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Abstract—The knowledge of channel state information (CSI)
is crucial for improving the performance of cooperative commu-
nication systems. In multiuser two-hop relay systems, the global
CSI between a relay and multiple source-and-destination nodes
can be estimated at the relay, and the local CSI between each
node and the relay can be estimated at each node. In this paper,
we analyze the spectral efficiency of multicarrier code-division
multiple-access (MC-CDMA) two-hop relay systems, either with
global CSI only at the relay or with local CSI only at every node.
We resort to asymptotical analysis with random-matrix theory to
derive the average spectral efficiency of decode-and-forward (DF)
and amplify-and-forward (AF) two-hop relay systems. We then an-
alyze the impact of spreading sequences, fading channel statistics,
and low-complexity transceivers. Analytical and simulation results
show that when an orthogonal spreading sequence is used, the
relay system with local CSI only at every node is spectrally more
efficient than that with global CSI only at the relay. Moreover, an
artificially constructed one-tap spreading sequence can achieve a
good tradeoff between the performance and the complexity.

Index Terms—Global channel state information (CSI) at the
relay, local CSI at each source or destination node, multicarrier
code-division multiple access (MC-CDMA), spectral efficiency,
two-hop relay.

I. INTRODUCTION

COOPERATIVE transmission has attracted significant re-
search interests in decades, owing to its potential to

enhance reliability, coverage, and capacity of wireless systems
[1]–[4]. In cooperative communication systems, sharing one
relay among multiple source–destination pairs is a cost-efficient
way to improve spectral efficiency [2]–[5]. In a multiple-access
channel (MAC) phase, the relay receives signals from multiple
source nodes. Then, in a broadcast channel (BC) phase, the
relay forwards the signals to multiple destination nodes. Such
a multiuser two-hop relay system is a building block of various
complex relay networks [6], [7].
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The performance of relay systems largely depends on the
knowledge of channel state information (CSI), and differ-
ent CSI at each node induces different training overhead. In
practice, to assist a relay to estimate the global CSI, i.e.,
all channel coefficients in both source–relay (S–R) links and
relay–destination (R–D) links, multiple source and destination
nodes need to send mutually orthogonal training symbols.
Then, the relay can estimate all the channels from these nodes
to itself and obtain the channels from itself to the nodes by
exploiting channel reciprocity in time-division duplex (TDD)
systems. To assist each source node and each destination node
to acquire the local CSI, i.e., the channel coefficients from each
source to the relay and those from the relay to each destination,
the relay only needs to broadcast one training symbol to the
nodes. In a two-hop relay system with K pairs of users, to
provide the global CSI for the relay, 2K training symbols
are required in total, whereas to provide the local CSI for
every source and destination nodes, only one training symbol
is necessary.

When the global CSI is available at both the relay and all
nodes,1 a jointly optimized S–R–D transceiver provides the
best performance in single-user two-hop relay systems [8], [9].
In the multiuser setting, however, due to the large overhead
for acquiring the CSI and the high complexity for iteratively
computing the transmit and receive vectors at the relay and
all nodes [5], [10], such a joint optimization is not desirable
for practical systems. This calls for a decoupled transceiver
design, which has low overhead and low complexity but with
acceptable performance loss.

In this paper, we study TDD multicarrier code-division
multiple-access (MC-CDMA) two-hop relay systems. MC-
CDMA is able to employ low-complexity frequency-domain
transceiver for broad-band systems, which achieves a good
tradeoff between reliability and capacity [11]. Specifically, we
investigate the performance of the relay systems with different
kinds of channel knowledge when decoupled linear transceivers
are employed at the relay and each node, which is of practical
interest.

We first consider a system where the relay has the global
CSI, but the source and destination nodes have no channel
information. In the MAC phase, the relay can apply a detector
to cancel the multiuser interference (MUI) from multiple source

1To differentiate the relay systems with various kinds of channel information,
we do not call the relay a node in this paper.
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nodes [12]–[14], whereas the source nodes can transmit the
signals simply by spreading the signals. In the BC phase,
the relay can employ a precoder to avoid the interference
to different destination nodes, and each destination node can
obtain its desired symbol only by despreading the signal. We
then consider a system where the local CSI is available at
every source node and every destination node, but the relay has
no channel knowledge. In this scenario, each source node can
individually exploit the CSI for computing its precoder to avoid
the MUI, and each destination node can employ a channel-
dependent detector to cancel the MUI. The relay needs to do
nothing more than despreading during reception and spreading
during transmission. One may expect that a multiuser two-
hop relay system where only the relay has the global CSI
outperforms a system where only every node has its local CSI.
However, it remains unclear what kind of CSI can provide
higher spectral efficiency.

To answer this question, we compare the average spectral
efficiency of the MC-CDMA two-hop relay systems with only
global CSI at the relay and only local CSI at every node. We
then analyze the impact of spreading sequences and channel
statistics on the spectral efficiency. Both analytical and simula-
tion results show that, in Nakagami-m fading channels, when
random spreading sequence is used, the system with the global
CSI is spectrally more efficient than the system with the local
CSI. When orthogonal spreading sequence is employed, the
conclusion is just the opposite. We also analyze the impact of a
low-complexity transceiver at each node on the average spectral
efficiency.

The remainder of this paper is organized as follows. In
Section II, we introduce the signal model and the transmission
scheme. We analyze the spectral efficiency of the relay systems
with only global CSI at the relay and only local CSI at every
node in Sections III and IV, respectively, and compare their
performance in Section V. Simulation results are provided in
Section VI, and conclusions are drawn in Section VII.

Notations: Bold uppercase and lowercase variables are used
to denote matrices and vectors, respectively. Conjugation, trans-
pose, Hermitian transpose, and expectation are represented by
(·)∗, (·)T , (·)H , and E{·}, respectively. The trace of a square
matrix is denoted as tr{·}, the diagonal matrix is denoted as
diag{· · ·}, and the norm of vector x is denoted as ‖x‖ =√
xHx.

II. SYSTEM DESCRIPTION

A. System Models

We consider a MC-CDMA two-hop relay system with M
subcarriers, as shown in Fig. 1, where the transmissions from
sources S1, . . . ,SK to destinations D1, . . . ,DK are assisted
by a half-duplex relay R. The load factor is β = K/M .
In the figure, HSk

= diag{H(1)
Sk

, . . . , H
(M)
Sk

}, and HDk
=

diag{H(1)
Dk

, . . . , H
(M)
Dk

}, whose diagonal elements denote the
frequency-domain channel responses from source Sk to the
relay and those from the relay to destination Dk, respectively.

