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Abstract—Gesture recognition through wireless communica-
tion signal is a new approach for human-computer interaction,
and is an important topic for integrated sensing and communi-
cation designs in next-generation mobile communication system.
Wireless gesture recognition is mainly realized by analyzing the
change of propagation channel, especially the phase change of
reflection path. However, the law of phase change is closely
related to the position and orientation of the user, as well as
the positions of transmitter and receiver. The gesture recognition
system trained in a given environment usually does not work well
in a new environment. In this paper we propose a position and
orientation independent gesture recognition method, where the
phase change under any position configuration is transformed to
the gesture trajectory in an invariant body coordinate system.
The transformation matrix implicitly embodies the impact of
position and orientation, and is estimated by a preamble gesture
each time reaching a new environment. The method is verified
in a prototype system, and the recognition accuracies under
different position configurations are tested.

Index Terms—Channel state information, coordinate transfor-
mation, gesture recognition, position-independent, wireless sensing

I. INTRODUCTION

Wireless signals are not only used for high-speed and
reliable transmission of information, but also have sensing
ability, so that wireless gesture recognition can be a good
candidate for device-free human-computer interaction means
[1], [2]. On the propagation path of wireless signals, the
variations of reflection, scattering and diffraction caused by
gestures will affect the channel state information (CSI) [3],
[4]. By analyzing the specific change modes of CSI, different
gestures can be recognized.

However, many existing wireless sensing systems have
position-dependency problem, since the variations of CSI are
not only determined by gestures, but also highly related to the
position and orientation of users, as well as the positions of
transmitter and receiver [5]. If we directly use position-specific
features to realize gesture recognition with end-to-end deep
learning, huge amounts of CSI data in different locations and
orientations needs to be collected, and the system needs to be
retrained when a new environment is encountered.

Position-independent recognition methods are thus highly
pursued. In [5], a translation function is proposed that can
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generate virtual samples of a given gesture in a new environ-
ment using the existing data, thus avoid recollecting samples.
In this translation strategy, only amplitude information of the
reflection signal is used, and the variation of amplitude is
significant only when the hand is very close to the receiver.
In [6], a deep adversarial network is designed to extract
environment/subject-independent features shared by the data
collected on different subjects under different environments.
In [7], the body-coordinate velocity profiles (BVP) of gestures
are extracted from Doppler frequency shift as unique features
for recognition, but the orientation and location information
of the person is a priori knowledge for the compressed-
sensing based BVP extraction approach. In [8], a gesture is
characterized by how the hand moves relative to its previous
position and a position-independent feature is captured to
describe the pattern of moving direction changes. In [9], a
CSI correlation feature enhancement method is proposed to
enhance the activity-dependent information and eliminate the
activity-unrelated information.

In this paper, we propose a method to realize gesture recog-
nition when the position configuration and user orientation
are unknown. We use the phase change of the reflection path,
and build a relationship between a speed vector in the body
coordinate system and the phase change rate at the receiver.
With more than two receivers, we define a phase-trajectory
transformation matrix, which can transform the phase changes
directly into gesture trajectory. The transformation matrix
embodies the impact of position and orientation implicitly,
and is estimated by a preamble gesture each time reaching
a new environment. We design a specialized preamble gesture
to reduce the estimation error. The recovered gesture trajec-
tory is unrelated to the position and orientation, and can be
well recognized by a pretrained neural network. This method
has clear physical explanation, and we believe the trajectory
recovery idea will have wider applications more than just in
gesture recognitions or activity classifications.

The main contributions of this paper are in the following
three aspects:

1) we study a position-independent gesture recognition
method, where the gesture trajectory is recovered from
the phase change of dynamic reflection path without
knowing user position and orientation;

2) we design a simple but effective preamble gesture involv-
ing speed vectors in various directions, to estimate the
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phase-trajectory transformation matrix and the implicit
information of position and orientation;

3) we build a prototype system based on LTE signals to
recognize gestures in real-time, and test the accuracies
under different position configurations.

