applications.
In most cases, the array extends over a hemisphere. In other cases, the entire
sphere is used.

References that discuss various aspects of spherical arrays include Schrank
[Sch72], Hoffinan {Hof63], Chan et al. [CIS68], Sengupta et al. [SSL68}, and
MacPhie [MP68]. Pattern coverage and grating lobes issues are discussed in
these references.

We confine our discussion to an expression for the beam pattern. The
spherical coordinate system was shown in Figure 2.1. The nth element of
the array manifold vector is

Vic(K)],, = exp (—jk"pn) | (4.286)

and the beam pattern is

N
B8, ¢) = Z Wy, €XP (—jkTpn) . (4.287)
n=1

Expressing k and p in spherical coordinates, we can write the beam
pattern as

N
B(6,¢) = Z'wnexp{jkOR[Sin()siHGncos(¢—¢n)
n=1

+cosfcosby]}, (4.288)

where R is the radius of the sphere. For non-isotropic elements, the ex-
pression in (4.288) must be modified to include the element patterns. The
technique in Section 3.9.3 can be used to synthesize a desired beam pattern.
Several examples are developed in the problems.
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4.6 Summary

In this chapter, techniques for analyzing and synthesizing planar arrays have
been developed. The chapter focused on the array geometries: rectangular,
rings, circular apertures, and hexagonal arrays that are commonly used in
practice.

Section 4.1 considered arrays with sensors on a uniformly spaced rectan-
gular grid. Many of the techniques developed for linear arrays carried over
to rectangular grid arrays. Separable weightings produced sidelobe behavior
that varied significantly as ¢ changed. Circularly symmetric weightings were
developed to improve the behavior.

Section 4.2 considered ring apertures and ring arrays. The function J,(-)
played the same role in a ring aperture that sinc(-) did for a linear aperture.
Phase mode excitation beamformers were developed that allowed the use of
linear array weightings to synthesize desirable beam patterns.

Section 4.3 consider circular apertures. The discussion focussed on weight-
ing functions that were separable in polar coordinates. Most of the examples
consider desired beam patterns that were uniform in ¢-space (a circularly
symmetric pattern). A family of radial tapers was developed that were effec-
tive in controlling the sidelobe levels (Table 4.4). Synthesis of Taylor beam
patterns was also developed. Techniques for synthesizing difference beams
were developed.

Section 4.4 considered arrays whose sensors were located on an equi-
lateral triangular grid that produced a hexagonal array. The elements lie
on a set of concentric circles so the array is particularly suited to cases in
which the desired beam pattern has circular symmetry. Beam pattern design
techniques were developed. A hexagonal-to-rectangular transformation was
developed that is useful in various applications.

Section 4.5 provided a brief discussion of nonplanar arrays.

There are several issues that we have not discussed in our development
of classical array theory:

(i) In some applications, there is mutual coupling between the sensor
elements. An input to sensor n will cause an output at sensor m.

(i) In some applications, the incoming signals arc polarized (either
horizontal and vertical or circular).

(iii) In some applications, the wavefront impinging on the array has
curvature.
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Although these topics are not discussed in detail, in the discussion of opti-
muin array processing algorithms later in the text, we occasionally point out
how these issues impact the performance of the algorithm.

4.7 Problems

P4.1 Rectangular Arrays

Problem 4.1.1
Derive the expressions for 6y given in (4.27).

Problem 4.1.2
Derive the expressions for ¥y given in (4.29).

Problem 4.1.3

Assume N = M = 11 and d; = dy = A/2. We use separable Hamming weighting
in both the z and y direction: 6y = 30°, ¢ = 0°. Plot the beam pattern and find the
directivity Dg.

Problem 4.1.4
Repeat Problem 4.1.3 for separable Dolph-Chebychev weighting with —30-dB side-
lobes.

Problem 4.1.5

Consider an 11 x 11 standard square array. (a) The array MRA is broadside. Assume
we use a separable Kaiser weighting with § = 6 in the = and y directions. Find and plot
the resulting beam pattern. Compute the directivity and beamwidth. (b) Repeat part (a)
for 00 = 450, ¢0 = 300.

Problem 4.1.6
Consider a 17 x 17 square array with d. = dy = A/4. Use the separable Taylor

weighting with —30-dB SLL and 7 = 6. Plot the beam pattern and compute the directivity
and HPBW.

Problem 4.1.7

Use the vec(:) notation in Section 4.1.2 to derive the beam pattern for a delay-and-
sum {conventional) beamformer for a signal arriving from ..., ¥. Is the resulting beam
pattern real?

Problem 4.1.8

In many cases, we are interested in beam pattern cuts at ¢ = ¢.. Modify the results in
Section 4.1.2 to take into account that the beam pattern is a function of a single variable.

Problem 4.1.9
Verify that the results in Section 4.1.2 are valid for N and/or M odd. Are there any
restrictions?
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Problem 4.1.10
Assume N and M are even. Write vec[w] as

vec{w] = [ = ] , (4.289)

x
—Jw)

where wy is a NM /2 x 1 vector corresponding to the upper half of vec[w]. The total
vec[w] is conjugate asymmetric. Find the resulting beam pattern.

Problem 4.1.11
Repeat Problem 4.1.5 for the circularly symmeiric Kaiser weighting in (4.92).

Problem 4.1.12

Repeat Problem 4.1.5 for a circularly syinmetric Hamming weighting. (a) Compare
your results to the separable Hamming weightings in Example 4.1.1. (b) Compare the
directivities of the two beam patterns.