In the following, when both HS1
, . . . ,HSK

and
HD1

, . . . ,HDK
are available at the relay but all the nodes have

Fig. 1. Multiuser two-hop cooperative network with K source–destination
pairs assisted by a single relay.

no channel information, we say that this system has global CSI
at the relay. When HSk

is available at source Sk and HDk
is

known at destination Dk (k = 1, . . . ,K) but the relay has no
channel information, we say that this relay system has local
CSI at every node.

In the MAC phase, source Sk uses an M -length frequency-
domain transmit vector wSk

to convey its symbol dk. The
transmit symbols d1, . . . , dK are assumed independent and
identically distributed (i.i.d.) random variables satisfying
E{dk} = 0 and E{|dk|2} = 1. The frequency-domain signal
received at relay R is

yR =
K∑

k=1

√
αSk

HSk
wSk

dk + nR (1)

where αSk
= PS/w

H
Sk
wSk

is an amplification factor that meets
the transmit power constraint of the kth source, PS is the
maximal transmit power per symbol at the source, nR is an
M -length zero-mean Gaussian noise vector with covariance
matrix E{nRn

H
R } = σ2

RIM , and σ2
R is the noise variance at

the relay.
In the BC phase, the transmit signal of the relay depends

on the forwarding strategies. We consider the two most pop-
ular strategies: decode-and-forward (DF) and amplify-and-
forward (AF).

When employing DF, the relay first uses a receive vector
wRrk to estimate the kth symbol as

d̂Rk
= wH

Rrk
yR =

K∑
k=1

√
αSk

wH
Rrk

HSk
wSk

dk +wH
Rrk

nR

(2)

then decodes the kth symbol dRk
from d̂Rk

. Next, the relay
employs transmit vector wRtk to forward dRk

to the kth
destination. The signal to be forwarded at the relay can be
expressed as

xDF
R =

K∑
k=1

√
αDF
Rk

wRtkdRk
(3)

where αDF
Rk

= PR/w
H
Rtk

wRtk is an amplification factor that
meets the transmit power constraint, and PR is the maximal
transmit power per symbol at the relay.

When employing AF, the relay uses a linear transceiver wRk

to directly forward the received signal. The analysis in [12]
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indicates that the transceiver at the AF relay can be decou-
pled into a linear detector in the MAC phase and a linear
precoder in the BC phase with no performance loss, i.e., wRk

=
wRtkw

H
Rrk

. As a result, the forwarded signal becomes

xAF
R =

K∑
k=1

√
αAF
Rk

wRtkw
H
Rrk

yR (4)

where αAF
Rk

= PR/tr{wRtkw
H
Rrk

E{yRy
H
R }wH

Rrk
wRtk} is an

amplification factor that meets the transmit power constraint at
the relay.

The frequency-domain signal received at the kth destina-
tion is

yDk
= HT

Dk
xR + nDk

(5)

where nDk
is an M -length zero-mean Gaussian noise vector

with covariance matrix E{nDk
nH

Dk
} = σ2

DIM , and σ2
D is the

noise variance at the destination.
Finally, destination Dk employs receive vector wDk

to esti-
mate its desired symbol, i.e.,

d̂Dk
= wH

Dk
yDk

= wH
Dk

HT
Dk

xR +wH
Dk

nDk
. (6)

B. Spectral Efficiency

For the DF relay, the performance is limited by the worse link
in the two phases [1]; thus, the spectral efficiency is

SEDF =
1

2M

K∑
k=1

log (1 +min{γMACk
, γBCk

}) (7)

where the factor 1/2 comes from the fact that the transmis-
sion consists of two hops, γMACk

and γBCk
are the signal-

to-interference-plus-noise ratio (SINR) in the MAC and BC
phases, respectively.

For the AF relay, a key step for deriving the spectral effi-
ciency is to derive the end-to-end SINR in the S–R–D link.
Although we can obtain the exact SINR expression following
a similar way as in [12], it is too complicated to gain useful
insight and analyze further. Instead, we introduce an approxi-
mation to simplify the expression and validate the results via
simulations later.

It has been shown that, in additive white Gaussian noise
(AWGN) channel, the end-to-end SNR is a function of the
SNRs in the MAC and BC phases [1]. In this paper, the residual
interference plus noise at the outputs of the linear receivers
at the relay and destination can be approximated as Gaussian
random variables that are independent of each other. Applying
the Gaussian approximation, the end-to-end SINR of the AF
relay can be approximated as a function of the SINRs in the two
phases as in [1], i.e., γk = γMACk

γBCk
/(γMACk

+ γBCk
+ 1).

Therefore, the spectral efficiency of the AF relay can be approx-
imated as

SEAF ≈ 1
2M

K∑
k=1

log

(
1 +

γMACk
γBCk

γMACk
+ γBCk

+ 1

)
. (8)

III. GLOBAL CHANNEL INFORMATION AT THE RELAY

Here, we first investigate the average spectral efficiency of
the relay system with global CSI at the relay.

Without any CSI, source Sk and destination Dk can simply
employ spreading sequence ck to transmit and receive the de-
sired symbol dk, i.e., wSk

= ck and wDk
= c∗k. For simplicity,

we assume cHk ck = 1.
With global CSI, relay R can employ an optimal multiuser

transceiver. In [12], an egocentric–altruistic (E–A) optimization
was investigated for relay systems. It yields a maximal SINR
(Max-SINR) detector in the MAC phase and a maximal signal-
to-leakage-plus-noise ratio (Max-SLNR) precoder in the BC
phase for the relay. Such a transceiver is equivalent to a lin-
ear optimal transceiver obtained from minimum-mean-square-
error criterion. For analytical tractability, we employ the E–A
optimization to design wRrk and wRtk . From [12], we have

wRrk =

(
K∑
i=1

HSi
cic

H
i HH

Si
+

σ2
R

PS
IM

)−1

HSk
ck (9)

wRtk =

(
K∑
i=1

H∗
Di
c∗ic

T
i H

T
Di

+
σ2
D

PR
IM

)−1

H∗
Dk

c∗k. (10)

By substituting wSk
= ck and (9) into (2), the SINR of the

kth symbol in the MAC phase is obtained as

γG
MACk

=
PS/σ

2
R

eHk

(
H̄

H
SRH̄SR + σ2

R/PSIK

)−1

ek

− 1 (11)

where H̄SR = [HS1
c1, . . . ,HSK

cK ] ∈ C
M×K is the equiva-

lent channel matrix in the MAC phase seen at the relay, and ek
is a basis vector, whose kth entry is 1, and all the other entries
are 0.