II. METHODOLOGY

A. Channel Model

Wireless signals propagate through multiple paths in the
environment. During hand movement, the channel is composed
of static paths and dynamic path, as shown in Fig. 1. The
static paths include the line-of-sight (LoS) propagation from
the transmitter to the receiver, and reflections or scatterings
by other static objects. The dynamic path is caused by the
reflection of a moving object, which is the hand we considered
in this paper.

Fig. 1. Multipath propagation of wireless signal and hand moving speed
decomposition in body coordinate system.

The channel response is time-varying, and can be expressed
as
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where aLoS and dLoS are the attenuation and path length
of the LoS component respectively, λ is the wavelength of
wireless signal, c is the speed of light, ar(t) and dr(t) are
the attenuation and path length of the dynamic component
respectively. As the hand moves, the change of dr(t) leads to
the change of the reflection path phase, which is
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)
, (2)

where
⇀
UR and

⇀
UT are the vectors from user to receiver

and transmitter, respectively. Since the distance variation in a
gesture is in the scale of decimeters, the signal delay variation
is in the scale of nanoseconds, which is indistinguishable for

Wi-Fi or LTE signals. The only significant change we can
observe is the phase of dynamic path, which exactly depends
on the gesture trajectory and the position configurations.

In general, the distances among the transmitter, receiver and
user are one or two orders of magnitude longer than the hand
movement distance, so that the geometry relation among them
can be considered as fixed during a gesture. Define the unit
vectors of

⇀
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⇀
UT as ⇀
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T , respectively. At a certain

moment, assuming that the speed vector of hand movement is
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We can see that the phase change not only depends on the
transmitter-user-receiver geometry relation, which is implied
in ⇀
R and ⇀

T , but also depends on the user orientation, which
causes different ⇀

vh even for the same gesture. To recognize a
given gesture with any possible user positions and orientations,
we must find a decoupling relation to resolve the trajectory
from the phase changes.

B. Phase-Trajectory Transforming

For a gesture, the trajectory in the body coordinate system is
invariant. For example, define the body center as the coordinate
origin, the right direction as x-axis, and the forward direction
as y-axis, as shown in Fig. 1. If we can find the transformation
relation between the speed vector and the phase change rate
in the body coordinate system, we can recover the gesture
trajectory without knowing user position and orientation. Then
the gesture can be easily recognized. Given a random user
position and orientation, define the unit speed vector in x-axis
and y-axis as ⇀

vx and ⇀
vy , respectively. Then the corresponding

phase change rates are
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=
2π

λ

(
⇀
vx ·

⇀
R +

⇀
vx ·

⇀
T
)
,

dpy
dt

=
2π

λ

(
⇀
vy ·

⇀
R +

⇀
vy ·

⇀
T
)
.

(4)

Note that any speed vector ⇀
vh can be represented by ⇀

vx and
⇀
vy as

⇀
vh= kx

⇀
vx +ky

⇀
vy, (5)

where kx and ky are weighting coefficients. The phase change
rate can also be decomposed into two affecting factors, i.e.,
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From (5) and (6) we can see that, the speed vector and the
phase change rate have the same decomposition coefficients.
Since ⇀

vx and ⇀
vy are orthogonal, their contributions to the

phase change rate are linearly added. In the gesture recognition
system, the speed vector ⇀

vh is the intrinsic variable, and
the phase change rate dph

dt is the observable variable. Using
preamble gestures, we can have estimations of dpx

dt and dpy
dt .