Problem 4.1.13 [ElI81]

Find the separable weightings for a rectangular grid array with a rectangular boundary
if de = 5X/8,dy = 3A/4, N =8, and M = 12, and if 25-dB and 35-dB Dolph-Chebychev
patterns are desired in the zz and yz planes, respectively. Assume the main beam points
at 0o = 0° and plot the —3-dB contour of the main beam. What are the heights of the
off-axis sidelobes?

Problem 4.1.14 [El81]

In Problem 4.1.13, if the element pattern is hemispherically isotropic in z > 0 and is
zero in z < 0, find the peak directivity. What is the areal beamwidth (defined as the area
inside the —3-dB contour)? Find the changes in directivity and areal beamwidth if the
beam is scanned to the position 8 = 30°, ¢ = 45°.

Problem 4.1.15 [ElI81]
Design an equispaced planar array under the following specifications.

(a) Rectangular grid, rectangular boundary, separable distribution.
b) Sum and difference pattern capability.

{(c) Sum pattern scannable out to 6 = 30° in any ¢-cut.

(d) Oz0 = 14° and 0,0 = 20°

(e) Both principal cuts are Dolph-Chebychev, —20 dB in the zz-plane and —15 dB in
the yz-plane.

Problem 4.1.186 [E1181]

Assume that the sum pattern weighting found for the array of Problem 4.1.13 is
retained, except that the sign of the weighting is reversed for the two quadrants in which
z < 0. Write an expression for the resulting difference pattern. Plot this difference pattern
for ¢ = 0°/180° and discuss the SLL.

Problem 4.1.17 [ElI81]
A rectangular grid array with d; = d, = 0.7A has a circular boundary for which
R = 3X. Because of the cutoff corners, there are only 13 elements per quadrant. Find
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the weighting of this array if one uses Dolph-Chebychev separable weighting with —20-dB
sidelobes and sets the weighting of the three cutoff elements equal to zero. Plot the beam
pattern in the cuts ¢ = 0°,15°,30°, and 45°. Find the beamwidth and directivity.

Problem 4.1.18 [ElI81]
Repeat Problem 4.1.17, except use a Tseng-Cheng nonseparable weighting with —20-
dB sidelobes. Find the beamwidth and directivity.

Problem 4.1.19
Repeat Problem 4.1.18 using the transformation in (4.119).

Problem 4.1.20

Consider a 17 x 17 square array with d; = dy = A/2. Use the discretized Taylor
pattern derived in Example 3.4.3 as a starting point.

(a) Use the Tseng-Cheng rotation to generate a 2-D beam pattern.

(b) Sample the pattern in wavenumber space. Use the inverse 2-D DFT to find the
array weighting function.

Problem 4.1.21

Consider a standard 17 x 17 square array. Use the Villenueve 2 weighting discussed
in Section 3.4.4 with 7 = 6 and —25-dB sidelobes as a starting point. Repeat Problem
4.1.20.

Problem 4.1.22
Extend the results in Section 4.1.9 to the case of first derivative and second derivative
nulls.

Problem 4.1.23
Repeat Example 4.1.9 with zero-, first- and second-order nulls at

Yz = 0.25T,  Pmy = 0.4337. (4.290)

Problem 4.1.24
Repeat Example 4.1.9 with zero-order nulls at the following nine locations:

VYme = 0.257,  Pmy = 0.41m,0.437,0.457, (4.291)
Yme = 0.277, Py = 0.417,0.43m,0.457, (4.292)
Pme = 0.237, Py = 0.417,0.437,0.457, (4.293)

Problem 4.1.25

Consider the model in Example 4.1.9. The nominal pattern is a symmetrical Dolph-
Chebychev with —20-dB sidelobes.

We want to design an array weighting so that in the region (20° < 6 < 50°) N (40° <
¢ < 70°) the beam pattern is lower than —50 dB.

Design a nulling scheme to achieve this result. Use as few degrees of freedom as
possible. Plot a contour plot of your result.
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P4.2 Circular Arrays

Problem 4.2.1

Consider an 8-element circular array with equal spacing between elements. It could
also be viewed as two 4-element rectangular arrays with the first array oriented along the
z-y axes and the second array rotated by 45°. (a) Using this model, find the beam pattern
and compare your result to the result in the text. (b) Assume d = A in the rectangular
arrays. Plot the resulting beam pattern.

Problem 4.2.2
Extend the approach in Problem 4.2.1 to other values of V.

Problem 4.2.3

Consider a 10-element circular array with uniform weighting whose radius is R = A.
Assume that an element is added at the origin with weight wp.

Choose wg to reduce the height of the first sidelobe.

Problem 4.2.4

Consider the cylindrical array in Figure 4.62. Assume the circular component has 10
isotropic elements in each circle separated by d = A/2. There are 10 circular segments
separated by A/2. Assume uniform weighting of the 100 elements.

Plot the beam pattern.

Problem 4.2.5
Show that a uniform circular array can be modeled as a non-uniform linear array (e.g.,
pp. 205 of [Ma74]).

Problem 4.2.6
Show that a uniform circular array can be modeled as a set of uniform linear arrays
where each ULA corresponds to a fixed @ (e.g., [TH92]).

Problem 4.2.7 [Ma74]
We want to derive the directivity of a single-ring circular array with isotropic elements.

an ]Bmar|2

D= . 4.294
J27 [T B0, $)1 sin 0df do (4290
(a) Show that a typical term in |B(6, ¢)|° can be written as,
Wi Wy, €XP [Jkpmn sin0cos(¢ — dmn)], (4.295)
i 1P —dul
Prn = { 2Rsin Begms, m#m, (4.296)
0, m=n,

= tan” sin ¢, — sin ¢p . .