Similarly, substituting wDk
= c∗k and (10) into (6), we can

obtain the SINR of the kth symbol in the BC phase. However,
the obtained SINR expression is too complicated to analyze.
Based on the duality between the transmitter and the receiver
optimization, as shown in [15], the SINR achieved by precoder
wRtk in the R–D link can be approximated as the SINR
achieved by detector wRrk = w∗

Rtk
in the D–R link. Therefore,

the SINR in the BC phase can be approximated as

γG
BCk

≈ PR/σ
2
D

eHk

(
H̄

T
DRH̄

∗
DR + σ2

D/PRIK

)−1

ek

− 1 (12)

where H̄DR = [HD1
c1, . . . ,HDK

cK ] ∈ C
M×K is the equiv-

alent channel matrix in the BC phase seen at the relay.
By substituting (11) and (12) into (7) and (8), we can obtain

the instantaneous spectral efficiency of the DF and AF systems,
respectively. With the probability density function (pdf) of
fading channels, we can derive the average spectral efficiency.
However, the study in [16] indicates that when the number
of user pairs K > 2, it is intractable to derive a closed-form
expression of the average spectral efficiency.

Fortunately, as K,M → ∞ with K/M → β, we can derive
a closed-form expression for asymptotic spectral efficiency by
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using random-matrix theory. Moreover, the asymptotic spec-
tral efficiency converges in mean square to the average spectral
efficiency. As will be shown later, the asymptotic spectral
efficiency is quite close to the average spectral efficiency even
with finite K and M . In the sequel, we will investigate the
asymptotic spectral efficiency.

In random-matrix theory [17], η-transform is an important
tool for asymptotic analysis, whose definition is shown as
follows for readers’ convenience.

Definition 1: The η-transform of a nonnegative definite ran-
dom matrix V is

ηV (x)
∆
= E

{
1

1 + xλV

}
=

∫
fV (t)

1 + xt
dt (13)

where λV is the eigenvalue of V , fV (x) is the pdf of λV , and
x is a nonnegative real number.

From (11), it is not hard to derive the asymptotic SINR in the
MAC phase as follows:

γ̄G
MACk

= lim
K→∞

PS/σ
2
R

eHk

(
H̄

H
SRH̄SR + σ2

R/PSIK

)−1

ek

− 1

= lim
K→∞

1

1
K tr

{(
PS/σ2

RH̄
H
SRH̄SR + IK

)−1
} − 1

= η−1

H̄H
SRH̄SR

(
PS/σ

2
R
)
− 1. (14)

To simplify the analysis, we assume that the channel coef-
ficient at each subcarrier is a zero-mean random variable with
unit variance, and the channel coefficients among the subcarri-
ers are independent of each other. We will show in simulations
later that the obtained conclusion is still valid when adjacent
subcarriers are correlated. Furthermore, we assume that the
channels among multiple users are mutually independent. As
a result, no matter what kind of spreading sequences are used,
all the elements of the equivalent channel matrix H̄SR are
i.i.d. random variables. Since the frequency-domain channel
response H

(m)
Sk

is zero mean and with unit variance and the
spreading sequence satisfies cHk ck = 1, the elements of H̄SR
are zero mean and with variance 1/M . Then, according to the
Marcenko–Pastur law [17], as K,M → ∞ with K/M → β,
the empirical distribution of the eigenvalues of equivalent chan-
nel correlation matrix H̄

H
SRH̄SR converges with a probability

of 1 to a distribution whose η-transform satisfies

ηH̄H
SRH̄SR

(x) = 1 − F(x, β)

4βx
(15)

where

F(x, z)
∆
=

(√
1 + x(1 +

√
z)2 −

√
1 + x(1 −

√
z)2

)2

.

By substituting (15) into (14), the asymptotic SINR can be
derived as

γ̄G
MACk

=
PS
σ2
R
− 1

4
F
(
PS
σ2
R
, β

)
. (16)

The analysis in [17] shows that, for large-scale systems,
where K,M → ∞, the interference power from user i to user
k equals to the leakage power from user k to user i. Conse-
quently, the SLNR equals to the SINR. This implies that, in the
asymptotic region, the relay transceiver consisting of the Max-
SLNR precoder and the Max-SINR detector achieves the same
performance as an optimal relay transceiver designed under the
Max-SINR criterion.

It is not difficult to show that the right-hand side of (12)
is the exact SLNR expression in the BC phase. Based on the
equivalency between the SINR and the SLNR in the asymptotic
region, the asymptotic SINR in the BC phase can be derived as

γ̄G
BCk

=
PR
σ2
D

− 1
4
F
(
PR
σ2
D
, β

)
. (17)

By substituting (16) and (17) into (7) and (8), respectively,
we can obtain the asymptotic spectral efficiency of the DF and
AF relay systems with global CSI at the relay. It shows that
the asymptotic performance depends on the SNRs PS/σ

2
R and

PR/σ
2
D, as well as the asymptotic load factor β, but does not

depend on the characteristics of the spreading sequences and
fading channels.

IV. LOCAL CHANNEL INFORMATION AT SOURCES

AND DESTINATIONS

When all the source and destination nodes have the local CSI,
they can design the channel-dependent precoders and detectors.
With no CSI, the relay employs a spreading sequence to receive
and forward the kth symbol, i.e., wRrk = ck and wRtk = c∗k.

For a fair comparison, the same criteria are considered here
as we optimize the relay transceiver for the system with global
CSI at the relay. The Max-SLNR precoder at the source is
obtained as

wSk
=

(
K∑
i=1

HH
Sk
cic

H
i HSk

+
σ2
R

PS
IM

)−1

HH
Sk
ck (18)

and the Max-SINR detector at the destination is

wDk
=

(
K∑
i=1

HT
Dk

c∗ic
T
i HDk

+
σ2
D

PR
IM

)−1

HT
Dk

c∗k. (19)

By substituting (19) into (6), the SINR in the BC phase is
derived as

γL
BCk

=
PR/σ

2
D

eHk
(
CT∆Dk

C∗ + σ2
D/PRIK

)−1
ek

− 1 (20)

where C = [c1, . . . , cK ] is the spreading sequence matrix,
∆Dk

= HDk
HH

Dk
= diag{|H(1)

Dk
|2, . . . , |H(M)

Dk
|2}, whose di-

agonal elements denote the channel power values of the M
subcarriers in the link from relay R to destination Dk.