Then if we know kx and ky from dph
dt , we can synthesize ⇀

vh.
To solve kx and ky , we need at least two groups of

phase equations. That means at least two receivers (or two
transmitters) are required to construct multiple groups of
transmitter-user-receiver geometry relations. Due to the lack
of space, we consider that there are only two receivers, the
case of more receivers can be easily extended. Using similar
terminologies, we have[

dph1
dt

dph2
dt

]
=
[
kx ky

] [ dpx1
dt

dpx2
dt

dpy1
dt

dpy2
dt

]
=
[
kx ky

]
H tran,

(7)

and [
kx ky

]
=
[
dph1
dt

dph2
dt

]
H−1

tran. (8)

The transformation matrix H tran implies the impact of unit
speed vector ⇀

vx and ⇀
vy on the phase change rates at receiver

1 and 2, and it involves the impact of transmitter-user-receiver
geometry relation and user orientation. It is invariant as long
as the user position and orientation are fixed. However, H tran
might be ill-conditioned if the phase change rates at two
receivers are highly correlated.

With H−1
tran in hand, we can estimate the speed vector ⇀

vh (t)
at any moment,

−→vh(t) =
[
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]
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]
H−1

tran

[
⇀
vx
⇀
vy

]
,

(9)

and the trajectory can be calculated as the integration of ⇀vh (t),
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.

(10)

In this way, we can recover the gesture trajectory from the ob-
served phases independent of the user position and orientation,
and H−1

tran is thus called the phase-trajectory transformation
matrix.

There are two sources of error that might deteriorate the
recovered trajectory. The first is the estimation error in the
reflection path phase, which not only affect the estimation
of transformation matrix H tran, but also affect the observed
phase ph1(t) and ph2(t) in gesture recognition. When the

moving speed is slow, or the moving direction is parallel to
the border of Fresnel zone, the separation of dynamic path
and the estimation of its phase are more fragile to noise.
The second is the possible ill-condition of H tran even there
is no estimation error. The bad geometry relation will further
amplify the impact of phase estimation error.

C. Estimation of the Transformation Matrix

From (4) we know that, in ideal condition the transformation
matrix H tran can be obtained by two simple preamble gestures,
pushing straight to the right and to the forward. However, in
some configurations, the direction of ⇀

vx or ⇀
vy is close to the

tangent of the Fresnel zone, and this will result in an unreliable
H tran. Furthermore, a pushing operation is actually a variable
acceleration process, it is hard to confirm which part in the
motion period is the unit speed vector.

Therefore, we design a preamble gesture named “pre-O”,
which involves two continuous circles, to ensure that there are
speed vectors in various directions and the velocities sampled
at any moment are uniformly consistent. Since the start and
end of a gesture may have accelerations, we can pick the speed
vector samples in the intermediate part. Two circles are thus
enough for us to have samples in every directions.

Fig. 2. Every speed sample is a linear composition of basis vectors.

Select N motion segments at fixed moments as speed
samples and we know the decomposition coefficients at each
moment. For example, as shown in Fig. 2, taking 6 samples
with uniform time interval, we have


⇀
vo (t1)
⇀
vo (t2)

...
⇀
vo (tN )

 = K

[
⇀
vx
⇀
vy

]
, K =


−0.866 0.5

0 1
0.866 0.5
0.866 −0.5
0 −1

−0.866−0.5

 . (11)

Fig. 3 shows the “pre-O” gesture trajectory and the corre-
sponding dynamic phases at two receivers in a certain position
configuration. The bold fragments stands for the sampled
moments in trajectory and observed phases. Combining the
observed phase change rates at N moments, we can have
a more accurate and robust estimation of the transformation
matrix, i.e.,

468



Fig. 3. Preamble gesture trajectory and the corresponding dynamic phases at
two receivers.


dp1(t1)
dt

dp2(t1)
dt

...
...

dp1(tN )
dt

dp2(tN )
dt
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[ dpx1
dt

dpx2
dt

dpy1
dt

dpy2
dt

]
, (12)

and,

H tran =
(
KTK

)−1

KT


dp1(t1)
dt

dp2(t1)
dt

...
...

dp1(tN )
dt

dp2(tN )
dt

 . (13)

In practice, the “pre-O” gesture may not be drawn perfectly.
The circle may become ellipse and the speed cannot be
kept constant, which will bring estimation error to H tran.
Dividing the circle into more segments, such as 8 or 12, or
carrying the preamble with more rounds can help reduce this
error. However, comparing with the possible ill-condition of
H tran incurred by bad geometry relations, we believe that the
influence of imperfect circle is small.