@ an l:————-————————cos G cosdn | m#n (4.297)

(b) Show the denominator can be written as 47W where

~1N-1 .
W=> > wnws <%§ﬂﬂ> . (4.298)
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Hint: Utilize the following relation [AS65]:

m/2 1/2 T (I) .
. . (T i/2{%)  sinx
/0 Jo(zsinf)sinfdf = (2) @iz - @ (4.299)
(¢) Then,
_ B8, ¢0)["
D= % . (4.300)

Problem 4.2.8
Consider a uniform circular array with radius equal to 4A. Assume N is chosen so
d = 0.4\,

(a) Using phase mode excitation, construct a Hamming pattern in ¢-space in the zy-
plane.

(b) Plot the beam pattern for ¢ = 30°, 60°, and 90°.

P4.3 Circular Apertures

Problem 4.3.1
Consider a circular aperture with a separable weighting,

wR<r>={ L (7)) osTSR (4.301)

0, elsewhere,

and wg (@) is uniform.
Derive the results in the appropriate column of Table 4.4.

Problem 4.3.2 Repeat Problem 4.3.1 with

2

wrm:{ I NICEE (4.302)

0, elsewhere.

Problem 4.3.3

Consider the circular aperture in Problem 4.3.1 with the radial taper. Design an
aperture weighting that is a least squares approximation to w,(r) with a constraint that
there is a null at 6 = 1R—17—:— and ¢ = 0°.

Problem 4.3.4 [ElI8]]

A circular Taylor pattern, —20-dB SLL, 72 = 3, is desired from a continuous circular
aperture for which R = 3X. Find A%, o, and the modified root position u; and uz. Write
the explicit expression for this Taylor pattern. Plot the pattern in 0° < 8 < 90° and the
aperture distribution in 0 < p < 3.

Problem 4.3.5 [Elig1)

A circular grid array with four concentric rings at radii p/A = 0.7,1.4,2.1, and 2.8
is to be weighted to give a pattern approximating a circular Taylor —20-dB SLL, 7 = 3,
Determine the weightings (a) by conventional sampling of the Taylor distribution; (b) by
matching to the nulls of the pattern found in Problem 4.3.4.
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Problem 4.3.6 [Ell81]

Read the discussion in [El81] on Bayliss difference patterns. For a 6A-diameter con-
tinuous circular aperture, find the weighting that will produce —20-dB SLL, n = 3, Bayliss
difference pattern. Write the explicit. expressions for pattern function and aperture distri-
bution. Plot both the pattern and the distribution.

Problem 4.3.7
Consider the following alternative to the Taylor circular aperture design procedure.

(a) Design a linear aperture using the techniques in Section 3.4.3.

(b) Transform the resulting pattern into two dimensions using the Tseng-Cheng trans-
formation.

Utilize this approach for the model in Example 3.4.3 (L = 10.5)) and compare the
results to the Taylor circular procedure with R = 5.25).

P4.4 Hexagonal Arrays

Problem 4.4.1
Consider a standard 61-element hexagonal array. Plot the beam pattern for the fol-
lowing circular aperture (R = 2.25)) weightings:

(a) Uniform
(b) wa(r) =1- (%)

() wa(r) = 1- (%)2]2

2

Problem 4.4.2 (continuation)
Repeat Problem 4.4.1 for a standard 127-element hexagonal array.

Problem 4.4.3

(a) Plot the co-array for a standard 61-clement hexagonal array.

(b) Discuss how to reduce the redundancy. Find several lower redundancy arrays.

Problem 4.4.4
Consider a standard 19-element hexagonal array.

(a) Develop a full-dimension (19) beamspace procedure using orthogonal beams.

(b) Plot the MRAs of the 19 beams in (u.,uy) space.

Problem 4.4.5
Show that (4.266) can be written as
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Problem 4.4.6

Consider a standard 91-element hexagonal array. Design a beam pattern that has
uniform sidelobes that are —40 dB lower than the main lobe. Assume the MRA is broadside
and try to minimize the diameter of the main lobe.

P4.5 Nonplanar Arrays

Problem 4.5.1

Consider two parallel standard N-element linear arrays in the zy-plane. The first
array lies on the z-axis and is centered at the origin. The second array is parallel to the
first array at y = dsep and is centered on the y-axis.

Assume N = 40. Plot the beam pattern for various dsep.

Problem 4.5.2
Counsider the array in Example 4.5.1. We want to steer the array to 6o, ¢o. Use

Hamming weighting in the z-direction and Hamming weighting of the phase modes.
(a) Find the appropriate weights and plot the beam pattern.
(b) What is the HPBW?
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Chapter 5

Characterization of
Space-time Processes

5.1 Introduction

In this chapter we will develop techniques for characterizing space-time ran-
dom processes and their interaction with arrays and apertures. It produces
the statistical basis for the remainder of the text, where we emphasize a
statistical approach rather than a deterministic approach to array analysis
and synthesis.

In the discussion of classical array processing the input to the array was
assumed to be a sinusoidal plane-wave signal. It was characterized by its
frequency and wavenumber or by its frequency and direction of arrival. In
most of our discussions, we focused on a single frequency, and the beam-
former weights were fixed complex numbers.

In the statistical approach, the input to the array consists of desired
signals, interfering signals, and noise. Some or all of these inputs are modeled
as sample functions of space-time random processes.