The SINR in the MAC phase can be similarly obtained
by substituting (18) into (2), which is, unfortunately, too
complicated to analyze. Again, using the duality between the
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transmitter and the receiver optimization [15], the SINR can be
approximated as

γL
MACk

≈ PS/σ
2
R

eHk
(
CH∆Sk

C + σ2
R/PSIK

)−1
ek

− 1 (21)

where ∆Sk
= HSk

HH
Sk

= diag{|H(1)
Sk

|2, . . . , |H(M)
Sk

|2},
whose diagonal elements denote the channel power values in
the link from source Sk to relay R.

It is not hard to derive the asymptotic SINR in the MAC
phase as follows:

γ̄L
MACk

= lim
K→∞

1

1
K tr

{(
PS
σ2
R
CH∆Sk

C + IK

)−1
} − 1

=
1

ηCH∆Sk
C (PS/σ2

R)
− 1. (22)

In addition, owing to the fact that tr{AB} = tr{BA}, the
asymptotic SINR in (22) can be rewritten as

γ̄L
MACk

= lim
K→∞

1

1
K tr

{(
PS
σ2
R
∆Sk

CCH+IM

)−1
}
−M−K

K

−1

=
β

η∆Sk
CCH (PS/σ2

R) + β − 1
− 1. (23)

When the entries of M ×K spreading sequence matrix C
are i.i.d. complex random variables with zero mean and vari-
ance 1/M , we call c1, . . . , cK as random spreading sequences.
In this case, if the equivalent channel correlation matrix ∆Sk

is a Hermitian random matrix independent of C, it is shown in
[17, Th. 2.42] that, as K,M → ∞ with K/M → β, the empiri-
cal distribution of the eigenvalues of ∆Sk

CCH converges with
a probability of 1 to a distribution whose η-transform satisfies

η∆Sk
CCH (x) = η∆Sk

(
x
(
η∆Sk

CCH (x) + β − 1
))

(24)

where η∆Sk
is the η-transform of ∆Sk

.
When C is a random matrix uniformly distributed over the

manifold of M ×K complex matrices such that CHC = I ,
we call c1, . . . , cK as orthogonal spreading sequences. In this
case, if ∆Sk

is still the random matrix independent of C, it
is shown in [17, Ex. 2.51] that, as K,M → ∞ with K/M →
β, the empirical distribution of the eigenvalues of ∆Sk

CCH

converges with a probability of 1 to a distribution whose
η-transform satisfies

η∆Sk
CCH (x) = η∆Sk

(
x
η∆Sk

CCH (x) + β − 1

η∆Sk
CCH (x)

)
. (25)

From (23), the η-transform of ∆Sk
CCH can also be ex-

pressed as a function of the asymptotic SINR, i.e.,

η∆Sk
CCH

(
PS
σ2
R

)
=

β

γ̄L
MACk

+ 1
− β + 1. (26)

By substituting (26) into (24) and after some regular ma-
nipulations, the asymptotic SINR with the random spreading
sequence can be shown to satisfy the following:

β
γ̄L−Rand
MACk

γ̄L−Rand
MACk

+ 1
= 1 − η∆Sk

(
PS
σ2
R

β

γ̄L−Rand
MACk

+ 1

)
. (27)

Similarly, substituting (26) into (25), the asymptotic SINR
with the orthogonal spreading sequence can be shown as a
solution of the following:

β
γ̄L−Orth
MACk

γ̄L−Orth
MACk

+ 1
= 1 − η∆Sk

(
PS
σ2
R

β

(1 − β)γ̄L−Orth
MACk

+ 1

)
.

(28)
Equations (27) and (28) can be expressed in a unified form as

β
γ̄L
MACk

γ̄L
MACk

+ 1
+ η∆Sk

(
PS
σ2
R

β

φγ̄L
MACk

+ 1

)
− 1 = 0 (29)

where φ = 1 denotes the SINR using the random spreading
sequence, and φ = 1 − β represents the SINR using the orthog-
onal spreading sequence.

From (29), we can see that using different spreading se-
quences leads to different asymptotic SINR for the relay system
with local CSI at every node. Moreover, as will be shown
soon, the asymptotic SINR depends on the statistics of fading
channels as well. These results are very different from those
for the system with global CSI at the relay, which is immune
to these factors. In the following, we will further study the
impact of the spreading sequences and fading channels by
taking the SINR in the MAC phase as an example. We will also
analyze the impact of the low-complexity transceiver, which is
of practical importance.

A. Impact of Spreading Sequences

It is hard to analyze the impact of the spreading sequences by
directly comparing (27) and (28) because they are not closed-
form expressions of the SINR. In the following, we simplify the
SINR expressions by introducing approximations.

To obtain accurate approximations for different SNR lev-
els, we first analyze how the SINR varies with the SNR. In
Appendix A, we know that ∂γ̄L

MACk
/∂(PS/σ

2
R) > 0. This

shows that the asymptotic SINR is an increasing function of the
SNR PS/σ

2
R. Then, at a high SNR level, we can approximate

γ̄L
MACk

+ 1 ≈ γ̄L
MACk

, ∀β < 1. Applying the approximation to
(27) and (28), the SINR using the random spreading sequence
can be expressed as

γ̄L−Rand
MACk

≈ PS
σ2
R

β

ϕ∆Sk
(1 − β)

∀β < 1 (30)

while that using the orthogonal spreading sequence becomes

γ̄L−Orth
MACk

≈ PS
σ2
R

β

(1 − β)ϕ∆Sk
(1 − β)

∀β < 1 (31)

where ϕ∆Sk
(x) is the inverse function of η∆Sk

(x).
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Dividing (31) by (30), we have

γ̄L−Orth
MACk

γ̄L−Rand
MACk

=
1

1 − β
∀β < 1. (32)

It reflects the SINR gain of the orthogonal spreading sequence
over the random spreading sequence.

We can see from (32) that in the high SNR region, the SINR
gain depends on the asymptotic load factor but is independent
of the characteristic of fading channels. When β (0 < β < 1)
increases, the SINR gain monotonously increases. This sug-
gests that when the local CSI is available for every source and
destination node and the system is underloaded, the advantage
of the orthogonal spreading sequence over the random spread-
ing sequence becomes increasingly noticeable as β grows. For
any fading channel, the SINR gain never vanishes and always
remains a constant.

B. Impact of Fading Channels

Now, we analyze the impact of fading channels.
Theorem 1: Consider two fading channels A and B. Let

η∆A
(x) and η∆B

(x) denote the η-transform of their channel
correlation matrices ∆L

A and ∆L
B , and γ̄L

A and γ̄L
B be the asymp-

totic SINRs of the relay system with local CSI at every node in
channels A and B, respectively. When η∆A

(x) ≥ η∆B
(x), we

have γ̄L
A ≤ γ̄L

B .
Proof: See Appendix B. �

Theorem 1 suggests that the asymptotic SINR of the relay
system with local CSI at every node monotonically decreases
with the η-transform of channel power response. This result is
useful for comparing the asymptotic SINRs in different fading
channels, with which the closed-form expressions of the SINRs
are no longer necessary.