D. Gesture Recognition

We design six gestures to be recognized as shown in Fig.
4, and the hand moves from the blue end to the yellow
end. The hand naturally moves in front of the body, and
the movement range is roughly equivalent to the length of
arm. A convolutional neural network (CNN) with 5 layers is
designed to recognize the gesture trajectory, as shown in Fig.
5, where Conv1d 1, Conv1d 2 and Dense 1 are followed by
the ReLU activation function, and Dense 2 is followed by the
softmax activation function. The input layer has dimension
of (850, 2), where 850 refers to gesture duration of 850
ms with CSI sampling interval 1 ms, and 2 refers to the X
and Y coordinates. According to our experiments, generally
the gesture completion time of a gesture is within 850 ms,
thus we cut of 850 ms segment of the separated dynamic
path to process. Since CNN has translation invariance, the
segment involving gesture is not necessarily at the central,
small amount of offset is allowed.

Since it is hard to collect a large amount of real experiment
datas, we have simulated 9000 trajectory datas to train the
neural network. But these simulation data will not be used for
test, in the experiments, we will use the CSI obtained from
real receivers to test the performance of gesture recognition.

The phase extraction and phase-trajectory transforming may
induce twisting, stretching and various kinds of distortion. It is

Fig. 4. Illustration of 6 gestures.

Fig. 5. The structure of CNN.

not enough to only add noise on the trajectory to generate the
training data. We established a simulation system involving
the whole procedure occurred in real system, which mainly
includes a trajectory generation module, a CSI generation
module, a transformation matrix solving module, and a tra-
jectory recovery module. The trajectory generation module
simulates the random start position, speed, movement range,
and the acceleration adjustment at the beginning and end
stages. The CSI generation module simulates the multipath
propagation and channel noise, and separates the dynamic path
from the static paths. The transformation matrix solving mod-
ule calculates the phase-trajectory transformation matrix and
the trajectory recovery module reconstructs the trajectory from
the observed phases of the dynamic paths. In the simulation,
6 position configurations are used, and in each configuration
1500 gestures are randomly generated. The recognition rate
on validation set is 99%.

In the experiments, given a fixed user position and orien-
tation, the preamble gesture is first performed and H tran is
estimated. Then the recovered trajectory is sent to the CNN to
classify. Since the simulation system considered main affecting
factors, the CNN trained by simulation data performs well in
real experiment datas.
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III. EXPERIMENTS

We build a prototype system based on LTE signals to verify
the proposed method. To ensure no other movement in the
environment, we are not using the signal from commercial
base station (BS), yet the LTE signal is transmitted by a
software radio. The carrier frequency is set as 2.27 GHz
and the corresponding wavelength is 13 cm. The maximum
transmit power is 10 dBmW, it has good coverage in a
laboratory and cause no interference to other rooms. We have
measured that the received signal power is similar with that
coming from a commercial micro-BS, which has a maximum
transmit power of 30 dBmW.

In Rx side, a software radio platform YunSDR Y550s is
used, which has four channels of RF links and can be used
as two receivers. Each receiver has two antennas, and CSI
ratio between two antennas are used as the CSI obtained in
this receiver, to eliminate the impact of phase noise [10].
The software radio platform implements down-conversion and
sampling, and all baseband processing are implemented in the
host computer. The whole system is implemented in real-time,
and we can observe the experiment results without delay.

The experiment scenario is shown in Fig. 6, the system auto-
matically intercepts the CSI segment with dynamic reflection
paths, and displays the CSI and the reconstructed trajectory
on the screen. The obtained CSI ratios and phase changes in
one example are shown in Fig. 7, where the user is standing
in front of the midpoint of Rx1 and Rx2, and performs Z1
gesture.