These processes may be spread over regions of w-k space. The array
processor operates on the array output to estimate a waveform, detect a
signal, or estimate parameters of a signal. These operations are the vector
extensions of the scalar detection, estimation, and modulation problems that
were solved in DEMT I [VT68], [VT01a] and DEMT IIT [VT71], [VTOLb].
The first step was to operate on the continuous time functions to obtain a
set of random variables that were used to solve the detection or estimation
problem. We used a Karhunen-Lo¢ve (KL) expansion that was applicable to
non-stationary processes and finite time intervals and generated statistically

332
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independent Gaussian random variables when the input was a Gaussian
random process. This approach can be extended to the vector case.

In most applications and in the majority of the research literature, an al-
ternative approach using sampling is employed. These samples are normally
referred to in the literature as snapshots. In Section 5.2, snapshot mod-
els in the frequency domain and time domain are developed. The objective
of the snapshot generation process is to operate on the sensor output and
generate a sequence of vectors. Appropriate processing is performed on this
vector sequence.

Section 5.3 develops models for spatially spread random processes. A
second-moment characterization of the random fields is developed. If pro-
cessing consists of linear filters and quadratic error criteria, then the second-
moment characterization is adequate. However, if we want to develop opti-
mum detectors and estimators, then a complete statistical characterization
is necessary. Gaussian space-time processes are defined that are completely
characterized by the second moments.

In Section 5.4, the output statistics of arrays and apertures are developed
for the case in which the input is a space-time random process. For an array
the primary statistic of interest is the spatial spectral matrix, Sy, of the
snapshot vectors. We will show how the classical beam patterns developed
in chapters 2-4 interact with the frequency-wavenumber characterization of
space-time processes.

In Section 5.5, an eigendecomposition of the N x N spatial spectral
matrix Sx is performed. The resulting eigenvalues and eigenvectors play a
key role in many of the subsequent discussions. The concept of signal and
noise subspaces is introduced. The subspace concept also plays a key role in
subsequent discussions.

Section 5.6 develops parametric models for the frequency-wavenumber
spectrum. Various rational transfer function models such as auto-regressive
(AR) and auto-regressive moving average (ARMA) models are developed.

Section 5.7 provides a brief summary of the chapter. The structure of
Chapter 5 is shown in Table 5.1.

5.2 Snapshot Models

In this section, the snapshot models that play a key role in the subsequent
discussion are developed. In Section 5.2.1, frequency-domain snapshot mod-
els are developed. In Section 5.2.2, time-domain snapshot models are devel-
oped. In Section 5.2.3, the results are summarized.



334 5.2 Snapshot Models

Table 5.1 Structure of Chapter 3.

5.2 Snapshot Models

Background Frequency domain
Time domain
Plane-wave model
5.3 Space-Time Random Processes N 5.6 Parametric Wavenumber Models
Space-Time S J tch L
Random Fe‘con -r‘nomen ¢ arbdctenza;xon \ AR processes
Processes requency wavenumber spectrum ARMA processes
Gaussian random processes

Spatial sampling

Array Response !
Spectral matrices

Eigenvalues
Eigenvectors
Signal subspace
Noise subspace

Orthogonal
Expansions

5.2.1 Frequency-domain Snapshot Models

In many applications, we implement the beamforming in the frequency do-
main. The model is shown in Figure 5.1. The first box converts the sensor
input vector from the time domain to the frequency domain. The second box
processes the frequency-domain vector to obtain a scalar frequency-domain
function. The third box converts the frequency-domain function into a scalar
time-domain waveform. The functions in each box are now described.

The objective of the first processor is to generate a set of complex vectors
that can be processed to form a beam. We refer to these complex vectors as
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Figure 5.1 Frequency-domain beamformer.

frequency-domain snapshots.

In order to generate these vectors, first divide the total observation in-
terval T into K disjoint intervals of length AT. These intervals are indexed
with k,

ko= 1 0<t< AT
= 2 AT <t < 2AT
k o= k (k—1)AT <t < kAT
k = K (K —1)AT <t < KAT. (5.1)

As part of the development, we will develop criteria for choosing AT.
The first requirement is that AT must be significantly greater than the
propagation time across the array. Define

(%)

al r d

ATmax & g max {max [Al’i(j )]} , (5.2)
where AC/}(]-d) is the travel time between the i and j elements for the dth
signal. In a linear array, the maximum propagation time corresponds to a
signal arriving from endfire and equals the length of the array divided by
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the velocity of propagation. Then we require
AT > AT, (5.3)

The second requirement on AT will be determined by the bandwidth of
the input signals and the shape of their temporal spectra. We discuss this
requirement shortly.

To motivate the approach, we recall our approach to detection and esti-
mation problems in DEMT I [VT68], [VT0la]. We decomposed the wave-
form of interest using a series expansion whose coefficients were statistically
independent Gaussian random variables. This approach led to a Karhunen-
Loéve expansion and an eigenfunction problem. We did the vector version
of the problem in Section 3.7 of DEMT I (pp. 220-224). For stationary pro-
cesses and a long time interval, the KL expansion becomes a Fourier series
expansion. This result motivates the frequency-domain snapshot model. We
define this model and analyze the covariance between its components as a
function of AT.

We assume that the input is a zero-mean bandpass process centered at
we. The signal at the origin is x(t). The bandpass spectrum of z(t) and its
lowpass equivalent are shown in Figure 5.2.

We first consider the interval (0, AT) and define!

1 AT .
Xar(wm) = _E/(; x(t)e I letmenligy,
M—-1 M-1
= - - ... 2T 4
m 2 3 y Uy B 2 3 (5 )

where the mth Fourier series frequency is
W = We + MWA, (5.5)

and the resolution of the transform is

2

WAZE.