Remark 1: According to Jensen’s inequality, from (13), we
can derive the lower bound of the η-transform, i.e.,

η∆Sk
(x)=E

{
1

1 + xλ∆Sk

}
≥ 1

1 + xE{λ∆Sk
}=1/(1 + x).

(33)

Hence, we know that the maximal SINR is achieved when
η∆Sk

= 1/(1 + x). In the AWGN channel, we have ∆Sk
= I

and η∆Sk
(x) = 1/(1 + x). Therefore, we can conclude that, in

the AWGN channel, the relay system with local CSI at every
node can achieve the maximal SINR.

Corollary 1: The upper bounds of γ̄L−Rand
MACk

and γ̄L−Orth
MACk

are,
respectively, as follows:

γ̄L−Rand
MACk

≤ PS
σ2
R
− 1

4
F
(
PS
σ2
R
, β

)
(34)

γ̄L−Orth
MACk

≤ PS
σ2
R
. (35)

Proof: See Appendix C. �
Corollary 2: In Nakagami-m fading channels, the asymp-

totic SINR of the relay system with local CSI at each every
node is an increasing function of m.

Fig. 2. Comparison of η-transform functions. p(x,m) is obtained from (37),
which is η∆Sk

(x) in Nakagami-m fading channels. q(x) is obtained from
(50).

According to Theorem 1, we can analyze the monotonicity
of the asymptotic SINR with m by comparing the values of
η∆Sk

(x) in Nakagami-m fading channels with different m.
To derive η∆Sk

(x), we need the pdf of ∆Sk
in Nakagami-m

channels, which is [18]

f∆Sk
(x) =

mm

Γ(m)
xm−1 exp(−mx) (36)

where Γ(x)
∆
=

∫∞
0 e−xxx−1dt is the gamma function.

By substituting (36) into (13) and applying [19, eq.
(3.382.4)], we obtain

η∆Sk
(x) = p (x,m) (37)

where

p(x,m)
∆
=

(m
x

)m

exp
(m
x

)
Γ
(

1 −m,
m

x

)

and Γ(a, x)
∆
=

∫∞
x e−xxa−1dt is the incomplete gamma

function.
In Fig. 2, we plot p(x,m) with different m. It is shown that

for an arbitrary x, when m increases, the value of p(x,m)
monotonically decreases. From Theorem 1, we know that the
asymptotic SINR is an increasing function of m.

The Nakagami-m fading channel is able to reflect
different communication environments by using different
values of parameter m. For instance, it becomes a
Rayleigh fading channel when m = 1 and converges
to an AWGN channel when m → ∞ [20]. As m
increases, the amount of fading of the Nakagami-m
channels reduces, i.e., the fluctuation of channel power
reduces. Therefore, Corollary 2 indicates that a less fluctuated
channel attributes to a higher SINR.

C. Impact of The Low-Complexity Transceiver

With only global CSI at the relay, the precoder at each source
and the detector at each destination have low complexity, but
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the transceiver at the relay is complicated. From (9) and (10),
we can see that the complexity of the relay is on the order of
O(M3) due to an inversion operation of an M ×M matrix.
In contrast, only with local CSI at every node, the transceiver
of the relay becomes simple, but the precoder at each source
and the detector at each destination become complicated, which
are on the order of O(M3), as shown in (18) and (19). In
practice, the processing abilities of the source and destination
nodes are usually limited, which impose strict requirement on
their complexity. Fortunately, it has been shown in [21] that
the complexity of the source and destination nodes could be
reduced by judiciously selecting spreading sequences. To see
this, we take the precoder at the source as an example.

Let us construct the M ×K spreading sequence matrix C
by a K ×K unitary matrix U and an M ×K matrix P , i.e.,

C = PU . (38)

Then, the transmit vector of source Sk can be expressed as

wSk
=

(
HH

Sk
CCHHSk

+ σ2
R/PSIM

)−1
HH

Sk
ck

=HH
Sk
C

(
CH∆Sk

C + σ2
R/PSIK

)−1
ek

=HH
Sk
P

(
ΠSk

+ σ2
R/PSIK

)−1
Uek (39)

where ΠSk
= PH∆Sk

P .
When the number of nonzero elements in each row of P does

not exceed 1, i.e., the elements of the spreading matrix P satisfy

Pl,jPl,i = 0 ∀j �= i (40)

the (i, j) element of ΠSk
becomes

M∑
l=1

Pl,iPl,j

∣∣∣H(l)
Sk

∣∣∣2 = 0 ∀i �= j (41)

which holds for arbitrary |H(1)
Sk

|2, . . . , |H(M)
Sk

|2.
This way, ΠSk

becomes a diagonal matrix, and (39) is re-
duced to a one-tap frequency-domain precoder. Its complexity
is on the order of O(K), owing to K scalar divisions. We call
such an artificially constructed spreading sequence as a one-
tap spreading sequence. Since the performance of the relay
system with local CSI at every node depends on the spreading
sequence, in the sequel, we analyze the performance of the relay
system with the one-tap spreading sequence.

To derive the asymptotic SINR, we need to analyze the
eigenvalue of CH∆Sk

C. Since U is a unitary matrix and ΠSk

is a diagonal matrix, CH∆Sk
C = UHΠSk

U is an eigende-
composition, i.e., ΠSk

is the eigenvalue matrix of CH∆Sk
C.

Hence, the eigenvalues of CH∆Sk
C are

Π
(j)
Sk

=

M∑
l=1

|Pl,j |2
∣∣∣H(l)

Sk

∣∣∣2 , j = 1, . . . ,K. (42)

From (42), we can observe that the number of the nonzero
elements in each column of P , the indexes of these elements,
and the weighting coefficients can reflect how many and which

subcarriers should be combined, as well as how to combine
them.