Fig. 6. Photo of one experiment room.

Fig. 7. CSI ratios obtained at two receivers, and the extracted phases of
reflection paths.

At the beginning of each test experiment, user needs to
perform the “pre-O” gesture, and the system automatically
intercepts the effective segments, calculates the transformation

matrix H tran. Then the user performs a set of gestures accord-
ing to 60 action commands which are randomly provided by
the system.

We verify the system performance under two position
configurations, as shown in Fig. 8, where the user is at the
coordinate origin and the receivers are located at different
positions. These two position configurations have not been
shown up in the training stage, and there are dense static
reflections in the experiment rooms. Since the user orientation
is relative to the direction of transmitter and receivers, the
user orientations under these two configurations are actually
different.

We also draw the Fresnel zones along with Tx-Rx1 and Tx-
Rx2 pairs. Given the same gesture, for example V1 shown in
the figure, the obtained CSIs are different for different position
configurations. The phase of reflection path only changes when
the hand crosses Fresnel zones. If the hand moves along the
tangent line of the Fresnel zone, the phase change is slow and
the reconstructed trajectory will have severe distortion.

Fig. 8. Two kinds of position configurations used in experiments, and the
corresponding Fresnel zones.

Fig. 9 and 10 show some reconstruction results of six
gestures under two position configurations. Although the mov-
ing ranges and speeds in each test are slightly different, the
results of position 1 are quite satisfactory. The reconstructed
trajectories are clear and similar with the designed gestures.
It only has small offset at the beginning, end segments and
turning points due to slow and tiny movements. The results
of positions 2 have some distortions, especially for V1, V2
and Z1. The right half of V does not cut the Fresnel zone
obviously, so the reconstructed right segments of V1 and V2
as well as the middle segments of Z1 have obvious offset.
Thus V1 and V2 are easily confused, and some reconstructed
Z1 looks like V1.

The statistical results of recognition accuracies and confu-
sion matrix are shown in Table I and Fig. 11, where five groups
of experiments are conducted in each position configuration.
The experiment results show that the proposed method is
feasible to reconstruct and recognize gestures in different
environments without any priori knowledge of the position
and orientation. They also show that in some position con-
figurations, due to ill-condition of the transformation matrix
or the weak response of specific movements, the recognition
accuracy is to be improved.
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Fig. 9. Reconstructed gesture trajectories under position configuration 1.

Fig. 10. Reconstructed gesture trajectories under position configuration 2.

The most direct method to improve the accuracy under
any possible position configurations is by adding more Tx-
Rx pairs. So that at least two pairs of transceivers can satisfy
the requirements that the signal is not blocked by the human
body and has obvious reflection path phase changes. In real
applications, it would be effective to increase the available
Tx-Rx pairs by listening several neighboring base stations
simultaneously. In addition, the current method can only serve
in the environment where only one moving object exists. To
inhibit the disturbance of other random activities, or to pursue
multi-user gesture recognition, we believe that it would be
better to improve the delay resolution and spatial resolution
with larger bandwidth and more antennas [11], [12].

TABLE I
TEST RESULTS

Position

Accuracy(%) Test
1 2 3 4 5

Pos1 98.3 95 95 96.7 95
Pos2 85 86.7 88.3 83.3 85
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Fig. 11. Confusion matrices of 300 gestures tested in two position config-
urations. Accuracy rates are 96% and 85.7% in position 1 and position 2,
respectively.

IV. CONCLUSION

In this paper, we proposed a position and orientation
independent gesture recognition method. With the help of
preamble gesture, a phase-trajectory transformation matrix is
first estimated, and then the gesture trajectory can be recovered
and recognized without retraining in a new environment. We
analyzed the source of distortions, and designed a “pre-O”
gesture to better estimate the transformation matrix. We built a
real-time prototype system to verify the feasibility and test the
performance under different position configurations. Robust
recognition under any circumstances will be assured with more
Tx-Rx pairs.
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