(5.6)

The expression in (5.4) assumes M is odd. For M even, the limits are
m=-—M/2,---,0,---, % —1. The value of M will depend on the bandwidth
of the bandpass process. For M odd,

M = |By- AT +1, (5.7)

"This discussion is based on Hodgkiss and Nolte [HN76]. Several of their key formulas
are due to Blackman [Bla57].
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Figure 5.2 Bandpass signal spectrum and corresponding lowpass spectrum.
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where | Bs - AT'| denote the largest integer less that By - AT. Each of the
Xar(wm) is an N-dimensional complex vector corresponding to the Fourier
series coefficient at wy,. We refer to each of the wy, as the center frequency
of a frequency bin whose width is wa.

We want to derive an expression for the covariance matrix Xar(wm,)
and X a7(wm,). The covariance matrix is

Sxar(mi,ma) & E [Xar (@) XEr (wms)]

1 AT (AT . ) )
= —A—Y—/ Ry (t — u) eTIweltu) gmimwattimawat i gy (5.8)
0 0

This can be written as

1 o) AT (AT ]
SxAT(m1,m2) = —E/ /0 /0 %Sx(w)ej(w—wc)(t—u)
— 20

CeTIMwAl GITAWAY (gt oy iy, (5.9)
where Sy (w) is the spectral matrix of the process. Defining
WL = W — We, (5.10)

(5.9) reduces to
Sxar(mi,mg) = e_j"("“_mz)/ Sx(wr, + we)
—00

. {isinc(w(ﬂ - ml))sinc(ﬂ(—(iL— - mg))} dwp, .
WA WA wA
(5.11)

For mi = my = m, (5.11) reduces to

sinc? (7 (2L —m
Sxar(m,m) = /~OO Sx(wr + we) { ( (WA >> }de. (5.12)

waA

We first consider the diagonal terms that correspond to the covariance
at a single sensor. For the nth sensor,

0o sinc® (7 (Y. —m
[Sxar(m,m)],, = / [Sx(wr +we)l,, { ( <WA >) } dwy.

—00 wA
(5.13)
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In Figure 5.3, we show the components of the integrand for various values
of wa. Figure 5.3(a) shows the sinc?(-) function for several values of m. In

Figure 5.3(b), we plot [Sx(wy, + wc)l,,, versus (wy/wa) for the case in which

B, - AT = 16. (5.14)

We typically use the frequency-domain snapshot approach when the time-
bandwidth product Bg - AT is large. In practice, B - AT products from 16
to 512 are common. The value of wa determines the frequency resolution
of the model and 27 B;/wa determines the number of terms in the Fourier
series expression.

In the limit, as AT — oo, the term in braces in (5.13) approaches an
impulse and

A'}!H}oo {[SXAT (m’ m)]nn} = [Sx(wc + mwA)}nn : (515)

This result is the Wiener-Khinchin theorem (e.g., [Hel91]). A similar result
holds for the off-diagonal terms, so the matrix version of (5.15) is

lim {Sx,,(m,m)} = Sx(we + mwa). (5.16)
AT 00

We now consider a simple example to illustrate the behavior as a function
of By - AT.

Example 5.2.1
The spectrum of the signal is shown in Figure 5.2. We evaluate the integral in (5.12)
for
By AT =2, 1=0,---,8. (5.17)

In Table 5.2, we show the normalized value, [Sx,,-(m, )], /(cZ/Bs) for the given values
of [ and selected values of |m].

Table 5.2

0 1 2 4 8 16 32 64 128

0.7737 | 0.0787 | 0.0140 | 0.0032 | 0.0008 | 0.0002 | 0.0000 { 0.0000 | 0.0000

0.9028 | 0.4750 | 0.0318 | 0.0067 | 0.0016 | 0.0004 | 0.0001 | 0.0000 | 0.0000

0.9499 | 0.9346 | 0.4874 | 0.0166 | 0.0034 | 0.0008 | 0.0002 | 0.0000 | 0.0000

0.9747 | 0.9731 | 0.9665 | 0.4937 | 0.0084 | 0.0017 | 0.0004 | 0.0001 | 0.0000

0.9873 | 0.9871 | 0.9865 | 0.9832 | 0.4968 | 0.0042 | 0.0008 | 0.0002 | 0.0000

0.9937 | 0.9936 | 0.9936 | 0.9932 | 0.9916 | 0.4984 | 0.0021 | 0.0004 | 0.0001

0.9968 | 0.9968 | 0.9968 | 0.9968 | 0.9966 | 0.9958 | 0.4992 | 0.0011 | 0.0002

0.9984 | 0.9984 | 0.9984 | 0.9984 | 0.9984 | 0.9983 | 0.9979 { 0.4996 | 0.0005

OO'\IOBUWJ&CO[\‘J»—‘O’—'S
=

0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9989 | 0.4998
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Figure 5.3 Functions in integrand: (a) sinc®(-) functions for various m; (b)
spectrum of bandpass process (B - AT = 16).
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We see that, for By - AT > 16, the approximation in (5.15) is accurate.