Based on Corollary 2, we know that when the fluctuation
of the channel power is reduced, the SINR will be improved.
Analogously, we can show that a less fluctuation of the diagonal
elements in ΠSk

leads to a higher SINR. To reduce the fluctu-

ation of Π(j)
Sk

, the optimal spreading matrix should be designed

in the following manner: Let Π
(j)
Sk

have a form to combine
maximal number of subcarriers with maximal spacing and with
equal gain weighting. When M is divisible by K, the optimal
form of Π

(j)
Sk

can combine M/K subcarriers with an interval

of K subcarriers; then, Π(j)
Sk

= K/M
∑M/K−1

n=0 |H(nK+j)
Sk

|2. In

general cases, the optimal form of Π(j)
Sk

becomes

Π
(j)
Sk

=




1
N+1

∑N
n=0

∣∣∣H(nK+j)
Sk

∣∣∣2 , j ∈ [1,M −KN ]

1
N

∑N−1
n=0

∣∣∣H(nK+j)
Sk

∣∣∣2 , j ∈ (M −KN,K]

(43)

where N = �M/K.
When an equivalent channel is combined from L i.i.d. chan-

nel coefficients in Nakagami-m fading channels whose shape
parameter is m, the equivalent channel is subject to another
Nakagami-m distribution whose shape parameter is mL [18].
Consequently, from (36) and (43), it is not difficult to derive the
pdf of Π(j)

Sk
as

fΠSk
(x) = α

mm1
1

Γ(m1)
xm1−1 exp(−m1x)

+(1 − α)
mm2

2

Γ(m2)
xm2−1 exp(−m2x) (44)

where m1 = m(N + 1), m2 = mN , and α = M/K −N .
By substituting (44) into (13), we have

ηCH∆Sk
C(x) = αp(x,m1) + (1 − α)p(x,m2) (45)

where p(x,m) was defined in (37).
By substituting (45) into (22), the asymptotic SINR provided

by the one-tap spreading sequence can be derived as

γ̄L−Onetap
MACk

=
1

αp
(

PS
σ2
R
,m1

)
+(1 − α)p

(
PS
σ2
R
,m2

) − 1. (46)

Applying limm→∞ p(x,m) = 1/(x+ 1) to (46), we can
obtain an upper bound of the SINR, which is

γ̄L−Onetap
MACk

≤ PS
σ2
R
. (47)

By comparing with (35), we can see that the orthogonal
spreading sequence and the one-tap spreading sequence achieve
the same performance bound. However, the forthcoming nu-
merical results will show that the constructed spreading se-
quence is slightly inferior to the orthogonal spreading sequence.
However, as m increases, the performance gap will vanish.
This means that the one-tap spreading sequence achieves a
good tradeoff between complexity and performance because
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it significantly reduces the complexity but only suffers from
minor performance loss.

V. GLOBAL CHANNEL STATE INFORMATION VERSUS

LOCAL CHANNEL STATE INFORMATION

Based on the aforementioned analytical results, we are able
to compare the performance of the relay system with global CSI
at the relay and that with local CSI at every node.

Considering that the asymptotic SINR of the system with
local CSI depends on the spreading sequences, we compare
the performance of the two systems when the random and
orthogonal spreading sequences are employed. Again, we take
the SINR in the MAC phase as an example. The results in the
BC phase are similar and thus are omitted.

A. Random Spreading Sequence

When the random spreading sequence is considered, by
comparing (16) with (34), we have

γ̄L−Rand
MACk

≤ γ̄G
MACk

. (48)

That is, the system with global CSI at the relay is spectrally
more efficient than that with local CSI at every node.

B. Orthogonal Spreading Sequence

When the orthogonal spreading sequence is used, it is diffi-
cult to compare the performance of the systems with different
CSI by simply comparing (16) and (28). Theorem 1 indicates
that we can compare the corresponding η∆Sk

instead. For the
relay system with global CSI at the relay, its η-transform of
an equivalent channel correlation matrix is ηH̄H

SRH̄SR
(x), as

shown in (15). If we can find a channel whose channel cor-
relation matrix ∆̃Sk

satisfies η∆̃Sk
CCH (x) = ηH̄H

SRH̄SR
(x),

the asymptotic SINR of the relay system with global CSI at
the relay is equal to that of the system with local CSI at every
node.

Therefore, we can indirectly compare the performance of the
two systems with different CSI by comparing η∆Sk

(x) and
η∆̃Sk

(x).

By substituting η∆̃Sk
CCH (x) = 1 −F(x, β)/4βx into (25),

we have

1 − F(x, β)

4βx
= η∆̃Sk

(
x

1 − F(x,β)
4βx + β − 1

1 − F(x,β)
4βx

)
. (49)

Using variable substitution and some regular but tedious ma-
nipulations, we can derive that

η∆̃Sk
(x) = q(x) (50)

where q(x)
∆
= (

√
4x+ 1 − 1)/(2x).

As a result, we can conclude that, in the relay system using
the orthogonal spreading sequence, if in a channel η∆Sk

(x) <
q(x), the system with local CSI at every node is superior to

that with global CSI at the relay. Otherwise, the result is the
opposite.

Take the Nakagami-m fading channel as an example, where
η∆Sk

(x) = p(x,m). We plot q(x) and compare it with p(x,m)
∀m ≥ 1 in Fig. 2, which shows that p(x,m) ≤ q(x) ∀m ≥ 1.
Therefore

γ̄L−Orth
MACk

≥ γ̄G
MACk

∀m ≥ 1. (51)

It indicates that, in Nakagami-m channels (m ≥ 1), the
relay system with local CSI at every node is spectrally more
efficient than the system with global CSI at the relay, when the
orthogonal spreading sequence is employed.

C. Intuitive Interpretation

To understand why there is a performance difference between
the relay systems with different CSI, we investigate the orthog-
onality of the equivalent channels in different S–R links, which
is measured by correlation coefficients. A lower correlation
coefficient indicates more orthogonal equivalent channels.

It is interesting to see that even when the two systems
with different CSI using the same spreading sequence and
undergoing the same fading channel, the correlation coefficients
between the equivalent channels of different users in the two
systems are not identical.

For the system with global CSI at the relay, each source
employs its own spreading sequence for precoding, which does
not depend on the channel information. From the view of the
relay, the received signals from source Si and Sk experience
different channels, and their equivalent channels are HSi

ci
and HSk

ck, respectively. Both the spreading sequences and
channel responses are different. The correlation coefficient
between the equivalent channels from Si and Sk seen at the
relay is

ρGik =

∣∣cHi HH
Si
HSk

ck
∣∣

‖HSi
ci‖ · ‖HSk

ck‖
. (52)

For the system with local CSI at every node, each source can
employ channel-dependent precoder while the relay receives
signals with different spreading sequences for different users.
Because source Sk only has its own channel information, it
implicitly assumes that other sources have the same channel
as itself when designing the Max-SLNR precoder, as shown in
(18). That is to say, from the view of source Sk, the equivalent
channels of Si and Sk are HSk

ci and HSk
ck, respectively,

where only the spreading sequences are different. Therefore,
the correlation coefficient of the equivalent channels of Si and
Sk seen at the kth source becomes

ρLik =

∣∣cHi HH
Sk
HSk

ck
∣∣

‖HSk
ci‖ · ‖HSk

ck‖
. (53)

By comparing (52) and (53), we can observe that the orthog-
onality of the equivalent channels seen at the relay depends on
the cross correlation of different spreading sequences weighted
by different channel power responses. By contrast, the orthog-
onality seen at each source relies on the cross correlation of
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Fig. 3. CDF of correlation coefficients in Nakagami-m fading channels.

different spreading sequences weighted by the same channel
power responses.