In practice, many of the spectra of interest are not flat. However, if the
spectrum is constant over an interval +2wa — +3wa around mwa, then we
can use the approximation,

[Sxar(m, )]y, 2 [Sx(we + mwa)ly, = [Sx(wm)l, - (5.18)

Example 5.2.1 and the approximation in (5.18) deal with the diagonal
terms in Sx,,.(m,m). To investigate the off-diagonal terms we assume a
plane-wave model. Carrying out a similar analysis, we find that if the spec-
trum is constant over +2wp — +3wa, then we can use the approximation

Sxar(m,m) =~ Sx(we + mwa) = Sx(wm). (5.19)

The frequency-domain snapshot model is most appropriate for large By -
AT products. However, it is useful to consider the case in which

B, AT < 1. (5.20)

Now the sinc?(-) is approximately unity over the interval where the spectrum
is non-zero and we can approximate the integral for m = 0 by

7 Bs 03 1
[Sxar(0,0)),, = /_WBS B 67A_dcu
= 02AT = [Sx(we)],, - AT (5.21)
We also use the approximation,
Sxar(m,m)],,, ~0, m#0. (5.22)

If we use the approximations in (5.21) and (5.22), then the beamformer only
processes one frequency bin. This case is the narrowband frequency-domain
snapshot model.
The frequency-domain snapshot model is occasionally used for the case
when
By - AT = 1. (5.23)

In Example 5.2.1, the actual values of [Sx,,(m,m)],, for various By AT
are calculated. For By - AT =1,

0.773 m =0
[Sxar(mym)l,,, = ¢ 0079 |m| =1 (5.24)
0.014 |m|=2.
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Thus, the approximation in (5.21) is not precise. However, if the desired
signal, the interfering signals, and the sensor noise all have flat spectrum
over the bandwidth, then the scaling factor (0.773) will be the same. All of
the beamformer weights will depend on ratios of the various spectra so the
use of (5.21) will not affect the beamformer design or its performance.

The approximation in (5.22) means that the narrowband beamformer is
not utilizing the information in the m # 0 frequency bins. From (5.4), we
note that Xar(wn,) for m = 0 is just the average value of the envelope over
the interval AT (multiplied by /AT for normalization purposes). In our
subsequent work we assume that we utilize

;- <
M:{ 1 , B, AT <1 (5.25)

Bs-AT+1, By-AT =23,

and that B - AT is large enough that the approximation in (5.19) is valid.?

If we are going to process multiple frequency bins, we need to analyze the
statistical behavior for my # my. The expression for Sx,,.(m1, ms) is given
in (5.11). The relevant sinc?(-) functions are shown in Figure 5.3(a). For
m1 # mg, the two sinc(:) functions are orthogonal so that, if the elements in
[Sx(w)] are constant over an interval +2wa or +3wp on either side of (w, +
mwa ), the magnitude will approach zero. Hodgkiss and Nolte [HN76] have
calculated the values for a flat spectrum over the frequency range (—B;s/2 <
f £ Bg/2) and find that if

B, - AT > 16, (5.26)

the values are essentially zero (see Problem 5.2.3).

We implement a similar expansion in the kth interval to obtain the vector
XAT(wm, k). Due to the stationarity of the process, the spatial covariance
matrix is not a function of k. In addition,

12

E [Xar(@my, k)X Ep(wm,, )] 20, k#1
M-1 M-1
R

(5.27)

mip,my = —

for large B, - AT (see Problem 5.2.4).
Thus, the frequency-domain snapshot model generates a sequence of N-
dimensional complex vectors at M discrete frequencies, wyy,.

*The B, - AT = 1 case is really not a good fit in the frequency-domain snapshot model.
The discussion after (5.24) partially justifies its use. In practice, we would normally use
the time-domain model in Section 5.2.2 if all of the signals and interferers are narrowband
around we.
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In our subsequent discussions, we assume that the approximation in
(5.19) is valid and that the snapshots for different m and/or different &
are uncorrelated. In the next section, we show that if x(¢) is a real Gaussian
random process, then the snapshots for m;, i = - (M -1)/2,---, (M - 1)/2,
and k, k = 1,---, K are joint circular complex Gaussian random vectors.
Thus, the snapshots for different m and/or different k are statistically inde-
pendent.

5.2.1.1 Gaussian model

In many of our subsequent developments, x(¢) is modeled as a real vector
Gaussian random process. We want to show that the Xar(wp,, k) are joint
circular complex Gaussian random vectors.? First consider the case in which
x(t) is a zero-mean process.

Then, the real part and the imaginary part of Xar(wm, k) are real zero-
mean Gaussian random vectors:

1 AT
Xarclom k) 2 Re(Xar(om k) = -2 /0 x(t) coswpt dt,
M-1 M-1
- _ R T 2
m 2 b b 3 2 bl (5 8)
and
N 1 AT
X A Im(Xar(wm, k) = —-————/ x(t) sin wpt dt,
M1 M-1

However, in order for X ar(wm, k) to be a circular complex Gaussian random
vector, we require

E [Xar,c(wm k) XArc(wm, k)| = B [Xar,s(wn, k)XE7,5(wm, k)] . (5.30)

and
E [XAT,C(wm,k)XgT,S(wm,k)} =0. (5.31)

The conditions in (5.30) and (5.31) can also be written as,

E [XAT(wm,k)ng(wm,k)] = 0. (5.32)

3Complex Gaussian random processes are discussed in Appendix A of DEMT IiI
[VT71], [VTOlb]. Other discussions are available in Fuhrman [Fuh98], Miller [Mil74],
and Neeser and Massey [NM93].
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The equalities in (5.30) and (5.31) can be verified by using the same steps
as in (5.4)-(5.12) to compute the various terms. Expressing coswyt and
sinwp,t in exponential form gives integrals similar to those in (5.9).