In Fig. 3, we present the cumulative distribution function
(cdf) of the correlation coefficients in Nakagami-m (m ≥ 1)
fading channels. It is shown that the orthogonality of the equiv-
alent channels seen at the relay is almost the same for different
m, no matter if the spreading sequences are orthogonal or
random. This explains why the asymptotic SINR of the system
with global CSI at the relay is independent of the features
of fading channels and spreading sequences. By contrast, the
orthogonality of the equivalent channels seen at the source is
sensitive to the spreading sequences and the channels. When
the orthogonal spreading sequence is used, the orthogonality of
the equivalent channels seen at the source is always better than
that at the relay. However, when the random spreading sequence
is employed, the orthogonality of the equivalent channels at
the source becomes inferior to that at the relay. Moreover, in
Nakagami-m fading channels, when m increases, the equiva-
lent channels at the sources become more orthogonal, and their
correlation coefficient approaches to the maximum value when
m → ∞.

Note that the performance of the linear transceiver largely
depends on the orthogonality of equivalent channels. As a
result, the system with local CSI at every node achieves higher
spectral efficiency than the system with global CSI at the relay
when the orthogonal spreading sequence is applied. However,
the system with global CSI at the relay will become superior
when the random spreading sequence is used.

VI. SIMULATION AND NUMERICAL RESULTS

Here, we validate previous analysis by comparing the asymp-
totic spectral efficiency with the average spectral efficiency
obtained through simulations with finite K and M . In the
simulation, we consider that the noise at the relay and desti-
nation has the same variance of σ2

R = σ2
D = σ2. We consider

frequency-selective Rayleigh or Nakagami-m fading channels.
The transmit power is equally allocated to each symbol at
the source and the relay, i.e., PS = PR = P/2. The SNR per

Fig. 4. Data rate per user of the AF relay system with global CSI at the relay
versus SNR.

Fig. 5. Data rate per user of the AF relay system with local CSI at every node
versus SNR.

symbol is P/σ2. In the legends, “Orth” means a system using
the orthogonal spreading sequence, “Rand” denotes a system
using the random spreading sequence, and “One-tap” stands
for the constructed spreading sequence that yields the low-
complexity transceiver.

We show the data rate per user versus SNR of the relay
system with global CSI at the relay in Fig. 4 (with legend
“Global CSI at R”) and that with local CSI at every node
(with legend “Local CSI at S/D”) in Fig. 5. We also compare
the numerical results obtained from the asymptotic analysis
(with legend “Theoretical Analysis”) and the simulation results
for a relay system transmitted over M = 32 subcarriers in
a fading channel with L = 8 resolvable paths (with legend
“Simulation”). In Fig. 4, the analytical result is numerically
obtained from (16), whereas in Fig. 5, the analytical results are
numerically obtained from (27), (28), and (46), respectively. In
the simulation, because L < M , the adjacent subcarriers are
correlated, but the correlation among the adjacent subcarriers
are not very strong in the considered setting.
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Fig. 6. Spectral efficiency comparison in Rayleigh fading channels with AF
relays.

It shows that the numerical results are close to the sim-
ulation results with finite numbers of users and subcarriers
for arbitrary SNR. This indicates that the asymptotic spectral
efficiency rapidly converges to the average spectral efficiency.
This also shows that the approximations used in the derivation
are accurate. Moreover, in the analysis, we assumed that the
channel coefficients among subcarriers are mutually indepen-
dent, but in the simulations, the channels between adjacent
subcarriers are correlated. It implies that the conclusions drawn
from the analytical analysis are also true for practical channels
without the assumption. This is because the performance of the
two systems with different CSI depends on the orthogonality
among the equivalent channels, which are weighted by the
spreading sequences. Different users employ different spread-
ing sequences, which will randomize the equivalent channels.
In Fig. 4, we see that when using the global CSI at the relay,
the data rate per user is almost the same, regardless of if the
spreading sequences are orthogonal or random. However, in
Fig. 5, it is clear that the performance varies with different
spreading sequences. Moreover, the orthogonal spreading se-
quence achieves the maximal spectral efficiency, whereas the
random spreading sequence achieves the minimal one. Their
performance gap increases with the asymptotic load factor. In
addition, the performance of the one-tap spreading sequence is
quite close to that of the orthogonal spreading sequence. This
validates our previous analytical analysis.

In Figs. 6 and 7, we show the numerical results of the
asymptotic spectral efficiency of the systems with AF and DF
relays, respectively. We investigate the spectral efficiency with
different CSI using different spreading sequences. With both
AF and DF relays, for arbitrary β and SNR, when the orthog-
onal spreading sequence is used, the system with local CSI at
every node is spectrally more efficient than that with global CSI
at the relay. When the random spreading sequence is employed,
the result is the opposite. To show the performance upper bound
of the relay systems, we also provide the performance of a
system with global CSI at all nodes and the relay (with legend
“Global CSI at S–R–D”). Under such a channel assumption, a
joint S–R–D transceiver optimization in [10] can be applied. As

Fig. 7. Spectral efficiency comparison in Rayleigh fading channels with DF
relays.

Fig. 8. Impact of fading channels on the spectral efficiency with AF relays.

expected, the jointly optimized transceiver with global CSI at
all nodes and the relay achieves the highest spectral efficiency.
This however comes at a cost of the complexity to iteratively
compute precoders and detectors and a cost of the overhead
to gather the global CSI for all nodes and the relay. In the
considered setting, the DF relay outperforms the AF relay.
When using the orthogonal spreading sequence, from the result
of SNR = 20 dB with AF relay, we can see that the maximal
spectral efficiency of the system with local CSI at every node
is 1.48 bit/s/Hz (at β = 0.95), whereas that with global CSI
at the relay is 1.14 bit/s/Hz (at β = 0.8). Compared with the
system with global CSI at the relay, the system with local
CSI at every node can improve 30% of the spectral efficiency
when the load factor increases by 20%. Moreover, as we have
discussed, acquiring the local CSI at every node needs much
less training overhead than acquiring the global CSI at the relay.
This suggests that if we consider the net throughput excluding
the overhead for channel acquisition, the relay system with
local CSI and the orthogonal spreading sequence is highly
desirable.
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To illustrate the impact of channel statistics on the per-
formance, in Fig. 8, we compare the numerical results of
the asymptotic spectral efficiency of the relay systems in
Nakagami-m fading channels with different m. The perfor-
mance in the AWGN channel is also shown as a reference.
When m increases, the performance of the system with global
CSI at the relay almost does not change, whereas that with
local CSI at every node becomes better. When considering the
orthogonal spreading sequence, the spectral efficiency provided
by the system with local CSI approaches that in the AWGN
channel. When employing the random spreading sequence, the
spectral efficiency provided by the system with local CSI at
every node goes to that with global CSI at the relay.