Therefore, for a circular complex Gaussian random vector, the probabil-
ity density can be expressed in terms of a single correlation matrix,

Sxar(@m) = B [Xar(wm, K)XEr(wm, k)] (5.33)
The probability density for the zero-mean case is

1
T [Sxar(wm)|

exp {- [XAT(wm, B)S5 L Xk (wm, k)] } - (5.34)

Pxar (XAT(wm’ k)) &

For the non-zero mean case, define the mean vector as

mAT(Wm, k) = E [Xar(wm, k)], (5.35)

and the covariance matrix as

Koo (W) 2B [[Xar(wm, k) = mar(wm, &) [XEr(wn, k) = mir@n, B)]] -

(5.36)

Note that the mean vector is usually a function of k (time), while the covari-

ance matrix is constant due to the stationary assumption. The probability
density is

a1

TV Kxar (wm)]

~mAT (wm, k)] - Kxbp (m) [XEr(@m, k) = mEp(wm, k)] } . (5.37)

Pxar (XAT(wma k)) €xXp {— [XAT(WWH k)

The probability density in (5.37) will play a central role in many of the
subsequent discussions. The condition in (5.30) and (5.31) considered a
single snapshot vector, Xar(wm,k). In addition, the snapshots at differ-
ent frequencies, X A7 (wm,, k) and Xar(wm,, k) are jointly circular complex
Gaussian random vectors for —(M —1)/2 <my < (M -1)/2,—(M -1)/2 <
mg < (M —1)/2,m1 # mg, and k = 1,---, K. The snapshots in different
time intervals, X a1 (wm,, k1) and Xar(wm,, k2) are jointly circular complex
Gaussian random vectors for —(M —1)/2 <my < (M -1)/2,-(M —-1)/2 <
mo < (M —1)/2,k1 =1,---,K,kp =1,---, K, ky # ka. These results can be
verified in the same manner as the single snapshot result.
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Therefore, whenever (5.26) and (5.27) are satisfied, the frequency-domain
snapshots can be modeled as statistically independent circular complex Gaus-
sian random vectors. When (5.26) is valid,

mAT (W, k) >~ mx(wn, k), (5.38)
KxAT(wm) = Kx(wm), (5.39)

and
SXAT (wm) = Sx(wm), (5.40)

In this case, (5.34) becomes,

1
NS (wm)|

{= [Xar(wn, kS5 (@m) XEr (W, K]} (5.41)

Pxar (Xar(wm, k) = exp

for the zero-mean case. Similarly, (5.37) becomes,

1
Pxar (XaT(wm, k) = R o] &P
{~ Xar(@m, k) = m(wm, k)] Kz} (@m) [XEr(@m, k) = mf (wm, B)] }

(5.42)

The statistical independence result means that the joint densities of the
snapshots for different m and k factor into a product of the individual den-
sities.

5.2.1.2 Plane-wave snapshot model

In this section we develop the frequency-domain snapshot model for the
case in which the desired signals and interfering signals can be modeled as
plane waves. A family of models is developed that plays a central role in
many of the subsequent developments. The models can be divided into two
cases. In the first case, the desired signals are either deterministic signals
or unknown nonrandom signals. In the second case, the desired signals
are sample functions of a Gaussian random process. For each case, several
examples are discussed.
In case 1, the output of the array is an N x 1 complex vector,

x(t) = x4(t) + n(t), (5.43)
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where x(t) is either a deterministic signal or an unknown nonrandom signal*
and n(t) is a sample function of a zero-mean Gaussian random process. The
frequency-domain snapshot model is

Xar(wm, k) = Xsar(wm, k) + Nar(wm, k),
m =0, M-1 k=1,--,K. (5.44)

In subsequent equations the range of m and k is the same as in (5.44) and
is omitted.

Example 5.2.2
In this example, there is a single plane-wave desired signal,

xs,AT(ernk) = V(wm7 ks)Fs,AT(wm, k) (545)

The source-signal snapshot, Fs ar{wm,k), is modeled in one of two ways. In the first
way, Fs ar{wm,k) is assumed to be the snapshot of a known (or deterministic) signal.
This model is appropriate in many communications or radar problems. In the second way,
Fs aT{wm, k) is assumed to be the snapshot of an unknown, but nonrandom waveform.
This model is appropriate in many passive sonar or direction-finding applications.

The probability density is a non-zero mean circular complex density,

1
———— eX
N ISnAT I

{-— [Xar — viks)Fs,a7] Sr_,iT Xar - V(ks)Fs,AT]H} ,(5.46)

Pxar (Xar(wm, k) = p

where the wy, and k arguments are suppressed on the right side of the equation. The
covariance matrix is the spatial spectral matrix of the noise. Initially, S, is assumed to
be known. The mean of the density is either known (deterministic signal) or unknown
(unknown nonrandom signal). Using the approximations in Section 5.2.1.1, (5.46) reduces
to

Pxar (Xar(wm, k) = FVIIT| exp {— [Xar = v(ks)Fo,ar] 85" (Xar — v(ks)Foar]” } .