All these results agree with our analytical analysis very well.

VII. CONCLUSION

In this paper, we have analyzed the spectral efficiency of
MC-CDMA two-hop relay systems with different CSI: In one
system, only the relay has global CSI, and in the other system,
only each source and each destination node have local CSI. It
is shown from both analytical and simulation results that the
spectral efficiency of the system with global CSI at the relay is
immune to the features of the spreading sequences and fading
channel statistics. By contrast, the spectral efficiency of the
system with local CSI at every node depends on these factors.
In Nakagami-m fading channels, compared with the system
with global CSI, the system with local CSI is spectrally more
efficient when the spreading sequence is orthogonal but is less
efficient when the spreading sequence is random. When the
one-tap spreading sequence is applied, the system with local
CSI at every node can significantly reduce the transceiver com-
plexity of the source and destination nodes yet only suffers from
minor performance loss. If we are accounting for the training
overhead to facilitate channel estimation, the net throughput of
the relay system with local CSI at every node will be much
higher than that of the relay system with global CSI at the relay
when the spreading sequence is properly designed.

APPENDIX A
DERIVATION OF ∂γ̄L

MACk
/∂(PS/σ

2
R)

Let y = γ̄L
MACk

and x = PS/σ
2
R; (29) can be rewritten as

β − 1 +
β

y + 1
+ η∆Sk

(
βx

φy + 1

)
= 0. (54)

Apply the implicit differentiation to (54); we have

β

(y + 1)2
∂y

∂x
+ η′∆Sk

(z)

(
β

φy + 1
− βφx

(φy + 1)2
∂y

∂x

)
= 0

(55)

where z = βx/(φy + 1), and η′∆Sk
(z) = ∂η∆Sk

(z)/∂z is the

first-order derivative of η∆Sk
(z).

Then, (55) can further be rewritten as

∂y

∂x

(
1

(y + 1)2
−

η′∆Sk
(z)φx

(φy + 1)2

)
= −

η′∆Sk
(z)

φy + 1
(56)

i.e.,

∂y

∂x
=

−η′∆Sk
(z)(φy + 1)

(φy+1)2

(y+1)2 − η′∆Sk
(z)φx

. (57)

From (13), we obtain

η′∆Sk
(z) =

∂η∆Sk
(z)

∂z
= −

∫
tf∆Sk

(t)

(1 + tz)2
dt ≤ 0. (58)

Since the values of φ, y, and −η′∆Sk
(z) are always positive

for β < 1, it is not difficult to show that ∂y/∂x > 0, i.e.,
∂γ̄L

MACk
/∂(PS/σ

2
R) > 0 ∀β < 1.

APPENDIX B
PROOF OF THEOREM 1

Suppose that if η∆A
(x) ≥ η∆B

(x), γ̄L
A ≥ γ̄L

B .
When η∆A

(x) ≥ η∆B
(x), i.e., 1 − η∆A

(x) ≤ 1 − η∆B
(x),

we have

1 − η∆A

(
PS
σ2
R

β

φγ̄L
A + 1

)
≤ 1 − η∆B

(
PS
σ2
R

β

φγ̄L
A + 1

)
.

(59)

When γ̄A ≥ γ̄B , we have 1/(φγ̄L
A + 1) ≤ 1/(φγ̄L

B + 1).
From (58), it is easy to show that ∂(1 − η∆B

(x))/∂x ≥ 0, i.e.,
1 − η∆B

(x) is an increasing function of x. Hence, we obtain

1 − η∆B

(
PS
σ2
R

β

φγ̄L
A + 1

)
≤ 1 − η∆B

(
PS
σ2
R

β

φγ̄L
B + 1

)
.

(60)
From (59) and (60), we have

1 − η∆A

(
PS
σ2
R

β

φγ̄L
A + 1

)
≤ 1 − η∆B

(
PS
σ2
R

β

φγ̄L
B + 1

)
.

(61)

By substituting (61) into (29), the following inequality holds:

γ̄L
A

γ̄L
A + 1

≤ γ̄L
B

γ̄L
B + 1

. (62)

Then, we show that γ̄L
A ≤ γ̄L

B , which contradicts the assump-
tion. Thus, the theorem is true.

APPENDIX C
PROOF OF COROLLARY 1

By substituting η∆Sk
= 1/(1 + x) into (27) and using some

regular but tedious manipulations, we can show that the upper
bound of γ̄L−Rand

MACk
is the solution of

x2 −
(
(1 − β)PS/σ

2
R − 1

)
x− PS/σ

2
R = 0. (63)

Omitting one negative solution, the closed-form expression
of the upper bound of γ̄L−Rand

MACk
is

x =
1
2

(
(1 − β)z − 1 +

√
((1 − β)z − 1)2 + 4z

)

= z − 1
2

(
(1 + β)z + 1 −

√
(1 − β)2z2 − (1 + β) + 1

)
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= z − 1
4

(
1 + (1 +

√
β)2z + 1 + (1 −

√
β)2z

)

− 1
4

(
2

√(
1 + (1 +

√
β)2z

)(
1 + (1 −

√
β)2z

))

= z − 1
4

(√
1 + (1 +

√
β)2z −

√
1 + (1 −

√
β)2z

)2

= z − 1
4
F(z, β). (64)

where z = PS/σ
2
R.

Therefore, (34) is the upper bound of γ̄L−Rand
MACk

.
Similarly, substituting the η-transform into (28), we can show

that the upper bound of γ̄L−Orth
MACk

is the solution of

(1 − β)x2 −
(
(1 − β)PS/σ

2
R − 1

)
x− PS/σ

2
R = 0. (65)

Again, omitting the negative solution, we obtain

x =
(1 − β)z − 1 +

√
((1 − β)z − 1)2 + 4z(1 − β)

2(1 − β)

=
(1 − β)z − 1 + (1 − β)z + 1

2(1 − β)
= z. (66)

Hence, (35) is the upper bound of γ̄L−Orth
MACk

.
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