(5.47)
For the spatial case of spatial white noise,

Sn =021, (5.48)
and (5.47) reduces to

Pxar (Xar(wm, k) = (WNUZN)—I exp

{_;17 [Xar - v(ke)Foar] [Kar v(ks)Fs,AT]H} . (5.49)

w

Example 5.2.3
In this example, there is a single plane-wave desired signal, and (D — 1) plane-wave
interfering signals, and additive noise. All of the source signals are either deterministic

*These two terms are defined in Example 5.2.2.
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signals or unknown nonrandom signals. Then,

D-1
X ar(Wm, k) = V(wm, Ks) Fo, a1 (@m, k) + Y V(wm, ki) Fi,a7(wm, k) +NaT (@, k). (5.50)

i=1
A composite N x D array manifold matrix is defined as
V(wm, k) = [v(wm, ks) v(wm, k1) -+ v(wm, kp-1)], (5.51)
and a composite source signal vector is defined as
Far(wm, k) = [Foar Fiar - Fpoiar)”. (5.52)
Then the snapshot vector can be written as
Xar(wm, k) = V(wnm, K)Far(wm, k) + Nar(wm, k). (5.53)

Using the approximations in Section 5.2.1.1, the probability density is

1 _
pxar Xar(wm, k) = NS O {- [Xar - V(K)Far]S;' [Xar — V(K)Far]”},
(5.54)
where the wy, and k arguments are suppressed on the right side of (5.54).

Example 5.2.4

In this example, there is a single plane-wave desired signal, (D — 1) plane-wave in-
terfering signals, and additive noise. The desired signal is modeled as a deterministic or
unknown nonrandom signal. The (D — 1) plane-wave interfering signals are modeled as

sample functions of Gaussian random processes. The snapshot vector is the same as in
(5.50),

D-1
X a1 (Wms k) = V(wm, ko) Fo,a7(@ms k) + Y V(wm, ki) Fiar(Wm, k) +NaT(wm, k) (5.55)

i=1
A composite N x (D — 1) interference array manifold matrix is defined as
Vi(wm, k1) = [v(wm, k1) -+ v{wm,kp-1)], (5.56)
and a composite source interference vector is defined as
Frar(wm k) = [Fiar -+ Fp_1,a7(wm, k)" . (5.57)

The interference source spectral matrix is defined as

S1,ar(wm) 2 E [Fr,ar(wm, k)F ar(wm, k)], (5.58)
which is approximated by
Sr.ar(wm) =~ Sr{wm). (5.59)
The noise-plus-interference spectral matrix is defined as
Sin(wm) = Vi{wm, k1)Sr(wm) VY (wm, k1) + Sn(wm)- (5.60)

The probability density is

Pxar (Xar{wm, k) =
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i

o &P {- [Xar — v(ks)Far] STa (wm) [(Xar = v(ks)Far]"} . (5.61)

These three models are used for applications in which the source signals
are modeled as nonrandom or deterministic waveforms.

In case 2, the output of the array is an N x 1 complex vector,
x(t) = x5(t) + n(t), (5.62)

and both x4(¢) and n(t) are zero-mean Gaussian random processes. The
frequency-domain snapshot model is

XAT(wm’ k) = Xs,AT(Wm, k:) + NAT(Wm, k) (5.63)

Example 5.2.5

In this example, there is a single plane-wave desired signal, (D — 1) plane-wave in-
terfering signals, and additive noise. All of the source signals are zero-mean Gaussian
random processes. The expressions in (5.50)—(5.53) all apply to this case. Now, the D x D
signal-plus-interference source spectral matrix is defined as

Ss1,a1(wm) = E [Far(wm, k)F&r(wm, k)], (5.64)
where Far(wm, k) is defined in (5.52). The spectral matrix in (5.64) is approximated by
Ssi{wm) =~ S¢(wm). (5.65)

The total snapshot spectral matrix is

Sxar = E[Xar(wm)XEr(wm)]
V{wm, k)Ss1,AT(wm)VH (wm, k) + Sn,ar(wm), (5.66)

il

which is approximated by
Su(wm) = V(wm, K)St(wm) VT (wim, k) + Snlwm). (5.67)

The probability density is

Pxar (XAT(wm»k)) exp{ XarSx XAT} (5~68)

NS4 IS |
where the w,, and k are suppressed on the right side of (5.68).

The four models in these examples will have a central role in most of our
subsequent discussions.
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5.2.1.3 Beamforming

We now discuss the other two boxes in Figure 5.1. In the second box, each
frequency bin is processed with a narrowband beamformer centered at w,.
The output in each bin is a complex scalar Gaussian random variable,
M-1 M-1
Yar(mwa), m:———-—2—~—,~-,0,---,T. (5.69)

Chapter 6 develops optimum narrowband beamformers assuming that the
appropriate spatial spectral matrices (e.g., Sx(wm) or Sp{wnm)) are known.
Chapter 7 develops the adaptive versions.

The final step is to construct the beamformer output that is a scalar
complex Gaussian random process,

M-1

y(t) = JAT Z Yar(mwa)e ™At (5.70)

2

5.2.2 Narrowband Time-domain Snapshot Models

In this section, a time-domain model that is appropriate for narrowband
waveforms is developed. In Section 6.13, time-domain models for the broad-
band case are developed.

First consider the case of a single plane-wave input. The input at the
reference sensor located at the origin is a real bandpass signal,

f(t) = VaRe {f(t) &'} . (5.71)
The input at the nth sensor is

fn(t) f(t _Tn)

V2Re {f(t - Tn) ej“’c(t_T")} , (5.72)

where 7, is the time delay from the origin to the nth sensor. The narrowband
assumption implies

flt=m) = f(t), n=0,---,N—1 (5.73)
Using (5.73) in (5.72) gives

fult) = V2Re {f(t) e IWeTn ej%t} . (5.74)
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We normally perforin a quadrature demodulation of the sensor outputs
prior to time-domain processing. The quadrature demodulation process is
shown in Figure 5.4. Figure 5.4(a) shows the actual demodulation process.
Figure 5.4(b) shows its complex representation in the time domain. Fig-
ure 5.4(c) shows its complex representation in the frequen